WO1996017947A9 - Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants - Google Patents

Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants

Info

Publication number
WO1996017947A9
WO1996017947A9 PCT/US1995/015892 US9515892W WO9617947A9 WO 1996017947 A9 WO1996017947 A9 WO 1996017947A9 US 9515892 W US9515892 W US 9515892W WO 9617947 A9 WO9617947 A9 WO 9617947A9
Authority
WO
WIPO (PCT)
Prior art keywords
aav
cell
packaging
vector
cells
Prior art date
Application number
PCT/US1995/015892
Other languages
English (en)
Other versions
WO1996017947A1 (fr
Filing date
Publication date
Application filed filed Critical
Priority to AU45963/96A priority Critical patent/AU707866B2/en
Priority to JP8517764A priority patent/JPH10511264A/ja
Priority to EP95944069A priority patent/EP0796339A1/fr
Publication of WO1996017947A1 publication Critical patent/WO1996017947A1/fr
Publication of WO1996017947A9 publication Critical patent/WO1996017947A9/fr
Priority to US09/731,941 priority patent/US6924128B2/en
Priority to US11/071,401 priority patent/US20050148076A1/en

Links

Definitions

  • This invention relates to gene therapy, and more specifically to materials and methods used for the generation of high titers of recombinant AAV vectors for use in gene therapy procedures.
  • AAV vectors may have utility for gene therapy but heretofore a significant obstacle has been the inability to generate sufficient quantities of such recombinant vectors in amounts that would be clinically useful for human gene therapy application. This is a particular problem for in vivo applications such as direct delivery to the lung.
  • Adeno-associated virus (AAV) vectors are among a small number of recombinant virus vector systems which have been shown to have utility as in vivo gene transfer agents (reviewed in Carter, 1992, Current Opinion in Biotechnology, 3:533-539; Muzcyzka, 1992, Curr. Top. Microbiol. Immunol. 158:97-129) and thus are potentially of great importance for human gene therapy.
  • AAV vectors are capable of high- frequency stable DNA integration and expression in a variety of cells including cystic fibrosis (CF) bronchial and nasal epithelial cells (see, e.g., Flotte et al., 1992a, Am. J. Respir. Cell Mol. Biol.
  • AAV may not require active cell division for stable expression which would be a clear advantage over retroviruses, especially in tissue such as the human airway epithelium where most cells are terminally differentiated and non-dividing.
  • AAV is a defective parvovirus that grows only in cells in which certain functions are provided by a co-infecting helper virus (see Fig. l) .
  • a co-infecting helper virus see Fig. l.
  • co-infecting viruses that provide helper functions for AAV growth and replication are adenoviruses, herpesviruses and in some cases poxviruses such as vaccinia.
  • the nature of the helper function is not entirely known but appears to be some indirect effect of the helper virus which renders the cell permissive for AAV replication. This belief is supported by the observation that in certain cases AAV replication may occur at a low level of efficiency in the absence of helper virus co-infection if the cells are treated with agents that are either genotoxic or that disrupt the cell cycle.
  • AAV may replicate to a limited extent in the absence of helper virus in certain unusual conditions, as noted above, the more general result is that infection of cells with AAV in the absence of helper functions results in integration of AAV into the host cell genome.
  • the integrated AAV genome may be rescued and replicated to yield a burst of infectious progeny AAV particles if cells containing an integrated AAV provirus are superinfected with a helper virus such as adenovirus. Because the integration of AAV appears to be an efficient event, this suggested that AAV would be a useful vector for introducing genes into cells for stable expression for uses such as human gene therapy.
  • AAV has a very broad host range with neither any obvious species nor tissue specificity and will replicate in virtually any cell line of human, simian or rodent origin provided an appropriate helper is present.
  • AAV is ubiquitous and has been isolated from a wide variety of animal species including most mammalian and several avian species.
  • AAV has not been associated with the cause of any disease.
  • AAV is not a transforming or oncogenic virus.
  • AAV integration into chromosomes of human cell lines does not cause any significant alteration in the growth properties or morphological characteristics of the cells.
  • These properties of AAV also recommend it as a potentially useful human gene therapy vector because most of the other viral systems proposed for this application such as retroviruses, adenoviruses, herpesviruses, or poxviruses are disease-causing viruses.
  • AAV particles are comprised of a protein capsid having three capsid proteins, VPl, VP2, and VP3, and enclosing a DNA genome.
  • the AAV DNA genome is a linear single-stranded DNA molecule having a molecular weight of about 1.5 x 10 6 daltons or approximately 4680 nucleotides long. Strands of either complementary sense, "plus” or “minus” strands, are packaged into individual particles but each particle has only one DNA molecule. Equal numbers of AAV particles contain either a plus or minus strand.
  • Either strand is equally infectious and replication occurs by conversion of the parental infecting single strand to a duplex form and subsequent amplification of a large pool of duplex molecules from which progeny single strands are displaced and packaged into capsids.
  • Duplex or single-strand copies of AAV genomes inserted into bacterial plasmids or phagemids are infectious when transfected into adenovirus-infected cells, and this has allowed the study of AAV genetics and the development of AAV vectors.
  • the AAV2 genome has two copies of a 145-nucleotide-long
  • ITR inverted terminal repeat
  • the unique region contains three transcription promoters p5, pl9, and p40 (Laughlin et al., 1979, Proc. Natl. Acad. Sci. USA. 76:5567-5571) that are used to express the rep and cap genes.
  • the ITR sequences are required in cis and are sufficient to provide a functional origin of replication (ori ) and also are sufficient to provide signals required for integration into the cell genome as well as for efficient excision and rescue from host cell chromosomes or from recombinant plasmids.
  • the ITR can function directly as a transcription promoter in an AAV vector (Flotte et al. , 1993, vide supra) .
  • the rep and cap genes are required in trans to provide functions for replication and encapsidation of viral genome respectively.
  • the rep gene is expressed from two promoters, p5 and pl9. Transcription from p5 yields an unspliced 4.2 kb mRNA which encodes a protein, Rep78, and a spliced 3.9 kb mRNA which encodes a protein, Rep68. Transcription from pl9 yields an unspliced mRNA which encodes Rep52 and a spliced 3.3 kb mRNA which encodes Rep40.
  • the four Rep proteins all comprise a common internal region sequence but differ with respect to their amino and carboxyl terminal regions.
  • Rep78 and Rep68 are required for AAV duplex DNA replication, but Rep52 and Rep40 appear to be needed for progeny,- single- strand DNA accumulation. Mutations in Rep78 and Rep68 are phenotypically Rep- whereas mutations affecting only Rep52 and Rep40 are Rep+ but Ssd-. Rep68 and Rep78 bind specifically to the hairpin conformation of the AAV ITR and possess several enzyme activities required for resolving replication at the AAV termini. Rep52 and Rep40 have none of these properties.
  • the Rep proteins, primarily Rep78 and Rep68 exhibit several pleiotropic regulatory activities including positive and negative regulation of AAV genes and expression from some heterologous promoters, as well as inhibitory effects on cell growth (Tratschin et al. , 1986, Mol. Cell.
  • Virology. 166:154-165) reported a very low level expression of some Rep proteins in certain cell lines after stable integration of AAV genomes.
  • the proteins VPl, VP2, and VP3 all share a common overlapping sequence but differ in that VPl and VP2 contain additional amino terminal sequence. All three are coded from the same cap gene reading frame expressed from a spliced 2.3 kb mRNA transcribed from the p40 promoter. VP2 and VP3 are generated from the same mRNA by use of alternate initiation codons. VPl is coded from a minor mRNA using 3' donor site that is 30 nucleotides upstream from the 3' donor used for the major mRNA that encodes VP2 and VP3. VPl, VP2, and VP3 are all required for capsid production. Mutations which eliminate all three proteins (Cap-) prevent accumulation of single- strand progeny AAV DNA whereas mutations in the VPl a ino- terminus (Lip-, Inf-) permit single-strand production but prevent assembly of stable infectious particles.
  • AAV infectious genomes of AAV were constructed by insertion of double-strand molecules of AAV into plasmids by procedures such as GC tailing (Sa ulski et al. , 1982, Proc. Natl. Acad. Sci. USA. 79:2077-2081), addition of synthetic linkers containing restriction endonuclease (Laughlin et al., 1983, Gene. 23:65-73) or by direct, blunt-end ligation (Senapathy & Carter, 1984, J. Biol. Chem..
  • AAV vector construction were defined as reviewed recently (Carter, 1992, Current Opinions in Biotechnology. 3:533-539; Muzyczka, 1992, Current Topics in Microbiology and Immunology. 158:97-129).
  • AAV vectors are constructed in AAV recombinant plasmids by substituting portions of the AAV coding sequence with foreign DNA to generate a vector plasmid.
  • the terminal (ITR) portions of the AAV sequence must be retained intact because these regions are required in cis for several functions including excision from the plasmid after transfection, replication of the vector genome and integration and rescue from a host cell genome.
  • the vector can then be packaged into an AAV particle to generate an AAV transducing virus by transfection of the vector plasmid into cells that are infected by an appropriate helper virus such as adenovirus or herpesvirus.
  • an appropriate helper virus such as adenovirus or herpesvirus.
  • the vector plasmid In order to achieve replication and encapsidation of the vector genome into AAV particles, the vector plasmid must be complemented for any AAV functions required in trans , namely rep and cap, that were deleted in construction of the vector plasmid.
  • the transducing vector must be generated at sufficiently high titers that it is practicable as a delivery system. This is especially important for gene therapy stratagems aimed at in vivo delivery of the vector.
  • the required dose of transducing vector may be in excess of 10 10 .
  • the vector preparations must be free of wild-type AA V virus. The attainment of high titers of AAV vectors has b een difficult for several reasons including preferential - 7 -
  • the first AAV vectors that were described contained foreign reporter genes such as neo or cat or dhfr that were expressed from AAV transcription promoters or an SV40 promoter (Tratschin et al., 1984b, Mol. Cell. Biol. 4:2072-2081; Hermonat & Muzyczka, 1984, Proc. Natl. Acad. Sci. USA. 81:6466-6470; Tratschin et al. , 1985, Mol. Cell. Biol. 5:3251- 3260; McLaughlin et al., 1988, J. Virol.. 62:1963-1973; Lebkowski et al., 1988 Mol. Cell. Biol.. 7:349-356).
  • foreign reporter genes such as neo or cat or dhfr that were expressed from AAV transcription promoters or an SV40 promoter
  • the packaging plasmid had deleted the ITR regions of AAV in order that it could not be excised and replicated and thus could not be packaged. All of these approaches failed to prevent generation of particles containing wild-type AAV DNA and also failed to generate effective high titers of AAV transducing particles. Indeed titers of not more than 10 4 ml were cited by Hermonat & Muzyczka, 1984. The production of wild-type AAV particles in these studies was probably due to the presence of overlapping homology between AAV sequences present in the vector and packaging plasmids. It was shown by Senapathy and Carter (1984, J. Biol. Chem.
  • AAV rep or cap gene still met with generation of wild-type AAV and still produced very low transduction frequencies on human cell lines.
  • McLaughlin et al., 1988 reported that AAV rep- cap- vectors containing the neo gene packaged with the same packaging plasmid used earlier by Hermonat & Muzyczka
  • Lebkowski et al., 1988 packaged AAV vectors which did not contain either a rep or cap gene and used an ori- packaging plasmid pBalA identical to that used earlier by Tratschin et al., (1984b, 1985) and reported transduction frequencies that were similarly low, in that for several human cell lines not more than 1% of the cells could be transduced to geneticin resistance even with their most concentrated vector stocks.
  • Lebkowski et al., (1988) did not report the actual vector titers in a meaningful way but the biological assays showing not more than 1% transduction frequency when 5 x 10* cells were exposed to three ml of vector preparation indicates that the titer was less than 2 x 10 4 .
  • the pBal packaging plasmid contains overlapping homology with the ITR sequence in the vector and leads to generation by recombination of wild-type AAV.
  • Laface et al., (1988) used the same vector as that used by Hermonat & Muzyczka (1984) prepared in the same way and obtained a transduction frequency of 1.5% in murine bone marrow cultures again showing very low titer.
  • Samulski et al. (1987, J. Virol.. 61:3096-3101) constructed a plasmid called pSub201 which was an intact AAV genome in a bacterial plasmid but which had a deletion of 13 nucleotides at the extremity of each ITR and thus was rescued and replicated less efficiently than other AAV plasmids that contained the entire AAV genome.
  • Samulski et al. (1989, J ⁇ Virol.. 63:3822-3828) constructed AAV vectors based on pSub20l but deleted for rep and cap and containing either a hyg or neo gene expressed from an SV40 early gene promoter.
  • pAAV/Ad packaged these vectors by co-transfection with a packaging plasmid called pAAV/Ad which consisted of the entire AAV nucleotide sequence from nucleotide 190 to 4490 enclosed at either end with one copy of the adenovirus ITR.
  • pAAV/Ad a packaging plasmid which consisted of the entire AAV nucleotide sequence from nucleotide 190 to 4490 enclosed at either end with one copy of the adenovirus ITR.
  • the AAV rep and cap genes were expressed from the natural AAV promoters p5, pl9 and p40.
  • the function of the adenovirus ITR in pAAV/Ad was thought to be to enhance the expression level of AAV capsid proteins.
  • rep is expressed from its homologous promoter and is negatively regulated and thus its expression is limited.
  • Chatterjee et al., and Wong et al. used a packaging system known to give only low titer and which can lead to generation of wild-type AAV genomes because of the overlapping homology in the vector and packaging sequences.
  • Other reports have described the use of AAV vectors to express genes in human lymphocytes (Muro-Cacho et al., 1992, J. Immunotherapy. 11:231-237) or a human erythroid leukemia cell line (Walsh et al., 1992, Proc. Natl. Acad. Sci. USA. 89:7257-7261) with vectors based on the pSub201 vector plasmid and pAAV/Ad packaging plasmid. Again, titers of vector stocks were not reported and were apparently low because a selective marker gene was used to identify those cells that had been successfully transduced with the vector.
  • AAV vectors may have potential utility as vectors for treatment of human disease by gene therapy.
  • the ability to generate sufficient amounts of AAV vectors has been a severe limitation on the development of human gene therapy using AAV vectors.
  • One aspect of this limitation is that there have been very few studies using AAV vectors in in vivo animal models (see, e.g., Flotte et al., 1993b; and Kaplitt et al., 1994, Nature Genetics 8:148-154). This is generally a reflection of the difficulty associated with generating sufficient amounts of AAV vector stocks having a high enough titer to be useful in analyzing in vivo delivery and gene expression.
  • AAV gene therapy has been the relative inefficiency of the vector packaging systems that have been used. Because of the lack of cell lines expressing the AAV trans complementing functions, such as rep and cap, packaging of AAV vectors has been achieved in adenovirus-infected cells by co-transfection of a packaging plasmid and a vector plasmid. The efficiency of this process may be limited by the efficiency of transfection of each of the plasmid constructs, and by the level of expression of Rep proteins from the packaging plasmids described to date. Each of these problems appears to relate to the biological activities of the AAV Rep proteins. In addition, as noted above, all of the packaging systems described above have the ability to generate wild-type AAV by recombination.
  • Lebkowski et al. introduce rep and cap genes into the cell genome but the method again requires the use of episomal AAV transducing vectors comprising an Epstein-Barr virus nuclear antigen (EBNA) gene and an Epstein-Barr virus latent origin of replication; and, again, the only information relative to titer showed a fairly low titer.
  • EBNA Epstein-Barr virus nuclear antigen
  • AAV vectors can achieve in vivo gene transfer in the respiratory tract, for example, but high titers are critical so as to allow for the delivery of sufficiently high multiplicity of vector in as small a volume as possible.
  • Stable, helper-free AAV packaging cell lines have been elusive, mainly due to the activities of Rep protein, which down-regulates its own expression and can negatively affect the host cell.
  • Rep protein which down-regulates its own expression and can negatively affect the host cell.
  • the approaches described in this invention effectively circumvent these problems and have allowed for substantial improvements in packaging efficiency.
  • a method of producing a mammalian cell capable of high efficiency packaging of a recombinant AAV (rAAV) vector comprising the steps of: (a) providing a mammalian cell which comprises a stably integrated AAV cap gene operably linked to a promoter, and a stably integrated AAV rep gene operably linked to a heterologous promoter; (b) replicating the cell of step (a) to produce a population of cells; (c) introducing a helper virus to the population of cells of step (b) ; and (d) selecting a cell exhibiting helper-virus-inducible rep protein activity.
  • rAAV recombinant AAV
  • step (a) comprises the combined rep and cap genes of AAV in which the p5 promoter has been replaced by a heterologous promoter.
  • heterologous promoter is a mouse metallothionein I (mMT-I) promoter.
  • mMT-I mouse metallothionein I
  • a mammalian cell capable of high efficiency packaging of a recombinant AAV (rAAV) vector, said cell comprising a stably integrated cap gene operably linked to a promoter, and a stably integrated rep gene operably linked to a heterologous promoter; wherein said cell exhibits helper- virus-inducible rep protein activity.
  • rAAV recombinant AAV
  • said heterologous promoter is a mouse metallothionein I (mMT-I) promoter.
  • ITR inverted terminal repeat
  • a method of packaging a recombinant AAV vector comprising the steps of: (a) providing an AAV packaging cell of embodiment 10; (b) introducing a recombinant AAV vector, said vector comprising a polynucleotide sequence of interest located between two AAV inverted terminal repeat (ITR) regions; (c) introducing a helper virus; and (d) incubating the cell under conditions suitable for replication and packaging of AAV.
  • ITR inverted terminal repeat
  • a method of packaging a recombinant AAV vector comprising the steps of: (a) providing an AAV packaging cell of embodiment 15 which comprises a stably integrated rAAV vector; (b) introducing a helper virus; and (c) incubating the cell under conditions suitable for replication and packaging of AAV.
  • CFTR cystic fibrosis transmembrane conductance regulator
  • Figure 1 is a diagram of plasmid pMt-rep/cap//pKO-neo, as described in Example l.
  • Figure 2 is a reproduction of Southern blots demonstrating that packaging cells produced according to the present invention have sufficient rep activity to replicate an incoming rAAV vector, as described in Example 4.
  • Figure 3 is a reproduction of Southern blots demonstrating that packaging cells produced according to the present invention are capable of replicating an AAV genome in the presence of adenovirus, and that this activity can be used to quantify the number of infectious viral particles present in a given sample, as described in Example 5.
  • Figure 4 is a reproduction of Southern blots demonstrating that packaging cells produced according to the present invention express rep protein and are able to replicate recombinant AAV plasmid DNA genomes introduced by transfection, as described in Example 6.
  • Figure 5 is a reproduction of Southern blots demonstrating that the infectious rAAV titering assay described in Example 5 had proceeded for a sufficient amount of time to reach a maximum, as described in Example ' 7.
  • Figures 6 and 7 are reproductions of Southern blots demonstrating that packaging cells produced according to the present invention can replicate and package rAAV vector genomes into infectious virions by either transfection or infection, as described in Examples 9 and 10.
  • Figure 8 is a reproduction of a Southern blot demonstrating that packaging cells produced according to the present invention possess sufficient rep activity to recognize, excise and amplify an integrated rAAV vector, as described in Example 11. DETAILED DESCRIPTION OF THE INVENTION
  • AAV vectors are recombinant constructs of the AAV virus comprising AAV components necessary for replication and encapsidation, along with a heterologous polynucleotide encoding a protein of interest. These recombinant AAV vectors are potentially powerful tools for human gene therapy, particularly for diseases such as cystic fibrosis and sickle cell anemia.
  • a major advantage of AAV vectors over other approaches to gene therapy is that they do not require ongoing replication of the target cell in order to integrate permanently into the cell's genome.
  • the invention described herein provides methods and materials for use in the production of high titers of recombinant AAV vectors for use in gene therapy. It also provides methods and materials for determining the relative infectious titer of rAAV preparations.
  • polypeptide polypeptide
  • peptide protein
  • proteins that are post- translationally modified through reactions that include glycosylation, acetylation and phosphorylation.
  • Polynucleotide refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides, or analogs thereof. This term refers only to the primary structure of the molecule. Thus, double- and single-stranded DNA, as well as double- and single- stranded RNA are included. It also includes modified polynucleotides such as methylated or capped polynucleotides.
  • Recombinant as applied to a polynucleotide, means that the polynucleotide is the product of various combinations of cloning, restriction and/or ligation steps, and other procedures that result in a construct that is distinct from a polynucleotide found in nature.
  • Sequence overlap occurs when the nucleotides share a homologous sequence of sufficient length and identity that recombination is facilitated.
  • the level of homology and corresponding frequency of recombination increase with increasing length of the homologous sequences and with their level of shared identity.
  • the level of homology that will pose a concern in a given system can be determined theoretically and confirmed experimentally, as is known in the art.
  • recombination can be substantially reduced or eliminated if the overlapping sequence is less than about a 25 nucleotide sequence if it is at least 80% identical over its entire length, or less than about a 50 nucleotide sequence if it is at least 70% identical over its entire length.
  • a “vector” refers to a recombinant plasmid or virus that comprises a polynucleotide to be delivered into a host cell, either in vitro or in vivo.
  • the polynucleotide to be delivered sometimes referred to as a "target polynucleotide”, may comprise a coding sequence of interest in gene therapy.
  • a “recombinant AAV vector” refers to a vector comprising one or more polynucleotides of interest that are flanked by AAV inverted terminal repeat sequences (ITRs) .
  • ITRs AAV inverted terminal repeat sequences
  • Such rAAV vectors can be replicated and packaged into infectious viral particles when present in a host cell that has been infected with a suitable helper virus and is expressing the AAV rep and cap genes.
  • AAV "rep” and “cap” genes (encoding replication and encapsidation proteins, respectively) have been found in all AAV serotypes examined, and are described above and in the references cited therein. Typically, the rep and cap genes are found adjacent to each other in the AAV genome, and they are generally conserved among AAV serotypes.
  • helper virus for AAV refers to a second virus that allows wild-type AAV (which is a "defective" parvovirus) to be replicated and packaged by a host cell.
  • helper viruses include adenoviruses, herpesviruses and poxviruses such as vaccinia.
  • Packaging refers to a series of subcellular events that results in the assembly and ' encapsidation of an rAAV vector. Thus, when a suitable vector plasmid is introduced into a packaging cell line under appropriate conditions, it will be assembled into a vector viral particle.
  • Heterologous means derived from a genotypically distinct entity from that of the rest of the entity to which it is compared.
  • a polynucleotide introduced by genetic engineering techniques into a different cell type is a heterologous polynucleotide (and, when expressed, can encode a heterologous polypeptide) .
  • a promoter that is removed from its native coding sequence and operably linked to a different coding sequence is a heterologous promoter.
  • Promoter refers to a genomic region that enhances the transcription of a gene or coding sequence to which it is operably linked.
  • operably linked refers to a juxtaposition, wherein the components so described are in a relationship permitting them to function in their intended manner.
  • a promoter is operably linked to a coding sequence if the promoter promotes transcription of the coding sequence.
  • An operably linked promoter is usually in cis configuration with the coding sequence, but is not necessarily contiguous with it.
  • “Host cells”, “cell lines”, “cell cultures”, and other such terms denote higher eukaryotic cells, most preferably mammalian cells, which can be used as recipients for recombinant vectors or other transfer polynucleotides, and include the progeny of the original cell that was transduced. It is understood that the progeny of a single cell may not necessarily be completely identical (in morphology or in genomic complement) to the original parent cell.
  • “Stable integration" of a polynucleotide into a cell means that the polynucleotide has been introduced into a chromosome or mini-chromosome of the cell and, therefore, becomes a relatively permanent part of the cellular genome.
  • “episomes” such as plasmids can sometimes be maintained for many generations (particularly if kept under selective pressure)
  • genetic material carried episomally is generally more susceptible to loss than chromosomally- integrated material.
  • the chromatin structure of eukaryotic chromosomes can influence the level of expression of an integrated polynucleotide; and we believe that such effects can sometimes prove beneficial in situations such as those described herein (in which the level of expression of the AAV rep gene can have negative effects upon cellular metabolism) .
  • the selection of stable cell lines having properties that are particularly desirable in the context of the present invention are described in the Detailed Description and Examples below. "Efficiency" when used in describing a cell line refers to the useful properties of the line; in particular, the growth rate, and (for packaging cell lines) the number of virus particles produced per cell. "High efficiency packaging" indicates production of at least 100 viral particles per cell.
  • the method for producing high titers of recombinant•AAV vectors comprises several steps.
  • the general strategy involves preparation of mammalian packaging cell lines that comprise a stably integrated AAV cap gene operably linked to a promoter, and a stably integrated AAV rep gene operably linked to a heterologous promoter.
  • Packaging cells are then infected or transfected with a plasmid comprising the AAV ITR regions and the target polynucleotide.
  • suitable conditions including suitable growth conditions and infection with a competent helper virus
  • expression of the rep and cap genes of the packaging cell results in the synthesis of rep and cap proteins which mediate replication and encapsidation of the AAV vector, respectively.
  • Providing a polynucleotide of interest (also referred to as a "target polynucleotide”) in- between the AAV ITR sequences of the rAAV vector, thus results in packaging of the target polynucleotide into an infectious rAAV particle which can be used to deliver the polynucleotide to a desired host cell.
  • the proportion of wild-type AAV i.e., particles not containing the target polynucleotide
  • the presence of contaminating wild-type AAV limits the therapeutic potential of rAAV vector preparations.
  • the p5 promoter region is replaced with a different promoter.
  • the packaging cell lines of the present invention enable the efficient production of rAAV preparations that are of high titer and are substantially free of any contaminating wild- type AAV; attributes that are especially useful in the context of AAV-mediated gene therapy.
  • the degree of relatedness is further suggested by heteroduplex analysis which reveals extensive cross-hybridization between serotypes along the length of the genome; and the presence of analogous self-annealing segments at the termini that correspond to ITRs.
  • the similar infectivity patterns also suggest that the replication functions in each serotype are under similar regulatory control.
  • the parental lines from which packaging cells are generated may be obtained from any cell line that is susceptible to AAV infection, and amenable to culture in vitro.
  • AAV has a very broad host range and has been isolated from a variety of mammalian cell types, including simian, human and rodent cells.
  • human cell lines in which appropriate helper functions can be expressed are typically preferred.
  • Such human cell lines from which the packaging cell lines may be derived include, for example, Hela, A549, 293, KB, Detroit, and WI38 cells. We initially selected both Hela cells and A549 cells for demonstrations of the present invention. As described in the Examples below, we were readily able to generate packaging cells from both parental lines tested.
  • the rep gene is under regulation of the p5 promoter, which is itself strongly down-regulated by rep expression.
  • the cells are provided with a stably integrated AAV cap gene operably linked to a promoter, and a stably integrated AAV rep gene operably linked to a heterologous promoter; as described and illustrated herein. Any heterologous promoter that is not strongly down-regulated by rep gene expression is suitable; but inducible promoters are preferred because constitutive expression of the rep gene can have a negative impact on the host cell.
  • inducible promoters are known in the art; including, by way of illustration, heavy metal ion inducible promoters (such as metallothionein promoters) ; steroid hormone inducible promoters (such as the MMTV promoter or growth hormone promoters) ; and promoters such as those from T7 phage which are active in the presence of T7 RNA polymerase.
  • inducible promoters are those that are induced by the helper virus that is used to complement the replication and packaging of the rAAV vector.
  • helper-virus-inducible promoters include for example, the adenovirus early gene promoter which is inducible by adenovirus E1A protein; the adenovirus major late promoter; the herpesvirus promoter which is inducible by herpesvirus proteins such as VP16 or 1CP4 ; as well as vaccinia or poxvirus inducible promoters.
  • the Examples below illustrate a generally applicable method that can be used to test putative promoters to readily determine whether or not they are helper-virus-inducible and whether or not they will be useful in the generation of high efficiency packaging cells.
  • the method involves replacing the p5 promoter of the AAV rep gene with the putative helper-virus-inducible promoter (either known in the art or identified using well-known techniques such as linkage to promoter-less "reporter" genes) .
  • the AAV rep-cap genes (with p5 replaced) , preferably linked to a positive selectable marker such as an antibiotic resistance gene, are then stably integrated into a suitable host cell (such as the Hela or A549 cells exemplified below) .
  • Cells that are able to grow relatively well under selection conditions are then tested for their ability to express the rep and cap genes upon addition of a helper virus.
  • As an initial test for rep and/or cap expression cells can be readily screened using immunofluorescence to detect rep and/or cap proteins (as illustrated in the Examples below) . Confirmation of packaging capabilities and efficiencies can then be determined by functional tests for replication and packaging of incoming rAAV vectors (also illustrated below) .
  • the AAV cap gene is also stably integrated into the packaging cell line.
  • the rep and cap genes are introduced into the parental line together, by using a plasmid that contains them both (essentially as they are arranged in the AAV genome, except for replacement of the sequences upstream of rep, i.e. the p5 promoter region) .
  • a plasmid designated pMt-rep/cap//pKO-neo shown in Figure 1 .
  • the plasmid contains a heterologous promoter linked to a region containing the rep-cap genes. The rest of the rep-cap region, including the pl9 promoter and the p40 promoter are retained.
  • the plasmid also contains an AAV polyadenylation signal.
  • the components of native AAV that are not present in the plasmid include the p5 promoter region (which has been substituted by the heterologous promoter) and the ITRs (which are present in the vector plasmid to be introduced separately) .
  • Cells transfected with rep and cap genes as described above are then selected from untransfected cells according to methods that are routine in the art. Most conveniently, selection is accomplished by linking the rep and cap genes to one or more selectable markers (such as antibiotic resistance genes) .
  • selectable markers such as antibiotic resistance genes
  • the neo-resistance gene was included next to the rep-cap sequences.
  • selectable markers are driven by constitutive promoters; and preferably, such markers are introduced in an opposite orientation relative to the AAV rep-cap genes since that tends to reduce the potential for the promoter driving the selectable marker to effect expression of the rep gene (which can be detrimental to the host cell) .
  • the cell lines are exposed to the antibiotic for which resistance has been provided (geneticin was used in the case of the constructs referred to above) .
  • the selectable marker is included on the same plasmid as the rep-cap sequences; and both are stably integrated into the host genome.
  • the plasmid Mt-rep/cap//pKOneo for example, geneticin- resistant cells would be expected to possess an integrated copy of the neo gene as well as pMt-rep/cap. Since the rep sequences cannot readily be lost in our system, the prior art would predict that the recipient cells would exhibit reduced growth rates.
  • our constructs were introduced into exemplary mammalian host cells (Hela and A549) , the rate of proliferation of the geneticin-resistant clones was not significantly affected in either of the cell lines.
  • packaging cells that are capable of replicating at least one half as rapidly as the parental cells, and capable of producing more than 100 rAAV particles/cell.
  • the cells grow at least two-thirds as rapidly as the parental line, and produce more than 250 rAAV particles/cell.
  • packaging cells that replicate substantially as rapidly as the parent cells (at least about 80% of the rate), and that produce more than about 500 rAAV particles per cell.
  • the packaging cell line is supplied with a recombinant AAV vector comprising AAV inverted terminal repeat (ITR) regions surrounding one or more polynucleotides of interest (or "target" polynucleotides) .
  • ITR inverted terminal repeat
  • the target polynucleotide is operably linked to a promoter, either its own or a heterologous promoter.
  • a promoter either its own or a heterologous promoter.
  • suitable promoters are known in the art, the choice of which depends on the desired level of expression of the target polynucleotide; whether one wants constitutive expression, inducible expression, cell-specific or tissue-specific expression, etc.
  • the rAAV vector will also contain a positive selectable marker in order to allow for selection of cells that have been infected by the rAAV vector.
  • Negative selectable markers can also be included; as a means of selecting against those same cells should that become necessary or desirable.
  • those constructs involve direct translational fusions between a dominant positive selectable marker a negative selectable marker.
  • Preferred positive selectable markers are derived from genes selected from the group consisting of hph , neo, and gpt
  • preferred negative selectable markers are derived from genes selected from the group consisting of cytosine deaminase, HSV-I TK, VZV TK, HPRT, APRT and gpt
  • Especially preferred markers are bifunctional selectable fusion genes wherein the positive selectable marker is derived from hph or neo , and the negative selectable marker is derived from cytosine deaminase or a TK gene.
  • CFTR operably linked to a promoter.
  • CFTR polypeptides that are capable of reconstructing CFTR functional deficiencies in cells derived from cystic fibrosis patients.
  • Rich et al. (1991, Science, 253: 205-207) described a CFTR derivative missing amino acid residues 708-835, that was capable of transporting chloride and capable of correcting a naturally occurring CFTR defect.
  • Egan et al. (1993) described another CFTR derivative (comprising about 25 amino acids from an unrelated protein followed by the sequence of native CFTR beginning at residue 119) that was also capable of restoring electrophysiological characteristics of normal CFTR.
  • polynucleotides include, but are not limited to: (i) polynucleotides encoding proteins useful in other forms of gene therapy to relieve deficiencies caused by missing, defective or sub-optimal levels of a structural protein or enzyme; (ii) polynucleotides that are transcribed into anti-sense molecules; (iii) polynucleotides that are transcribed into decoys that bind transcription or translation factors; (iv) polynucleotides that encode cellular modulators such as cytokines; (v) polynucleotides that can make recipient cells susceptible to specific drugs, such as the herpes virus thymidine kinase gene; and (vi) polynucleotides for cancer therapy, such as the wild-type p53 tumor suppressor cDNA for replacement of the missing or damaged p53 gene associated with some lung and breast cancer
  • the same packaging cell line can be used for any of these applications.
  • the plasmid comprising the specific target polynucleotide is introduced into the packaging cell for production of the AAV vector by one of several possible methods; including, for example, electroporation.
  • Helper virus can be introduced before, during or after introduction of the rAAV vector. As illustrated in Example 10, the plasmid can be co-infected into the culture along with the helper virus.
  • the cells are then cultured for a suitable period, typically 2-5 days, in conditions suitable for replication and packaging as known in the art (see references above and examples below) . Lysates are prepared, and the recombinant AAV vector particles are purified by techniques known in the art.
  • the recombinant AAV vector is itself stably integrated into a clone of the packaging cell line.
  • a stable, vector-containing packaging line can be grown and stored until ready for use.
  • the user simply infects the cells with helper virus and cultures the cells under conditions suitable for replication and packaging of AAV (as described below) .
  • the amount of helper virus and the incubation time influence the amount of rep activity, they can be readily optimized and kept constant, as illustrated below.
  • To conduct the assay aliquots of the packaging cell line are introduced with a standard amount of helper virus and serial dilutions of the rAAV preparation to be tested.
  • the relative infectious titer of the AAV is indicated by the amount of replicated AAV present in each aliquot after suitable incubation; and can be compared to a preparation of known titer.
  • the examples presented below are provided as a further guide to the practitioner of ordinary skill in the art, and are not to be construed as limiting the invention in any way.
  • Example 1 Construction of a plasmid encoding the rep-cap se ⁇ uences operably linked to a heterologous promoter
  • a plasmid containing the wild type rep and cap genes from deoxyribonucleotide 311 to 4493 of the AAV genome
  • mMt-I mouse metallothionein I
  • This construction effectively removes both ITR's and substitutes the mMt-I promoter for the p5 promoter while maintaining all of the AAV reading frames, the pl9 and p40 promoters and the polyadenylation signal.
  • pKOneo contains the neo gene (providing resistance to neomycin and gentamicin) under control of the SV40 early promoter; as well as SV40 small t intron and SV40 polyadenylation signal oriented in the opposite transcriptional direction relative to pMt-rep/cap (Ito et al. 1994 Cancer Lett. 76:33-39).
  • pMt-rep/cap//pKO-neo The resulting plasmid, designated pMt-rep/cap//pKO-neo, is shown in Figure 1.
  • Example 2 Integration of the rep-cap genes into mammalian cell lines
  • DMEM Dulbecco's modified Eagle's medium
  • the cells were plated at low density in the presence of 1 mg/ml active component geneticin (Gibco-BRL) . Individual colonies were ring cloned, expanded and maintained in 1 mg/ml geneticin.
  • the selectable marker is included on the same plasmid as the rep-cap sequences; and both are stably integrated into the host genome.
  • the plasmid Mt-rep/cap//pKOneo for example, geneticin- resistant cells would be expected to possess an integrated copy of the neo gene as well as pMt-rep/cap. Since the rep sequences cannot readily be lost in our system, the prior art would predict that the recipient cells would exhibit reduced growth rates.
  • PBS phosphate buffered saline
  • the cells were then washed three additional times with PBS and incubated overnight with "WT" medium (1% nonfat dry milk, 0.5 mg/ml bovine serum albumin, 150 mM NaCl, 50 mM HEPES (pH 7.5), 0.1% Tween 20 and 1 mM NaN 3 ) .
  • WT "WT” medium
  • Anti-rep antibody (rabbit anti-Rep78.93; Trempe et al. 1987 Virology 161:18-28) was diluted 1:250 in WT and 100 ⁇ l added to each well for 1 hour at room temperature (RT) .
  • the cells were washed five times with WT and then incubated with 100 ⁇ l of a 1:100 dilution of anti-rabbit IgG FITC conjugate secondary antibody (Sigma Chemical Corp.) in the dark for l hour at RT.
  • the cells were then washed three times with WT and two times with PBS in the dark and examined with an Axioskop H fluorescence microscope (Zeiss, Germany) .
  • rep protein was detectable in a number of the cells examined (8 out of 23 A549 clones and 3 out of 28 Hela clones) .
  • the addition of heavy metals did not significantly affect the observed rep expression under any conditions.
  • helper-virus-inducible promoter is a general one that can be readily applied to any promoter of potential interest by simply swapping it into rep constructs and screening for colonies as we describe herein.
  • exemplary clones (of Hela and A549 origin) were tested for their ability to replicate recombinant AAV genomes after infection, as described below.
  • Replication activity of IF+ cells We examined whether the pMt-rep/cap//pKO-neo transfected cell lines exhibited functional replication activity.
  • MOI 25 pfu/cell
  • the culture medium from each well was removed to a labeled tube and any cells still attached to the culture dish were trypsinized and pooled with cells present in the media.
  • the cell suspension was centrifuged at 3000 rpm for 5 min. , after which the supernatant was removed and total nucleic acid was prepared from the cell pellet (according to Ausubel et al. (ed.) 1987 Current Protocols in Molecular Biology Greene Publishing Associates, Brooklyn, N.Y.) .
  • Negative controls for the experiment included the incubation of 1.2 x 10 8 AAVCFTR particles on either cell line without adenovirus. Fifteen micrograms of nucleic acid for each sample, as well as untreated Hela clone 37 DNA +/- 20 pg of AAVCFTR plasmid (positive control for Southern) , was digested with EcoRI, subjected to gel electrophoresis, transferred to nitrocellulose and probed with a 1.488 kb EcoRI fragment from within the CFTR cDNA. Lanes 15-18 (Fig.
  • a hybridization signal migrating at 1.488 kb is present in DNA isolated from both the Hela clone 37 and A549 clone 20 cell lines after infection by AAVCFTR virus and adenovirus (Fig. 2, lanes l, 2 and 8).
  • Example 5 rAAV infectious titer assays Additional rep activity assays were performed in order to determine whether there was a linear relationship between incoming AAVCFTR virus and replicated AAVCFTR sequences (which could be exploited as the basis of an rAAV infectious titer assay) .
  • Three log dilutions from 1.2 x 10 9 to 1.2 x 10 7 AAVCFTR particles, as determined by slot blot hybridization, were cultured in 2.5 ml media on 2.5 x 10 5 Hela clone 37 cells plus adenovirus (MOI 25 pfu/cell) for 48 hours in a 6 well culture dish.
  • MOI 25 pfu/cell
  • packaging cells produced according to the present invention are capable of replicating an AAV genome in the presence of adenovirus, and that this activity can be used to quantify the number of infectious viral particles present in a given sample.
  • the particle number was determined by slot blot hybridization of the AAVCFTR virus preparation and may reflect the contribution of infectious and defective AAVCFTR particles; whereas the infectious assay described above should only detect infectious particles.
  • AAV recombinant AAV
  • Current methods for the production of recombinant AAV (rAAV) virus include the transient transfection of plasmid vectors containing the rAAV sequences. One or more steps are undertaken to remove the plasmid DNA from a rAAV preparation.
  • AAVCFTR plasmid DNA was incubated directly onto packaging cells (Hela clone 37) +/- adenovirus to determine whether the above-described infection assay would detect non-viral DNA.
  • AAVCFTR plasmid (10 ⁇ g) was electroporated as previously described into 4 x 10° Hela clone 37 cells and then transferred to a 100 mm culture dish.
  • FIG. 4 shows the hybridization pattern of the endogenous CFTR gene and the migration of CFTR cDNA (20 pg) spiked into human genomic DNA when digested with EcoRI and probed with the 1.488 kb CFTR cDNA fragment. Electroporation of the AAVCFTR plasmid into Hela clone 37 cells resulted in a signal migrating at 1.488 kb (Fig.4, lane 1) and represents the amount of AAVCFTR plasmid present in these cells 24 hours after transfection.
  • Lanes 5-8 show the results of incubating 1 ⁇ g, 100 ng, 10 ng and 1 ng AAVCFTR plasmid, respectively, on Hela clone 37 cells in the presence of adenovirus.
  • Example 8 Adenovirus titration of rAAV infectious titer assay
  • MOI 2.5 ml culture media +/- adenovirus
  • a slight signal migrating at 1.488 kb can be detected in DNA isolated from Hela clone 37 cells incubated with supernatant derived from the minus adenovirus control and reflects a small amount of contaminating input AAVCFTR plasmid from the electroporation (Fig. 7, lane 1).
  • Supernatant derived from a duplicate well cultured with adenovirus and titered on Hela clone 37 cells revealed significantly more hybridization migrating at 1.488 kb relative to control conditions (Fig. 7, compare lanes 3 and 1) .
  • Example 11 Rescue and amplification of an integrated rAAV vector from packaging cells
  • Packaging cells derived from Hela clone 37
  • a recombinant AAV vector designated rAAV-CMV-Hygro
  • hygromycin resistance gene operably linked to the CMV enhance /promoter
  • a stable, polyclonal line was derived by selection in 300 ⁇ g/ml hygromycin.
  • the polyclonal, hygro-resistant Hela clone 37 line (2.5 x 10 5 cells/well) was seeded onto a 6 well dish for infection with adenovirus
  • Lane 1 represents DNA isolated from the parental Hela clone 37 cell line, and hence does not contain the hygro-resistance gene.
  • Lane 2 contains DNA from the polyclonal, hygro-resistant Hela clone 37 line which at this exposure time does not show the presence of the resistance gene which is present at an average of about 1 copy/well (data not shown) .
  • DNA isolated from a duplicate well containing the hygro-resistant Hela clone 37 cells treated with adenovirus was run in lane 3.
  • the hybridization present at 1048 bp represents material derived from the excision and amplification of the integrated AAVCMVHygro vector integrated in the Hela clone cells.
  • the addition of wild-type AAV to the adenovirus infection gave similar results (lane 4) .

Abstract

Cette invention concerne les vecteurs AAV (virus associé à un adénovirus), lesquels peuvent être utiles en thérapie génétique. Jusqu'à présent, toutefois, l'obstacle principal a été l'incapacité de produire de tels vecteurs recombinants en quantité suffisante pour qu'ils soient utiles, d'un point de vue clinique, lors d'applications de la thérapie génétique chez l'homme. Les lignées cellulaires stables d'encapsidation d'AAV étaient difficiles à isoler, notamment à cause de l'activité de la protéine rep, qui, par la rétro-régulation de sa propre expression, peut avoir des effets négatifs sur la cellule hôte. Cette invention propose des systèmes d'encapsidation, ainsi que des procédés d'encapsidation de vecteurs AAV, permettant d'éviter ces problèmes et d'accroître sensiblement l'efficacité d'encapsidation.
PCT/US1995/015892 1994-12-06 1995-12-06 Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants WO1996017947A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU45963/96A AU707866B2 (en) 1994-12-06 1995-12-06 Packaging cell lines for generation of high titers of recombinant AAV vectors
JP8517764A JPH10511264A (ja) 1994-12-06 1995-12-06 高力価組換えaavベクターの生成のためのパッケージング細胞株
EP95944069A EP0796339A1 (fr) 1994-12-06 1995-12-06 Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants
US09/731,941 US6924128B2 (en) 1994-12-06 2000-12-06 Packaging cell lines for generation of high titers of recombinant AAV vectors
US11/071,401 US20050148076A1 (en) 1994-12-06 2005-03-02 Packaging cell lines for generation of high titers of recombinant AAV vectors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US35021994A 1994-12-06 1994-12-06
US08/350,219 1994-12-06
US48057595A 1995-06-07 1995-06-07
US08/480,575 1995-06-07

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US48057595A Continuation 1994-12-06 1995-06-07
US48057595A Continuation-In-Part 1994-12-06 1995-06-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US56416795A A-371-Of-International 1994-12-06 1995-12-06
US09/731,941 Continuation US6924128B2 (en) 1994-12-06 2000-12-06 Packaging cell lines for generation of high titers of recombinant AAV vectors

Publications (2)

Publication Number Publication Date
WO1996017947A1 WO1996017947A1 (fr) 1996-06-13
WO1996017947A9 true WO1996017947A9 (fr) 1996-10-03

Family

ID=26996529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/015892 WO1996017947A1 (fr) 1994-12-06 1995-12-06 Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants

Country Status (5)

Country Link
EP (1) EP0796339A1 (fr)
JP (1) JPH10511264A (fr)
AU (1) AU707866B2 (fr)
CA (1) CA2207927A1 (fr)
WO (1) WO1996017947A1 (fr)

Families Citing this family (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326356B1 (en) 1996-10-18 2001-12-04 Board Of Regents, The University Of Texas System Suppression of neu overexpression using a mini-E1A gene
US6924128B2 (en) 1994-12-06 2005-08-02 Targeted Genetics Corporation Packaging cell lines for generation of high titers of recombinant AAV vectors
US5843742A (en) * 1994-12-16 1998-12-01 Avigen Incorporated Adeno-associated derived vector systems for gene delivery and integration into target cells
US6306830B1 (en) 1996-09-05 2001-10-23 The Regents Of The University Of California Gene therapy for congestive heart failure
WO1996026742A1 (fr) 1995-02-28 1996-09-06 The Regents Of The University Of California Therapie angiogenique par transfert de genes
US6752987B1 (en) 1995-02-28 2004-06-22 The Regents Of The University Of California Adenovirus encoding human adenylylcyclase (AC) VI
DE19625188A1 (de) * 1996-06-24 1998-01-08 Medigene Gmbh System zur Herstellung von AAV-Vektoren
US6541012B2 (en) 1996-06-24 2003-04-01 Christoph Bogedain System for the production of AAV vectors
US6294370B1 (en) 1997-06-24 2001-09-25 Medigene Ag System for the production of AAV vectors
IL128780A0 (en) * 1996-09-06 2000-01-31 Univ Pennsylvania An inducible method for production of recombinant adeno-associated viruses utilizing T7 polymerase
AU722375B2 (en) * 1996-09-06 2000-08-03 Trustees Of The University Of Pennsylvania, The Methods using cre-lox for production of recombinant adeno-associated viruses
US5866552A (en) * 1996-09-06 1999-02-02 The Trustees Of The University Of Pennsylvania Method for expressing a gene in the absence of an immune response
US6541258B2 (en) 1996-12-18 2003-04-01 Targeted Genetics Corporation AAV split-packaging genes and cell lines comprising such genes for use in the production of recombinant AAV vectors
AU5603998A (en) * 1996-12-18 1998-07-15 Targeted Genetics Corporation Recombinase-activatable AAV packaging cassettes for use in the production of AV vectors
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6995006B2 (en) 1997-09-05 2006-02-07 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
EP1009808B1 (fr) 1997-09-05 2012-12-05 Genzyme Corporation Procedes de generation de preparations de vecteurs aav recombinants dont le titre est eleve et qui sont exemptes de "helper"virus
CA2304168A1 (fr) * 1997-09-19 1999-04-01 The Trustees Of The University Of Pennsylvania Procedes et lignee cellulaire utiles pour la production de virus adeno-associes recombines
AU9319198A (en) 1997-09-19 1999-04-05 Trustees Of The University Of Pennsylvania, The Methods and vector constructs useful for production of recombinant aav
US6346415B1 (en) 1997-10-21 2002-02-12 Targeted Genetics Corporation Transcriptionally-activated AAV inverted terminal repeats (ITRS) for use with recombinant AAV vectors
US6642051B1 (en) 1997-10-21 2003-11-04 Targeted Genetics Corporation Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors
IT1297074B1 (it) 1997-11-21 1999-08-03 Angeletti P Ist Richerche Bio Forme ormone-dipendenti delle proteine rep del virus adeno-associato (aav-2), sequenze di dna codificanti per esse, vettori che le
GB9811172D0 (en) * 1998-05-22 1998-07-22 Royal Free Hosp School Med Virus production
EP2942393A1 (fr) 1998-09-04 2015-11-11 Genzyme Corporation Procédés pour produire des préparations de vecteurs aav recombinants de forte teneur dépourvues de virus assistants
DE19905501B4 (de) 1999-02-10 2005-05-19 MediGene AG, Gesellschaft für molekularbiologische Kardiologie und Onkologie Verfahren zur Herstellung eines rekombinanten Adeno-assoziierten Virus, geeignete Mittel hierzu sowie Verwendung zur Herstellung eines Arzneimittels
US6893865B1 (en) 1999-04-28 2005-05-17 Targeted Genetics Corporation Methods, compositions, and cells for encapsidating recombinant vectors in AAV particles
US6793926B1 (en) 1999-05-27 2004-09-21 Genovo, Inc. Methods for production of a recombinant adeno-associated virus
DK1180159T3 (da) 1999-05-28 2008-11-17 Targeted Genetics Corp Fremgangsmåder og sammensætninger til at sænke niveauet af Tumor-Nekrose-Faktor (TNF) i TNF-associerede lidelser
EP1939300A1 (fr) 1999-05-28 2008-07-02 Targeted Genetics Corporation Procédés et compositions pour diminuer le niveau de facteur de nécrose de tumeur (TNF) pour des troubles associés au TNF
EP1916258B1 (fr) 1999-08-09 2014-04-23 Targeted Genetics Corporation Améliorations de l'expression d'une séquence de nucléotides hétérologues à brin unique à partir de vecteurs viraux recombinants par la désignation de la séquence de manière à ce qu'elle forme des paires de bases intrabrins
ES2478635T3 (es) 1999-08-09 2014-07-22 Targeted Genetics Corporation Incremento de la expresión de una secuencia de nucleótidos heteróloga monocatenaria de vectores virales recombinantes diseñando la secuencia de modo que forma pares de bases intracatenarios
US7115391B1 (en) 1999-10-01 2006-10-03 Genovo, Inc. Production of recombinant AAV using adenovirus comprising AAV rep/cap genes
AU2460001A (en) 1999-12-27 2001-07-09 Regents Of The University Of California, The Gene therapy for congestive heart failure
CA2467959C (fr) 2001-11-09 2009-03-10 Robert M. Kotin Production d'un virus adeno-associe dans des cellules d'insectes
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
ATE521701T1 (de) 2003-01-22 2011-09-15 Univ Duke Verbesserte konstrukte zur expression lysosomaler polypeptide
CA2555675A1 (fr) 2004-02-10 2005-08-25 Trustees Of Dartmouth College Compositions de nicotinamide riboside kinase et procedes d'utilisation
WO2007046703A2 (fr) 2005-10-20 2007-04-26 Amsterdam Molecular Therapeutics B.V. Vecteurs aav ameliores produits dans des cellules d'insecte
EP3023500B1 (fr) 2006-06-21 2020-02-12 uniQure IP B.V. Cellules d'insectes pour la production de vecteurs d'aav
ATE553206T1 (de) 2006-08-24 2012-04-15 Virovek Inc Expression von genen mit überlappenden offenen leserastern in insektenzellen, verfahren und zusammensetzungen dafür
CA2693178C (fr) 2006-11-29 2018-12-04 Nationwide Children's Hospital, Inc. Inhibition de la myostatine destinee a ameliorer le muscle et/ou a ameliorer la fonction musculaire
US9415121B2 (en) 2008-12-19 2016-08-16 Nationwide Children's Hospital Delivery of MECP2 polynucleotide using recombinant AAV9
US11219696B2 (en) 2008-12-19 2022-01-11 Nationwide Children's Hospital Delivery of polynucleotides using recombinant AAV9
CN102448501A (zh) 2009-03-27 2012-05-09 西马生物医学计划公司 治疗肝硬化和肝纤维化的方法和组合物
EP3421603B1 (fr) 2009-05-02 2021-10-06 Genzyme Corporation Thérapie génique pour troubles neurodégénératifs
EP2497830A1 (fr) 2009-11-05 2012-09-12 Proyecto de Biomedicina Cima, S.L. Systèmes d'expression régulée
JP2013544600A (ja) 2010-11-23 2013-12-19 プレサージュ バイオサイエンシズ,インコーポレイテッド 固体デリバリーのための治療方法および組成物
US20140155469A1 (en) 2011-04-19 2014-06-05 The Research Foundation Of State University Of New York Adeno-associated-virus rep sequences, vectors and viruses
CA2839773C (fr) 2011-04-21 2021-03-30 Nationwide Children's Hospital, Inc. Produits de virus recombinant et procedes pour l'inhibition de l'expression de la myotiline
US10196636B2 (en) 2011-04-21 2019-02-05 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of myotilin
US20130039888A1 (en) 2011-06-08 2013-02-14 Nationwide Children's Hospital Inc. Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
WO2013016352A1 (fr) 2011-07-25 2013-01-31 Nationwide Children's Hospital, Inc. Produits viraux recombinants et procédés pour inhibition de l'expression de dux4
US9434928B2 (en) 2011-11-23 2016-09-06 Nationwide Children's Hospital, Inc. Recombinant adeno-associated virus delivery of alpha-sarcoglycan polynucleotides
US9163259B2 (en) 2012-05-04 2015-10-20 Novartis Ag Viral vectors for the treatment of retinal dystrophy
ES2684222T3 (es) 2012-08-01 2018-10-01 Nationwide Children's Hospital Administración intratecal de virus adenoasociado 9 recombinante
WO2014043696A2 (fr) 2012-09-17 2014-03-20 The Research Institute At Nationwide Children's Hospital Compositions et procédés de traitement de la sclérose latérale amyotrophique
JP6576904B2 (ja) 2013-04-04 2019-09-18 トラスティーズ・オブ・ダートマス・カレッジ HIV−1プロウイルスDNAのinvivo切除のための組成物及び方法
CN105431170B (zh) 2013-04-08 2019-10-29 爱荷华大学研究基金会 嵌合腺相关病毒/博卡病毒细小病毒载体
KR20230074604A (ko) 2013-04-20 2023-05-30 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 엑손 2-표적 U7snRNA 폴리뉴클레오티드 작제물의 재조합형 아데노 부속 바이러스 전달
SG11201509419QA (en) 2013-05-15 2015-12-30 Univ Minnesota Adeno-associated virus mediated gene transfer to the central nervous system
ES2936220T3 (es) 2013-08-27 2023-03-15 Res Inst Nationwide Childrens Hospital Productos y métodos para el tratamiento de la esclerosis lateral amiotrófica
EP3065784A4 (fr) 2013-11-05 2017-05-10 The Research Institute at Nationwide Children's Hospital Compositions et procédés d'inhibition de nf-kb et sod-1 afin de traiter la sclérose latérale amyotrophique
WO2015142984A1 (fr) 2014-03-18 2015-09-24 Washington University Procédés et compositions de substitution du chromophore décalée vers le rouge pour des applications optogénétiques
WO2015191508A1 (fr) 2014-06-09 2015-12-17 Voyager Therapeutics, Inc. Capsides chimériques
CA2957661A1 (fr) 2014-08-09 2016-02-18 Kevin FLANIGAN Procedes et materiaux d'activation d'un site d'entree de ribosome interne dans l'exon 5 du gene dmd
US10842886B2 (en) 2014-10-10 2020-11-24 Research Institute At Nationwide Children's Hospital Guided injections for AAV gene transfer to muscle
EP3690024A1 (fr) 2014-11-05 2020-08-05 The Research Institute at Nationwide Children's Hospital Procédés et matériaux de production de virus recombinants dans des microalgues eucaryotes
EP3230441A4 (fr) 2014-12-12 2018-10-03 Voyager Therapeutics, Inc. Compositions et méthodes pour la production de scaav
CN107427666B (zh) 2015-01-30 2022-11-04 加利福尼亚大学校董 脊髓软膜下基因递送系统
MA41451A (fr) 2015-02-04 2017-12-12 Univ Washington Constructions anti-tau
BR112017017812A2 (pt) 2015-02-23 2018-04-10 Crispr Therapeutics Ag materiais e métodos para tratamento de hemoglobinopatias
SI3294323T1 (sl) 2015-05-15 2022-06-30 Regenxbio Inc. Adenoasociacijski virus za terapevtsko dostavo v centralni živčni sistem
US10017832B2 (en) 2015-08-25 2018-07-10 Washington University Compositions and methods for site specific recombination at asymmetric sites
US10980897B2 (en) 2015-09-17 2021-04-20 Research Institute At Nationwide Children's Hospital Methods and materials for GALGT2 gene therapy
CA2998287A1 (fr) 2015-09-24 2017-04-20 Crispr Therapeutics Ag Nouvelle famille d'endonucleases arn-programmables et leurs utilisations dans l'edition de genome et d'autres applications
JP2019507579A (ja) 2015-10-28 2019-03-22 クリスパー セラピューティクス アーゲー デュシェンヌ型筋ジストロフィーの処置のための材料および方法
US20180230489A1 (en) 2015-10-28 2018-08-16 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
BR112018008971A2 (pt) 2015-11-06 2018-11-27 Crispr Therapeutics Ag materiais e métodos para tratamento de doença de armazenamento de glicogênio tipo 1a
BR112018009954A2 (pt) 2015-11-16 2018-11-13 Res Inst Nationwide Childrens Hospital materiais e métodos para o tratamento de miopatias baseadas em titinas e outras titinopatias
WO2017093804A2 (fr) 2015-12-01 2017-06-08 Crispr Therapeutics Ag Matériaux et méthodes de traitement d'une déficience en antitrypsine alpha-1
CA3009308A1 (fr) 2015-12-23 2017-06-29 Chad Albert COWAN Materiaux et procedes de traitement de la sclerose laterale amyotrophique et/ou de la degenerescence lobaire fronto temporale
WO2017120589A1 (fr) 2016-01-08 2017-07-13 Washington University Compositions comprenant de la chémérine et méthodes pour les utiliser
US20190038771A1 (en) 2016-02-02 2019-02-07 Crispr Therapeutics Ag Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome
WO2017139381A1 (fr) 2016-02-08 2017-08-17 University Of Iowa Research Foundation Procédés pour produire des virus adéno-associés/bocavirus parvovirus chimériques
EP3416689B1 (fr) 2016-02-18 2023-01-18 CRISPR Therapeutics AG Matériel et procédés de traitement d'une immunodéficience combinée grave (scid) ou d'un syndrome d'omenn
WO2017147509A1 (fr) 2016-02-25 2017-08-31 Marco Colonna Compositions comprenant de la trem2 et leurs procédés d'utilisation
JP6966463B2 (ja) 2016-02-26 2021-11-17 リサーチ インスティチュート アット ネイションワイド チルドレンズ ホスピタル 組換えウイルス産物及びdux4エクソンスキッピングを誘導するための方法
WO2017158422A1 (fr) 2016-03-16 2017-09-21 Crispr Therapeutics Ag Matières et méthodes pour le traitement d'hémochromatoses héréditaires
AU2017241534A1 (en) 2016-03-28 2018-10-04 The Regents Of The University Of California Method and composition for treating neuronal hyper-excitability
BR112018069703A2 (pt) 2016-03-28 2019-02-05 Dimension Therapeutics Inc métodos de inativação de adenovírus por calor
CA3019832C (fr) 2016-04-02 2023-05-09 Research Institute At Nationwide Children's Hospital Systeme promoteur u6 modifie pour l'expression specifique d'un tissu
MA45477A (fr) 2016-04-15 2019-02-20 Res Inst Nationwide Childrens Hospital Administration à vecteurs de virus adéno-associé de microarn-29 et micro-dystrophine pour traiter la dystrophie musculaire
CA3021057A1 (fr) 2016-04-15 2017-10-19 Research Institute At Nationwide Children's Hospital Administration de b-sarcoglycane et de microarn-29 a l'aide d'un vecteur de virus adeno-associe, et traitement de la dystrophie musculaire
US20200330609A1 (en) 2016-04-18 2020-10-22 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
EP3448874A4 (fr) 2016-04-29 2020-04-22 Voyager Therapeutics, Inc. Compositions pour le traitement de maladies
WO2017189964A2 (fr) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions pour le traitement de maladies
WO2017191503A1 (fr) 2016-05-05 2017-11-09 Crispr Therapeutics Ag Substances et méthodes pour le traitement d'hémoglobinopathies
EP3458588A4 (fr) 2016-05-18 2020-01-15 Voyager Therapeutics, Inc. Polynucléotides modulateurs
WO2017201258A1 (fr) 2016-05-18 2017-11-23 Voyager Therapeutics, Inc. Compositions et méthodes de traitement de la maladie de huntington
US11174469B2 (en) 2016-06-29 2021-11-16 Crispr Therapeutics Ag Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders
US11427838B2 (en) 2016-06-29 2022-08-30 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of myotonic dystrophy type 1 (DM1) and other related disorders
CA3029119A1 (fr) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materiels et methodes de traitement de l'ataxie de friedreich et d'autres troubles associes
JP2019520079A (ja) 2016-07-06 2019-07-18 クリスパー セラピューティクス アクチェンゲゼルシャフト 疼痛関連障害を処置するための物質及び方法
CA3029132A1 (fr) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Materiaux et procedes de traitement de troubles lies a la douleur
WO2018007871A1 (fr) 2016-07-08 2018-01-11 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de l'amyloïdose de la transthyrétine
WO2018020323A2 (fr) 2016-07-25 2018-02-01 Crispr Therapeutics Ag Matériels et méthodes pour le traitement de troubles liés aux acides gras
EP3526321A4 (fr) 2016-10-14 2020-05-13 Ultragenyx Pharmaceutical Inc. Utilisation d'agents tonifiants pour augmenter le rendement de virus adéno-associés recombinés
EP3541946A1 (fr) 2016-11-15 2019-09-25 Regents Of The University Of Minnesota Procédé d'amélioration de la fonction neurologique dans la mpsi et la mpsii et d'autres troubles neurologiques
AU2017362491B2 (en) 2016-11-17 2023-02-02 Nationwide Children's Hospital Inc. Intrathecal delivery of recombinant Adeno-associated virus encoding Methyl-CpG binding protein 2
AU2017378153B2 (en) 2016-12-13 2024-03-28 Seattle Children's Hospital (dba Seattle Children's Research Institute) Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo
WO2018132747A1 (fr) 2017-01-13 2018-07-19 University Of Iowa Research Foundation Petit arn non codant pour bocaparvovirus et ses utilisations
WO2018154459A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de l'hyperoxalurie primitive de type 1 (ph1) et d'autres états ou troubles associés au gène de l'alanine glyoxylate aminotransférase (agxt)
JP2020508056A (ja) 2017-02-22 2020-03-19 クリスパー・セラピューティクス・アクチェンゲゼルシャフトCRISPR Therapeutics AG 遺伝子編集のための組成物および方法
US20200216857A1 (en) 2017-02-22 2020-07-09 Crispr Therapeutics Ag Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
WO2018154439A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de l'ataxie spinocérébelleuse de type 1 (sca1) et d'autres états ou troubles liés au gène de l'ataxie spinocérébelleuse de type 1 (atxn1)
WO2018154418A1 (fr) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Matériaux et procédés pour le traitement de la maladie de parkinson à début précoce (park1) et d'autres états pathologiques ou troubles associés au gène alpha (snca)
JP2020513811A (ja) 2017-03-17 2020-05-21 リサーチ インスティチュート アット ネイションワイド チルドレンズ ホスピタル 筋ジストロフィーを治療するための筋肉特異的マイクロジストロフィンのアデノ随伴ウイルスベクター送達
MA47800A (fr) 2017-03-17 2020-01-22 Univ Newcastle Délivrance par vecteur viral adéno-associé d'un fragment de micro-dystrophine pour traiter la dystrophie musculaire
US11898170B2 (en) 2017-03-22 2024-02-13 Ultragenyx Pharmaceutical Inc. Cell culture methods involving HDAC inhibitors or rep proteins
JP2020518258A (ja) 2017-05-05 2020-06-25 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. 筋萎縮性側索硬化症(als)治療組成物および方法
WO2018204803A1 (fr) 2017-05-05 2018-11-08 Voyager Therapeutics, Inc. Compositions et méthodes de traitement de la maladie de huntington
JP7356354B2 (ja) 2017-05-12 2023-10-04 クリスパー セラピューティクス アクチェンゲゼルシャフト 細胞の操作のための材料及び方法並びに免疫腫瘍学におけるその使用
JP2020532284A (ja) 2017-07-08 2020-11-12 ジェネトン 脊髄性筋萎縮症の治療
US11497576B2 (en) 2017-07-17 2022-11-15 Voyager Therapeutics, Inc. Trajectory array guide system
EP3808849A1 (fr) 2017-08-03 2021-04-21 Voyager Therapeutics, Inc. Compositions et procédés pour l'administration d'aav
EP3688014A4 (fr) 2017-09-29 2020-09-16 Massachusetts Eye and Ear Infirmary Production de virus adéno-associés dans des cellules d'insectes
AU2018352236A1 (en) 2017-10-16 2020-04-23 The Curators Of The University Of Missouri Treatment of amyotrophic lateral sclerosis (ALS)
WO2019079242A1 (fr) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Traitement de la sclérose latérale amyotrophique (sla)
US20220080055A9 (en) 2017-10-17 2022-03-17 Crispr Therapeutics Ag Compositions and methods for gene editing for hemophilia a
MA50836A (fr) 2017-10-18 2020-08-26 Res Inst Nationwide Childrens Hospital Administration par vecteur à virus adéno-associé de micro-dystrophine spécifique de muscles pour traiter la dystrophie musculaire
KR20200083495A (ko) 2017-10-20 2020-07-08 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 Nt-3 유전자 치료를 위한 방법 및 물질
US20210180091A1 (en) 2017-10-26 2021-06-17 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
US20210317474A1 (en) 2017-11-08 2021-10-14 Novartis Ag Means and method for producing and purifying viral vectors
MA50579A (fr) 2017-11-09 2020-09-16 Crispr Therapeutics Ag Systèmes crispr/cas ou crispr/cpf1 à auto-inactivation (sin) et leurs utilisations
CA3082450A1 (fr) 2017-11-21 2019-05-31 Crispr Therapeutics Ag Materiaux et methodes pour le traitement de la retinite pigmentaire autosomique dominante
CA3084825A1 (fr) 2017-12-14 2019-06-20 Crispr Therapeutics Ag Nouveaux systemes d'endonucleases arn-programmables et leurs utilisations dans l'edition de genome et d'autres applications
AU2018393050A1 (en) 2017-12-21 2020-06-18 Bayer Healthcare Llc Materials and methods for treatment of Usher Syndrome Type 2A
EP3728595A1 (fr) 2017-12-21 2020-10-28 CRISPR Therapeutics AG Substances et méthodes pour le traitement du syndrome d'usher de type 2a et/ou de la rétinite pigmentaire autosomique récessive (arrp) non syndromique
CA3088180A1 (fr) 2018-01-12 2019-07-18 Crispr Therapeutics Ag Compositions et methodes pour l'edition genique par ciblage de la transferrine
US11268077B2 (en) 2018-02-05 2022-03-08 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
EP3749767A1 (fr) 2018-02-05 2020-12-16 Vertex Pharmaceuticals Incorporated Substances et méthodes de traitement d'hémoglobinopathies
MA51869A (fr) 2018-02-16 2020-12-23 Bayer Healthcare Llc Compositions et méthodes pour l'édition génique par ciblage du fibrinogène-alpha
AU2019239957A1 (en) 2018-03-19 2020-09-10 Bayer Healthcare Llc Novel RNA-programmable endonuclease systems and uses thereof
WO2019204668A1 (fr) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions et procédés d'inactivation de l'apo (a) par édition génique pour le traitement d'une maladie cardiovasculaire
JP2021521852A (ja) 2018-04-27 2021-08-30 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. Aadcウイルスベクターの効力を測定する方法
TW202015742A (zh) 2018-05-15 2020-05-01 美商航海家醫療公司 投遞腺相關病毒(aav)之組成物和方法
CA3099306A1 (fr) 2018-05-15 2019-11-21 Voyager Therapeutics, Inc. Compositions et methodes pour le traitement de la maladie de parkinson
WO2019222441A1 (fr) 2018-05-16 2019-11-21 Voyager Therapeutics, Inc. Sérotypes de vaa pour l'administration de charge utile spécifique au cerveau
EP3793615A2 (fr) 2018-05-16 2021-03-24 Voyager Therapeutics, Inc. Évolution dirigée
KR20210018919A (ko) 2018-06-08 2021-02-18 노파르티스 아게 약물 산물 효능을 측정하기 위한 세포-기반 분석
GB201809588D0 (en) 2018-06-12 2018-07-25 Univ Bristol Materials and methods for modulating intraocular and intracranial pressure
EP3807404A1 (fr) 2018-06-13 2021-04-21 Voyager Therapeutics, Inc. Régions 5' non traduites (5'utr) modifiées pour la production d'aav
US20210260218A1 (en) 2018-06-18 2021-08-26 Research Institute At Nationwide Children's Hospital Adeno-associated virus vector delivery of muscle specific micro-dystrophin to treat muscular dystrophy
AU2019288291A1 (en) 2018-06-18 2021-01-21 Research Institute At Nationwide Children's Hospital Recombinant adeno-associated virus products and methods for treating dystroglycanopathies and laminin-deficient muscular dystrophies
CN112543810A (zh) 2018-06-29 2021-03-23 全国儿童医院研究所 治疗肢带型肌营养不良2a型的重组腺相关病毒产品和方法
JP2021529513A (ja) 2018-07-02 2021-11-04 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. 筋萎縮性側索硬化症および脊髄に関連する障害の治療
EP3826719A1 (fr) 2018-07-24 2021-06-02 Voyager Therapeutics, Inc. Systèmes et méthodes de production de formulations de thérapie génique
CA3110665A1 (fr) 2018-08-29 2020-03-05 Research Institute At Nationwide Children's Hospital Compositions et procedes pour l'inhibition de l'expression de la proteine gars mutante
AU2019346655A1 (en) 2018-09-28 2021-05-06 Voyager Therapeutics, Inc. Frataxin expression constructs having engineered promoters and methods of use thereof
TW202035689A (zh) 2018-10-04 2020-10-01 美商航海家醫療公司 測量病毒載體粒子的效價及強度之方法
SG11202103425YA (en) 2018-10-05 2021-05-28 Voyager Therapeutics Inc Engineered nucleic acid constructs encoding aav production proteins
WO2020077165A1 (fr) 2018-10-12 2020-04-16 Voyager Therapeutics, Inc. Compositions et procédés pour l'administration d'aav
WO2020081490A1 (fr) 2018-10-15 2020-04-23 Voyager Therapeutics, Inc. Vecteurs d'expression pour la production à grande échelle de raav dans le système baculovirus/sf9
JP2022505173A (ja) 2018-10-17 2022-01-14 クリスパー・セラピューティクス・アクチェンゲゼルシャフト 導入遺伝子を送達するための組成物および方法
TW202039859A (zh) 2018-11-30 2020-11-01 美商艾夫西斯公司 Aav病毒載體及其用途
JP2022516010A (ja) 2018-12-21 2022-02-24 ジェネトン 遺伝子療法ベクターのための発現カセット
KR20210110345A (ko) 2018-12-31 2021-09-07 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 RNA 표적화 CRISPR-Cas13b를 사용한 DUX4 RNA 침묵화
US20220064671A1 (en) 2019-01-18 2022-03-03 Voyager Therapeutics, Inc. Methods and systems for producing aav particles
EP3917566A4 (fr) * 2019-01-31 2022-10-26 Oregon Health & Science University Méthodes d'utilisation d'une évolution dirigée, dépendant d'une transcription, de capsides aav
MX2021009401A (es) 2019-02-04 2021-11-12 Res Inst Nationwide Childrens Hospital Administracion de virus adenoasociado de polinucleotido de cln3.
KR20210124299A (ko) 2019-02-04 2021-10-14 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 Cln6 폴리뉴클레오티드의 아데노-관련 바이러스 전달
WO2020168362A1 (fr) 2019-02-15 2020-08-20 Crispr Therapeutics Ag Édition de gène pour l'hémophilie a avec une expression de facteur viii améliorée
WO2020174369A2 (fr) 2019-02-25 2020-09-03 Novartis Ag Compositions et procédés pour traiter une dystrophie cristalline de bietti
CN113677801A (zh) 2019-02-25 2021-11-19 诺华股份有限公司 治疗bietti晶体营养不良的组合物和方法
CN113766935A (zh) 2019-02-26 2021-12-07 全国儿童医院研究所 β-肌聚糖的腺相关病毒载体递送和肌营养不良症的治疗
US20220145274A1 (en) 2019-03-12 2022-05-12 Crispr Therapeutics Ag Novel high fidelity rna-programmable endonuclease systems and uses thereof
AU2020270960A1 (en) 2019-04-12 2021-11-04 Ultragenyx Pharmaceutical Inc. Engineered producer cell lines and methods of making and using the same
CA3137080A1 (fr) 2019-04-15 2020-10-22 Sanford Research Therapie genique pour le traitement ou la prevention d'effets visuels dans une maladie de batten
AU2020257182A1 (en) 2019-04-15 2021-12-09 Spirovant Sciences, Inc. Methods and compositions for transgene expression
WO2020223274A1 (fr) 2019-04-29 2020-11-05 Voyager Therapeutics, Inc. Système et procédé pour la production de cellules d'insectes infectées par baculovirus (ceib) dans les bioréacteurs
EP3966227A1 (fr) 2019-05-07 2022-03-16 Voyager Therapeutics, Inc. Compositions et méthodes d'augmentation vectorisée de la destruction, de l'expression et/ou de la régulation de protéines
WO2020225606A1 (fr) 2019-05-08 2020-11-12 Crispr Therapeutics Ag Systèmes de vecteurs crispr/cas en deux parties pour le traitement de dmd
WO2020236352A1 (fr) 2019-05-17 2020-11-26 Research Institute At Nationwide Children's Hospital Thérapie génique optimisée ciblant des cellules rétiniennes
EP3990636A1 (fr) 2019-06-28 2022-05-04 CRISPR Therapeutics AG Matériels et méthodes de régulation de l'édition de gènes
KR20220035937A (ko) 2019-07-25 2022-03-22 노파르티스 아게 조절 가능한 발현 시스템
EP4010465A1 (fr) 2019-08-09 2022-06-15 Voyager Therapeutics, Inc. Milieu de culture cellulaire destiné à être utilisé dans la production de produits de thérapie génique dans des bioréacteurs
TW202120532A (zh) 2019-08-21 2021-06-01 美國全美兒童醫院之研究學會 α肌聚糖之腺相關病毒載體遞送及肌肉萎縮症之治療
WO2021041485A1 (fr) 2019-08-26 2021-03-04 Voyager Therapeutics, Inc. Expression contrôlée de protéines virales
US20220333133A1 (en) 2019-09-03 2022-10-20 Voyager Therapeutics, Inc. Vectorized editing of nucleic acids to correct overt mutations
US20230416776A1 (en) 2019-10-08 2023-12-28 Regents Of The University Of Minnesota Crispr-mediated human genome editing with vectors
WO2021077115A1 (fr) 2019-10-18 2021-04-22 Research Institute At Nationwide Children's Hospital Thérapie génique ciblant des cellules cochléaires
CA3158131A1 (fr) 2019-10-18 2021-04-22 Nicolas Sebastien Wein Materiaux et procedes pour le traitement de troubles associes au gene irf2bpl
IL293210A (en) 2019-11-22 2022-07-01 Res Inst Nationwide Childrens Hospital Materials and methods for treating disorders associated with the ighmbp2 gene
IL294072A (en) 2019-12-20 2022-08-01 Res Inst Nationwide Childrens Hospital Gene therapy is efficient for targeting muscle in muscle diseases
BR112022016391A2 (pt) 2020-02-18 2022-10-25 Res Inst Nationwide Childrens Hospital Alvejamento mediado por aav de mirna no tratamento de distúrbios ligados a x
AU2021357520A1 (en) 2020-03-05 2022-09-29 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
CN115461453A (zh) 2020-03-16 2022-12-09 奥特吉尼克斯制药公司 提高重组腺相关病毒产率的方法
WO2021209521A1 (fr) 2020-04-14 2021-10-21 Genethon Vecteurs pour le traitement d'une déficience en ceramidase acide
BR112022020753A2 (pt) 2020-04-15 2022-12-20 Voyager Therapeutics Inc Compostos de ligação a tau
WO2021247995A2 (fr) 2020-06-04 2021-12-09 Voyager Therapeutics, Inc. Compositions et méthodes de traitement de la douleur neuropathique
WO2021257595A1 (fr) 2020-06-15 2021-12-23 Research Institute At Nationwide Children's Hospital Administration de vecteur de virus adéno-associé contre les dystrophies musculaires
US20230374483A1 (en) 2020-07-08 2023-11-23 Regents Of The University Of Minnesota Modified hexosaminidase and uses thereof
WO2022018638A1 (fr) 2020-07-21 2022-01-27 Crispr Therapeutics Ag Méthodes et compositions d'édition génomique pour moduler la faah pour le traitement de troubles neurologiques
KR20230093241A (ko) 2020-07-27 2023-06-27 보이저 테라퓨틱스, 인크. 글루코실세라미데이스 베타 결핍증과 관련된 신경 장애의 치료를 위한 조성물 및 방법
US20230285596A1 (en) 2020-07-27 2023-09-14 Voyager Therapeutics, Inc Compositions and methods for the treatment of niemann-pick type c1 disease
EP4192514A1 (fr) 2020-08-06 2023-06-14 Voyager Therapeutics, Inc. Milieu de culture cellulaire destiné à être utilisé dans la production de produits de thérapie génique dans des bioréacteurs
WO2022047201A1 (fr) 2020-08-27 2022-03-03 University Of Iowa Research Foundation Invalidation génique pour le traitement du glaucome
TW202227634A (zh) 2020-09-08 2022-07-16 美商薩羅塔治療公司 表現γ—肌聚醣之腺相關病毒載體之全身性遞送及肌肉失養症之治療
US20230357795A1 (en) 2020-09-15 2023-11-09 Research Institute At Nationwide Children's Hospital Aav-mediated homology-independent targeted integration gene editing for correction of diverse dmd mutations in patients with muscular dystrophy
AU2021349277A1 (en) 2020-09-28 2023-05-11 Research Institute At Nationwide Children's Hospital Products and methods for treating muscular dystrophy
US20230392134A1 (en) 2020-09-30 2023-12-07 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis
IL302128A (en) 2020-11-02 2023-06-01 Biomarin Pharm Inc A process for the enrichment of adeno-associated virus
AU2021385595A1 (en) 2020-11-30 2023-06-29 Research Institute At Nationwide Children's Hospital Compositions and methods for treating facioscapulohumeral muscular dystrophy (fshd)
AU2021400745A1 (en) 2020-12-17 2023-07-20 Vertex Pharmaceuticals Incorporated Compositions and methods for editing beta-globin for treatment of hemaglobinopathies
CA3209471A1 (fr) 2021-01-27 2022-08-04 Research Institute At Nationwide Children's Hospital Materiels et methodes pour le traitement d'un deficit en lipase acide lysosomale (dlal)
CA3210662A1 (fr) 2021-02-03 2022-08-11 Research Institute At Nationwide Children's Hospital Compositions et methodes pour traiter une maladie associee a la surexpression de la dux4
WO2022170038A1 (fr) 2021-02-05 2022-08-11 Amicus Therapeutics, Inc. Administration de virus adéno-associé de polynucléotide cln3
WO2022170082A1 (fr) 2021-02-05 2022-08-11 Regents Of The University Of Minnesota Méthodes de prévention de défauts cardiaques ou squelettiques dans des maladies comprenant des mucopolysaccharidoses
AU2022229489A1 (en) 2021-03-04 2023-08-31 Research Institute At Nationwide Children's Hospital Products and methods for treatment of dystrophin-based myopathies using crispr-cas9 to correct dmd exon duplications
CN115427561A (zh) 2021-03-09 2022-12-02 辉大(上海)生物科技有限公司 工程化CRISPR/Cas13系统及其用途
WO2022221424A1 (fr) 2021-04-13 2022-10-20 Research Institute At Nationwide Children's Hospital Virus adéno-associé recombinant codant pour la protéine 2 de liaison à la méthyl-cpg pour traiter le syndrome de pitt hopkins par administration intrathécale
EP4326752A1 (fr) 2021-04-23 2024-02-28 Research Institute at Nationwide Children's Hospital Produits et méthodes de traitement de la dystrophie musculaire
EP4334447A1 (fr) 2021-05-07 2024-03-13 UCL Business Ltd Édition du génome abca4
AU2022279062A1 (en) 2021-05-17 2024-01-04 Sarepta Therapeutics, Inc. Production of recombinant aav vectors for treating muscular dystrophy
EP4108263A3 (fr) 2021-06-02 2023-03-22 Research Institute at Nationwide Children's Hospital Produits de virus adéno-associés recombinants et méthodes de traitement de la dystrophie musculaire des ceintures 2a
EP4101928A1 (fr) 2021-06-11 2022-12-14 Bayer AG Systèmes d'endonucléase programmables à arn de type v
IL308896A (en) 2021-06-11 2024-01-01 Bayer Ag Programmable type V RNA endoclase systems
WO2023283962A1 (fr) 2021-07-16 2023-01-19 Huigene Therapeutics Co., Ltd. Capside aav modifiée pour thérapie génique et méthodes associées
AU2022328215A1 (en) 2021-08-11 2024-03-07 Solid Biosciences Inc. Treatment of muscular dystrophy
WO2023034996A1 (fr) 2021-09-03 2023-03-09 Biomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
WO2023034994A1 (fr) 2021-09-03 2023-03-09 Biomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
WO2023034980A1 (fr) 2021-09-03 2023-03-09 Bomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
WO2023034989A1 (fr) 2021-09-03 2023-03-09 Biomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
WO2023034990A1 (fr) 2021-09-03 2023-03-09 Biomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
WO2023034997A1 (fr) 2021-09-03 2023-03-09 Biomarin Pharmaceutical Inc. Compositions capsidiques de vaa et méthodes d'administration
EP4144841A1 (fr) 2021-09-07 2023-03-08 Bayer AG Nouveaux systèmes d'endonucléase programmables à petit arn à spécificité pam améliorée et leurs utilisations
WO2023042104A1 (fr) 2021-09-16 2023-03-23 Novartis Ag Nouveaux facteurs de transcription
WO2023044483A2 (fr) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer positif her2
CA3234702A1 (fr) 2021-10-07 2023-04-13 Research Institute At Nationwide Children's Hospital Produits et procedes pour la desactivation de la proteine zero de la myeline et le traitement de la maladie cmt1b
WO2023060233A1 (fr) 2021-10-08 2023-04-13 Amicus Therapeutics, Inc. Biomarqueurs de maladies du surcharge lysosomale
EP4219726A1 (fr) 2021-10-15 2023-08-02 Research Institute at Nationwide Children's Hospital Vecteur de virus adéno-associé auto-complémentaire et son utilisation dans le traitement de la dystrophie musculaire
WO2023077078A1 (fr) 2021-10-29 2023-05-04 Ultragenyx Pharmaceutical Inc. Lignées cellulaires modifiées pour une production accrue de virus adéno-associé recombiné (raav)
WO2023091949A2 (fr) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions et méthodes de traitement de troubles neurologiques liés à un déficit en bêta glucosylcéramidase
US20230279431A1 (en) 2021-11-30 2023-09-07 Research Institute At Nationwide Children's Hospital Self-Complementary Adeno-Associated Virus Vector and its Use in Treatment of Muscular Dystrophy
EP4198134A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène de gamma-sarcoglycane utilisant des séquences itr modifiées
EP4198047A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert de gènes de la protéine apparentée à la fukutine à l'aide de séquences itr modifiées
EP4198048A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation du transfert du gène calpaïne-3 à l'aide de séquences itr modifiées
EP4198046A1 (fr) 2021-12-16 2023-06-21 Genethon Augmentation de transfert de gène d'alpha-sarcoglycane utilisant des séquences itr modifiées
WO2023122669A1 (fr) 2021-12-21 2023-06-29 Research Institute At Nationwide Children's Hospital Matériaux et méthodes pour le traitement de la dystrophie musculaire des ceintures
WO2023118068A1 (fr) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2023168400A2 (fr) 2022-03-03 2023-09-07 Research Institute At Nationwide Children's Hospital Matériaux et procédés pour le traitement de mutations dans eif2b5 et de maladies résultant de celles-ci
WO2023178067A1 (fr) * 2022-03-16 2023-09-21 Rutgers, The State University Of New Jersey Distribution contrôlée de gène spécifique à un muscle
WO2023196818A1 (fr) 2022-04-04 2023-10-12 The Regents Of The University Of California Compositions et procédés de complémentation génétique
WO2023214346A1 (fr) 2022-05-06 2023-11-09 Novartis Ag Nouveaux polypeptides de fusion vp2 d'aav recombinants
WO2023240177A1 (fr) 2022-06-08 2023-12-14 Research Instiitute At Nationwide Children's Hospital Produits et méthodes pour le traitement de maladies ou de pathologies associées à l'expression mutante ou pathogène de kcnq3
WO2023237587A1 (fr) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Nouveaux petits systèmes programmables d'endonucléases à arn de type v
WO2023240236A1 (fr) 2022-06-10 2023-12-14 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement de troubles liés à l'amyotrophie spinale
WO2024011115A1 (fr) 2022-07-06 2024-01-11 Research Institute At Nationwide Children's Hospital Administration de polynucléotide cln1 par un virus adéno-associé
WO2024035782A1 (fr) 2022-08-10 2024-02-15 Aav Gene Therapeutics, Inc. Administration intramusculaire d'insuline médiée par vaa
WO2024059739A1 (fr) 2022-09-15 2024-03-21 Voyager Therapeutics, Inc. Composés de liaison à la protéine tau
WO2024064913A1 (fr) 2022-09-23 2024-03-28 Sarepta Therapeutics, Inc. Vecteurs aav recombinants pour le traitement de la dystrophie musculaire
WO2024081706A1 (fr) 2022-10-11 2024-04-18 Research Institute At Nationwide Children's Hospital Administration de virus adéno-associé pour traiter l'atrophie musculaire spinale avec détresse respiratoire de type 1 (smard1) et charcot-marie-tooth de type 2s (cmt2s)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173414A (en) * 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US5478745A (en) * 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
AU688428B2 (en) * 1993-11-09 1998-03-12 Johns Hopkins University, The Generation of high titers of recombinant AAV vectors
PT728214E (pt) * 1993-11-09 2004-11-30 Ohio Med College Linhas celulares estaveis capazes de expressar o gene de replicacao do virus adeno-associado

Similar Documents

Publication Publication Date Title
AU707866B2 (en) Packaging cell lines for generation of high titers of recombinant AAV vectors
US6924128B2 (en) Packaging cell lines for generation of high titers of recombinant AAV vectors
WO1996017947A9 (fr) Lignees cellulaires d'encapsidation utilisees pour la generation de titres hauts de vecteurs aav recombinants
US6541258B2 (en) AAV split-packaging genes and cell lines comprising such genes for use in the production of recombinant AAV vectors
AU688428B2 (en) Generation of high titers of recombinant AAV vectors
US6936466B2 (en) Transcriptionally-activated AAV inverted terminal repeats (ITRs) for use with recombinant AAV vectors
EP0728214B1 (fr) Lignees cellulaires stables aptes a exprimer le gene de replication du virus adeno-associe
US6642051B1 (en) Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors
WO1998027204A9 (fr) Genes d'encapsidation fractionnes de virus adeno-associe (aav) et lignees cellulaires comprenant ces genes utilises pour la production de vecteurs d'aav de recombinaison
CA2269661A1 (fr) Cassettes d'encapsidation d'aav activables par la recombinase servant a la production de vecteurs d'aav
CA2304801C (fr) Sequences terminales repetees inverses (itr) d'aav a action transcriptionnelle, a utiliser avec des vecteurs d'aav recombines
AU758541B2 (en) Amplifiable adeno-associated virus (AAV) packaging cassettes for the production of recombinant AAV vectors
AU2003203790B2 (en) Transcriptionally-activated AAV inverted terminal repeats (ITRs) for use with recombinant AAV vectors