US20130039888A1 - Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders - Google Patents
Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders Download PDFInfo
- Publication number
- US20130039888A1 US20130039888A1 US13/491,326 US201213491326A US2013039888A1 US 20130039888 A1 US20130039888 A1 US 20130039888A1 US 201213491326 A US201213491326 A US 201213491326A US 2013039888 A1 US2013039888 A1 US 2013039888A1
- Authority
- US
- United States
- Prior art keywords
- raav9
- aav
- polynucleotide
- mice
- genome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 108091033319 polynucleotide Proteins 0.000 title claims abstract description 52
- 102000040430 polynucleotide Human genes 0.000 title claims abstract description 52
- 239000002157 polynucleotide Substances 0.000 title claims abstract description 52
- 208000015439 Lysosomal storage disease Diseases 0.000 title abstract description 9
- 241000702421 Dependoparvovirus Species 0.000 title abstract description 5
- 238000012384 transportation and delivery Methods 0.000 title description 8
- 210000003169 central nervous system Anatomy 0.000 claims abstract description 46
- 208000002678 Mucopolysaccharidoses Diseases 0.000 claims abstract description 20
- 206010028093 mucopolysaccharidosis Diseases 0.000 claims abstract description 20
- 230000008499 blood brain barrier function Effects 0.000 claims abstract description 19
- 210000001218 blood-brain barrier Anatomy 0.000 claims abstract description 19
- 210000001428 peripheral nervous system Anatomy 0.000 claims abstract description 14
- 102100027661 N-sulphoglucosamine sulphohydrolase Human genes 0.000 claims description 35
- 101710091062 N-sulphoglucosamine sulphohydrolase Proteins 0.000 claims description 34
- 239000000594 mannitol Substances 0.000 claims description 23
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 22
- 229930195725 Mannitol Natural products 0.000 claims description 22
- 235000010355 mannitol Nutrition 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 15
- 239000013598 vector Substances 0.000 abstract description 63
- 238000011282 treatment Methods 0.000 abstract description 28
- 239000000463 material Substances 0.000 abstract description 16
- 230000000392 somatic effect Effects 0.000 abstract description 16
- PRDZVHCOEWJPOB-IVMDWMLBSA-N N-sulfo-D-glucosamine Chemical compound OC[C@H]1OC(O)[C@H](NS(O)(=O)=O)[C@@H](O)[C@@H]1O PRDZVHCOEWJPOB-IVMDWMLBSA-N 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 77
- 210000004027 cell Anatomy 0.000 description 65
- 210000001519 tissue Anatomy 0.000 description 65
- 208000005340 mucopolysaccharidosis III Diseases 0.000 description 60
- 108090000623 proteins and genes Proteins 0.000 description 48
- 102100034561 Alpha-N-acetylglucosaminidase Human genes 0.000 description 43
- 108010009380 alpha-N-acetyl-D-glucosaminidase Proteins 0.000 description 43
- 230000000694 effects Effects 0.000 description 35
- 210000004556 brain Anatomy 0.000 description 32
- 229920001184 polypeptide Polymers 0.000 description 32
- 108090000765 processed proteins & peptides Proteins 0.000 description 32
- 102000004196 processed proteins & peptides Human genes 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 29
- 229920002683 Glycosaminoglycan Polymers 0.000 description 29
- 238000010361 transduction Methods 0.000 description 25
- 230000026683 transduction Effects 0.000 description 25
- 238000001990 intravenous administration Methods 0.000 description 23
- 239000007924 injection Substances 0.000 description 21
- 238000002347 injection Methods 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 21
- 230000002132 lysosomal effect Effects 0.000 description 20
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 18
- 150000001413 amino acids Chemical group 0.000 description 18
- 230000001225 therapeutic effect Effects 0.000 description 18
- 238000012937 correction Methods 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 241000649044 Adeno-associated virus 9 Species 0.000 description 15
- 210000004185 liver Anatomy 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- 210000002569 neuron Anatomy 0.000 description 12
- 230000008488 polyadenylation Effects 0.000 description 12
- 239000013612 plasmid Substances 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 238000010166 immunofluorescence Methods 0.000 description 10
- 210000003734 kidney Anatomy 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 241000701022 Cytomegalovirus Species 0.000 description 9
- 108700019146 Transgenes Proteins 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 230000007170 pathology Effects 0.000 description 9
- 239000013603 viral vector Substances 0.000 description 9
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 8
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 229940024606 amino acid Drugs 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 238000001415 gene therapy Methods 0.000 description 8
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 210000002216 heart Anatomy 0.000 description 8
- 210000000936 intestine Anatomy 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 210000004498 neuroglial cell Anatomy 0.000 description 8
- 230000007171 neuropathology Effects 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 210000000952 spleen Anatomy 0.000 description 8
- 101100434895 Homo sapiens NAGLU gene Proteins 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 208000025816 Sanfilippo syndrome type A Diseases 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 208000036710 mucopolysaccharidosis type 3A Diseases 0.000 description 7
- 208000012226 mucopolysaccharidosis type IIIA Diseases 0.000 description 7
- 210000002027 skeletal muscle Anatomy 0.000 description 7
- 210000000278 spinal cord Anatomy 0.000 description 7
- 210000001130 astrocyte Anatomy 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001476 gene delivery Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 206010018341 Gliosis Diseases 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 208000015114 central nervous system disease Diseases 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 241000580270 Adeno-associated virus - 4 Species 0.000 description 4
- 229920002971 Heparan sulfate Polymers 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 208000037875 astrocytosis Diseases 0.000 description 4
- 230000007341 astrogliosis Effects 0.000 description 4
- 108010006025 bovine growth hormone Proteins 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000001605 fetal effect Effects 0.000 description 4
- -1 heparin sulfate oligosaccharides Chemical class 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 230000004770 neurodegeneration Effects 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 210000000449 purkinje cell Anatomy 0.000 description 4
- 239000013608 rAAV vector Substances 0.000 description 4
- 239000013646 rAAV2 vector Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 3
- 108090000565 Capsid Proteins Proteins 0.000 description 3
- 102100023321 Ceruloplasmin Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102100031149 Deoxyribonuclease gamma Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000012347 Morris Water Maze Methods 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 210000000133 brain stem Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000003710 cerebral cortex Anatomy 0.000 description 3
- 230000003920 cognitive function Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 108010031616 deoxyribonuclease gamma Proteins 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 210000001577 neostriatum Anatomy 0.000 description 3
- 210000004248 oligodendroglia Anatomy 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 210000001103 thalamus Anatomy 0.000 description 3
- 229950003937 tolonium Drugs 0.000 description 3
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 3
- 241000972680 Adeno-associated virus - 6 Species 0.000 description 2
- 241001164825 Adeno-associated virus - 8 Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 2
- 101710116782 Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000025820 Sanfilippo syndrome type B Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000009227 behaviour therapy Methods 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000000981 bystander Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000009088 enzymatic function Effects 0.000 description 2
- 238000002641 enzyme replacement therapy Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000002025 microglial effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 210000002161 motor neuron Anatomy 0.000 description 2
- 208000036709 mucopolysaccharidosis type 3B Diseases 0.000 description 2
- 208000012227 mucopolysaccharidosis type IIIB Diseases 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000003249 myenteric plexus Anatomy 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 230000005156 neurotropism Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000000470 submucous plexus Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 2
- 229950004616 tribromoethanol Drugs 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 210000003934 vacuole Anatomy 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 101800000263 Acidic protein Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 1
- 241000202702 Adeno-associated virus - 3 Species 0.000 description 1
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 1
- 241001164823 Adeno-associated virus - 7 Species 0.000 description 1
- 241000649045 Adeno-associated virus 10 Species 0.000 description 1
- 241000649046 Adeno-associated virus 11 Species 0.000 description 1
- WPWUFUBLGADILS-WDSKDSINSA-N Ala-Pro Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(O)=O WPWUFUBLGADILS-WDSKDSINSA-N 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012109 Alexa Fluor 568 Substances 0.000 description 1
- 208000031277 Amaurotic familial idiocy Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- RJUHZPRQRQLCFL-IMJSIDKUSA-N Asn-Asn Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O RJUHZPRQRQLCFL-IMJSIDKUSA-N 0.000 description 1
- IIFDPDVJAHQFSR-WHFBIAKZSA-N Asn-Glu Chemical compound NC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O IIFDPDVJAHQFSR-WHFBIAKZSA-N 0.000 description 1
- IQTUDDBANZYMAR-WDSKDSINSA-N Asn-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC(N)=O IQTUDDBANZYMAR-WDSKDSINSA-N 0.000 description 1
- HSPSXROIMXIJQW-BQBZGAKWSA-N Asp-His Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 HSPSXROIMXIJQW-BQBZGAKWSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 101150044789 Cap gene Proteins 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- PABVKUJVLNMOJP-WHFBIAKZSA-N Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(O)=O PABVKUJVLNMOJP-WHFBIAKZSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 101000924350 Homo sapiens Alpha-N-acetylglucosaminidase Proteins 0.000 description 1
- WMDZARSFSMZOQO-DRZSPHRISA-N Ile-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 WMDZARSFSMZOQO-DRZSPHRISA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 101150048357 Lamp1 gene Proteins 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108010006140 N-sulfoglucosamine sulfohydrolase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000008457 Neurologic Manifestations Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- FADYJNXDPBKVCA-STQMWFEESA-N Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 FADYJNXDPBKVCA-STQMWFEESA-N 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 101100409194 Rattus norvegicus Ppargc1b gene Proteins 0.000 description 1
- 101150016306 SGSH gene Proteins 0.000 description 1
- UJTZHGHXJKIAOS-WHFBIAKZSA-N Ser-Gln Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O UJTZHGHXJKIAOS-WHFBIAKZSA-N 0.000 description 1
- LZLREEUGSYITMX-JQWIXIFHSA-N Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)N)C(O)=O)=CNC2=C1 LZLREEUGSYITMX-JQWIXIFHSA-N 0.000 description 1
- ILVGMCVCQBJPSH-WDSKDSINSA-N Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO ILVGMCVCQBJPSH-WDSKDSINSA-N 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- DSGIVWSDDRDJIO-ZXXMMSQZSA-N Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O DSGIVWSDDRDJIO-ZXXMMSQZSA-N 0.000 description 1
- JAQGKXUEKGKTKX-HOTGVXAUSA-N Tyr-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 JAQGKXUEKGKTKX-HOTGVXAUSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical group C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 108010057988 ecdysone receptor Proteins 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 230000003619 fibrillary effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 108010045758 lysosomal proteins Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000004973 motor coordination Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 208000025919 mucopolysaccharidosis type 7 Diseases 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000002276 neurotropic effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 238000013326 plasmid cotransfection Methods 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 201000010727 rectal prolapse Diseases 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/761—Adenovirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14121—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14171—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y310/00—Hydrolases acting on sulfur-nitrogen bonds (3.10)
- C12Y310/01—Hydrolases acting on sulfur-nitrogen bonds (3.10) acting on sulfur-nitrogen bonds (3.10.1)
- C12Y310/01001—N-Sulfoglucosamine sulfohydrolase (3.10.1.1)
Definitions
- the present invention relates to methods and materials useful for systemically delivering polynucleotides across the blood brain barrier using adeno-associated virus as a vector.
- the present invention relates to methods and materials useful for systemically delivering ⁇ -N-acetylglucosamidinase polynucleotides to the central and peripheral nervous systems, as well as the somatic system. Use of these methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIB.
- the present invention relates to methods and materials useful for systemically delivering N-sulphoglucosamine sulfphohydrolase polynucleotides to the central and peripheral nervous systems, as well as the somatic system.
- Use of this second type of methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIA.
- Mucopolysaccharidosis (MPS) IIIB is a devastating lysosomal storage disease (LSD) caused by autosomal recessive defects in the gene coding a lysosomal enzyme, ⁇ -N-Acetylglucosaminidase (NAGLU).
- LSD lysosomal storage disease
- NAGLU ⁇ -N-Acetylglucosaminidase
- GAG biologically important glycosaminoglycan
- Cells throughout the CNS are particularly affected, resulting in complex secondary neuropathology.
- MPS IIIB infants appear normal at birth, but develop progressive neurological manifestations that lead to premature death. Somatic manifestations of MPS IIIB occur in all patients, and involve virtually all organs, although they are mild relative to other forms of MPS, such as MPS I, II and VII.
- MPS IIIA is a related LSD caused by autosomal recessive defects in the gene encoding a lysosomal enzyme, N-sulphoglucosamine sulphohydrolase (SGSH).
- SGSH N-sulphoglucosamine sulphohydrolase
- the lack of SGSH activity also disrupts the stepwise degradation of a class of biologically important GAG, leading to the accumulation of heparin sulfate oligosaccharides in lysosomes in cells of most tissues.
- MPS IIIB No treatment is currently available for MPS IIIB or IIIA.
- therapies have historically been limited to supportive care and management of complications.
- MPS IIIB is not amenable to either hematopoietic stem cell transplantation or recombinant enzyme replacement therapy. These have instead been used to treat mostly somatic disorders in patients with MPS I, II and IV. This is because the neuropathology of MPS IIIB is global and the blood brain barrier (BBB) precludes effective central nervous system (CNS) access.
- BBB blood brain barrier
- the BBB is completely formed at birth in humans. In general, the BBB protects the CNS by selectively regulating the transport of molecules/agents from the blood circulation into the CNS or vice versa. Likewise, it prevents potential therapeutics from entering the CNS.
- the BBB remains the most critical challenge to developing therapies for CNS diseases, especially global CNS disorders.
- AAV vector system is one system with demonstrated therapeutic effect in a great variety of disease models. To date, no known pathogenesis has been linked to AAV in humans.
- Recombinant AAV (rAAV) vectors based on AAV serotype 2 (AAV2) have been used in numerous studies for neurological diseases, transducing both neuronal and non-neuronal cells in the CNS with demonstrated therapeutic benefits in treating MPS and other LSDs in animals and in patients with Parkinson's and Batten's disease.
- the BBB may still be permeable in neonatal mice while closed at birth in humans.
- pretreatment with an N infusion of mannitol transiently disrupting the BBB facilitated the CNS entry of IV-delivered rAAV2, resulting in diffuse global CNS transduction and neurological correction.
- McCarty et al. Gene Ther., 16: 1340-1352 (2009).
- Adeno-associated virus is a replication-deficient parvovirus, the single-stranded DNA genome of which is about 4.7 kb in length including 145 nucleotide inverted terminal repeat (ITRs).
- ITRs nucleotide inverted terminal repeat
- AAV2 AAV serotype 2
- Cis-acting sequences directing viral DNA replication, encapsidation/packaging and host cell chromosome integration are contained within the ITRs.
- AAV promoters Three AAV promoters (named p5, p19, and p40 for their relative map locations) drive the expression of the two AAV internal open reading frames encoding rep and cap genes.
- the two rep promoters (p5 and p19), coupled with the differential splicing of the single AAV intron (at nucleotides 2107 and 2227), result in the production of four rep proteins (rep 78, rep 68, rep 52, and rep 40) from the rep gene.
- Rep proteins possess multiple enzymatic properties that are ultimately responsible for replicating the viral genome.
- the cap gene is expressed from the p40 promoter and it encodes the three capsid proteins VP1, VP2, and VP3.
- AAV possesses unique features that make it attractive as a vector for delivering foreign DNA to cells, for example, in gene therapy.
- AAV infection of cells in culture is noncytopathic, and natural infection of humans and other animals is silent and asymptomatic.
- AAV infects many mammalian cells allowing the possibility of targeting many different tissues in vivo.
- AAV transduces slowly dividing and non-dividing cells, and can persist essentially for the lifetime of those cells as a transcriptionally active nuclear episome (extrachromosomal element).
- the signals directing AAV replication, genome encapsidation and integration are contained within the ITRs of the AAV genome, some or all of the internal approximately 4.3 kb of the genome (encoding replication and structural capsid proteins, rep-cap) may be replaced with foreign DNA such as a gene cassette containing a promoter, a DNA of interest and a polyadenylation signal.
- the rep and cap proteins may be provided in trans.
- Another significant feature of AAV is that it is an extremely stable and hearty virus. It easily withstands the conditions used to inactivate adenovirus, making cold preservation of AAV less critical. AAV may even be lyophilized. Finally, AAV-infected cells are not resistant to superinfection.
- serotypes of AAV exist and offer varied tissue tropism.
- Known serotypes include, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10 and AAV11.
- AAV9 is described in U.S. Pat. No. 7,198,951 and in Gao et al., J. Virol., 78: 6381-6388 (2004).
- Advances in the delivery of AAV6 and AAV8 have made possible the transduction by these serotypes of skeletal and cardiac muscle following simple systemic intravenous or intraperitoneal injections. See, Pacak et al., Circ.
- the present invention provides methods and materials useful for systemically delivering polynucleotides such as NAGLU polynucleotides or SGSH polynucleotides across the BBB.
- gene delivery is achieved by utilizing, for example, AAV serotype 9 (AAV9).
- AAV9 AAV serotype 9
- Vectors based on this serotype or functionally-related serotypes are able to cross the BBB unaided in neonate and adult animals.
- An added benefit to using AAV9 vectors is that pre-existing immunity is less common than for AAV2 serotype.
- the use of rh74 serotype AAV vectors among others is also contemplated by the invention.
- the invention provides a method of delivering a NAGLU polynucleotide across the BBB comprising systemically administering a rAAV9 with a genome including the polynucleotide to a patient.
- the rAAV9 genome is a single-stranded genome.
- the present invention provides methods and materials useful for systemically delivering NAGLU polynucleotides across the blood brain barrier to the central and peripheral nervous system.
- a method is provided of delivering a polynucleotide to the central nervous system comprising systemically administering a rAAV9 with a single-stranded genome including the genome to a patient.
- a method of delivering a NAGLU polynucleotide to the peripheral nervous system comprising systemically administering a rAAV9 with a single-stranded genome including the polynucleotide to a patient is provided.
- the NAGLU polynucleotide is delivered to brain. In some embodiments, the polynucleotide is delivered to the spinal cord. In some embodiments, the NAGLU polynucleotide is delivered to a lower motor neuron. In some embodiments, the polynucleotide is delivered to nerve and glial cells. In some embodiments, the glial cell is a microglial cell, an oligodendrocyte or an astrocyte. In some, embodiments, the rAAV9 is used to deliver a NAGLU polynucleotide to a Schwann cell.
- NAGLU methods and materials are indicated, for example, for treating Sanfilippo syndrome Type B/MPS IIIB.
- the invention provides a method of delivering an SGSH polynucleotide across the BBB comprising systemically administering a rAAV9 with a genome including the polynucleotide to a patient.
- the rAAV9 genome is a self-complementary genome.
- the rAAV9 genome is a single-stranded genome.
- the present invention provides methods and materials useful for systemically delivering SGSH polynucleotides across the blood brain barrier to the central and peripheral nervous system.
- a method is provided of delivering a polynucleotide to the central nervous system comprising systemically administering a rAAV9 with a self-complementary genome including the genome to a patient.
- a method of delivering a SGSH polynucleotide to the peripheral nervous system comprising systemically administering a rAAV9 with a self-complementary genome including the polynucleotide to a patient is provided.
- the SGSH polynucleotide is delivered to brain. In some embodiments, the polynucleotide is delivered to the spinal cord. In some embodiments, the SGSH polynucleotide is delivered to a lower motor neuron. In some embodiments, the polynucleotides is delivered to nerve and glial cells. In some embodiments, the glial cell is a microglial cell, an oligodendrocyte or an astrocyte. In some, embodiments, the rAAV9 is used to deliver a SGSH polynucleotide to a Schwann cell.
- administration of the rAAV9 encoding a NAGLU or SGSH polypeptide is preceded by administration of mannitol.
- the invention provides rAAV genomes comprising one or more AAV ITRs flanking a polynucleotide encoding a NAGLU.
- the NAGLU polynucleotide is operatively linked to transcriptional control DNAs, specifically promoter DNA and polyadenylation signal sequence DNA that are functional in target cells to form a gene cassette.
- the gene cassette may also include intron sequences to facilitate processing of an RNA transcript when expressed in mammalian cells.
- the invention provides rAAV genomes comprising one or more AAV ITRs flanking a polynucleotide encoding an SGSH.
- the SGSH polynucleotide is operatively linked to transcriptional control DNAs, specifically promoter DNA and polyadenylation signal sequence DNA that are functional in target cells to form a gene cassette.
- the gene cassette may also include intron sequences to facilitate processing of an RNA transcript when expressed in mammalian cells.
- the rAAV genomes of the invention lack AAV rep and cap DNA.
- AAV DNA in the rAAV genomes may be from any AAV serotype for which a recombinant virus can be derived including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11.
- the nucleotide sequences of the genomes of the AAV serotypes are known in the art. For example, the complete genome of AAV-1 is provided in GenBank Accession No. NC — 002077; the complete genome of AAV-2 is provided in GenBank Accession No.
- AAV-3 is provided in GenBank Accession No. NC — 1829
- the complete genome of AAV-4 is provided in GenBank Accession No. NC — 001829
- the AAV-5 genome is provided in GenBank Accession No. AF085716
- the complete genome of AAV-6 is provided in GenBank Accession No. NC — 00 1862
- at least portions of AAV-7 and AAV-8 genomes are provided in GenBank Accession Nos. AX753246 and AX753249, respectively
- the AAV-9 genome is provided in Gao et al., J. Virol., 78: 6381-6388 (2004)
- the AAV-10 genome is provided in Mol. Ther., 13(1): 67-76 (2006)
- the AAV-11 genome is provided in Virology, 330(2): 375-383 (2004).
- NAGLU polypeptides contemplated include, but are not limited to, a NAGLU polypeptide with the amino acid sequence set out in SEQ ID NO: 2.
- SGSH polypeptides contemplated include, but are not limited to, a SGSH polypeptide with the amino acid sequence set out in SEQ ID NO: 4.
- polypeptides contemplated include full-length proteins, precursors of full length proteins, biologically active subunits or fragments of full length proteins, as well as biologically active analogs (e.g., derivatives and variants) of any of these forms of polypeptides.
- polypeptides include, for example, those that (1) have an amino acid sequence that has greater than about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or greater amino acid sequence identity, over a region of at least about 25, about 50, about 100, about 200, about 300, about 400, or more amino acids, to a polypeptide encoded by a nucleic acid or an amino acid sequence described herein.
- biologically active derivative As used herein “biologically active derivative,” “biologically active fragment,” “biologically active analog” or “biologically active variant” includes any derivative or fragment or analog or variant of a molecule having substantially the same functional and/or biological properties of said molecule, such as enzymatic activities.
- an “analog,” such as a “variant” or a “derivative,” is a compound substantially similar in structure to and having the same biological activity as, albeit in certain instances to a differing degree, a naturally-occurring molecule.
- a “derivative,” for example, is a type of analog and refers to a polypeptide sharing the same or substantially similar structure as a reference polypeptide that has been modified, e.g., chemically.
- a polypeptide variant for example, is a type of analog and refers to a polypeptide sharing substantially similar structure and having the same biological activity as a reference polypeptide (i.e., “native polypeptide” or “native therapeutic protein”).
- Variants differ in the composition of their amino acid sequences compared to the naturally-occurring polypeptide from which the variant is derived, based on one or more mutations involving (i) deletion of one or more amino acid residues at one or more termini of the polypeptide and/or one or more internal regions of the naturally-occurring polypeptide sequence (e.g., fragments), (ii) insertion or addition of one or more amino acids at one or more termini (typically an “addition” or “fusion”) of the polypeptide and/or one or more internal regions (typically an “insertion”) of the naturally-occurring polypeptide sequence or (iii) substitution of one or more amino acids for other amino acids in the naturally-occurring polypeptide sequence.
- Variant polypeptides include insertion variants, wherein one or more amino acid residues are added to a therapeutic protein amino acid sequence of the present disclosure. Insertions may be located at either or both termini of the protein, and/or may be positioned within internal regions of the therapeutic protein amino acid sequence. Insertion variants, with additional residues at either or both termini, include for example, fusion proteins and proteins including amino acid tags or other amino acid labels.
- one or more amino acid residues in a therapeutic protein polypeptide as described herein are removed.
- Deletions can be effected at one or both termini of the therapeutic protein polypeptide, and/or with removal of one or more residues within the therapeutic protein amino acid sequence.
- Deletion variants therefore, include fragments of a polypeptide sequence.
- substitution variants one or more amino acid residues of a therapeutic protein polypeptide are removed and replaced with alternative residues.
- the substitutions are conservative in nature and conservative substitutions of this type are well known in the art.
- the present disclosure embraces substitutions that are also non-conservative. Exemplary conservative substitutions are described in Lehninger, [Biochemistry, 2nd Edition; Worth Publishers, Inc., New York (1975), pp. 71-77] and are set out immediately below.
- the invention provides DNA plasmids comprising rAAV genomes of the invention.
- the DNA plasmids are transferred to cells permissible for infection with a helper virus of AAV (e.g., adenovirus, E1-deleted adenovirus or herpesvirus) for assembly of the rAAV genome into infectious viral particles.
- helper virus of AAV e.g., adenovirus, E1-deleted adenovirus or herpesvirus
- rAAV Production of rAAV requires that the following components are present within a single cell (denoted herein as a packaging cell): a rAAV genome, AAV rep and cap genes separate from (i.e., not in) the rAAV genome, and helper virus functions.
- the AAV rep and cap genes may be from any AAV serotype for which recombinant virus can be derived and may be from a different AAV serotype than the rAAV genome ITRs, including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11.
- Production of pseudotyped rAAV is disclosed in, for example, WO 01/83692 which is incorporated by reference herein in its entirety.
- a method of generating a packaging cell is to create a cell line that stably expresses all the necessary components for AAV particle production.
- a plasmid (or multiple plasmids) comprising a rAAV genome lacking AAV rep and cap genes, AAV rep and cap genes separate from the rAAV genome, and a selectable marker, such as a neomycin resistance gene, are integrated into the genome of a cell.
- AAV genomes have been introduced into bacterial plasmids by procedures such as GC tailing (Samulski et al., 1982, Proc. Natl. Acad. S6.
- the packaging cell line is then infected with a helper virus such as adenovirus.
- a helper virus such as adenovirus.
- packaging cells that produce infectious rAAV.
- packaging cells may be stably transformed cancer cells such as HeLa cells, 293 cells and PerC.6 cells (a cognate 293 line).
- packaging cells are cells that are not transformed cancer cells such as low passage 293 cells (human fetal kidney cells transformed with E1 of adenovirus), MRC-5 cells (human fetal fibroblasts), WI-38 cells (human fetal fibroblasts), Vero cells (monkey kidney cells) and FRhL-2 cells (rhesus fetal lung cells).
- the invention provides rAAV (i.e., infectious encapsidated rAAV particles) comprising a rAAV genome of the invention.
- rAAV infectious encapsidated rAAV particles
- the rAAV genome is a self-complementary genome.
- the invention includes, but is not limited to, the exemplified rAAV named “rAAV9-CMV-hNAGLU.”
- the rAAV genome has in sequence an AAV2 ITR, the cytomegalovirus (CMV) immediate early promoter/enhancer, an SV40 intron (SD/SA), the NAGLU DNA set out in SEQ ID NO: 1, a polyadenylation signal sequence from bovine growth hormone and another AAV2 ITR.
- the DNA sequence of the vector genome is set out in SEQ ID NO: 5.
- the genome lacks AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genome.
- the invention also includes, but is not limited to, rAAV encoding SGSH.
- the rAAV genome has in sequence an AAV2 ITR, the CMV immediate early promoter/enhancer, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site.
- the rAAV genome has in sequence an AAV2 ITR, the mouse U1a promoter, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site.
- rAAV genome has in sequence an AAV2 ITR, the mouse U1a promoter, an intron, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site.
- the genomes lack AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genomes.
- NAGLU and SGSH DNAs include, without limitation, those that (1) hybridize under stringent hybridization conditions to a nucleic acid encoding an amino acid sequence as described herein, and conservatively modified variants thereof; (2) have a nucleic acid sequence that has greater than about 95%, about 96%, about 97%, about 98%, about 99%, or higher nucleotide sequence identity, over a region of at least about 25, about 50, about 100, about 150, about 200, about 250, about 500, about 1000, or more nucleotides (up to the full length sequence of the mature protein), to a nucleic acid sequence as described herein.
- Exemplary “stringent hybridization” conditions include hybridization at 42° C.
- the rAAV may be purified by methods standard in the art such as by column chromatography or cesium chloride gradients. Methods for purifying rAAV vectors from helper virus are known in the art and include methods disclosed in, for example, Clark et al., Hum. Gene Ther., 10(6): 1031-1039 (1999); Schenpp and Clark, Methods Mol. Med., 69: 427-443 (2002); U.S. Pat. No. 6,566,118 and WO 98/09657.
- compositions comprising rAAV of the present invention encoding an NAGLU polypeptide. These compositions may be used to treat mucopolysaccharidosis IIIB. In other embodiments, compositions of the present invention may include two or more rAAV encoding different polypeptides of interest.
- compositions comprising rAAV of the present invention encoding an SGSH polypeptide. These compositions may be used to treat mucopolysaccharidosis IIIA. In other embodiments, compositions of the present invention may include two or more rAAV encoding different polypeptides of interest.
- compositions of the invention comprise rAAV in a pharmaceutically acceptable carrier.
- the compositions may also comprise other ingredients such as diluents and adjuvants.
- Acceptable carriers, diluents and adjuvants are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants such as ascorbic acid; low molecular weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as T
- Titers of rAAV to be administered in methods of the invention will vary depending, for example, on the particular rAAV, the mode of administration, the treatment goal, the individual, and the cell type(s) being targeted, and may be determined by methods standard in the art. Titers of rAAV may range from about 1 ⁇ 10 6 , about 1 ⁇ 10 7 , about 1 ⁇ 10 8 , about 1 ⁇ 10 9 , about 1 ⁇ 10 10 , about 1 ⁇ 10 11 , about 1 ⁇ 10 12 , about 1 ⁇ 10 13 to about 1 ⁇ 10 14 or more DNase resistant particles (DRP) per ml. Dosages may also be expressed in units of viral genomes (vg). Dosages may also vary based on the timing of the administration to a human.
- DNase resistant particles DNase resistant particles
- These dosages of rAAV may range from about 1 ⁇ 10 11 vg/kg, about 1 ⁇ 10 12 , about 1 ⁇ 10 13 , about 1 ⁇ 10 14 , about 1 ⁇ 10 15 , about 1 ⁇ 10 16 or more viral genomes per kilogram body weight in an adult.
- the dosages of rAAV may range from about 1 ⁇ 10 11 , about 1 ⁇ 10 12 , about 3 ⁇ 10 12 , about 1 ⁇ 10 13 , about 3 ⁇ 10 13 , about 1 ⁇ 10 14 , about 3 ⁇ 10 14 , about 1 ⁇ 10 15 , about 3 ⁇ 10 15 , about 1 ⁇ 10 16 , about 3 ⁇ 10 16 or more viral genomes per kilogram body weight.
- Treatment by methods of the invention comprises the step of administering an intravenous (IV) effective dose, or effective multiple doses, of a composition comprising a rAAV of the invention to an animal (including a human being) in need thereof. If the dose is administered prior to development of a disorder/disease, the administration is prophylactic. If the dose is administered after the development of a disorder/disease, the administration is therapeutic.
- IV intravenous
- an effective dose is a dose that alleviates (eliminates or reduces) at least one symptom associated with the disorder/disease state being treated, that slows or prevents progression to a disorder/disease state, that slows or prevents progression of a disorder/disease state, that diminishes the extent of disease, that results in remission (partial or total) of disease, and/or that prolongs survival.
- Combination therapies are also contemplated by the invention.
- Combination as used herein includes both simultaneous treatment or sequential treatments.
- Combinations of methods of the invention with standard medical treatments e.g., transient or long-term immunosuppression
- compositions suitable for systemic (IV) use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of a dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin, and Tween family of products (e.g., Tween 20).
- Sterile injectable solutions are prepared by incorporating rAAV in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filter sterilization.
- dispersions are prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and the freeze drying technique that yield a powder of the active ingredient plus any additional desired ingredient from the previously sterile-filtered solution thereof.
- Transduction of cells with rAAV of the invention results in sustained expression of NAGLU or SGSH polypeptide.
- Transduction may be carried out with gene cassettes comprising tissue specific control elements, for example, promoters that allow expression specifically within neurons or specifically within astrocytes. Examples include neuron specific enolase and glial fibrillary acidic protein promoters. Inducible promoters under the control of an ingested drug may also be developed.
- a polynucleotide delivered using the materials and methods of the invention can be placed under regulatory control using systems known in the art.
- systems such as the tetracycline (TET on/off) system [see, for example, Urlinger et al., Proc. Natl. Acad. Sci. USA 97(14):7963-7968 (2000) for recent improvements to the TET system] and Ecdysone receptor regulatable system [Palli et al., Eur J. Biochem 270: 1308-1315 (2003] may be utilized to provide inducible polynucleotide expression.
- TET on/off tetracycline
- Ecdysone receptor regulatable system Ecdysone receptor regulatable system
- the invention provides methods of systemically administering an effective dose (or doses, administered essentially simultaneously or doses given at intervals) of rAAV of the invention to a patient in need thereof.
- FIG. 1 is a map of the rAAV-CMV-hNAGLU vector genome.
- FIG. 2 shows improved behavior and extended survival in MPS IIIB mice after systemic gene transfer by rAAV-CMV-hNAGLU.
- FIG. 2 c Survival (i 5/group, P ⁇ 0.001). +/+: wt; ⁇ / ⁇ : MPS IIIB; AAV9-L, AAV9-H: MPS IIIB mice treated with 5 ⁇ 10 12 or 1.5 ⁇ 10 13 vg/kg rAAV9-hNAGLU vector, respectively.
- AAV9-L ⁇ : P ⁇ 0.05 (vs. AAV9-H); &: P>0.05 (vs. ⁇ / ⁇ ).
- FIG. 3 a Dose-response. +/+: wt; AAV9-11, AAV9-L: MPS IIIB mice treated with 1.5 ⁇ 10 13 (AAV9-H) or 5 ⁇ 10 12 vg/kg (AAV9-L) vector;
- FIG. 3 b Impact of mannitol pretreatment.
- FIG. 4 shows the significant reduction of GAG content in the CNS and somatic tissues. Tissues from MPS IIIB mice treated with rAAV9-hNAGLU were assayed to quantify GAG content (6 and 9 mo pi).
- FIG. 4 a Dose response.
- FIG. 4 b Impact of mannitol pretreatment. +/Ai wt; ⁇ / ⁇ : MPS IIIB; AAV9-H, AAV9-L: MPS MB mice treated with 1.5 ⁇ 1013 vg or 5 ⁇ 1012 vg/kg vector; M+, M ⁇ : MPS IIIB mice treated with rAAV9 vector (2 ⁇ 1013 vg/kg) with or without mannitol pretreatment.
- FIG. 5 shows rAAV9-mediated correction of astrocytosis and neurodegeneration in MPS IIIB mice.
- Brain sections of MPS IIIB mice treated with rAAV9-CMV-hNAGLU vector (6 mo pi) were assayed for GFAP by immunofluorescence and stained with toluidine blue for histopathology.
- FIG. 5 a Number of astrocytes: Data are means ⁇ SD of GFAP+ cells per 330 ⁇ 433 pm on 6-8 IF-GFAP-staining sections/mouse, from 3 mice/group.
- FIG. 5 b shows rAAV9-mediated correction of astrocytosis and neurodegeneration in MPS IIIB mice.
- Number of purkinje cells Data are means ⁇ SD of purkinje cells/200 p.m (in length) in ansiform lobules in cerebellum on 6 toluidine blue stained sections/mouse, from 3 mice/group.
- NT non-treated MPS IIIB mouse
- AAV9 MPS IIIB mouse treated with rAAV9.
- CTX cerebral cortex
- ST Striatum
- TH thalamus
- BS Brain stem. *: P ⁇ 0.01 vs. non-treated.
- FIG. 6 shows rAAV9-mediated expression of functional rSGSH in tissues of treated MPSIIIA mice. For each tissue, AAV9, rh74 and untreated result bars are respectively shown from left to right.
- FIG. 7 shows a significant reduction of GAG content in tissues of treated MPSIIIA mice. For each tissue, AAV9, rh74 and untreated result bars are respectively shown from left to right.
- FIG. 8 shows an improvement in cognitive behavior assays after treatment of one-month old MPSIIIA mice with low dose scAAV9 or rh74-U1a-SGSH.
- scAAV9 or rh74-U1a-SGSH low dose scAAV9 or rh74-U1a-SGSH.
- untreated, wild type and either AAV9 or rh74 result bars are respectively shown from left to right.
- FIG. 9 shows a significant reduction of GAG content in tissues of MPSIIIA mice treated at 2 or 6 months of age. For each tissue, wild type, untreated, two-month and six-month result bars are respectively shown from left to right.
- FIG. 10 shows an improvement in cognitive behavior assays after treatment of two- or six-month old MPSIIIA mice with high dose scAAV9 or rh74-U1a-SGSH.
- scAAV9 or rh74-U1a-SGSH high dose scAAV9 or rh74-U1a-SGSH.
- untreated, wild type and either AAV9 or rh74 result bars are respectively shown from left to right.
- Example 1 describes rAAV encoding hNAGLU.
- Example 2 describes the administration of the rAAV encoding hNAGLU to MPSIIIB mice.
- Examples 3 through 6 describe the beneficial results of administration of the rAAV.
- Example 7 discusses the significance of the results.
- Example 8 describes rAAV encoding SGSH.
- Examples 9 through 11 describe administration of various dosages of rAAV encoding SGSH to MPSIIIA mice of varying ages, as well as the beneficial effects of the administration.
- a rAAV vector plasmid containing AAV2 ITRs, an immediate early CMV promoter/enhancer, an SV40 intron, a human ⁇ -N-acetylglucosaminidase coding region, a bGH polyadenylation signal sequence, and ampicillin resistance gene, was used to produce a rAAV9-CMV-hNAGLU viral vector.
- FIG. 1 is a map of the vector genome wherein the length of the various elements of the genome is indicated below the element.
- a control self-complementary AAV encoding green fluorescent protein, scAAV9-CMV-GFP was also produced, containing AAV2 terminal repeats, a human cytomegalovirus (CMV) immediate-early promoter, SV40 splice donor/acceptor signal, a eGFP coding sequence, and SV40 polyadenylation signal.
- CMV human cytomegalovirus
- CMV-GFP cytomegalovirus-green fluorescent protein
- the rAAV9-CMV-hNaGlu-treated MPS BIB mice and controls were tested for behavioral performance at approximately 5.0-5.5 months of age as follows.
- mice treated IV with 5 ⁇ 10 12 or 1.5 ⁇ 10 13 vg/kg rAAV9-NAGLU were tested for behavior at 5-5.5 mo of age to assess the neurological impacts. Both dosage groups exhibited significant decreases in latency to find a hidden platform in a water maze ( FIG. 2 a ), and significantly longer latency to fall from an accelerating rotarod ( FIG. 2 b ), compared with non-treated MPS IIIB mice, indicating the correction of cognitive and motor function. There were no significant differences in behavior performance between these two dose groups.
- mice were continuously observed for the development of endpoint symptoms, or until death occurred.
- the endpoint was when the symptoms of late stage clinical manifestation (urine retention, rectal prolapse, protruding penis) in MPS IIIB mice became irreversible, or when wt control mice were 24 months or older.
- Longevity data were analyzed using Kaplan-Meier method. The significance level was set at P ⁇ 0.05. Results are shown in FIG. 2 c.
- tissue analyses were carried out at 6 mo and 9 mo post injection (pi). Mice were anesthetized with 2.5% Avertin before tissue collection. Brain, spinal cord and multiple somatic tissues were collected on dry ice or embedded in OCT compound and stored at ⁇ 70° C., before being processed for analyses. Tissues were also processed for paraffm sectioning.
- Tissue samples from scAAV9-GFP vector-treated mice were collected for analysis 4-5 weeks pi.
- the mice were anesthetized with 2.5% Avertin and then perfused transcardially with cold PBS (0.1M, pH7.4), followed by 4% paraformaldehyde in phosphate buffer (0.1M, pH7.4).
- the entire brain and spinal cord, as well as multiple somatic tissues were collected and fixed in 4% paraformaldehyde overnight at 4° C. before being further processed for vibratome sectioning.
- Tissues were analyzed at 6 mo and/or 9 mo pi by NAGLU activity assay to determine the distribution and level of rAAV9-mediated transgene expression.
- Tissue samples were assayed for NaGlu enzyme activity following a published procedure with modification.
- the assay measures 4-methylumbelliferone (4MU), a fluorescent product formed by hydrolysis of the substrate 4-methylumbellireyl-N-acetyla-D-glucosaminide.
- the NaGlu activity is expressed as unit/mg protein. 1 unit is equal to 1 nmol 4MU released/h at 37° C. Results are shown in FIG. 3 .
- GAG was extracted from tissues following published procedures [van de Lest et al., Anal. Biochem. 221: 356-361(1994)] with modification [Fu et al., Gene Ther., 14: 1065-1077 (2007).
- Dimethylmethylene blue (DMB) assay was used to measure GAG content [de Jong et al., Clin. Chem., 35: 1472-1477 (1989)].
- the GAG samples (from 0.5-1.0 mg tissue) were mixed with H 2 O to 40 ml before adding 35 nM DMB (Polysciences CEO 03610-1) in 0.2 mM sodium formate buffer (SFB, pH 3.5). The product was measured using a spectrophotometer (0D535).
- the GAG content was expressed as ⁇ g/mg tissue.
- Urine GAG content was also measured. Heparan sulfate (Sigma, H9637) was used as standard. Results are shown in FIG. 4 .
- Immunofluorescence was performed to identify cells expressing hNAGLU, GFP or glial fibrillary acidic protein (GFAP) for astrocytes, using antibodies against hNaGlu (a kind gift from Dr. EF Neufeld, UCLA), GFP (Invitrogen) or GFAP (Chemicon), and corresponding secondary antibody conjugated with AlexaFluor 568 or AlexaFluor 488 (Molecular Probes).
- the IF staining was performed on thin cryostat sections (8 p.m) of tissue samples following procedures recommended by the manufacturers. The sections were visualized under a fluorescence microscope.
- Tissues were assayed for histopathology to visualize the impact of IV rAAV9-NAGLU gene delivery on the lysosomal storage pathology in MPS IIIB mice. Histopathology was performed following standard methods. Paraffm sections (41.un) were fixed with 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.2) at 4° C. for 15 min and stained with 1% toluidine blue at 37° C. for 30 min to visualize lysosomal GAG. The sections were mounted, and imaged under a light microscope.
- Taqman primers specific for the CMV promoter were used to detect rAAV vector genomes: f: GGCAGTACATC AAGTGTATC (SEQ ID NO: 6); r: ACCAATGG TAATAG CGATGAC (SEQ ID NO: 7); probe: [6 ⁇ FAM]AATGACGGTAAAT GGCCCGC[TAMRA ⁇ 6 ⁇ FAM] (SEQ ID NO: 8).
- Genomic DNA was quantified in parallel samples using ⁇ -actin specific primers: f: GTCATCAC TATTG GCAACGA (SEQ ID NO: 9); r: CTCAGGAGTTTTGTCACCTT (SEQ ID NO: 10); probe: [6 ⁇ FAM]TTCCGATGCCCT GAGGCTCT[Tamra ⁇ Q] (SEQ ID NO: 11).
- Genomic DNA from nontreated MPS IIIB mouse tissues was used as controls or background and absence of contamination. Global CNS and widespread somatic restoration of NAGLU.
- Tissues were analyzed at 6 months and/or 9 months pi by immunofluorescence (IF) and NAGLU activity assay to determine the distribution and level of rAAV9-mediated transgene expression.
- IF immunofluorescence
- NAGLU-specific IF was detected throughout the brains of treated mice, in neurons, glia, and abundant endothelial cells in capillaries and larger blood vessels, in an apparently dose—dependent fashion. No significant differences were observed in the distribution or levels of rNaGlu signal between 6 months and 9 months pi.
- NAGLU-positive glial cells were not costained with anti-glial fibrillary acidic protein (GFAP) Ab, and were likely to be oligodendrocytes, based on their morphology.
- GFAP anti-glial fibrillary acidic protein
- rNAGLU protein was detected in 20-40% of hepatocytes, >95% of cardiomyocytes, and 10-30% of skeletal myocytes.
- the distribution of rAAV9-transduced hepatocytes was uniform throughout the liver. Transduction in abundant neurons in myenteric plexus and submucosal plexus of the intestine was observed, suggesting efficient targeting of the peripheral nervous system (PNS).
- PNS peripheral nervous system
- the rNAGLU signals were mostly present in granules, whereas scAAV9-mediated GFP signals were uniform in the cytoplasm of transduced cells, suggesting correct lysosomal trafficking of rNAGLU. Transduction of endothelial cells was also observed in peripheral tissues of rAAV9-GFP vector-treated mice.
- Transgene enzymatic activity was assayed to quantify the expression and the functionality of rAAV9-mediated rNAGLU. There were no significant differences in tissue NAGLU activity at 6 and 9 months pi, suggesting stable transduction.
- the rAAV mediated rNaGlu was metabolically functional and the tissue rNAGLU activity was dose-dependent, with approximately normal levels in the brains of mice receiving 5 ⁇ 10 12 vg/kg vector, and supra-physiologic levels in the brains of mice receiving 1.5 ⁇ 10 13 vg/kg ( FIG. 3 a ).
- NAGLU activity at normal or subnormal levels in the liver, lung and intestine ( FIG. 3 a ), supra-physiologic levels in the skeletal muscles ( FIG.
- Tissues were assayed for GAG content to quantify the impact of IV rAAV9-NAGLU gene delivery on the lysosomal storage pathology in MPS IIIB mice.
- the single IV rAAV9-NAGLU injection led to a reduction of GAG content to normal levels in the brain, liver, heart, lung, intestine and skeletal muscle in mice of all four treatment groups ( FIG. 4 ).
- Doses of 5 ⁇ 10 12 ⁇ g or 1.5 ⁇ 10 13 vg/kg resulted in partial GAG reduction in the spleen but had no impact in kidney ( FIG. 4 a ).
- Histopathology showed complete clearance or reduction of lysosomal storage lesions in the vast majority of CNS areas, including cerebral cortex, thalamus, brain stem, hippocampus, and spinal cord in all four treatment groups. There were decreases in the size, number of vacuoles, and number of cells with lysosomal storage lesions, even in the few brain areas that did not show a complete correction, such as purkinje cells and cells in the striatum and hypothalamus. Importantly, the majority of brain and spinal cord parenchymal cells exhibited a well defined normalized morphology.
- Quantitative real-time PCR was performed to compare the amount of rAAV9-CMV-hNaglu vector entering the CNS versus somatic tissues.
- Table 1 shows the distribution of the vector genome in different tissues/organs of MPS IIIB mice treated with IV vector injection at varying doses. The highest concentrations of vector genome were detected in liver (8.20 ⁇ 4.73-32.09 ⁇ 3.93 copies/cell), followed by heart (0.07-0.22 copies/cell), and brain (0.06 ⁇ 0.001-0.15 ⁇ 0.02 copies/cell), and very low copy numbers were detected in other tissues/organs (Table 1).
- This differential vector distribution in rAAV9-treated MPS IIIB mice largely correlated with the distribution of rNAGLU IF and enzymatic activity.
- mannitol pretreatment increased the vector copy numbers in the brain, correlating with brain NAGLU activity levels. Furthermore, these data reflect persistence of vector genome distribution in treated mice at 6 months pi, supporting a stable long-term transduction. Levels of vector genome copies correlating with rNAGLU activity and distribution were not detectable, possibly due to difficulties in quantitative isolation of DNA from muscle tissue.
- rAAV9-L IV infusion of 5 ⁇ 10 12 vg/kg
- rAAV9-H IV infusion of 1.5 ⁇ 10 13 vg/kg
- rAAV9-M ⁇ IV infusion of 2 ⁇ 10 13 vg/kg without mannitol pretreatment
- rAAV9-M+ IV infusion of 2 ⁇ 10 13 vg/kg following mannitol pretreatment. *Data from 1 sample in duplicates.
- the clinically meaningful therapeutic benefits of the IV-delivered rAAV9 vector in MPS IIIB mice were achieved at a lower dose than the mannitol-facilitated, systemically delivered rAAV2 vector.
- the enhanced rAAV9-CNS transduction in response to mannitol pretreatment suggests further potential for reducing the vector dose, and the attendant risk and burden to patients.
- the IV vector injection resulted in a ubiquitously diffuse, global rAAV9-NaGlu transduction throughout the CNS, reflecting the expected distribution pattern for vascular delivery. This contrasts sharply with the focal gradient distribution typically achieved through direct brain parenchymal injection, or the periventricular transduction pattern from intracisternal and intraventricular injection. While similar to the pattern of transgene expression from IV-delivered rAAV2 after mannitol pretreatment, the extent of rAAV9 transduction was significantly higher in all areas of the brain. This correlates with the increased effects on longevity and cognitive function compared to that previously achieved using rAAV2-mannitol treatment, and the normal or above normal levels of NAGLU activity in the CNS. These findings strongly support the use of the trans-BBB neurotropic rAAV9 as a vector for CNS gene therapy and reinforce the view that efficient CNS delivery is the most critical issue for developing therapies to treat MPS IIIB.
- the rAAV9-transduced CNS cells include neurons, glia and endothelia. Neuronal cell transduction appears to be non-preferential, including most types of neurons throughout the brain. In contrast, the transduction of glial cells appears to be cell-type specific, targeting predominantly oligodendrocyte-like cells, though it is unclear whether this is a receptor- or promoter-specific phenomenon. In a previous report [Faust et al., supra] describing predominant transduction of astocytes after systemic injection of rAAV9 vector in adult mice, a hybrid chicken J3-actin/CMV-enhancer promoter was used, rather than the CMV enhancer-promoter used in the present study.
- lysosomal protein In normal cells, 5-20% of newly synthesized lysosomal protein is secreted and available to be taken up by neighboring cells, leading to the by-stander effect.
- the abundant transduction of endothelial cells in the brain may be an important contributor to the effectiveness of rAAV9 gene delivery for MPS IIIB because of the close association between CNS cells and brain microvascular endothelial cells, which together constitute the neurovascular unit. While the observed high levels of rNAGLU expression stem from the transduction of a relatively small number of CNS cells, it is sufficient to correct the neuropathology leading to functional correction of the neurological disorders.
- the rAAV9 treatment also led to a regular morphology in CNS cells, and the correction of major secondary neuropathology, astrocytosis, and neurodegeneration. It is worth noting that this level of correction of CNS pathology was not achieved in previous studies using rAAV2-hNAGLU vector with mannitol. While neuropathology is the primary cause of mortality in MPS IIIB patients, somatic correction may provide additional therapeutic benefits, since lysosomal storage pathology inevitably manifests in virtually all organs.
- the IV-delivered rAAV9 exhibited broad tropism in peripheral tissues in a distinct pattern, as previously reported, reflecting extensive extravasation and cell-type specific transduction.
- the primary source of circulating NAGLU may be liver, muscle, or endothelium.
- the decrease in plasma levels in response to mannitol pretreatment correlated with decreased transduction in muscle rather than liver, suggesting that liver may not be the primary source.
- neurotropism is a general property of the AAV9 serotype, and not dependent on the specific structure of the brain neurovascular unit. Broad neurotropism is a valuable property in gene therapy for the treatment of MPS IIIB, considering that lysosomal storage pathology manifests not only in the CNS but also in the PNS.
- a rAAV vector plasmid was used to produce three different rAAV9-CMV-hSGSH viral vectors.
- the three self-complementary AAV hSGSH vector-producing plasmids were constructed using conventional plasmid cloning techniques.
- Each vector genome contains an SGSH coding region (SEQ ID NO: 3) and either the mouse U1a promoter, with or without an intron, or a CMV promoter without an intron,
- Each vector genome also contains a bGH polyadenylation signal.
- Each self-complementary vector plasmid construct contains one intact AA2 terminal repeat and one modified AAV2 terminal repeat missing the terminal resolution site, thereby forcing the replication of dimeric self-complementary DNA genomes.
- Self-complementary AAV hSGSH viral vectors were produced and packaged in AAV serotype 9 capsids. The viral vectors were tested for expression of hSGSH protein and reduction of GAG storage in human MPS IIIA fibroblasts.
- MPS IIIA mice were injected at 10 weeks of age with 5 ⁇ 10 12 vgp/kg) of scAAV-U1a-hSGSH vector encapsidated in either AAV9 or AAVrh74 serotype. At 10 days post-injection, the mice were euthanized and assays were performed to determine the effects of the treatment.
- FIG. 6 shows enzyme expression relative to untreated MPS IIIA mice at the same age ( ⁇ / ⁇ ).
- the scAAV-SGSH vectors reached the CNS and expressed the transgene within days of administration.
- FIG. 7 shows GAG content measured in the kidney (Kid), heart (Hrt), muscle (Mus), lung, brain, Liver (Liv) and spleen (Spl).
- Sections of CNS and somatic tissues were stained with the lysosomal marker, Lamp1, revealing clearance of lysosomal storage pathology. Histopathology additionally revealed numerous clear vacuoles present in untreated mice but corrected in treated animals.
- MPS IIIA Vector was administered by tail vein injection in MPS IIIA mice at one month of age at an approximately 25-fold lower dose than in Example 9.
- MPS IIIA mice were treated with 1.7 ⁇ 10 11 vgp/kg scAAV9-U1a-hSGSH or 2.7 ⁇ 10 11 vgp/kg scAAVrh74-U1a-hSGSH vector.
- MPS IIIA mice were treated with a high dose (5 ⁇ 10 12 vgp/kg) of scAAV9-U1a-hSGSH vector at 6 months of age, after significant neuropathology had already developed. At 7-7.5 months age, the animals were tested for learning ability in the Morris water maze. At 7.5 months of age, the mice were euthanized and tissues assayed for glycosaminoglycan (GAG) content. Tissues analyzed include liver (Liv), kidney (Kid), heart (Hrt), brain, spleen (Spl), lung, skeletal muscle, and intestine.
- GAG glycosaminoglycan
- FIG. 9 shows clearance of accumulated GAGs in different tissues, including CNS.
- FIG. 10 shows, compared to untreated controls, treated animals were similar to wt mice in their latency to locate the hidden platform (upper charts) and spent more time in the zone (4) where the platform had been in the previous tests when the platform was removed (lower charts).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Mycology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention relates to methods and materials useful for systemically delivering polynucleotides across the blood brain barrier using adeno-associated virus as a vector. For example, the present invention relates to methods and materials useful for systemically delivering α-N-acetylglucosamidinase polynucleotides to the central and peripheral nervous systems, as well as the somatic system. Use of these methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIB. As another example, the present invention relates to methods and materials useful for systemically delivering N-sulphoglucosamine sulfphohydrolase polynucleotides to the central and peripheral nervous systems, as well as the somatic system. Use of this second type of methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIA.
Description
- This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/494,635 filed Jun. 8, 2011, which is incorporated by reference herein in its entirety.
- The present invention relates to methods and materials useful for systemically delivering polynucleotides across the blood brain barrier using adeno-associated virus as a vector. For example, the present invention relates to methods and materials useful for systemically delivering α-N-acetylglucosamidinase polynucleotides to the central and peripheral nervous systems, as well as the somatic system. Use of these methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIB. As another example, the present invention relates to methods and materials useful for systemically delivering N-sulphoglucosamine sulfphohydrolase polynucleotides to the central and peripheral nervous systems, as well as the somatic system. Use of this second type of methods and materials is indicated, for example, for treatment of the lysosomal storage disorder mucopolysaccharidosis IIIA.
- This application contains, as a separate part of disclosure, a Sequence Listing in computer-readable form (46031A_SeqListing.txt; 22,737 byte ASCII text file, created Jun. 7, 2012) which is incorporated by reference herein in its entirety.
- Mucopolysaccharidosis (MPS) IIIB is a devastating lysosomal storage disease (LSD) caused by autosomal recessive defects in the gene coding a lysosomal enzyme, α-N-Acetylglucosaminidase (NAGLU). The lack of NAGLU activity disrupts the stepwise degradation of a class of biologically important glycosaminoglycan (GAG), leading to the accumulation of heparan sulfate oligosaccharides in lysosomes in cells of most tissues. Cells throughout the CNS are particularly affected, resulting in complex secondary neuropathology. MPS IIIB infants appear normal at birth, but develop progressive neurological manifestations that lead to premature death. Somatic manifestations of MPS IIIB occur in all patients, and involve virtually all organs, although they are mild relative to other forms of MPS, such as MPS I, II and VII.
- MPS IIIA is a related LSD caused by autosomal recessive defects in the gene encoding a lysosomal enzyme, N-sulphoglucosamine sulphohydrolase (SGSH). The lack of SGSH activity also disrupts the stepwise degradation of a class of biologically important GAG, leading to the accumulation of heparin sulfate oligosaccharides in lysosomes in cells of most tissues.
- No treatment is currently available for MPS IIIB or IIIA. For all of the MPS disorders, therapies have historically been limited to supportive care and management of complications. MPS IIIB is not amenable to either hematopoietic stem cell transplantation or recombinant enzyme replacement therapy. These have instead been used to treat mostly somatic disorders in patients with MPS I, II and IV. This is because the neuropathology of MPS IIIB is global and the blood brain barrier (BBB) precludes effective central nervous system (CNS) access.
- For the majority of CNS diseases, effective treatments are rare since the CNS is located in a well protected environment and isolated by a highly defined anatomical/functional barrier. The BBB is completely formed at birth in humans. In general, the BBB protects the CNS by selectively regulating the transport of molecules/agents from the blood circulation into the CNS or vice versa. Likewise, it prevents potential therapeutics from entering the CNS. The BBB remains the most critical challenge to developing therapies for CNS diseases, especially global CNS disorders.
- It is contemplated herein that gene therapy has potential for treating LSDs because the secretion of lysosomal enzymes, including NAGLU and SGSH, leads to bystander effects thus reducing the demand for gene transfer efficiency. The adeno-associated virus (AAV) vector system is one system with demonstrated therapeutic effect in a great variety of disease models. To date, no known pathogenesis has been linked to AAV in humans. Recombinant AAV (rAAV) vectors based on AAV serotype 2 (AAV2) have been used in numerous studies for neurological diseases, transducing both neuronal and non-neuronal cells in the CNS with demonstrated therapeutic benefits in treating MPS and other LSDs in animals and in patients with Parkinson's and Batten's disease. In the majority of rAAV-CNS gene therapy studies in LSDs, vectors were delivered by direct intracranial injection, which has limited potential for treating global CNS diseases. See, Sands et al., Acta Paediatr. Suppl., 97: 22-27 (2008); Fu et al., Mol. Ther., 5: 42-49 (2002); Cressant et al., J. Neurosci., 24: 10229-10239 (2004); Fraldi et al., Hum. Mol. Genet., 16: 2693-2702 (2007); Worgall et al., Hum. Gen. Ther., 19: 563-574 (2008) and Heldermon et al. Mol. Ther., 18: 873-880 (2010). To overcome these obstacles, more efficient delivery approaches have been developed with broad or global transduction, and functional benefits for the neurological disease in adult MPS IIIB mice. An intracisternal injection of rAAV2-hNAGLU vector in adult MPS IIIB mice, following mannitol pretreatment, led to deep periventricular transduction and clinical benefits. See Fu et al., J. Gene Med., 12: 624-633 (2010). Intravenous (IV) rAAV injection into neonatal MPS I, MPS VII and MPS IIIB mice led to long-term correction of lysosomal storage in both somatic and CNS tissues. See, Sands et al., Lab. Anim. Sci., 49: 328-330 (1999); Hartung et al., Mol. Ther., 9: 866-875 (2004) and Heldermon et al., supra. However, the BBB may still be permeable in neonatal mice while closed at birth in humans. Previously, in adult MPS IIIB mice, pretreatment with an N infusion of mannitol transiently disrupting the BBB facilitated the CNS entry of IV-delivered rAAV2, resulting in diffuse global CNS transduction and neurological correction. See, McCarty et al., Gene Ther., 16: 1340-1352 (2009).
- Recombinant AAV9 vectors encoding the sulfamidase enzyme have been administered to MPSIIIA mice as reported in Ruzo et al., XVIII Annual Congress of the European Society of Gene and Cell Therapy: 1389 (Abstract Or 96) (October 2010) and Ruzo et al., Mol. Therap., 20(2): 254-266 (2012).
- Adeno-associated virus (AAV) is a replication-deficient parvovirus, the single-stranded DNA genome of which is about 4.7 kb in length including 145 nucleotide inverted terminal repeat (ITRs). The nucleotide sequence of the AAV serotype 2 (AAV2) genome is presented in Srivastava et al., J Virol, 45: 555-564 (1983) as corrected by Ruffing et al., J Gen Virol, 75: 3385-3392 (1994). Cis-acting sequences directing viral DNA replication, encapsidation/packaging and host cell chromosome integration are contained within the ITRs. Three AAV promoters (named p5, p19, and p40 for their relative map locations) drive the expression of the two AAV internal open reading frames encoding rep and cap genes. The two rep promoters (p5 and p19), coupled with the differential splicing of the single AAV intron (at nucleotides 2107 and 2227), result in the production of four rep proteins (rep 78, rep 68, rep 52, and rep 40) from the rep gene. Rep proteins possess multiple enzymatic properties that are ultimately responsible for replicating the viral genome. The cap gene is expressed from the p40 promoter and it encodes the three capsid proteins VP1, VP2, and VP3. Alternative splicing and non-consensus translational start sites are responsible for the production of the three related capsid proteins. A single consensus polyadenylation site is located at map position 95 of the AAV genome. The life cycle and genetics of AAV are reviewed in Muzyczka, Current Topics in Microbiology and Immunology, 158: 97-129 (1992).
- AAV possesses unique features that make it attractive as a vector for delivering foreign DNA to cells, for example, in gene therapy. AAV infection of cells in culture is noncytopathic, and natural infection of humans and other animals is silent and asymptomatic. Moreover, AAV infects many mammalian cells allowing the possibility of targeting many different tissues in vivo. Moreover, AAV transduces slowly dividing and non-dividing cells, and can persist essentially for the lifetime of those cells as a transcriptionally active nuclear episome (extrachromosomal element). Furthermore, because the signals directing AAV replication, genome encapsidation and integration are contained within the ITRs of the AAV genome, some or all of the internal approximately 4.3 kb of the genome (encoding replication and structural capsid proteins, rep-cap) may be replaced with foreign DNA such as a gene cassette containing a promoter, a DNA of interest and a polyadenylation signal. The rep and cap proteins may be provided in trans. Another significant feature of AAV is that it is an extremely stable and hearty virus. It easily withstands the conditions used to inactivate adenovirus, making cold preservation of AAV less critical. AAV may even be lyophilized. Finally, AAV-infected cells are not resistant to superinfection.
- Multiple serotypes of AAV exist and offer varied tissue tropism. Known serotypes include, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10 and AAV11. AAV9 is described in U.S. Pat. No. 7,198,951 and in Gao et al., J. Virol., 78: 6381-6388 (2004). Advances in the delivery of AAV6 and AAV8 have made possible the transduction by these serotypes of skeletal and cardiac muscle following simple systemic intravenous or intraperitoneal injections. See, Pacak et al., Circ. Res., 99(4): 3-9 (1006) and Wang et al., Nature Biotech., 23(3): 321-328 (2005). The use of some serotypes of AAV to target cell types within the central nervous system, though, has required surgical intraparenchymal injection. See, Kaplitt et al., Lancet 369: 2097-2105 (2007); Marks et al., Lancet Neurol 7: 400-408 (2008); and Worgall et al., Hum Gene Ther (2008).
- There remains a need in the art for products and methods for treating lysosomal storage disorders such as MPS IIIB and MPS IIIA.
- The present invention provides methods and materials useful for systemically delivering polynucleotides such as NAGLU polynucleotides or SGSH polynucleotides across the BBB.
- According to the invention, gene delivery is achieved by utilizing, for example, AAV serotype 9 (AAV9). See, Foust et al., Nature Biotechnology, 27: 59-65 (2009); Duque et al., Mol. Ther. 17: 1187-1196 (2009); and Zincarelliet al., Mol. Ther., 16: 1073-1080 (2008). Vectors based on this serotype or functionally-related serotypes are able to cross the BBB unaided in neonate and adult animals. An added benefit to using AAV9 vectors is that pre-existing immunity is less common than for AAV2 serotype. The use of rh74 serotype AAV vectors among others is also contemplated by the invention.
- In one aspect, the invention provides a method of delivering a NAGLU polynucleotide across the BBB comprising systemically administering a rAAV9 with a genome including the polynucleotide to a patient. In some embodiments the rAAV9 genome is a single-stranded genome.
- More specifically, the present invention provides methods and materials useful for systemically delivering NAGLU polynucleotides across the blood brain barrier to the central and peripheral nervous system. In some embodiments, a method is provided of delivering a polynucleotide to the central nervous system comprising systemically administering a rAAV9 with a single-stranded genome including the genome to a patient. In some embodiments, a method of delivering a NAGLU polynucleotide to the peripheral nervous system comprising systemically administering a rAAV9 with a single-stranded genome including the polynucleotide to a patient is provided.
- Even more specifically, in some embodiments, the NAGLU polynucleotide is delivered to brain. In some embodiments, the polynucleotide is delivered to the spinal cord. In some embodiments, the NAGLU polynucleotide is delivered to a lower motor neuron. In some embodiments, the polynucleotide is delivered to nerve and glial cells. In some embodiments, the glial cell is a microglial cell, an oligodendrocyte or an astrocyte. In some, embodiments, the rAAV9 is used to deliver a NAGLU polynucleotide to a Schwann cell.
- Use of the NAGLU methods and materials is indicated, for example, for treating Sanfilippo syndrome Type B/MPS IIIB.
- In another aspect, the invention provides a method of delivering an SGSH polynucleotide across the BBB comprising systemically administering a rAAV9 with a genome including the polynucleotide to a patient. In some embodiments, the rAAV9 genome is a self-complementary genome. In some embodiments the rAAV9 genome is a single-stranded genome.
- More specifically, the present invention provides methods and materials useful for systemically delivering SGSH polynucleotides across the blood brain barrier to the central and peripheral nervous system. In some embodiments, a method is provided of delivering a polynucleotide to the central nervous system comprising systemically administering a rAAV9 with a self-complementary genome including the genome to a patient. In some embodiments, a method of delivering a SGSH polynucleotide to the peripheral nervous system comprising systemically administering a rAAV9 with a self-complementary genome including the polynucleotide to a patient is provided.
- Even more specifically, in some embodiments, the SGSH polynucleotide is delivered to brain. In some embodiments, the polynucleotide is delivered to the spinal cord. In some embodiments, the SGSH polynucleotide is delivered to a lower motor neuron. In some embodiments, the polynucleotides is delivered to nerve and glial cells. In some embodiments, the glial cell is a microglial cell, an oligodendrocyte or an astrocyte. In some, embodiments, the rAAV9 is used to deliver a SGSH polynucleotide to a Schwann cell.
- Use of the SGSH methods and materials is indicated, for example, for treating MPS IIIA.
- In yet another aspect, administration of the rAAV9 encoding a NAGLU or SGSH polypeptide is preceded by administration of mannitol.
- In still another aspect, the invention provides rAAV genomes comprising one or more AAV ITRs flanking a polynucleotide encoding a NAGLU. The NAGLU polynucleotide is operatively linked to transcriptional control DNAs, specifically promoter DNA and polyadenylation signal sequence DNA that are functional in target cells to form a gene cassette. The gene cassette may also include intron sequences to facilitate processing of an RNA transcript when expressed in mammalian cells.
- In a further aspect, the invention provides rAAV genomes comprising one or more AAV ITRs flanking a polynucleotide encoding an SGSH. The SGSH polynucleotide is operatively linked to transcriptional control DNAs, specifically promoter DNA and polyadenylation signal sequence DNA that are functional in target cells to form a gene cassette. The gene cassette may also include intron sequences to facilitate processing of an RNA transcript when expressed in mammalian cells.
- The rAAV genomes of the invention lack AAV rep and cap DNA. AAV DNA in the rAAV genomes (e.g., ITRs) may be from any AAV serotype for which a recombinant virus can be derived including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11. The nucleotide sequences of the genomes of the AAV serotypes are known in the art. For example, the complete genome of AAV-1 is provided in GenBank Accession No. NC—002077; the complete genome of AAV-2 is provided in GenBank Accession No. NC—001401 and Srivastava et al., J. Virol., 45: 555-564 {1983); the complete genome of AAV-3 is provided in GenBank Accession No. NC—1829; the complete genome of AAV-4 is provided in GenBank Accession No. NC—001829; the AAV-5 genome is provided in GenBank Accession No. AF085716; the complete genome of AAV-6 is provided in GenBank Accession No. NC—00 1862; at least portions of AAV-7 and AAV-8 genomes are provided in GenBank Accession Nos. AX753246 and AX753249, respectively; the AAV-9 genome is provided in Gao et al., J. Virol., 78: 6381-6388 (2004); the AAV-10 genome is provided in Mol. Ther., 13(1): 67-76 (2006); and the AAV-11 genome is provided in Virology, 330(2): 375-383 (2004).
- NAGLU polypeptides contemplated include, but are not limited to, a NAGLU polypeptide with the amino acid sequence set out in SEQ ID NO: 2.
- SGSH polypeptides contemplated include, but are not limited to, a SGSH polypeptide with the amino acid sequence set out in SEQ ID NO: 4.
- The polypeptides contemplated include full-length proteins, precursors of full length proteins, biologically active subunits or fragments of full length proteins, as well as biologically active analogs (e.g., derivatives and variants) of any of these forms of polypeptides. Thus, polypeptides include, for example, those that (1) have an amino acid sequence that has greater than about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or greater amino acid sequence identity, over a region of at least about 25, about 50, about 100, about 200, about 300, about 400, or more amino acids, to a polypeptide encoded by a nucleic acid or an amino acid sequence described herein.
- As used herein “biologically active derivative,” “biologically active fragment,” “biologically active analog” or “biologically active variant” includes any derivative or fragment or analog or variant of a molecule having substantially the same functional and/or biological properties of said molecule, such as enzymatic activities.
- An “analog,” such as a “variant” or a “derivative,” is a compound substantially similar in structure to and having the same biological activity as, albeit in certain instances to a differing degree, a naturally-occurring molecule.
- A “derivative,” for example, is a type of analog and refers to a polypeptide sharing the same or substantially similar structure as a reference polypeptide that has been modified, e.g., chemically.
- A polypeptide variant, for example, is a type of analog and refers to a polypeptide sharing substantially similar structure and having the same biological activity as a reference polypeptide (i.e., “native polypeptide” or “native therapeutic protein”). Variants differ in the composition of their amino acid sequences compared to the naturally-occurring polypeptide from which the variant is derived, based on one or more mutations involving (i) deletion of one or more amino acid residues at one or more termini of the polypeptide and/or one or more internal regions of the naturally-occurring polypeptide sequence (e.g., fragments), (ii) insertion or addition of one or more amino acids at one or more termini (typically an “addition” or “fusion”) of the polypeptide and/or one or more internal regions (typically an “insertion”) of the naturally-occurring polypeptide sequence or (iii) substitution of one or more amino acids for other amino acids in the naturally-occurring polypeptide sequence.
- Variant polypeptides include insertion variants, wherein one or more amino acid residues are added to a therapeutic protein amino acid sequence of the present disclosure. Insertions may be located at either or both termini of the protein, and/or may be positioned within internal regions of the therapeutic protein amino acid sequence. Insertion variants, with additional residues at either or both termini, include for example, fusion proteins and proteins including amino acid tags or other amino acid labels.
- In deletion variants, one or more amino acid residues in a therapeutic protein polypeptide as described herein are removed. Deletions can be effected at one or both termini of the therapeutic protein polypeptide, and/or with removal of one or more residues within the therapeutic protein amino acid sequence. Deletion variants, therefore, include fragments of a polypeptide sequence.
- In substitution variants, one or more amino acid residues of a therapeutic protein polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature and conservative substitutions of this type are well known in the art. Alternatively, the present disclosure embraces substitutions that are also non-conservative. Exemplary conservative substitutions are described in Lehninger, [Biochemistry, 2nd Edition; Worth Publishers, Inc., New York (1975), pp. 71-77] and are set out immediately below.
-
CONSERVATIVE SUBSTITUTIONS SIDE CHAIN CHARACTERISTIC AMINO ACID Non-polar (hydrophobic): A. Aliphatic A L I V P B. Aromatic F W C. Sulfur-containing M D. Borderline G Uncharged-polar: A. Hydroxyl S T Y B. Amides N Q C. Sulfhydryl C D. Borderline G Positively charged (basic) K R H Negatively charged (acidic) D E - Alternatively, exemplary conservative substitutions are set out immediately below.
-
CONSERVATIVE SUBSTITUTIONS II EXEMPLARY ORIGINAL RESIDUE SUBSTITUTION Ala (A) Val, Leu, Ile Arg (R) Lys, Gln, Asn Asn (N) Gln, His, Lys, Arg Asp (D) Glu Cys (C) Ser Gln (Q) Asn Glu (E) Asp His (H) Asn, Gln, Lys, Arg Ile (I) Leu, Val, Met, Ala, Phe, Leu (L) Ile, Val, Met, Ala, Phe Lys (K) Arg, Gln, Asn Met (M) Leu, Phe, Ile Phe (F) Leu, Val, Ile, Ala Pro (P) Gly Ser (S) Thr Thr (T) Ser Trp (W) Tyr Tyr (Y) Trp, Phe, Thr, Ser Val (V) Ile, Leu, Met, Phe, Ala - In yet further aspect, the invention provides DNA plasmids comprising rAAV genomes of the invention. The DNA plasmids are transferred to cells permissible for infection with a helper virus of AAV (e.g., adenovirus, E1-deleted adenovirus or herpesvirus) for assembly of the rAAV genome into infectious viral particles. Techniques to produce rAAV particles, in which an AAV genome to be packaged, rep and cap genes, and helper virus functions are provided to a cell are standard in the art. Production of rAAV requires that the following components are present within a single cell (denoted herein as a packaging cell): a rAAV genome, AAV rep and cap genes separate from (i.e., not in) the rAAV genome, and helper virus functions. The AAV rep and cap genes may be from any AAV serotype for which recombinant virus can be derived and may be from a different AAV serotype than the rAAV genome ITRs, including, but not limited to, AAV serotypes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11. Production of pseudotyped rAAV is disclosed in, for example, WO 01/83692 which is incorporated by reference herein in its entirety.
- A method of generating a packaging cell is to create a cell line that stably expresses all the necessary components for AAV particle production. For example, a plasmid (or multiple plasmids) comprising a rAAV genome lacking AAV rep and cap genes, AAV rep and cap genes separate from the rAAV genome, and a selectable marker, such as a neomycin resistance gene, are integrated into the genome of a cell. AAV genomes have been introduced into bacterial plasmids by procedures such as GC tailing (Samulski et al., 1982, Proc. Natl. Acad. S6. USA, 79:2077-2081), addition of synthetic linkers containing restriction endonuclease cleavage sites (Laughlin et al., 1983, Gene, 23:65-73) or by direct, blunt-end ligation (Senapathy & Carter, 1984, J. Biol. Chem., 259:4661-4666). The packaging cell line is then infected with a helper virus such as adenovirus. The advantages of this method are that the cells are selectable and are suitable for large-scale production of rAAV. Other examples of suitable methods employ adenovirus or baculovirus rather than plasmids to introduce rAAV genomes and/or rep and cap genes into packaging cells.
- General principles of rAAV production are reviewed in, for example, Carter, 1992, Current Opinions in Biotechnology, 1533-539; and Muzyczka, 1992, Curr. Topics in Microbial. and Immunol., 158:97-129). Various approaches are described in Ratschin et al., Mol. Cell. Biol. 4:2072 (1984); Hermonat et al., Proc. Natl. Acad. Sci. USA, 81:6466 (1984); Tratschin et al., Mol. Cell. Biol. 5:3251 (1985); McLaughlin et al., J. Virol., 62:1963 (1988); and Lebkowski et al., 1988 Mol. Cell. Biol., 7:349 (1988). Samulski et al. (1989, J. Virol., 63:3822-3828); U.S. Pat. No. 5,173,414; WO 95/13365 and corresponding U.S. Pat. No. 5,658,776; WO 95/13392; WO 96/17947; PCT/US98/18600; WO 97/09441 (PCT/US96/14423); WO 97/08298 (PCT/US96/13872); WO 97/21825 (PCT/US96/20777); WO 97/06243 (PCT/FR96/01064); WO 99/11764; Perrin et al. (1995) Vaccine 13:1244-1250; Paul et al. (1993) Human Gene Therapy 4:609-615; Clark et al. (1996) Gene Therapy 3:1124-1132; U.S. Pat. No. 5,786,211; U.S. Pat. No. 5,871,982; and U.S. Pat. No. 6,258,595. The foregoing documents are hereby incorporated by reference in their entirety herein, with particular emphasis on those sections of the documents relating to rAAV production.
- The invention thus provides packaging cells that produce infectious rAAV. In one embodiment packaging cells may be stably transformed cancer cells such as HeLa cells, 293 cells and PerC.6 cells (a cognate 293 line). In another embodiment, packaging cells are cells that are not transformed cancer cells such as low passage 293 cells (human fetal kidney cells transformed with E1 of adenovirus), MRC-5 cells (human fetal fibroblasts), WI-38 cells (human fetal fibroblasts), Vero cells (monkey kidney cells) and FRhL-2 cells (rhesus fetal lung cells).
- In another aspect, the invention provides rAAV (i.e., infectious encapsidated rAAV particles) comprising a rAAV genome of the invention. In some embodiments of the invention, the rAAV genome is a self-complementary genome.
- The invention includes, but is not limited to, the exemplified rAAV named “rAAV9-CMV-hNAGLU.” The rAAV genome has in sequence an AAV2 ITR, the cytomegalovirus (CMV) immediate early promoter/enhancer, an SV40 intron (SD/SA), the NAGLU DNA set out in SEQ ID NO: 1, a polyadenylation signal sequence from bovine growth hormone and another AAV2 ITR. The DNA sequence of the vector genome is set out in SEQ ID NO: 5. The genome lacks AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genome.
- The invention also includes, but is not limited to, rAAV encoding SGSH. In some embodiments, the rAAV genome has in sequence an AAV2 ITR, the CMV immediate early promoter/enhancer, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site. In some embodiments, the rAAV genome has in sequence an AAV2 ITR, the mouse U1a promoter, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site. In some embodiments, rAAV genome has in sequence an AAV2 ITR, the mouse U1a promoter, an intron, the SGSH DNA set out in SEQ ID NO: 3, a polyadenylation signal sequence from bovine growth hormone and a AAV2 ITR lacking the terminal resolution site. The genomes lack AAV rep and cap DNA, that is, there is no AAV rep or cap DNA between the ITRs of the genomes.
- NAGLU and SGSH DNAs include, without limitation, those that (1) hybridize under stringent hybridization conditions to a nucleic acid encoding an amino acid sequence as described herein, and conservatively modified variants thereof; (2) have a nucleic acid sequence that has greater than about 95%, about 96%, about 97%, about 98%, about 99%, or higher nucleotide sequence identity, over a region of at least about 25, about 50, about 100, about 150, about 200, about 250, about 500, about 1000, or more nucleotides (up to the full length sequence of the mature protein), to a nucleic acid sequence as described herein. Exemplary “stringent hybridization” conditions include hybridization at 42° C. in 50% formamide, 5×SSC, 20 mM Na.PO4, pH 6.8; and washing in 1×SSC at 55° C. for 30 minutes. It is understood that variation in these exemplary conditions can be made based on the length and GC nucleotide content of the sequences to be hybridized. Formulas standard in the art are appropriate for determining appropriate hybridization conditions. See Sambrook et al., Molecular Cloning: A Laboratory Manual (Second ed., Cold Spring Harbor Laboratory Press, 1989) §§9.47-9.51.
- The rAAV may be purified by methods standard in the art such as by column chromatography or cesium chloride gradients. Methods for purifying rAAV vectors from helper virus are known in the art and include methods disclosed in, for example, Clark et al., Hum. Gene Ther., 10(6): 1031-1039 (1999); Schenpp and Clark, Methods Mol. Med., 69: 427-443 (2002); U.S. Pat. No. 6,566,118 and WO 98/09657.
- In an additional aspect, the invention contemplates compositions comprising rAAV of the present invention encoding an NAGLU polypeptide. These compositions may be used to treat mucopolysaccharidosis IIIB. In other embodiments, compositions of the present invention may include two or more rAAV encoding different polypeptides of interest.
- In still an additional aspect, the invention contemplates compositions comprising rAAV of the present invention encoding an SGSH polypeptide. These compositions may be used to treat mucopolysaccharidosis IIIA. In other embodiments, compositions of the present invention may include two or more rAAV encoding different polypeptides of interest.
- Compositions of the invention comprise rAAV in a pharmaceutically acceptable carrier. The compositions may also comprise other ingredients such as diluents and adjuvants. Acceptable carriers, diluents and adjuvants are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants such as ascorbic acid; low molecular weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, pluronics or polyethylene glycol (PEG).
- Titers of rAAV to be administered in methods of the invention will vary depending, for example, on the particular rAAV, the mode of administration, the treatment goal, the individual, and the cell type(s) being targeted, and may be determined by methods standard in the art. Titers of rAAV may range from about 1×106, about 1×107, about 1×108, about 1×109, about 1×1010, about 1×1011, about 1×1012, about 1×1013 to about 1×1014 or more DNase resistant particles (DRP) per ml. Dosages may also be expressed in units of viral genomes (vg). Dosages may also vary based on the timing of the administration to a human. These dosages of rAAV may range from about 1×1011 vg/kg, about 1×1012, about 1×1013, about 1×1014, about 1×1015, about 1×1016 or more viral genomes per kilogram body weight in an adult. For a neonate, the dosages of rAAV may range from about 1×1011, about 1×1012, about 3×1012, about 1×1013, about 3×1013, about 1×1014, about 3×1014, about 1×1015, about 3×1015, about 1×1016, about 3×1016 or more viral genomes per kilogram body weight.
- Treatment by methods of the invention comprises the step of administering an intravenous (IV) effective dose, or effective multiple doses, of a composition comprising a rAAV of the invention to an animal (including a human being) in need thereof. If the dose is administered prior to development of a disorder/disease, the administration is prophylactic. If the dose is administered after the development of a disorder/disease, the administration is therapeutic. In embodiments of the invention, an effective dose is a dose that alleviates (eliminates or reduces) at least one symptom associated with the disorder/disease state being treated, that slows or prevents progression to a disorder/disease state, that slows or prevents progression of a disorder/disease state, that diminishes the extent of disease, that results in remission (partial or total) of disease, and/or that prolongs survival.
- Combination therapies are also contemplated by the invention. Combination as used herein includes both simultaneous treatment or sequential treatments. Combinations of methods of the invention with standard medical treatments (e.g., transient or long-term immunosuppression) are specifically contemplated, as are combinations with novel therapies.
- Compositions suitable for systemic (IV) use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating actions of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of a dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by use of agents delaying absorption, for example, aluminum monostearate and gelatin, and Tween family of products (e.g., Tween 20).
- Sterile injectable solutions are prepared by incorporating rAAV in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying technique that yield a powder of the active ingredient plus any additional desired ingredient from the previously sterile-filtered solution thereof.
- Transduction of cells with rAAV of the invention results in sustained expression of NAGLU or SGSH polypeptide. Transduction may be carried out with gene cassettes comprising tissue specific control elements, for example, promoters that allow expression specifically within neurons or specifically within astrocytes. Examples include neuron specific enolase and glial fibrillary acidic protein promoters. Inducible promoters under the control of an ingested drug may also be developed.
- It will be understood by one of ordinary skill in the art that a polynucleotide delivered using the materials and methods of the invention can be placed under regulatory control using systems known in the art. By way of non-limiting example, it is understood that systems such as the tetracycline (TET on/off) system [see, for example, Urlinger et al., Proc. Natl. Acad. Sci. USA 97(14):7963-7968 (2000) for recent improvements to the TET system] and Ecdysone receptor regulatable system [Palli et al., Eur J. Biochem 270: 1308-1315 (2003] may be utilized to provide inducible polynucleotide expression.
- Thus, the invention provides methods of systemically administering an effective dose (or doses, administered essentially simultaneously or doses given at intervals) of rAAV of the invention to a patient in need thereof.
-
FIG. 1 is a map of the rAAV-CMV-hNAGLU vector genome. -
FIG. 2 shows improved behavior and extended survival in MPS IIIB mice after systemic gene transfer by rAAV-CMV-hNAGLU.FIG. 2 a. Hidden task in water maze (n=11/group). Day 1: test trial.FIG. 2 b. Latency to fall from a rotarod (n=11/group).FIG. 2 c. Survival (i 5/group, P<0.001). +/+: wt; −/−: MPS IIIB; AAV9-L, AAV9-H: MPS IIIB mice treated with 5×1012 or 1.5×1013 vg/kg rAAV9-hNAGLU vector, respectively. *: P<0.05 (vs. +/+); #: P<0.05 (vs. AAV9-L); ̂: P<0.05 (vs. AAV9-H); &: P>0.05 (vs. −/−). Repeated measures ANOVA analyses: @: day effect P<0.01; $: group (treatment effect) P<0.01; %: day-group interaction P41.020 (rotarod). -
FIG. 3 shows rAAV9-mediated expression of functional rNAGLU in tissues. Tissues from MPS IIIB mice treated with rAAV9-hNAGLU were assayed for NAGLU activity (6 and 9 mo pi) (n=5-6/group).FIG. 3 a. Dose-response. +/+: wt; AAV9-11, AAV9-L: MPS IIIB mice treated with 1.5×1013(AAV9-H) or 5×1012 vg/kg (AAV9-L) vector;FIG. 3 b. Impact of mannitol pretreatment. M+/M−: MPS IIIB mice treated with 2×1013 vg/kg vector with (M+) or without (M−) mannitol pretreatment.FIG. 3 c. Plasma NAGLU activity (n=3-4). +/−: heterozygotes. No significant difference in tissue NAGLU activity was detected at 6 and 9 months pi. Data shown are means±SD of combined data on tissues from mice at 6 and 9 mo pi. *: P<0.01 vs. +/+; #: P<0.05 vs. AAV9-H or M+: P>0.05 vs. +/+. @: P<0.05 vs. +/−. -
FIG. 4 shows the significant reduction of GAG content in the CNS and somatic tissues. Tissues from MPS IIIB mice treated with rAAV9-hNAGLU were assayed to quantify GAG content (6 and 9 mo pi).FIG. 4 a. Dose response.FIG. 4 b. Impact of mannitol pretreatment. +/Ai wt; −/−: MPS IIIB; AAV9-H, AAV9-L: MPS MB mice treated with 1.5×1013 vg or 5×1012 vg/kg vector; M+, M−: MPS IIIB mice treated with rAAV9 vector (2×1013 vg/kg) with or without mannitol pretreatment. Data shown are means±SD (n=5-6), combining data from tissues collected at 6 and 9 mo pi. *: P<0.01 vs. +/+; #: P<0.05 vs. AAV9-H or M+; ̂: P<0.05 vs. AAV9-L or M−; +: P>0.05 vs. +/+. -
FIG. 5 shows rAAV9-mediated correction of astrocytosis and neurodegeneration in MPS IIIB mice. Brain sections of MPS IIIB mice treated with rAAV9-CMV-hNAGLU vector (6 mo pi) were assayed for GFAP by immunofluorescence and stained with toluidine blue for histopathology.FIG. 5 a. Number of astrocytes: Data are means±SD of GFAP+ cells per 330×433 pm on 6-8 IF-GFAP-staining sections/mouse, from 3 mice/group.FIG. 5 b. Number of purkinje cells: Data are means±SD of purkinje cells/200 p.m (in length) in ansiform lobules in cerebellum on 6 toluidine blue stained sections/mouse, from 3 mice/group. NT: non-treated MPS IIIB mouse; AAV9: MPS IIIB mouse treated with rAAV9. CTX: cerebral cortex; ST: Striatum; TH: thalamus; BS: Brain stem. *: P<0.01 vs. non-treated. -
FIG. 6 shows rAAV9-mediated expression of functional rSGSH in tissues of treated MPSIIIA mice. For each tissue, AAV9, rh74 and untreated result bars are respectively shown from left to right. -
FIG. 7 shows a significant reduction of GAG content in tissues of treated MPSIIIA mice. For each tissue, AAV9, rh74 and untreated result bars are respectively shown from left to right. -
FIG. 8 shows an improvement in cognitive behavior assays after treatment of one-month old MPSIIIA mice with low dose scAAV9 or rh74-U1a-SGSH. In the lower graphs, for each tissue, untreated, wild type and either AAV9 or rh74 result bars are respectively shown from left to right. -
FIG. 9 shows a significant reduction of GAG content in tissues of MPSIIIA mice treated at 2 or 6 months of age. For each tissue, wild type, untreated, two-month and six-month result bars are respectively shown from left to right. -
FIG. 10 shows an improvement in cognitive behavior assays after treatment of two- or six-month old MPSIIIA mice with high dose scAAV9 or rh74-U1a-SGSH. In the lower graphs, for each tissue, untreated, wild type and either AAV9 or rh74 result bars are respectively shown from left to right. - The present invention is illustrated by the following examples relating to delivery of human NAGLU (hNAGLU) genes to the spinal cord via intravenous delivery of rAAV9. Example 1 describes rAAV encoding hNAGLU. Example 2 describes the administration of the rAAV encoding hNAGLU to MPSIIIB mice. Examples 3 through 6 describe the beneficial results of administration of the rAAV. Example 7 discusses the significance of the results. Example 8 describes rAAV encoding SGSH. Examples 9 through 11 describe administration of various dosages of rAAV encoding SGSH to MPSIIIA mice of varying ages, as well as the beneficial effects of the administration.
- A rAAV vector plasmid, containing AAV2 ITRs, an immediate early CMV promoter/enhancer, an SV40 intron, a human α-N-acetylglucosaminidase coding region, a bGH polyadenylation signal sequence, and ampicillin resistance gene, was used to produce a rAAV9-CMV-hNAGLU viral vector.
- Recombinant AAV9 viral vectors with the hNAGLU-encoding genome were produced in 293 cells using three-plasmid co-transfection, and purified as described in Zolotukhin et al., Gene Ther., 6: 973-985 (1999). This vector is referred to as “rAAV9-CMV-hNAGLU” herein. The vector genomes contained minimal elements required for transgene expression, including AAV2 terminal repeats, a human cytomegalovirus (CMV) immediate-early promoter, SV40 splice donor/acceptor signal, a human NAGLU coding sequence (SEQ ID NO: 1), and bGH polyadenylation signal. SEQ ID NO: 5 is the DNA sequence of the vector genome.
FIG. 1 is a map of the vector genome wherein the length of the various elements of the genome is indicated below the element. - A control self-complementary AAV encoding green fluorescent protein, scAAV9-CMV-GFP was also produced, containing AAV2 terminal repeats, a human cytomegalovirus (CMV) immediate-early promoter, SV40 splice donor/acceptor signal, a eGFP coding sequence, and SV40 polyadenylation signal.
- An MPS IIB3 knock-out mouse colony [Li et al., Proc. Natl. Acad. Sci. USA, 96: 14505-14510 (1999) was maintained on an inbred background (C57BL/6) of backcrosses of heterozygotes. All care and procedures were in accordance with the Guide for the Care and Use of Laboratory Animals [DHHS Publication No. (NIH) 85-23]. The genotypes of progeny mice were identified by PCR.
- To assess the therapeutic efficacy of rAAV9 gene delivery, 4-6-week-old MPS IIIB mice were treated with an IV injection of rAAV9-CMV-hNAGLU (5×1012 or 1.5×1013 vg/kg, n=11/group). Separately, other MPS IIIB mice were treated with 2×1013 vg/kg rAAV9-CMV-hNAGLU, with or without mannitol pretreatment (n=5/group), to assess the impact on CNS entry. Controls were sham-treated (phosphate-buffered saline) wild type (wt) and MPS IIIB littermates (n=11). Tissue analyses were carried out at 6 months and 9 months (n=2-4/group) post-injection (pi).
- Additionally, self-complementary AAV (scAAV) vector carrying a cytomegalovirus-green fluorescent protein (CMV-GFP) transgene (5×1012 vg/kg) was injected IV into 6-8-week-old wt mice (n=4/group) to determine the distribution of transgene expression (1 month pi), as a comparison to rAAV9-hNaGlu treatment.
- Results are presented below.
- The rAAV9-CMV-hNaGlu-treated MPS BIB mice and controls were tested for behavioral performance at approximately 5.0-5.5 months of age as follows.
- A water maze (diameter=122 cm) was filled with water (45 cm deep, 24-26° C.) containing 1% white TEMPERA paint, located in a room with numerous visual cues. See Warburton et al., J. Neurosci, 21: 7323-7330 (2001). Mice were tested for their ability to find a hidden escape platform (20×20 cm) 0.5 cm under the water surface. Each animal was given four trials per day, across three days, as described previously. Measures were taken of latency to fmd the platform (sec) via an automated tracking system (San Diego Instruments). Results are shown in
FIG. 2 a. - Mice were tested on an accelerating rotarod (Med Associate, Inc.) to assess motor coordination. See Lijam et al., Cell, 90895-905 (1997). Rotation speed was set at an initial value of 3 revolutions per minute (rpm), with a progressive increase to a maximum of 30 rpm across five minutes (the maximum trial length). For the first test session, animals were given three trials, with 45 seconds between each trial. Two additional trials were given 48 hours later. Measures were taken for latency to fall from the top of the rotating barrel. Results are shown in
FIG. 2 b. - Means, standard deviation (SD) and unpaired student t-test were used to analyze quantitative data. Behavioral measures were taken by an observer blind to experimental treatment. Behaviroal testing data were also analyzed using repeated measures ANOVA (SAS 9.1.3) to determine the significance of the variances among treatment and control groups and testing days.
- All mice treated IV with 5×1012 or 1.5×1013 vg/kg rAAV9-NAGLU were tested for behavior at 5-5.5 mo of age to assess the neurological impacts. Both dosage groups exhibited significant decreases in latency to find a hidden platform in a water maze (
FIG. 2 a), and significantly longer latency to fall from an accelerating rotarod (FIG. 2 b), compared with non-treated MPS IIIB mice, indicating the correction of cognitive and motor function. There were no significant differences in behavior performance between these two dose groups. - Following the rAAV9-hNaGlu vector injection(s), mice were continuously observed for the development of endpoint symptoms, or until death occurred. The endpoint was when the symptoms of late stage clinical manifestation (urine retention, rectal prolapse, protruding penis) in MPS IIIB mice became irreversible, or when wt control mice were 24 months or older. Longevity data were analyzed using Kaplan-Meier method. The significance level was set at P<0.05. Results are shown in
FIG. 2 c. - Ten rAAV9-treated MPS IIIB mice, five from each dose group, were observed for longevity. All ten survived >16.9 months (with one mouse of the low-dose group dying at age of 16.1 months) and the majority of them survived 18.9-27.4 months within the normal range of lifespan, while all non-treated MPS IIIB mice died at 8-12 months of age (P<0.001) (
FIG. 2 c). These data demonstrate that a single IV rAAV9 vector injection alone is functionally beneficial in treating the CNS disease and increasing longevity in MPS IIIB mice. - In the therapeutic studies above, tissue analyses were carried out at 6 mo and 9 mo post injection (pi). Mice were anesthetized with 2.5% Avertin before tissue collection. Brain, spinal cord and multiple somatic tissues were collected on dry ice or embedded in OCT compound and stored at −70° C., before being processed for analyses. Tissues were also processed for paraffm sectioning.
- Tissue samples from scAAV9-GFP vector-treated mice were collected for analysis 4-5 weeks pi. The mice were anesthetized with 2.5% Avertin and then perfused transcardially with cold PBS (0.1M, pH7.4), followed by 4% paraformaldehyde in phosphate buffer (0.1M, pH7.4). The entire brain and spinal cord, as well as multiple somatic tissues (including liver, kidney, spleen, heart, lung, intestine and skeletal muscles), were collected and fixed in 4% paraformaldehyde overnight at 4° C. before being further processed for vibratome sectioning.
- Tissues were analyzed at 6 mo and/or 9 mo pi by NAGLU activity assay to determine the distribution and level of rAAV9-mediated transgene expression. Tissue samples were assayed for NaGlu enzyme activity following a published procedure with modification. The assay measures 4-methylumbelliferone (4MU), a fluorescent product formed by hydrolysis of the substrate 4-methylumbellireyl-N-acetyla-D-glucosaminide. The NaGlu activity is expressed as unit/mg protein. 1 unit is equal to 1 nmol 4MU released/h at 37° C. Results are shown in
FIG. 3 . - GAG was extracted from tissues following published procedures [van de Lest et al., Anal. Biochem. 221: 356-361(1994)] with modification [Fu et al., Gene Ther., 14: 1065-1077 (2007). Dimethylmethylene blue (DMB) assay was used to measure GAG content [de Jong et al., Clin. Chem., 35: 1472-1477 (1989)]. The GAG samples (from 0.5-1.0 mg tissue) were mixed with H2O to 40 ml before adding 35 nM DMB (Polysciences CEO 03610-1) in 0.2 mM sodium formate buffer (SFB, pH 3.5). The product was measured using a spectrophotometer (0D535). The GAG content was expressed as μg/mg tissue. Urine GAG content was also measured. Heparan sulfate (Sigma, H9637) was used as standard. Results are shown in
FIG. 4 . - Immunofluorescence (IF) was performed to identify cells expressing hNAGLU, GFP or glial fibrillary acidic protein (GFAP) for astrocytes, using antibodies against hNaGlu (a kind gift from Dr. EF Neufeld, UCLA), GFP (Invitrogen) or GFAP (Chemicon), and corresponding secondary antibody conjugated with AlexaFluor568 or AlexaFluor488 (Molecular Probes). The IF staining was performed on thin cryostat sections (8 p.m) of tissue samples following procedures recommended by the manufacturers. The sections were visualized under a fluorescence microscope.
- Tissues were assayed for histopathology to visualize the impact of IV rAAV9-NAGLU gene delivery on the lysosomal storage pathology in MPS IIIB mice. Histopathology was performed following standard methods. Paraffm sections (41.un) were fixed with 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.2) at 4° C. for 15 min and stained with 1% toluidine blue at 37° C. for 30 min to visualize lysosomal GAG. The sections were mounted, and imaged under a light microscope.
- Total DNA was isolated from tissue samples of treated and nontreated MPS IIIB mice using Qiagen DNeasy columns. Brain DNA was isolated from midbrain tissue. The DNA samples were analyzed by quatitative real-time PCR, using Absolute Blue QPCR Mix (Thermo Scientific, Waltham, Mass.) and Applied Biosystems 7000 Real-Time PCR System, following the procedures recommended by the manufacturer. Taqman primers specific for the CMV promoter were used to detect rAAV vector genomes: f: GGCAGTACATC AAGTGTATC (SEQ ID NO: 6); r: ACCAATGG TAATAG CGATGAC (SEQ ID NO: 7); probe: [6˜FAM]AATGACGGTAAAT GGCCCGC[TAMRA˜6˜FAM] (SEQ ID NO: 8). Genomic DNA was quantified in parallel samples using β-actin specific primers: f: GTCATCAC TATTG GCAACGA (SEQ ID NO: 9); r: CTCAGGAGTTTTGTCACCTT (SEQ ID NO: 10); probe: [6˜FAM]TTCCGATGCCCT GAGGCTCT[Tamra˜Q] (SEQ ID NO: 11). Genomic DNA from nontreated MPS IIIB mouse tissues was used as controls or background and absence of contamination. Global CNS and widespread somatic restoration of NAGLU.
- Tissues were analyzed at 6 months and/or 9 months pi by immunofluorescence (IF) and NAGLU activity assay to determine the distribution and level of rAAV9-mediated transgene expression. NAGLU-specific IF was detected throughout the brains of treated mice, in neurons, glia, and abundant endothelial cells in capillaries and larger blood vessels, in an apparently dose—dependent fashion. No significant differences were observed in the distribution or levels of rNaGlu signal between 6 months and 9 months pi. NAGLU-positive glial cells were not costained with anti-glial fibrillary acidic protein (GFAP) Ab, and were likely to be oligodendrocytes, based on their morphology. Importantly, while rNAGLU IF was observed in the brains of all rAAV9-treated mice, mannitol pretreatment did appear to increase the number of transduced cells in the CNS.
- Differential transduction levels were observed in peripheral organs. The rNAGLU protein was detected in 20-40% of hepatocytes, >95% of cardiomyocytes, and 10-30% of skeletal myocytes. The distribution of rAAV9-transduced hepatocytes was uniform throughout the liver. Transduction in abundant neurons in myenteric plexus and submucosal plexus of the intestine was observed, suggesting efficient targeting of the peripheral nervous system (PNS). The rNAGLU signals were mostly present in granules, whereas scAAV9-mediated GFP signals were uniform in the cytoplasm of transduced cells, suggesting correct lysosomal trafficking of rNAGLU. Transduction of endothelial cells was also observed in peripheral tissues of rAAV9-GFP vector-treated mice.
- Function of the recombinant NAGLU and resulting effects in animals were also analyzed in the therapeutic studies above.
- rNAGLU Enzymatic Function
- Transgene enzymatic activity was assayed to quantify the expression and the functionality of rAAV9-mediated rNAGLU. There were no significant differences in tissue NAGLU activity at 6 and 9 months pi, suggesting stable transduction. The rAAV mediated rNaGlu was metabolically functional and the tissue rNAGLU activity was dose-dependent, with approximately normal levels in the brains of mice receiving 5×1012 vg/kg vector, and supra-physiologic levels in the brains of mice receiving 1.5×1013 vg/kg (
FIG. 3 a). In both dose groups, we detected NAGLU activity at normal or subnormal levels in the liver, lung and intestine (FIG. 3 a), supra-physiologic levels in the skeletal muscles (FIG. 3 a) and heart (40 & 100 units/mg protein, data not shown), and low levels in the spleen, but no detectable NAGLU activity in the kidney. A low level of NAGLU activity was detected in the kidneys of the mice treated with 2×1013 vg/kg vector (FIG. 3 b). Mannitol pretreatment led to an increase in NAGLU activity in the brain (though not significant due to high individual variation), liver, spleen, lung and intestine, but a decrease in the heart and skeletal muscle (FIG. 3 b). No detectable NAGLU activity (<0.03 unit/mg) was observed in tissues from non-treated MPS IIIB mice. - rNaGlu Secretion
- Plasma samples were assayed for NAGLU activity to assess the secretion of the enzyme. Activity was detected in the plasma of all rAAV9-treated MPS MB mice at or near heterozygote levels, though lower than homozygous wt levels (
FIG. 3 c). Mannitol pretreatment resulted in significant reduction in plasma NAGLU activity (FIG. 3 c). These data indicate that the rNAGLU was secreted, though the source tissue or cell type is not clear. - Tissues were assayed for GAG content to quantify the impact of IV rAAV9-NAGLU gene delivery on the lysosomal storage pathology in MPS IIIB mice. The single IV rAAV9-NAGLU injection led to a reduction of GAG content to normal levels in the brain, liver, heart, lung, intestine and skeletal muscle in mice of all four treatment groups (
FIG. 4 ). Doses of 5×1012 μg or 1.5×1013 vg/kg resulted in partial GAG reduction in the spleen but had no impact in kidney (FIG. 4 a). - Treatment with 2×1013 vg/kg led to a decrease of GAG to normal levels in the spleen, and partial GAG reduction in the kidney (
FIG. 4 b), consistent with the observed enzyme activity levels. - Histopathology showed complete clearance or reduction of lysosomal storage lesions in the vast majority of CNS areas, including cerebral cortex, thalamus, brain stem, hippocampus, and spinal cord in all four treatment groups. There were decreases in the size, number of vacuoles, and number of cells with lysosomal storage lesions, even in the few brain areas that did not show a complete correction, such as purkinje cells and cells in the striatum and hypothalamus. Importantly, the majority of brain and spinal cord parenchymal cells exhibited a well defined normalized morphology. Immunofluorecence detection for the lysosomal marker, LAMP-1, showed that IV infusion of rAAV9-NAGLU vector at all doses also resulted in marked reduction of LAMP-1 signal, especially in neurons, throughout the brain. This further supports the conclusion that the amount of vector crossing the BBB was sufficient for efficient correction of CNS lysosomal storage pathology.
- In somatic tissues, complete clearance of lysosomal storage lesions in the livers of all rAAV9-hNaGlu treated mice was observed as well as attenuation of nuclear shrinkage, a marker of cell stress and damage.
- In order to determine whether the rAAV9-hNaGlu vector delivery had an impact on astrocytosis, a major secondary neuropathology of MPS IIIB, brain sections were assayed by immunofluorecence for GFAP expressing cells. Significant decreases in astrocyte numbers in gray matter throughout the brain of treated mice were observed compared to untreated at 6 mo and 9 mo pi (
FIG. 5 a). Histopathology also revealed significant increases in the numbers of neurons, such as Purkinje cells (FIG. 5 b), in the brains of treated MPS IIIB mice. These data strongly indicate the amelioration of astrocytosis and neurodegeneration, which are hallmarks of secondary neuropathologies in MPS IIIB, in response to the rAAV9 treatment. - Quantitative real-time PCR was performed to compare the amount of rAAV9-CMV-hNaglu vector entering the CNS versus somatic tissues. Table 1 shows the distribution of the vector genome in different tissues/organs of MPS IIIB mice treated with IV vector injection at varying doses. The highest concentrations of vector genome were detected in liver (8.20±4.73-32.09±3.93 copies/cell), followed by heart (0.07-0.22 copies/cell), and brain (0.06±0.001-0.15±0.02 copies/cell), and very low copy numbers were detected in other tissues/organs (Table 1). This differential vector distribution in rAAV9-treated MPS IIIB mice largely correlated with the distribution of rNAGLU IF and enzymatic activity. Notably, mannitol pretreatment increased the vector copy numbers in the brain, correlating with brain NAGLU activity levels. Furthermore, these data reflect persistence of vector genome distribution in treated mice at 6 months pi, supporting a stable long-term transduction. Levels of vector genome copies correlating with rNAGLU activity and distribution were not detectable, possibly due to difficulties in quantitative isolation of DNA from muscle tissue.
-
TABLE 1 Estimated vector genome in the liver and brain of rAAV9-treated mice Vector genome (copy/cell) Mice n Liver Brain Heart rAAV9- L 2 8.20 ± 4.73 0.07 ± 0.07 0.07* rAAV9- H 3 10.86 ± 2.94 0.09-10.47 0.13 ± 0.07 rAAV9-M− 2 21.97 ± 6.43 0.06 ± 0.001 0.22* rAAV9- M+ 3 32.09 ± 3.93 0.15 ± 0.02 0.14* Non-treated 1 0.000 0.000 0.00 Mouse tissue samples (6mo pi) were assayed in duplicates for vector genome copy numbers by qPCR. Data is expressed as vector copy/cell (means ± SD). rAAV9-L: IV infusion of 5 × 1012 vg/kg; rAAV9-H: IV infusion of 1.5 × 1013 vg/kg; rAAV9-M−: IV infusion of 2 × 1013 vg/kg without mannitol pretreatment; rAAV9-M+: IV infusion of 2 × 1013 vg/kg following mannitol pretreatment. *Data from 1 sample in duplicates. - This study demonstrates the first significant therapeutic benefit for treating MPS IIIB in adult animals from systemic gene delivery to the CNS without additional treatment to disrupt the BBB. A single IV injection of hNAGLU-expressing rAAV9 vector was sufficient to significantly improve cognitive and motor functions, and greatly prolong survival in MPS IIIB mice. In the present study using rAAV9, the increased longevity exceeds the outcome of previous studies using rAAV2 vector delivered through either intracisternal injection, or systemic injection following mannitol pretreatment. The rNAGLU enzyme was clearly secreted and functional, leading to a significant bystander effect, and efficient degradation of heparan sulfate GAG in CNS tissues. Importantly, the clinically meaningful therapeutic benefits of the IV-delivered rAAV9 vector in MPS IIIB mice were achieved at a lower dose than the mannitol-facilitated, systemically delivered rAAV2 vector. The enhanced rAAV9-CNS transduction in response to mannitol pretreatment suggests further potential for reducing the vector dose, and the attendant risk and burden to patients.
- The IV vector injection resulted in a ubiquitously diffuse, global rAAV9-NaGlu transduction throughout the CNS, reflecting the expected distribution pattern for vascular delivery. This contrasts sharply with the focal gradient distribution typically achieved through direct brain parenchymal injection, or the periventricular transduction pattern from intracisternal and intraventricular injection. While similar to the pattern of transgene expression from IV-delivered rAAV2 after mannitol pretreatment, the extent of rAAV9 transduction was significantly higher in all areas of the brain. This correlates with the increased effects on longevity and cognitive function compared to that previously achieved using rAAV2-mannitol treatment, and the normal or above normal levels of NAGLU activity in the CNS. These findings strongly support the use of the trans-BBB neurotropic rAAV9 as a vector for CNS gene therapy and reinforce the view that efficient CNS delivery is the most critical issue for developing therapies to treat MPS IIIB.
- The rAAV9-transduced CNS cells include neurons, glia and endothelia. Neuronal cell transduction appears to be non-preferential, including most types of neurons throughout the brain. In contrast, the transduction of glial cells appears to be cell-type specific, targeting predominantly oligodendrocyte-like cells, though it is unclear whether this is a receptor- or promoter-specific phenomenon. In a previous report [Faust et al., supra] describing predominant transduction of astocytes after systemic injection of rAAV9 vector in adult mice, a hybrid chicken J3-actin/CMV-enhancer promoter was used, rather than the CMV enhancer-promoter used in the present study.
- In normal cells, 5-20% of newly synthesized lysosomal protein is secreted and available to be taken up by neighboring cells, leading to the by-stander effect. The widespread clearance/reduction of lysosomal storage pathology, and normalized tissue GAG content, strongly support an efficient by-stander effect from the rAAV9mediated rNAGLU. The abundant transduction of endothelial cells in the brain may be an important contributor to the effectiveness of rAAV9 gene delivery for MPS IIIB because of the close association between CNS cells and brain microvascular endothelial cells, which together constitute the neurovascular unit. While the observed high levels of rNAGLU expression stem from the transduction of a relatively small number of CNS cells, it is sufficient to correct the neuropathology leading to functional correction of the neurological disorders.
- The rAAV9 treatment also led to a regular morphology in CNS cells, and the correction of major secondary neuropathology, astrocytosis, and neurodegeneration. It is worth noting that this level of correction of CNS pathology was not achieved in previous studies using rAAV2-hNAGLU vector with mannitol. While neuropathology is the primary cause of mortality in MPS IIIB patients, somatic correction may provide additional therapeutic benefits, since lysosomal storage pathology inevitably manifests in virtually all organs. The IV-delivered rAAV9 exhibited broad tropism in peripheral tissues in a distinct pattern, as previously reported, reflecting extensive extravasation and cell-type specific transduction. This led to complete, longterm correction of lysosomal storage in multiple somatic tissues even at a relatively low dose. Again, relatively low levels of transduction in some tissues were associated with clearance of lysosomal storage of GAGs in the organs, consistent with a significant contribution from the by-stander effect of secreted rNAGLU enzyme. It is not clear whether the by-stander correction in peripheral tissues is mediated by enzyme secreted from neighboring cells within the same tissue, or circulating rNAGLU secreted by more extensively transduced tissues, in a manner analogous to enzyme replacement therapy. However, the observation of partial GAG reduction in the kidney only at the highest vector dose, correlating with detectable transduction in the kidney only at that dose, suggests that the by-stander effect may be primarily local in this tissue. The primary source of circulating NAGLU may be liver, muscle, or endothelium. However, the decrease in plasma levels in response to mannitol pretreatment correlated with decreased transduction in muscle rather than liver, suggesting that liver may not be the primary source.
- Another important observation is the efficient transduction of neurons in myenteric plexus and submucosal plexus of the intestine, potentially enabling correction of not only the CNS but also the PNS at all levels via systemic delivery. This suggests that neurotropism is a general property of the AAV9 serotype, and not dependent on the specific structure of the brain neurovascular unit. Broad neurotropism is a valuable property in gene therapy for the treatment of MPS IIIB, considering that lysosomal storage pathology manifests not only in the CNS but also in the PNS.
- A rAAV vector plasmid was used to produce three different rAAV9-CMV-hSGSH viral vectors.
- The three self-complementary AAV hSGSH vector-producing plasmids were constructed using conventional plasmid cloning techniques. Each vector genome contains an SGSH coding region (SEQ ID NO: 3) and either the mouse U1a promoter, with or without an intron, or a CMV promoter without an intron, Each vector genome also contains a bGH polyadenylation signal. Each self-complementary vector plasmid construct contains one intact AA2 terminal repeat and one modified AAV2 terminal repeat missing the terminal resolution site, thereby forcing the replication of dimeric self-complementary DNA genomes. Self-complementary AAV hSGSH viral vectors were produced and packaged in
AAV serotype 9 capsids. The viral vectors were tested for expression of hSGSH protein and reduction of GAG storage in human MPS IIIA fibroblasts. - Self-complementary AAV hSGSH viral vectors were tested in an MPS IIIA mouse model having a missense mutation in the SGSH gene [Bhaumik et al., Glycobiology, 9(12):1389-1396 (1999)] as described in the examples below.
- MPS IIIA mice were injected at 10 weeks of age with 5×1012 vgp/kg) of scAAV-U1a-hSGSH vector encapsidated in either AAV9 or AAVrh74 serotype. At 10 days post-injection, the mice were euthanized and assays were performed to determine the effects of the treatment.
- hSGSH transgene expression was assayed. Tissues analyzed included kidney (Kid), heart (Hrt), intestine (Int), skeletal muscle (Mus), lung, brain, Liver (Liv), spleen (Spl) and serum.
FIG. 6 shows enzyme expression relative to untreated MPS IIIA mice at the same age (−/−). The scAAV-SGSH vectors reached the CNS and expressed the transgene within days of administration.FIG. 7 shows GAG content measured in the kidney (Kid), heart (Hrt), muscle (Mus), lung, brain, Liver (Liv) and spleen (Spl). - Sections of CNS and somatic tissues were stained with the lysosomal marker, Lamp1, revealing clearance of lysosomal storage pathology. Histopathology additionally revealed numerous clear vacuoles present in untreated mice but corrected in treated animals.
- The therapeutic effects of scAAV-SGSH treatment at a low vector dose were examined.
- Vector was administered by tail vein injection in MPS IIIA mice at one month of age at an approximately 25-fold lower dose than in Example 9. MPS IIIA mice were treated with 1.7×1011 vgp/kg scAAV9-U1a-hSGSH or 2.7×1011 vgp/kg scAAVrh74-U1a-hSGSH vector.
- At three months post-injection, expression of SGSH in the CNS was observed by immunofluroescence staining. Correction of astrocytocis, a hallmark of neuroinflamation associated with MPS IIIA pathology, was also observed.
- At 7-7.5 months age, the animals were tested for learning ability in the Morris water maze. As shown in
FIG. 8 , compared to untreated controls, treated animals were similar to wt mice in their latency to locate the hidden platform (upper charts) and spent more time in the zone (4) where the platform had been in the previous tests when the platform was removed (lower charts). - Therapeutic effects of scAAV treatment at high dose at late stage of disease were also examined.
- MPS IIIA mice were treated with a high dose (5×1012 vgp/kg) of scAAV9-U1a-hSGSH vector at 6 months of age, after significant neuropathology had already developed. At 7-7.5 months age, the animals were tested for learning ability in the Morris water maze. At 7.5 months of age, the mice were euthanized and tissues assayed for glycosaminoglycan (GAG) content. Tissues analyzed include liver (Liv), kidney (Kid), heart (Hrt), brain, spleen (Spl), lung, skeletal muscle, and intestine.
-
FIG. 9 shows clearance of accumulated GAGs in different tissues, including CNS.FIG. 10 shows, compared to untreated controls, treated animals were similar to wt mice in their latency to locate the hidden platform (upper charts) and spent more time in the zone (4) where the platform had been in the previous tests when the platform was removed (lower charts). - While the present invention has been described in terms of various embodiments and examples, it is understood that variations and improvements will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.
- All documents referred to in this application are hereby incorporated by reference in their entirety.
Claims (21)
1. A method of delivering an α-N-acetylglucosamidinase polynucleotide across the blood-brain-barrier comprising the step of systemically administering a rAAV9 comprising a single-stranded genome including the polynucleotide to a patient.
2. A method of delivering an α-N-acetylglucosamidinase polynucleotide to the central nervous system comprising the step of systemically administering a rAAV9 comprising a single-stranded genome including the polynucleotide to a patient.
3.-7. (canceled)
8. A method of delivering an α-N-acetylglucosamidinase polynucleotide to the peripheral nervous system comprising the step of administering a rAAV9 comprising a single-stranded genome including the polynucleotide to a patient.
9.-10. (canceled)
11. A method of treating mucopolysaccharidosis IIIB comprising the step of systemically administering a rAAV9 comprising a single-stranded genome including an α-N-acetylglucosamidinase polynucleotide to a patient.
12. The method of any one of claim 1 , 2 , 8 or 11 wherein mannitol is administered prior to the administration of the rAAV.
13. (canceled)
14. A rAAV9 comprising a genome encoding α-N-acetylglucosamidinase.
15. (canceled)
16. A composition comprising the rAAV9 of claim 14 .
17. A method of delivering an N-sulphoglucosamine sulphohydrolase polynucleotide across the blood-brain-barrier comprising the step of systemically administering a rAAV9 or rh74 comprising a self-complementary genome including the polynucleotide to a patient.
18. A method of delivering an N-sulphoglucosamine sulphohydrolase polynucleotide to the central nervous system comprising the step of systemically administering a rAAV9 or rh74 comprising a self-complementary genome including the polynucleotide to a patient.
19.-23. (canceled)
24. A method of delivering an N-sulphoglucosamine sulphohydrolase polynucleotide to the peripheral nervous system comprising the step of administering a rAAV9 or rh74 comprising a self-complementary genome including the polynucleotide to a patient.
25.-26. (canceled)
27. A method of treating mucopolysaccharidosis IIIA comprising the step of systemically administering a rAAV9 or rh74 comprising a self-complementary genome including an N-sulphoglucosamine sulphohydrolase polynucleotide to a patient.
28. The method of any one of claim 17 , 18 , 24 or 27 wherein mannitol is administered prior to the administration of the rAAV.
29. (canceled)
30. A rAAV9 or rh74 comprising a genome encoding N-sulphoglucosamine sulphohydrolase.
31. A composition comprising the rAAV9 or rh74 of claim 30 .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/491,326 US20130039888A1 (en) | 2011-06-08 | 2012-06-07 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US13/922,915 US20130323207A1 (en) | 2011-06-08 | 2013-06-20 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US14/950,387 US20160175406A1 (en) | 2011-06-08 | 2015-11-24 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US15/903,861 US12324829B2 (en) | 2011-06-08 | 2018-02-23 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US16/293,196 US11590210B2 (en) | 2011-06-08 | 2019-03-05 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161494635P | 2011-06-08 | 2011-06-08 | |
US13/491,326 US20130039888A1 (en) | 2011-06-08 | 2012-06-07 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/922,915 Division US20130323207A1 (en) | 2011-06-08 | 2013-06-20 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US16/293,196 Continuation US11590210B2 (en) | 2011-06-08 | 2019-03-05 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130039888A1 true US20130039888A1 (en) | 2013-02-14 |
Family
ID=47677669
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/491,326 Abandoned US20130039888A1 (en) | 2011-06-08 | 2012-06-07 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US13/922,915 Abandoned US20130323207A1 (en) | 2011-06-08 | 2013-06-20 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US14/950,387 Abandoned US20160175406A1 (en) | 2011-06-08 | 2015-11-24 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US15/903,861 Active US12324829B2 (en) | 2011-06-08 | 2018-02-23 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US16/293,196 Active US11590210B2 (en) | 2011-06-08 | 2019-03-05 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/922,915 Abandoned US20130323207A1 (en) | 2011-06-08 | 2013-06-20 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US14/950,387 Abandoned US20160175406A1 (en) | 2011-06-08 | 2015-11-24 | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US15/903,861 Active US12324829B2 (en) | 2011-06-08 | 2018-02-23 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US16/293,196 Active US11590210B2 (en) | 2011-06-08 | 2019-03-05 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
Country Status (1)
Country | Link |
---|---|
US (5) | US20130039888A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015173308A1 (en) * | 2014-05-14 | 2015-11-19 | Laboratorios Del Dr. Esteve S.A. | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
US20160208006A1 (en) * | 2015-01-14 | 2016-07-21 | Armagen Technologies, Inc. | Methods and compositions for increasing n-acetylglucosaminidase activity in the cns |
WO2016126993A1 (en) | 2015-02-04 | 2016-08-11 | Washington University | Anti-tau constructs |
WO2017005806A1 (en) * | 2015-07-07 | 2017-01-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for expressing a polynucleotide of interest in the peripheral nervous system of a subject |
US9827295B2 (en) * | 2013-05-15 | 2017-11-28 | Regents Of The University Of Minnesota | Methods to treat mucopolysaccharide type I or deficiency in alpha-L-iduronidase using a recombinant adeno-associated virus encoding alpha-L-iduronidase |
US9975955B2 (en) | 2011-12-02 | 2018-05-22 | Armagen, Inc. | Methods and compositions for increasing arylsulfatase A activity in the CNS |
JP2018515615A (en) * | 2015-05-15 | 2018-06-14 | アール. スコット マカイバー | Adeno-associated for therapeutic delivery to the central nervous system |
US10011651B2 (en) | 2009-10-09 | 2018-07-03 | Armagen, Inc. | Methods and compositions for increasing iduronate 2-sulfatase activity in the CNS |
US10017832B2 (en) | 2015-08-25 | 2018-07-10 | Washington University | Compositions and methods for site specific recombination at asymmetric sites |
US10144783B2 (en) | 2006-08-18 | 2018-12-04 | Armagen, Inc. | Macromolecular compositions that cross the blood-brain barrier and methods of use thereof |
US10202467B2 (en) | 2007-07-27 | 2019-02-12 | Armagen, Inc. | Methods and compositions for increasing α-L-iduronidase activity in the CNS |
WO2019108857A1 (en) * | 2017-11-30 | 2019-06-06 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis iiia |
WO2019108856A1 (en) * | 2017-11-30 | 2019-06-06 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis iiib |
CN110606874A (en) * | 2013-07-22 | 2019-12-24 | 费城儿童医院 | Variant AAVs and compositions, methods and uses for gene transfer into cells, organs and tissues |
US10876134B2 (en) | 2014-12-16 | 2020-12-29 | Board Of Regents Of The University Of Nebraska | Gene therapy for juvenile batten disease |
US11066456B2 (en) | 2016-02-25 | 2021-07-20 | Washington University | Compositions comprising TREM2 and methods of use thereof |
US11253612B2 (en) | 2016-04-15 | 2022-02-22 | The Trustees Of The University Of Pennsylvania | Gene therapy for treating mucopolysaccharidosis type II |
CN114746556A (en) * | 2019-07-18 | 2022-07-12 | 利索基因公司 | Compositions and methods for treating mountain phillips disease and other disorders |
US11590210B2 (en) | 2011-06-08 | 2023-02-28 | Nationwide Children's Hospital, Inc. | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US11819539B2 (en) | 2017-09-22 | 2023-11-21 | The Trustees Of The University Of Pennsylvania | Gene therapy for treating Mucopolysaccharidosis type II |
US11938193B2 (en) | 2016-01-08 | 2024-03-26 | Washington University | Compositions comprising chemerin and methods of use thereof |
US12208144B2 (en) | 2012-08-01 | 2025-01-28 | Nationwide Children's Hospital | Intrathecal delivery of recombinant adeno-associated virus 9 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4100532A4 (en) * | 2020-03-23 | 2024-03-27 | The University of North Carolina at Chapel Hill | Aav-naglu vectors for treatment of mucopolysaccharidosis iiib |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070036760A1 (en) * | 2003-09-30 | 2007-02-15 | The Trutees Of The University Of Pennsylvania | Adeno-associated virus (aav) clades, sequences, vectors containing same, and uses therefor |
US20120177605A1 (en) * | 2008-12-19 | 2012-07-12 | Nationwide Children's Hospital Inc. | Delivery of Polynucleotides Across the Blood-Brain-Barrier Using Recombinant AAV9 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
ATE272123T1 (en) | 1993-11-09 | 2004-08-15 | Ohio Med College | STABLE CELL LINE ABLE TO EXPRESS THE ADENO-ASSOCIATED VIRUS REPLICATION GENE |
AU688428B2 (en) | 1993-11-09 | 1998-03-12 | Johns Hopkins University, The | Generation of high titers of recombinant AAV vectors |
US5658785A (en) | 1994-06-06 | 1997-08-19 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
US5856152A (en) | 1994-10-28 | 1999-01-05 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV vector and methods of use therefor |
EP0796339A1 (en) | 1994-12-06 | 1997-09-24 | Targeted Genetics Corporation | Packaging cell lines for generation of high titers of recombinant aav vectors |
US5863782A (en) * | 1995-04-19 | 1999-01-26 | Women's And Children's Hospital | Synthetic mammalian sulphamidase and genetic sequences encoding same |
FR2737730B1 (en) | 1995-08-10 | 1997-09-05 | Pasteur Merieux Serums Vacc | PROCESS FOR PURIFYING VIRUSES BY CHROMATOGRAPHY |
EP0847442A1 (en) | 1995-08-30 | 1998-06-17 | Genzyme Corporation | Chromatographic purification of adenovirus and aav |
WO1997008308A1 (en) | 1995-08-31 | 1997-03-06 | The General Hospital Corporation | Batten disease gene |
JPH11514853A (en) | 1995-09-08 | 1999-12-21 | ジエンザイム コーポレイション | Improved AAV vector for gene therapy |
US5910434A (en) | 1995-12-15 | 1999-06-08 | Systemix, Inc. | Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant |
KR20000068501A (en) | 1996-09-06 | 2000-11-25 | 트러스티스 오브 더 유니버시티 오브 펜실바니아 | Method for recombinant adeno-associated virus-directed gene therapy |
US20040076613A1 (en) | 2000-11-03 | 2004-04-22 | Nicholas Mazarakis | Vector system |
CA2995542A1 (en) | 1997-09-05 | 1999-03-11 | Genzyme Corporation | Methods for generating high titer helper-free preparations of recombinant aav vectors |
US6566118B1 (en) | 1997-09-05 | 2003-05-20 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
US6258595B1 (en) | 1999-03-18 | 2001-07-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for helper-free production of recombinant adeno-associated viruses |
AU1775901A (en) | 1999-11-17 | 2001-05-30 | Avigen, Inc. | Recombinant adeno-associated virus virions for the treatment of lysosomal disorders |
AU5557501A (en) | 2000-04-28 | 2001-11-12 | Univ Pennsylvania | Recombinant aav vectors with aav5 capsids and aav5 vectors pseudotyped in heterologous capsids |
US20030083299A1 (en) | 2000-11-04 | 2003-05-01 | Ferguson Ian A. | Non-invasive delivery of polypeptides through the blood-brain barrier |
US6841357B1 (en) | 2001-03-30 | 2005-01-11 | Stratagene California | Method and kits for titering adeno-associated virus vectors |
AU2002303243A1 (en) | 2001-04-05 | 2002-10-21 | The Johns Hopkins University | Imaging nucleic acid delivery |
CA2469053C (en) | 2001-12-17 | 2011-08-23 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus (aav) serotype 9 sequences, vectors containing same, and uses therefor |
US6998118B2 (en) | 2001-12-21 | 2006-02-14 | The Salk Institute For Biological Studies | Targeted retrograde gene delivery for neuronal protection |
PT1620133E (en) | 2003-05-01 | 2016-03-31 | Genzyme Corp | Gene therapy for neurometabolic disorders |
US9441244B2 (en) | 2003-06-30 | 2016-09-13 | The Regents Of The University Of California | Mutant adeno-associated virus virions and methods of use thereof |
US9233131B2 (en) | 2003-06-30 | 2016-01-12 | The Regents Of The University Of California | Mutant adeno-associated virus virions and methods of use thereof |
US8137960B2 (en) | 2003-12-04 | 2012-03-20 | The United States Of America As Represented By The Department Of Health And Human Services | Bovine adeno-associated viral (BAAV) vector and uses thereof |
EP1725267B1 (en) | 2004-03-06 | 2010-02-24 | Innovata Limited | Enzyme-prodrug therapy for prosthetic joint repair |
ATE529135T1 (en) | 2004-03-11 | 2011-11-15 | Mallinckrodt Llc | X-RAY CONTRAST FORMULATION WITH A MIXTURE OF AN IODINATED MONOMER AND DIMER |
EP2357010B1 (en) | 2005-04-07 | 2013-06-12 | The Trustees of The University of Pennsylvania | Method of increasing the function of an AAV vector |
WO2007007095A2 (en) | 2005-07-12 | 2007-01-18 | Renovo Ltd | Pharmaceutical compositions comprising a tgf-beta superfamily member |
US7867484B2 (en) | 2006-01-27 | 2011-01-11 | University Of North Carolina At Chapel Hill | Heparin and heparan sulfate binding chimeric vectors |
US20070280906A1 (en) | 2006-06-03 | 2007-12-06 | Ognjen Petras | Method to generate mirrored adenoassociated viral vectors |
CN101506369B (en) | 2006-06-21 | 2014-02-12 | 尤尼克尔生物制药股份有限公司 | Vector with a modified AAV-REP78 translation initiation codon for production of AAV in insect cells |
HUE035779T2 (en) | 2007-06-06 | 2018-05-28 | Genzyme Corp | Gene therapy for lysosomal storage diseases |
CA2693712C (en) | 2007-07-14 | 2018-05-29 | The University Of Iowa Research Foundation | Methods and compositions for treating brain diseases |
EP2019143A1 (en) | 2007-07-23 | 2009-01-28 | Genethon | CNS gene delivery using peripheral administration of AAV vectors |
EP2058401A1 (en) * | 2007-10-05 | 2009-05-13 | Genethon | Widespread gene delivery to motor neurons using peripheral injection of AAV vectors |
WO2009137006A2 (en) | 2008-04-30 | 2009-11-12 | The University Of North Carolina At Chapel Hill | Directed evolution and in vivo panning of virus vectors |
US11219696B2 (en) | 2008-12-19 | 2022-01-11 | Nationwide Children's Hospital | Delivery of polynucleotides using recombinant AAV9 |
US9415121B2 (en) | 2008-12-19 | 2016-08-16 | Nationwide Children's Hospital | Delivery of MECP2 polynucleotide using recombinant AAV9 |
HUE057606T2 (en) | 2009-05-02 | 2022-05-28 | Genzyme Corp | Gene therapy for neurodegenerative disorders |
WO2011112902A2 (en) | 2010-03-12 | 2011-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Nonviral gene delivery vector iopamidol, protamine, ethiodized oil reagent (viper) |
EP2550359B1 (en) | 2010-03-23 | 2017-08-09 | Intrexon Corporation | Vectors conditionally expressing therapeutic proteins, host cells comprising the vectors, and uses thereof |
EP3540055A1 (en) | 2010-04-23 | 2019-09-18 | University of Massachusetts | Cns targeting aav vectors and methods of use thereof |
EP2394667A1 (en) | 2010-06-10 | 2011-12-14 | Laboratorios Del Dr. Esteve, S.A. | Vectors and sequences for the treatment of diseases |
WO2012057363A1 (en) | 2010-10-27 | 2012-05-03 | 学校法人自治医科大学 | Adeno-associated virus virions for transferring genes into neural cells |
EP2654800B1 (en) * | 2010-12-22 | 2017-12-06 | Fondazione Telethon | Therapeutic strategies to treat cns pathology in mucopolysaccharidoses |
US20130039888A1 (en) | 2011-06-08 | 2013-02-14 | Nationwide Children's Hospital Inc. | Products and methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US9725716B2 (en) | 2011-12-06 | 2017-08-08 | Ohio State Innovation Foundation and Research Institute at Nationwide Children's Hospital | Non-ionic, low osmolar contrast agents for delivery of antisense oligonucleotides and treatment of disease |
EP3769789A1 (en) | 2012-08-01 | 2021-01-27 | Nationwide Children's Hospital | Intrathecal delivery of recombinant adeno-associated virus 9 |
MX2020005673A (en) | 2017-11-30 | 2020-12-03 | Univ Pennsylvania | Gene therapy for mucopolysaccharidosis iiib. |
BR112020010735A2 (en) | 2017-11-30 | 2020-11-10 | The Trustees Of The University Of Pennsylvania | gene therapy for mucopolysaccharidosis iii a |
-
2012
- 2012-06-07 US US13/491,326 patent/US20130039888A1/en not_active Abandoned
-
2013
- 2013-06-20 US US13/922,915 patent/US20130323207A1/en not_active Abandoned
-
2015
- 2015-11-24 US US14/950,387 patent/US20160175406A1/en not_active Abandoned
-
2018
- 2018-02-23 US US15/903,861 patent/US12324829B2/en active Active
-
2019
- 2019-03-05 US US16/293,196 patent/US11590210B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070036760A1 (en) * | 2003-09-30 | 2007-02-15 | The Trutees Of The University Of Pennsylvania | Adeno-associated virus (aav) clades, sequences, vectors containing same, and uses therefor |
US20120177605A1 (en) * | 2008-12-19 | 2012-07-12 | Nationwide Children's Hospital Inc. | Delivery of Polynucleotides Across the Blood-Brain-Barrier Using Recombinant AAV9 |
Non-Patent Citations (8)
Title |
---|
Cressant et al The Journal of Neuroscience, November 10, 2004, 24(45):10229 -10239 * |
Duque Mol. Ther. 17:1187-1196 (2009) * |
Fu et al Molecular Genetics and Metabolism, (February 2011) Vol. 102, No. 2, pp. S18-S19. Abstract Number: 118.Meeting Info: 7th Annual Research Meeting of the Lysosomal Disease Network, WORLD Symposium 2011. Las Vegas, NV (abstract only), page 1. , * |
Fu et al Molecular Therapy, (May 2011) Vol. 19, Supp. SUPPL. 1, pp. S131. Abstract Number: 337. Meeting Info: 14th Annual Meeting of the American Society of Gene and Cell Therapy. Seattle, WA, United States. 18 May 2011-21 May 2011, abstract only page 1. * |
Fu et al Molecular Therapy, 2011, 19(6), 1025-1033, 2011, published online, 3/8/2011 * |
Manfredsson et al Molecular Therapy, 2009, 17, 403-405 * |
McCarty et al (Gene Therapy (2009) 16, 1340-1352, * |
Ruzo et al XVlll Annual Congress of the European Society of Gene and Cell Therapy: 1389, abstract Or 96, October 22-25, 2010 * |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10144783B2 (en) | 2006-08-18 | 2018-12-04 | Armagen, Inc. | Macromolecular compositions that cross the blood-brain barrier and methods of use thereof |
US11155631B2 (en) | 2006-08-18 | 2021-10-26 | Armagen, Inc. | Macromolecular compositions that cross the blood-brain barrier and methods of use thereof |
US10202467B2 (en) | 2007-07-27 | 2019-02-12 | Armagen, Inc. | Methods and compositions for increasing α-L-iduronidase activity in the CNS |
US11512145B2 (en) | 2007-07-27 | 2022-11-29 | Armagen, Inc. | Methods and compositions for increasing alpha-L-iduronidase activity in the CNS |
US12043661B2 (en) | 2009-10-09 | 2024-07-23 | Armagen, Inc. | Methods and compositions for increasing iduronate 2-sulfatase activity in the CNS |
US11028156B2 (en) | 2009-10-09 | 2021-06-08 | Armagen, Inc. | Methods and compositions for increasing iduronate 2-sulfatase activity in the CNS |
US10011651B2 (en) | 2009-10-09 | 2018-07-03 | Armagen, Inc. | Methods and compositions for increasing iduronate 2-sulfatase activity in the CNS |
US12324829B2 (en) | 2011-06-08 | 2025-06-10 | Nationwide Children's Hospital, Inc. | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US11590210B2 (en) | 2011-06-08 | 2023-02-28 | Nationwide Children's Hospital, Inc. | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders |
US9975955B2 (en) | 2011-12-02 | 2018-05-22 | Armagen, Inc. | Methods and compositions for increasing arylsulfatase A activity in the CNS |
US12208144B2 (en) | 2012-08-01 | 2025-01-28 | Nationwide Children's Hospital | Intrathecal delivery of recombinant adeno-associated virus 9 |
US20180036388A1 (en) * | 2013-05-15 | 2018-02-08 | Regenxbio Inc. | Adeno-associated virus mediated gene transfer to the central nervous system |
US9827295B2 (en) * | 2013-05-15 | 2017-11-28 | Regents Of The University Of Minnesota | Methods to treat mucopolysaccharide type I or deficiency in alpha-L-iduronidase using a recombinant adeno-associated virus encoding alpha-L-iduronidase |
US12121567B2 (en) | 2013-05-15 | 2024-10-22 | Regents Of The University Of Minnesota | Methods to treat mucopolysaccharidosis type II or deficiency in iduronate-2-sulfatase using a recombinant adeno-associated virus (AAV) vector encoding iduronate-2-sulfatase |
CN110606874A (en) * | 2013-07-22 | 2019-12-24 | 费城儿童医院 | Variant AAVs and compositions, methods and uses for gene transfer into cells, organs and tissues |
JP2017523802A (en) * | 2014-05-14 | 2017-08-24 | ラボラトリオス デル ドクター エステヴェ ソシエダッド アノニマ | Adeno-associated virus vector for treatment of lysosomal storage diseases |
WO2015173308A1 (en) * | 2014-05-14 | 2015-11-19 | Laboratorios Del Dr. Esteve S.A. | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
US11149285B2 (en) | 2014-05-14 | 2021-10-19 | Universitat Autónoma De Barcelona | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
KR102446169B1 (en) * | 2014-05-14 | 2022-09-22 | 에스테베 파마슈티칼스 에스에이 | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
AU2015261519B2 (en) * | 2014-05-14 | 2021-08-05 | Esteve Pharmaceuticals, S.A. | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
CN107002095A (en) * | 2014-05-14 | 2017-08-01 | 埃斯蒂维实验室股份有限公司 | Adeno-associated virus vector for treating lysosomal storage disease |
KR20170026358A (en) * | 2014-05-14 | 2017-03-08 | 라보라토리오스 델 드라. 에스테브.에스.에이. | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
IL248538B (en) * | 2014-05-14 | 2021-01-31 | Esteve Pharmaceuticals Sa | Adenoassociated virus vectors for the treatment of lysosomal storage disorders |
US10876134B2 (en) | 2014-12-16 | 2020-12-29 | Board Of Regents Of The University Of Nebraska | Gene therapy for juvenile batten disease |
US12297447B2 (en) | 2014-12-16 | 2025-05-13 | Board Of Regents Of The University Of Nebraska | Gene therapy for juvenile Batten disease |
US10538589B2 (en) * | 2015-01-14 | 2020-01-21 | Armagen Inc. | Methods and compositions for increasing N-acetylglucosaminidase (NAGLU) activity in the CNS using a fusion antibody comprising an anti-human insulin receptor antibody and NAGLU |
US20160208006A1 (en) * | 2015-01-14 | 2016-07-21 | Armagen Technologies, Inc. | Methods and compositions for increasing n-acetylglucosaminidase activity in the cns |
WO2016126993A1 (en) | 2015-02-04 | 2016-08-11 | Washington University | Anti-tau constructs |
EP4059961A2 (en) | 2015-02-04 | 2022-09-21 | Washington University | Anti-tau constructs |
AU2016263119B2 (en) * | 2015-05-15 | 2021-08-12 | Regents Of The University Of Minnesota | Adeno-associated for therapeutic delivery to central nervous system |
JP2021167332A (en) * | 2015-05-15 | 2021-10-21 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Adeno-associated for therapeutic delivery to the central nervous system |
EP4000631A1 (en) * | 2015-05-15 | 2022-05-25 | REGENXBIO Inc. | Adeno-associated for therapeutic delivery to central nervous system |
AU2021266344B2 (en) * | 2015-05-15 | 2024-08-22 | Regents Of The University Of Minnesota | Adeno-associated for therapeutic delivery to central nervous system |
EP3294323A4 (en) * | 2015-05-15 | 2019-01-16 | McIvor, R. Scott | ADENO-ASSOCIATED VIRUS FOR THERAPEUTIC ADMINISTRATION TO THE CENTRAL NERVOUS SYSTEM |
JP2022137261A (en) * | 2015-05-15 | 2022-09-21 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Adeno-associated for therapeutic delivery to the central nervous system |
JP2018515615A (en) * | 2015-05-15 | 2018-06-14 | アール. スコット マカイバー | Adeno-associated for therapeutic delivery to the central nervous system |
WO2017005806A1 (en) * | 2015-07-07 | 2017-01-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for expressing a polynucleotide of interest in the peripheral nervous system of a subject |
EP3320101B1 (en) | 2015-07-07 | 2021-08-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for expressing a polynucleotide of interest in the peripheral nervous system of a subject |
US10801040B2 (en) | 2015-07-07 | 2020-10-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for expressing a polynucleotide of interest in the peripheral nervous system of a subject |
US10017832B2 (en) | 2015-08-25 | 2018-07-10 | Washington University | Compositions and methods for site specific recombination at asymmetric sites |
US11938193B2 (en) | 2016-01-08 | 2024-03-26 | Washington University | Compositions comprising chemerin and methods of use thereof |
US11066456B2 (en) | 2016-02-25 | 2021-07-20 | Washington University | Compositions comprising TREM2 and methods of use thereof |
US11253612B2 (en) | 2016-04-15 | 2022-02-22 | The Trustees Of The University Of Pennsylvania | Gene therapy for treating mucopolysaccharidosis type II |
US11819539B2 (en) | 2017-09-22 | 2023-11-21 | The Trustees Of The University Of Pennsylvania | Gene therapy for treating Mucopolysaccharidosis type II |
US11723989B2 (en) | 2017-11-30 | 2023-08-15 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis IIIB |
US11555206B2 (en) | 2017-11-30 | 2023-01-17 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis IIIA |
WO2019108856A1 (en) * | 2017-11-30 | 2019-06-06 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis iiib |
WO2019108857A1 (en) * | 2017-11-30 | 2019-06-06 | The Trustees Of The University Of Pennsylvania | Gene therapy for mucopolysaccharidosis iiia |
CN114746556A (en) * | 2019-07-18 | 2022-07-12 | 利索基因公司 | Compositions and methods for treating mountain phillips disease and other disorders |
Also Published As
Publication number | Publication date |
---|---|
US20180193431A1 (en) | 2018-07-12 |
US20200000887A1 (en) | 2020-01-02 |
US12324829B2 (en) | 2025-06-10 |
US11590210B2 (en) | 2023-02-28 |
US20160175406A1 (en) | 2016-06-23 |
US20130323207A1 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11590210B2 (en) | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders | |
US11738094B2 (en) | Intrathecal delivery of recombinant adeno-associated virus 9 | |
US20200297872A1 (en) | Delivery of polynucleotides using recombinant aav9 | |
US20220125952A1 (en) | Delivery of polynucleotides using recombinant aav9 | |
US20120177605A1 (en) | Delivery of Polynucleotides Across the Blood-Brain-Barrier Using Recombinant AAV9 | |
US12084658B2 (en) | Recombinant virus products and methods for inducing DUX4 exon skipping | |
US20230227515A1 (en) | Optimized gene therapy for targeting muscle in muscle diseases | |
US20240115735A1 (en) | Materials and methods for the treatment of lysosomal acid lipase deficiency (lal-d) | |
US20230149564A1 (en) | Aav-naglu vectors for treatment of mucopolysaccharidosis iiib | |
US20240189452A1 (en) | Recombinant Adeno-Associated Virus Encoding Methyl-CPG Binding Protein 2 for Treating PITT Hopkins Syndrome VIA Intrathecal Delivery | |
WO2024254319A1 (en) | Gene therapy for lysosomal acid lipase deficiency (lal-d) | |
EP4551695A1 (en) | Adeno-associated virus delivery of cln1 polynucleotide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONWIDE CHILDREN'S HOSPITAL, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCARTY, DOUGLAS M.;FU, HAIYAN;REEL/FRAME:030186/0059 Effective date: 20110720 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |