WO1996010064A1 - Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle - Google Patents

Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle Download PDF

Info

Publication number
WO1996010064A1
WO1996010064A1 PCT/EP1995/003814 EP9503814W WO9610064A1 WO 1996010064 A1 WO1996010064 A1 WO 1996010064A1 EP 9503814 W EP9503814 W EP 9503814W WO 9610064 A1 WO9610064 A1 WO 9610064A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
water
coal
press
lignite
Prior art date
Application number
PCT/EP1995/003814
Other languages
English (en)
French (fr)
Inventor
Karl Strauss
Original Assignee
Karl Strauss
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Strauss filed Critical Karl Strauss
Priority to DE59504443T priority Critical patent/DE59504443D1/de
Priority to CZ97795A priority patent/CZ79597A3/cs
Priority to EP95933431A priority patent/EP0784660B1/de
Priority to AU36096/95A priority patent/AU695187B2/en
Priority to JP8511376A priority patent/JPH10506145A/ja
Priority to PL95319381A priority patent/PL319381A1/xx
Publication of WO1996010064A1 publication Critical patent/WO1996010064A1/de
Priority to FI971271A priority patent/FI971271A/fi

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/026Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the material being moved in-between belts which may be perforated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10FDRYING OR WORKING-UP OF PEAT
    • C10F5/00Drying or de-watering peat
    • C10F5/04Drying or de-watering peat by using presses, handpresses, rolls, or centrifuges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00

Definitions

  • the invention relates to a method and a device for reducing the water content of water-containing, granular lignite under the action of thermal energy and pressure on the bed-like distributed material.
  • Peat is the geologically youngest natural fuel, it is characterized by a high water content of 85-95%. In contrast to lignite, peat still contains cellulose, so that the water is only bound to the solid substance with little force and can therefore be largely removed by simply pressing it out.
  • Such a method is known from DE-PS 3 59 440.
  • This patent describes a process for dewatering peat and the like, in which the material to be dewatered is pre-pressed in layers of low thickness using a piston press, subjected to the action of high-pressure steam after the pressure has been released and then subjected to a final compression.
  • the process step in which the material is exposed to the steam, the space containing the material being limited by a plunger by its retraction so that the material can expand in this space, thereby loosening the press cake is made possible by the action of the steam. Due to this loosening of the press cake, the high-tension steam supplied in the relevant process step can easily pass through the Spread the presscake and press the loosened material away so that channels can form through which large amounts of steam flow practically without affecting the material.
  • the pre-pressing which takes place in the cold state of the material, removes cold-squeezable water, which is largely contained in peat in large quantities as surface water. However, care must be taken to ensure that this pre-pressing is not carried out at too high a pressure, since otherwise a firm press cake is formed, into which the steam can no longer easily penetrate.
  • lignite is dewatered, it can be assumed that this material does not contain any free water. Rather, in brown coal, water is molecularly bound and cannot be pressed out cold.
  • Lignite has a water content of up to 65% by weight. When these lignites are burned in power plants, a significant proportion of the lignite used must either be used directly or the adequate amount of heat from the combustion gases to evaporate the water. Depending on the water content, this proportion can be up to 22%. This energy loss can be reduced if the water content of the raw lignite is reduced before combustion in an efficient drying or dewatering process. In addition, the upstream drying step reduces the size of the boilers installed in the power plant and the downstream system parts. For the generation of electricity from lignite with high humidity, the overall efficiency of the power plant process can be significantly improved by adding an energetically favorable process to remove the water.
  • Drainage in particular is that for continuous
  • Lignite needed steam the high pressure required
  • the invention has for its object the disadvantages that occur in the known methods through energy saving and Avoid reducing technical effort.
  • brown coal can be dewatered to a high degree both continuously and discontinuously with little expenditure of thermal and mechanical energy.
  • the heating of the lignite bed which is under the initial surface pressure, causes physical and chemical processes to take place which loosen the binding of the water molecules contained in the coal.
  • the water can therefore flow out of the capillaries and pores of the coal in liquid form and can thus be easily squeezed out. This saves the energy for evaporating the water compared to the thermal drying process.
  • An essential advantage of the method according to the invention over the known method for thermal dewatering is that no pressure locks, valves or high pressure pumps are necessary for the continuous introduction or discharge of the brown coal and the dewatered brown coal. This eliminates the elements that can be a source of interference and that make continuous drainage difficult.
  • the saturated steam temperature of the water vapor supplied can be below the saturated steam temperature corresponding to the maximum surface pressure due to the inventive design of the method. Furthermore, due to the filtering effect of the lignite bed and the low saturated steam temperature, the solids content of the water squeezed out and the ratio of the COD value to the BOD value are lower than the values given in the literature for the known processes. 3 -
  • the material heats up particularly evenly, since the material under the initial surface pressure forms a kind of filter cake, which offers a uniform resistance to the introduced steam and therefore guides it evenly through the material.
  • the pressure of the water vapor can be of the order of magnitude of the respective mechanical pressure load, e.g. at 0.4 MPa.
  • the surface pressure on the brown coal can be changed, in particular increased, in order to be able to adapt the process to the particular conditions of the material in a favorable manner. It has proven expedient to choose a value of at least about 2 MPa for the maximum surface pressure.
  • the water vapor is advantageously overheated in order to avoid an immediate condensation of the water vapor at its point of entry into the material.
  • This overheating is at least about 10 ° C. Because of this overheating, there is also the advantage that condensation does not occur beforehand in the region of the supply of water vapor via supply pipes and the like.
  • Preheating the material can further reduce the energy required to carry out the process.
  • waste heat is expediently used or, as waste heat source, the water squeezed out of the material in the process.
  • the bed-like distribution of the material is given an average height, which results in a pressing height of at least approx. 0.2 m that results after the pressure load.
  • the steam is supplied in a favorable manner in such a way that the lignite is heated to the process temperature in a condensation zone of the steam, which is used in a Bed surface is almost parallel to the plane and propagates perpendicular to this plane into the bed.
  • the steam supply can be designed so that when the condensation zone reaches the outer boundary surface, the entire bed material is heated. In this way, steam escape is avoided without the need for expensive shut-off devices; it is rather sufficient to support the bedding material with walls so that the material does not flow outwards.
  • the process temperature and heating rate can be adapted to optimize the dewatering of brown coal of different provenances.
  • This is expediently achieved in that the flow resistance of the top and / or bottom layer of the coal bed is changed in that this layer is either formed from coal with a low grain size, or, in particular when the method is carried out with the plate press according to claim 20, is pre-compressed accordingly.
  • the process can be both continuous with location dependent
  • a device for carrying out the continuous process in a continuous press expediently takes place by means of a
  • Double belt presses with a lower and an upper conveyor belt are used, for example, in connection with the continuous production of chipboard. Such a double belt press is disclosed for example in DE OS 40 10308.
  • the lower conveyor belt of such a double belt press is provided with passages for the removal of the squeezed water.
  • the upper conveyor belt can be height-adjustable and can be provided with pressing elements, the pressing force of which can be adjusted.
  • the double belt press can be adapted to different operating conditions.
  • the conveyor belts are expediently heated in order to be able to additionally supply heat to the solid material via the conveyor belts.
  • a plate press with a press ram and a press base, which receives the bed-like material, at least the press base being provided with openings for the supply of water vapor and with outlets for the squeezed water.
  • Fig. 3 shows the same plate press from the operating position of the pressing.
  • lignite bunker 1 shows the lignite bunker 1, which contains lignite that has been broken up to a certain particle size.
  • coal bunker 1 steam or hot water supply lines or
  • Wä ⁇ nereheater inhabit be installed that allow preheating of the coal.
  • the pre-broken lignite is distributed from the coal bunker 1 to the lower conveyor belt 2 shown in broken lines, through which the coal is transported in the direction of the arrow.
  • an upper conveyor belt 3 pressure belt
  • the distance between conveyor belt 2 and conveyor belt 3 is smaller in the running direction in the inlet area 8 and thus enables the pressure increase on the coal bed 4.
  • the conveyor belt 3 is force-transmitting in its entire course Press elements 5 adjustable in height.
  • the drainage of lignite is essentially determined by the following factors:
  • the parameters pressure and temperature can be set via the height-adjustable conveyor belt 3 as well as via the water vapor pressure or the temperature of the heating steam supplied.
  • the coal bed 4 is pressure-loaded from above via the conveyor belt 3 by means of continuously increasing, mechanically impressed forces. After reaching a maximum area load to be determined, the solidified coal bed 4 enters the subsequent processing section, in which the pressure exerted by the upper conveyor belt 3 is kept constant or is only slightly varied.
  • the effect of pressure in connection with the increased temperature means that free and released water is pressed out of the coal bed 4 and can be drawn off in one or more stages via passages 7 on the conveyor belt 2 and optionally additionally on the conveyor belt 3.
  • the hot water emerging from the passages 7 or a partial flow of this water can be used for preheating the brown coal.
  • the coal that has been dewatered to a certain moisture content at the end of the double belt press can be divided into pieces of a predetermined size by means of a device and transported on a further conveyor belt over a certain distance to mills in which the coal is used for the combustion or gasification Grain size is crushed.
  • Fig. 2 shows a plate press with the press base 9 and the press ram 10.
  • the press base 9 rests on supports 11 and 12 shown here only in principle.
  • the press ram 10 hangs on the ram 13, which is pushed up and down by a press mechanism, not shown here .
  • the design of this plate press is state of the art.
  • the press pad 9 is here trough-like, so that the solid material 14 can be applied in a bed-like, flat area.
  • Press pad 9 and press ram 10 are provided with water outlets 15 and 16 and steam supply openings 21 and 22, whereby water vapor can be supplied to the solid material 14 and escaping water can be removed when the closed plate press shown in FIG. 3.
  • the water outlets 15 and 16 and the steam supply openings 21 and 22 are via channels 17 and 18 and 23 and 24 connected to the bottom of the press base 9 and the end face of the press ram 10, so that squeezed water can flow off and water vapor can flow into the solid material 14.
  • a close-meshed sieve 19 or 20 is placed, which allows water or steam to pass through, but prevents the entry of solid material into the channels 17 and 18 or 23 and 24 so that they cannot be clogged.
  • FIG. 3 shows the plate press according to FIG. 2 in the closed position, in which the press ram 10 is lowered against the press base 9 and compresses the solid material 14.
  • the pressure which initially acts on the solid material 14 compared to the maximum pressure
  • water vapor is introduced into the solid material 14 via the steam supply openings 21 and 22, as a result of which the latter is heated.
  • the pressure on the solid material 14 caused by the press ram 10 is then increased to the maximum pressure, so that the water contained in the solid material 14 is now pressed out and can escape via the outlets 15 and 16.
  • the described method is particularly suitable for use in large coal-fired power plants. Furthermore, by using the method at the point of lignite mining, the mass-related calorific value is increased, depending on the ratio of the moisture content of the dry coal to the raw lignite, and thus enables the lignite to be transported more economically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Reduzierung des Wassergehaltes von wasserhaltiger, körniger Braunkohle unter Einwirkung von thermischer Energie und Druck auf das beetmäßig flächig verteilte Material. Die Braunkohle wird einem mechanisch aufgebrachten Anfangsflächendruck ausgesetzt, der unter dem maximal im Verfahren auftretenden Flächendruck liegt und bei dem der Braunkohle thermische Energie durch Wasserdampf zugeführt wird, der unter Kondensation die Braunkohle erwärmt. Danach wird ohne weitere Wasserdampfzuführung der Flächendruck soweit auf mindestens 2,0 MPa erhöht, daß das in der erwärmten Braunkohle enthaltene Wasser ausgepreßt wird.

Description

Verfahren und Vorrichtung zur Reduzierung des Wassergehaltes von wasserhaltiger Braunkohle
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Reduzierung des Wassergehaltes von wasserhaltiger, körniger Braunkohle unter Einwirkung von thermischer Energie und Druck auf das beetmäßig flächig verteilte Material.
Verfahren zur Reduzierung des Wassergehalts fossiler Brennstoffe unter Anwendung von mechanischem Druck und thermischer Energie sind bisher nur für Torf bekannt geworden. Torf ist der geologisch jüngste natürliche Brennstoff, er ist durch einen hohen Wassergehalt von 85-95% ausgezeichnet. Im Unterschied zur Braunkohle enthält Torf noch Anteile an Zellulose, so daß das Wasser nur mit geringen Kräften an die Feststoff Substanz gebunden ist und daher größtenteils durch einfaches Auspressen entfernt werden kann. Ein derartiges Verfahren ist aus der DE-PS 3 59 440 bekannt. In dieser Patentschrift ist ein Verfahren zum Entwässern von Torf und dergleichen beschrieben, bei dem das zu entwässernde Material mit einer Kolbenpresse in Schichten von geringer Stärke vorgepreßt, nach Aufhebung des Druckes der Wirkung von hochgespanntem Dampf ausgesetzt und darauf einer Endpressung unterworfen wird. Von besonderer Bedeutung ist dabei der Verfahrensschritt- in den das Material dem Dampf ausgesetzt wird, wobei der das Material enthaltende Raum, begrenzt durch einen Preßkolben durch dessen Zurückziehung so erweitert wird, daß sich das Material in diesem Raum ausdehnen kann, wodurch ein Auflockern des Preßkuchens durch die Einwirkung des Dampfes ermöglicht wird. Aufgrund dieses Aufiockerns des Preßkuchens kann sich der in dem betreffenden Verfahrensschritt zugeführte, hochgespannte Dampf leicht Wege durch den Preßkuchen bahnen und dabei das aufgelockerte Material wegdrücken, so daß sich Kanäle ausbilden können, durch die große Mengen des Dampfes praktisch ohne Einwirkung auf das Material hindurchströmen. Durch die Vorpressung, die in kaltem Zustand des Materials erfolgt, wird diesem kalt abpressbares Wasser entzogen, das in Torf größtenteils als Oberflächenwasser in erheblicher Menge enthalten ist. Dabei ist jedoch darauf zu achten, daß diese Vorpressung mit keinem zu hohen Druck erfolgt, da sonst ein fester Preßkuchen entsteht, in den der Dampf nicht mehr ohne weiteres eindringen kann.
Handelt es sich um die Entwässerung von Braunkohle, so ist davon auszugehen, daß dieses Material kein freies Wasser enthält. In Braunkohle ist Wasser vielmehr molekular gebunden und kann nicht kalt ausgepreßt werden.
Braunkohlen weisen einen Wassergehalt von bis zu 65 Gew.-% auf. Bei der Verbrennung dieser Braunkohlen in Kraftwerken muß ein erheblicher Anteil der eingesetzten Braunkohle entweder direkt oder die adäquate Wärmemenge aus den Verbrennungsgasen zur Verdampfung des Wassers aufgewendet werden. Dieser Anteil kann je nach Wassergehalt bis zu 22 % betragen. Dieser Energieverlust läßt sich verringern, wenn der Wassergehalt der Rohbraunkohle vor der Verbrennung in einem effizienten Trocknungs- oder Entwässerungsverfahren reduziert wird. Zusätzlich verringert sich durch den vorgeschalteten Trocknungsschritt die Größe der im Kraftwerk installierten Kessel sowie der nachgeschalteten Anlagenteile. Für die Verstromung von Braunkohle mit hoher Feuchte läßt sich der Gesamtwirkungsgrad des Kraftwerksprozesses durch die Vorschaltung eines energetisch günstigen Verfahrens zur Entfernung des Wassers deutlich verbessern. Für die Reduzierung des Wassergehaltes von Braunkohle sind Verfahren und Vorrichtungen bekannt, die in den Artikeln "Braunkohle 39 (1987) Heft 3, S. 46/57" und "Braunkohle 39 (1987) Heft 4, S. 78/87" und in den darin als Quelle angegebenen Patentschriften beschrieben werden. Hier werden als Verfahren die thermische Trocknung durch Verdampfung und die thermische Entwässerung durch Einleitung von Heißdampf in die in einem Autoklaven enthaltene Braunkohle in einer Druckatmosphäre von ca. 3,0 MPa genannt (Fleißner-Verfahren). Die hierdurch erwärmte Braunkohle wird nach Entleeren des Autoklaven in einem Trockenkohlenbunker überführt, wo die thermisch entwässerte Braunkohle durch Nachbelüftung zur Abkühlung gebracht und hierbei nachgetrocknet wird.
Schwierigkeiten beim Einsatz der bekannten Verfahren zur Reduzierung des Wassergehalts von Braunkohle in Großkraftwerken bestehen darin, daß durch den benötigten hohen Braunkohledurchsatz der apparative
Aufwand und/oder der Energieverbrauch sehr groß wird. Bei den
Verfahren zur thermischen Entwässerung wurden trotz geringerem spezifischen Energieverbrauch im Vergleich zur thermischen Trocknung bisher keine kommerziellen Erfolge erzielt. Der Nachteil der thermischen
Entwässerung besteht insbesondere darin, daß für die kontinuierliche
Durchführung Druckschleusen oder Rotationsventile und
Hochdruckpumpen für den Ein- und Austrag der Braunkohle eingesetzt werden müssen. Desweiteren muß bei dem bekannten thermischen Entwässerungsverfahren die Sattdampftemperatur des zur Aufheizung der
Braunkohle benötigten Dampfes dem erforderlichen hohen Druck der
Druckatmosphäre entsprechen.
Der Erfindung liegt die Aufgabe zugrunde, die bei den bekannten Verfahren auftretenden Nachteile durch Energieeinsparung und Verringerung des technischen Aufwandes zu vermeiden.
Zur Lösung dieser Aufgabe dienen die Merkmale des Patentanspruchs 1.
Mit diesem thermisch/mechanischen Entwässerungsverfahren gelingt es, Braunkohle mit geringem Aufwand an thermischer und mechanischer Energie sowohl kontinuierlich als auch diskontinuierlich in hohem Maße zu entwässern. Die Erwärmung des unter dem Anfangsflächendruck stehenden Braunkohlebeetes bewirkt das Ablaufen physikalischer und chemischer Vorgänge durch die die Bindung der in der Kohle enthaltenen Wassermoleküle gelockert wird. Das Wasser kann damit in flüssiger Form aus den Kapillaren und Poren der Kohle ausströmen und somit leicht ausgepreßt werden. Damit wird im Vergleich zu den thermischen Trocknungsverfahren die Energie zur Verdampfung des Wassers eingespart.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens gegenüber dem bekannten Verfahren zur thermischen Entwässerung besteht darin, daß keine Druckschleusen, Ventile oder Hochdruckpumpen zur kontinuierlichen Ein- bzw. Austragung der Braunkohle und der entwässerten Braunkohle notwendig sind. Damit entfallen die Elemente, die eine Störquelle darstellen können und die einen kontinuierlichen Betrieb der Entwässerung erschweren. Die Sattdampftemperatur des zugeführten Wasserdampfes kann durch die erfindungsgemäße Ausgestaltung des Verfahrens unter der dem maximalen Flächendruck entsprechenden Sattdampftemperatur hegen. Des weiteren sind wegen der Filterwirkung des Braunkohlebeets und der niedrigen Sattdampftemperatur der Feststoffgehalt des ausgepreßten Wassers sowie das Verhältnis des CSB-Wertes zum BSB^Wert geringer als die in der Literatur angegebenen Werte geringer der bekannten Verfahren. 3 -
Die allgemeinen Anforderungen an einen großtechnischen Entwässerungsprozeß wie geringe Investitionskosten, geringer Platzbedarf, großer Durchsatzleistung, eine mögliche kontinuierliche Betriebsweise, hohe Betriebs- und Anlagensicherheit, Umweltverträglichkeit, geringer Handhabungsaufwand und ein möglichst geringer Energieverbrauch werden von dem erfindungsgemäßen Verfahren erfüllt.
In der Betriebsphase vor der Erhöhung des Flächendrucks gibt sich eine besonders gleichmäßige Erhitzung des Materials, da das unter dem Anfangsflächendruck stehende Material eine Art Filterkuchen bildet, der dem eingeleiteten Dampf einen gleichmäßigen Widerstand bietet und daher diesen gleichmäßig durch das Material hindurch leitet. Dabei kann der Druck des Wasserdampfes in der Größenordnung der jeweiligen mechanischen Druckbelastung liegen, z.B. bei 0,4 MPa.
Während der Auspressung kann man den Flächendruck auf die Braunkohle ändern, insbesondere erhöhen, um das Verfahren an die jeweilige Gegebenheiten des Materials günstig anpassen zu können. Dabei hat sich als zweckmäßig erwiesen, für den maximalen Flächendruck einen Wert von mindestens etwa 2 MPa zu wählen.
Vorteilhaft wird der Wasserdampf überhitzt, um ein sofortiges Kondensieren des Wasserdampfes an seiner Eintrittsstelle in das Material zu vermeiden. Diese Uberhitzung beträgt mindestens etwa 10° C. Aufgrund dieser Überhitzung ergibt sich weiterhin der Vorteil, daß im Bereich der Zuführung des Wasserdampfes über Zuführrohre und dergleichen nicht vorab schon eine Kondensation eintritt.
Um dem Wasserdampf eine gute Einwirkungsmöglichkeit auf das Material zu geben, wird dieses vorteilhaft vor seiner flächigen Verteilung auf eine Korngröße von höchstens etwa 20 mm gebrochen. Durch eine Vorheizung des Materials kann man den Energiebedarf für die Durchführung des Verfahrens weiterhin vermindern. Hierzu verwendet man zweckmäßig Abwärme oder als Abwärmquelle auch das im Verfahren aus dem Material ausgepreßte Wasser.
Um bezüglich der Einwirkung des zugeführten Wasserdampfes und der Möglichkeit einer intensiven Auspressung günstige Verhältnisse zu schaffen, gibt man der beetmäßigen Verteilung des Materials eine mittlere Höhe, die in einer sich nach der Druckbelastung ergebenden Preßhöhe von mindestens ca. 0,2 m resultiert. Im Falle der Anwendung des Verfahrens auf Braunkohle bedeutet dies, daß die mittlere Höhe der beetmäßigen Verteilung vor der Druckbelastung etwa in einem Bereich zwischen 0,4 m und 1 m liegt. Es hat sich als günstig erwiesen, daß die sich nach der Druckbelastung ergebende Preßhöhe höchstens ca. 0,6 m beträgt.
Um das Verfahren möglichst schnell durchführen zu können, gestaltet man es zweckmäßig so, daß der Flächendruck stetig auf das Material einwirkt.
Durch die beetmäßige Ausbreitung der körnigen Braunkohle auf einer Preßunterlage und unter Aufprägung eines Anfangsflächendruckes entsteht eine nahezu homogene Packung, die dem zur Erwärmung zugeführten Wasserdampf einen über die Beetfläche ausreichend gleichmäßigen Strömungswiderstand entgegensetzt.
Dabei erfolgt die Zuführung des Wasserdampfes in günstiger Weise derart, daß die Erwärmung der Braunkohle auf Prozeßtemperatur in einer Kondensationszone des Wasserdampfes erfolgt, die in einer zur Beetoberfläche nahezu parallelen Ebene liegt und sich senkrecht zu dieser Ebene in das Beet hinein fortpflanzt. Die Dampfzuführung kann so gestaltet werden, daß dann, wenn die Kondensationszone die äußere Begrenzungsfläche erreicht, das gesamte Beetmaterial erwärmt ist. Auf diese Weise wird ein Dampfaustritt vermieden, ohne daß aufwendige Absperrvorrichtungen erforderlich werden; es genügt vielmehr, das Beetmaterial durch Wände so zu stützen, daß das Material nicht nach außen wegfließt.
Durch die konsequente Nutzung der Vorteile, die sich aus den Durchströmungseigenschaften einer Schüttung mit einer korngrößen¬ spezifischen Schichtung und einer Vorverdichtung für die Durchführung des Verfahrens ergeben, gelingt es, die zur Optimierung der Entwässerung von Braunkohlen unterschiedlicher Provenienz erforderliche Anpassung hinsichtlich Prozeßtemperatur und Aufheizgeschwindigkeit vorzunehmen. Dies wird zweckmäßig dadurch erreicht, daß der Durchströmungs¬ widerstand der Deck- und/oder Bodenschicht des Kohlebeetes dadurch verändert wird, daß diese Schicht entweder aus Kohle mit geringer Körnung gebildet wird, oder, insbesondere bei Durchführung des Verfahrens mit der Plattenpresse nach Anspruch 20, entsprechend vorverdichtet wird.
Das Verfahren läßt sich sowohl kontinuierlich mit ortsabhängiger
Druckbelastung in einer Durchlaufpresse als auch diskontinuierlich mit einer zeitabhängigen Druckbelastung in einer Plattenpresse durchführen.
Eine Vorrichtung zur Durchführung des kontinuierlichen Verfahrens in einer Durchlaufpresse geschieht zweckmäßig mittels einer
Doppelbandpresse mit einem unteren und einem oberen Förderband sowie einem Einlaufbereich für eine beetmäßig, flächig verteilte Aufnahme des Materials und dessen zunehmender Verdichtung sowie einer Vielzahl von Dampfzuführlanzen im Einlaufbereich, die vom Beet des Materials umschlossen sind. Doppelbandpressen mit einem unteren und einem oberen Förderband werden beispielsweise in Zusammenhang mit der kontinuierlichen Herstellung von Spanplatten verwendet. Eine derartige Doppelbandpresse ist z.B. in der DE OS 40 10308 offenbart.
Um dem ausgepressten Wasser eine günstige Austrittsmöglichkeit zu geben, ist mindestens das untere Förderband einer solchen Doppelbandpresse mit Durchlässen für den Abzug des ausgepressten Wassers versehen. Dabei kann das obere Förderband höhenverstellbar angeordnet und mit Presselementen versehen sein, deren Preßkraft einstellbar ist. Hierdurch läßt sich die Doppelbandpresse an verschiedene Betriebsbedingungen anpassen.
Zweckmäßig werden die Förderbänder beheizt, um auch über die Förderbänder zusätzlich Wärme dem Feststoffmaterial zuführen zu können.
Für die Durchführung des Verfahrens im diskontinuierlichen Betrieb verwendet man zweckmäßig eine Plattenpresse mit Preßstempel und Preßunterlage, die das beetmäßig flächig verteilte Material aufnimmt, wobei mindestens die Preßunterlage mit Öffnungen für die Zuführung des Wasserdampfes und mit Auslässen für das ausgepreßte Wasser versehen ist.
Auch im Falle der Verwendung einer Plattenpresse ist es zweckmäßig, Preßstempel und Preßunterlage zu beheizen, um auf diesem Wege zusätzlich Wärme dem Material zuzuführen. Es sei noch darauf hingewiesen, daß sich das erfindungsgemäße Verfahren und die betreffende Vorrichtung auch zur Entwässerung von Torf und Klärschlamm eignet.
Die Erfindung wird nachstehend an Ausführungsbeispielen erläutert. Es zeigen
Fig. 1 eine als kontinuierlich arbeitende Durchlaufpresse verwendete Doppelbandpresse,
Fig. 2 eine Plattenpresse für den diskontinuierlichen Betrieb vor dem Beginn der Auspressung,
Fig. 3 die gleiche Plattenpresse von der Betriebslage des Auspressens.
Fig. 1 zeigt den Braunkohlebunker 1, der auf eine bestimmte Teilchengröße vorgebrochene Braunkohle enthält. Im Kohlebunker 1 können Dampf- bzw. Heißwasserzuführleitungen bzw.
Wäπneaustauscherflächen eingebaut werden, die eine Vorheizung der Kohle ermöglichen. Die vorgebrochene Braunkohle wird aus dem Kohlebunker 1 beetmäßig auf das gestrichelt gezeichnete untere Förderband 2, durch das die Kohle in Pfeürichtung transportiert wird, verteilt. Über dem Förderband 2 der dargstellten Doppelbandpresse bewegt sich ein ebenfalls gestrichelt gezeichnetes oberes Förderband 3 (Druckband) in Pfeilrichtung vorwärts, dessen Geschwindigkeit mit der des Förderbandes 2 nahezu übereinstimmt. Der Abstand zwischen Förderband 2 und Förderband 3 wird in Laufrichtung im Einlaufbereich 8 geringer und ermöglicht damit die Druckerhöhung auf das Kohlebeet 4. Das Förderband 3 ist je nach Durchsatzmenge und Wassergehalt der Braunkohle in seinem gesamten Verlauf über kraftübertragende Preßelemente 5 höhenverstellbar. Zwischen Förderband 2 und Förder¬ band 3 sind eine Vielzahl von in das sich bewegende punktiert gezeichnete Kohlebeet 4 hineinragende Dampfzuführlanzen 6 angeordnet, deren Dampfaustrittsöffnungen an einer Stelle im Einlaufbereich 8 enden, in der der Druck auf die Kohle unter dem maximalen Flächendruck im Verlauf der Förderbänder 2 und 3 liegt. Der aus den Dampfzuführlanzen 6 austretende Wasserdampf gibt seine Wärme an die Kohle ab und kondensiert dabei. Durch die Vielzahl der in der Länge verschiedenen und in der Höhe verschieden angeordneten Zuführlanzen 6 wird eine relativ gleichmäßige Erwärmung des Kohlebeetes 4 gewährleistet.
Diese Wärmeeinwirkung bei gleichzeitig fortschreitender Druckerhöhung im Einlaufbereich 8 hat die nachstehenden chemischen und physikalischen Vorgänge zur Folge, bei denen sich die kolloidale Struktur der Braunkohle sowie die Wassereigenschaften ändern:
Physikalische Vorgänge:
gleichmäßige Durchwärmung des Kohlekorns, - Zusammenbruch der Kapillarstruktur gekoppelt mit:
Volumenschwund der in den plastischen Zustand versetzten Braunkohle,
Verfestigung des Kohlegefüges, - Auspressen des Wassers aus den Kapillaren in flüssiger Form begünstigt durch:
Expansion des Kohlewassers bei gleichzeitiger Herabsetzung der Viskosität, - Änderung der Oberflächeneigenschaften (hydrophil hydrophob) als Folge der ablaufenden chemischen Vorgänge, - Auswaschen der Ascheanteile, insbesondere von Alkalisalzen
Chemische Vorgänge:
Abbau von sauerstoffhaltigen funktionellen Gruppen unter Freisetzung von C02,
Einsetzen des thermischen Abbaus der Braunkohle unter Freisetzung von CH4 und höheren Kohlenwasserstoffen.
Die Entwässerung der Braunkohle wird im wesentlichen durch die folgenden Einflußgrößen bestimmt:
Durchsatzmenge bzw. Schichthöhe, - Korngröße der Braunkohle,
Wassergehalt der Braunkohle,
Druck,
Temperatur,
Verweilzeit.
Je nach Durchsatzmenge, Korngröße und Wassergehalt der Braunkohle können die Parameter Druck und Temperatur über das höhenverstellbare Förderband 3 sowie über den Wasserdampfdruck bzw. die Temperatur des zugeführten Heizdampfes eingestellt werden. Im Verlauf des ersten Verfahrensabschnittes (Einlaufbereich 8) wird das Kohlebeet 4 von oben über das Förderband 3 mittels stetig steigender, mechanisch aufgeprägter Kräfte druckbelastet. Nach Erreichen einer festzulegenden maximalen Flächenbelastung tritt das verfestigte Kohlebeet 4 in den darauffolgenden Verfalirensabschnitt ein, in dem der von dem oberen Förderband 3 ausgeübete Druck konstant gehalten oder nur leicht variiert wird. Die Druckeinwirkung hat in Zusammenhang mit der erhöhten Temperatur zur Folge, daß freies und freigesetztes Wasser aus dem Kohlebeet 4 ausgepreßt und über Durchlässe 7 am Förderband 2 und wahlweise zusätzlich am Förderband 3 in einer oder mehreren Stufen abgezogen werden kann. Das aus den Durchlässen 7 austretende heiße Wasser bzw. ein Teilstrom dieses Wassers kann zur Vorheizung der Braunkohle verwendet werden.
Die am Ende der Doppelbandpresse austretende bis zu einem bestimmten Feuchtegehalt entwässerte Kohle kann mit Hilfe einer Einrichtung in Stücke mit vorgegebener Größe geteilt und auf einem weiterführenden Förderband über eine bestimmte Wegstrecke zu Mühlen transportiert werden, in denen die Kohle auf die für die Verbrennung oder Vergasung benötigte Korngröße zerkleinert wird.
Fig. 2 zeigt eine Plattenpresse mit der Preßunterlage 9 und dem Preßstempel 10. Die Preßunterlage 9 ruht auf hier nur prinzipiell dargestellten Stützen 11 und 12. Der Preßstempel 10 hängt an dem Stößel 13, der von einem hier nicht dargestellten Preßmechanismus auf- und abgeschoben wird. Bei der Gestaltung dieser Plattenpresse handelt es sich im Prinzip um Stand der Technik.
Die Preßunterlage 9 ist hier wannenartig ausgebildet, so daß in ihr das Feststoffmaterial 14 in beetmäßig, flächiger Verteüung aufgebracht werden kann. Preßunterlage 9 und Preßstempel 10 sind mit Wasserauslässen 15 und 16 sowie Dampfzuführungsöffnungen 21 und 22 versehen, wodurch bei in Fig. 3 dargestellter geschlossener Plattenpresse dem Feststoffmaterial 14 Wasserdampf zugeführt und austretendes Wasser abgeführt werden kann. Die Wasserauslässe 15 und 16 und die Dampfzuführungsöffnungen 21 und 22 sind über Kanäle 17 und 18 bzw. 23 und 24 mit dem Boden der Preßunterlage 9 und der Stirnseite des Preßstempels 10 verbunden, so daß ausgepreßtes Wasser abfließen und Wasserdampf in das Feststoffmaterial 14 einströmen kann.
Auf dem Boden der Preßunterlage 9 und auf der Stirnseite des Preßstempels 10 ist je ein engmaschiges Sieb 19 bzw. 20 aufgelegt, das den Wasser- bzw. Dampfdurchtritt gestattet, aber den Eintritt von Feststoffmaterial in die Kanäle 17 und 18 bzw. 23 und 24 verhindert, so daß diese nicht verstopft werden können.
Fig. 3 zeigt die Plattenpresse gemäß Fig. 2 in geschlossener Lage, in der der Preßstempel 10 gegen die Preßunterlage 9 abgesenkt ist und das Feststoffmaterial 14 zusammendrückt. Bei dem dabei zunächst auf das Feststoffmaterial 14 wirkenden gegenüber dem Maximaldruck abgesenkten Druck wird Wasserdampf über die Dampfzuführungsöffnungen 21 und 22 in dem Feststoffmaterial 14 eingeleitet, wodurch dieses erwärmt wird. Sodann wird der von dem Preßstempel 10 bewirkte Druck auf das Feststoffmaterial 14 auf den Maximaldruck erhöht, so daß nunmehr das in dem Feststoffmaterial 14 enthaltene Wasser ausgepreßt wird und über die Auslässe 15 und 16 austreten kann. Bezüglich der sich dabei abspielenden Vorgänge und Ergebnisse sei auf die Erläuterungen zu Fig. 1 verwiesen.
Aufgrund des relativ geringen Anlagenaufwandes eignet sich das beschriebene Verfahren insbesondere für den Einsatz in Braunkohle gefeuerten Großkraftwerken. Desweiteren wird durch eine Anwendung des Verfahrens an der Stelle des Braunkohleabbaus je nach Verhältnis des Feuchtegehaltes der Trockenkohle zur Rohbraunkohle der massenbezogene Heizwert erhöht und damit ein wirtschaftlicherer Transport der Braunkohle ermöglicht.

Claims

Patentansprüche
1. Verfahren zur Reduzierung des Wassergehaltes von wasserhaltiger, körniger Braunkohle unter Einwirkung von s thermischer Energie und Druck auf das beetmäßig flächig verteilte Material, dadurch gekennzeichnet, daß
a) die Braunkohle einem mechanisch aufgebrachten Anfangsflächendruck ausgesetzt wird, der unter dem maximal 0 im Verfahren auftretenden Flächendruck liegt und bei dem der Braunkohle thermische Energie durch Wasserdampf zugeführt wird, der unter Kondensation die Braunkohle erwärmt, b) und danach ohne weitere Wasserdampfzuführung der s Flächendruck soweit auf mindestens 2,0 MPa erhöht wird, daß das in der erwärmten Braunkohle enthaltene Wasser ausgepreßt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die 0 spezifische mechanische Druckbelastung in der Größenordnung des jeweiligen Wasserdampfdruckes liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Flächendruck auf die Braunkohle (4, 14) während des 5 Verfahrensablaufs geändert, insbesondere erhöht wird.
4. Verfahren nach einem der Ansprüche 1-3, dadurch gekenn¬ zeichnet, daß der Wasserdampf überhitzt ist.
0
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Überhitzung mindestens etwa 10° C beträgt.
6. Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Braunkohle (4, 14) vor ihrer flächigen
Verteilung auf eine Korngröße von höchstens etwa 20 mm gebrochen wird.
7. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß die Braunkohle (4, 14) vor der beetmäßigen
Verteilung durch Abwärme vorgeheizt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß als Abwärmquelle das im Verfahren aus der Braunkohle (4, 14) ausgepresste Wasser verwendet wird.
9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß die beetmäßige Verteilung der Braunkohle (4, 14) in einer mittleren Höhe erfolgt, die in einer sich nach der Druckbelastung ergebenden Preßhöhe von mindestens ca. 0,2 m resultiert.
10. Verfahren nach Anspruch 9. dadurch gekennzeichnet, daß die Presshöhe höchstens ca. 0,6 m beträgt.
11. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß der Flächendruck stetig auf das Feststoffmaterial einwirkt.
12. Verfahren nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß der Anfangsflächendruck so gewählt wird (mindestens 0,2 MPa), daß die Braunkohle eine Packung mit einem über die Beetfläche gleichmäßigen Strömungswiderstand gegen den durchströmenden Dampf bildet.
13. Verfahren nach einem der Ansprüche 1-12, dadurch gekennzeichnet, daß die Zuführung des Wasserdampfes derart erfolgt, daß die Erwärmung der Braunkohle in einer zur Beetoberfläche nahezu parallelen, ebenen Kondensationszone stattfindet, die senkrecht zur Beetoberfläche in das Kohlebeet hinein fortschreitet.
14. Verfahren nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß zur Erreichung einer optimalen
Fortschrittsgeschwindigkeit der Kondensationszone innerhalb des Kohlebeetes der Durchströmungswiderstand mit der Entfernung von der Beetoberfläche dadurch erhöht wird, daß die maximale Korngröße der Kohleschüttung innerhalb von ca. einem Zehntel der Schichtdicke des Kohlebeetes auf ca. 2 mm begrenzt wird.
15. Verfahren nach einem der Ansprüche 1-14, dadurch gekennzeichnet, daß zur Erreichung eines sich mit der Entfernung von der Beetoberfläche ändernden Durchströmungswiderstandes ein Teil der Kohlemenge, die einer
Schicht von ca. einem Zehntel der Maximalhöhe des Beetes entspricht, mit einem Flächendruck von ca. 1 MPa vorgepreßt wird.
16. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1-15, gekennzeichnet durch
a) eine Doppelbandpresse mit einem unteren und einem oberen Förderband (2, 3) sowie einem Einlaufbereich (8) zur Aufnahme der beetmäßig, flächig verteilten Braunkohle (4) und deren zunehmender Verdichtung, b) eine Vielzahl von Dampfzuführlanzen (6) im Einlaufbereich (8) die vom Beet (4) umschlossen sind (Fig. 1).
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß mindestens das untere Förderband (2) mit Durchlässen (7) für den Abzug des ausgepreßten Wassers versehen ist.
18. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß das obere Förderband (3) höhenverstellbar angeordnet und mit Preßelementen (5) versehen ist, deren Preßkraft einstellbar ist.
19. Vorrichtung nach einem der Ansprüche 16-18, dadurch gekennzeichnet, daß die Förderbänder (2, 3) beheizt sind.
20. Vorrichtung zur Durchführung des Verfahrens nach einem der
Ansprüche 1-15, gekennzeichnet durch eine Plattenpresse mit Preßstempel (10) und Preßunterlage (9), die die beetmäßig flächig verteilte Braunkohle (14) aufnimmt, wobei mindestens der Preßstempel (10) mit Öffnungen (21,22) für die Zuführung des Wasserdampfes und mindestens die Preßunterlage (9) mit Auslässen (15,16) für den Abzug des aus der Braunkohle (14) ausgepressten Wassers versehen ist (Fig. 2, 3).
21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß
Preßstempel (10) und/oder Preßunterlage (9) beheizt sind.
PCT/EP1995/003814 1994-09-27 1995-09-26 Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle WO1996010064A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE59504443T DE59504443D1 (de) 1994-09-27 1995-09-26 Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle
CZ97795A CZ79597A3 (en) 1994-09-27 1995-09-26 Method of reducing content of water in grained brown coal and apparatus for making the same
EP95933431A EP0784660B1 (de) 1994-09-27 1995-09-26 Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle
AU36096/95A AU695187B2 (en) 1994-09-27 1995-09-26 Method and device for reducing the water content of water-containing brown coal
JP8511376A JPH10506145A (ja) 1994-09-27 1995-09-26 水を含有する褐炭の含水率を低下させるためのプロセスおよび装置
PL95319381A PL319381A1 (en) 1994-09-27 1995-09-26 Method of and apparatus for reducing water content in water containing brown coal
FI971271A FI971271A (fi) 1994-09-27 1997-03-26 Prosessi ja laite vettä sisältävän ruskohiilen vesipitoisuuden vähentämiseksi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4434447.3 1994-09-27
DE4434447A DE4434447A1 (de) 1994-09-27 1994-09-27 Verfahren und Vorrichtung zur Reduzierung des Wassergehaltes von kohlenstoffhaltigen Feststoffmaterialien

Publications (1)

Publication Number Publication Date
WO1996010064A1 true WO1996010064A1 (de) 1996-04-04

Family

ID=6529280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003814 WO1996010064A1 (de) 1994-09-27 1995-09-26 Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle

Country Status (11)

Country Link
EP (1) EP0784660B1 (de)
JP (1) JPH10506145A (de)
CN (1) CN1160418A (de)
AU (1) AU695187B2 (de)
CZ (1) CZ79597A3 (de)
DE (2) DE4434447A1 (de)
FI (1) FI971271A (de)
HU (1) HUT77187A (de)
PL (1) PL319381A1 (de)
TR (1) TR199501177A2 (de)
WO (1) WO1996010064A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305436A (en) * 1995-09-22 1997-04-09 Dieffenbacher Gmbh Maschf Reducing water content of carboniferous material
FR2745074A1 (fr) * 1996-02-20 1997-08-22 Dieffenbacher Gmbh Maschf Dispositif pour reduire la teneur en eau de lignite contenant de l'eau
WO1997031222A1 (de) * 1996-02-20 1997-08-28 Karl Strauss Verfahren zur erzeugung von heissdampf zum betreiben eines dampfkraftwerkes
US5887514A (en) * 1995-09-22 1999-03-30 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method, filter press and control device for reducing the water content of solid materials and/or sludges
DE19914098A1 (de) * 1999-03-27 2000-09-28 Rwe Energie Ag Verfahren zur Entwässerung von festen Brennstoffen, insbes. von Rohbraunkohle
AU725794B2 (en) * 1997-03-14 2000-10-19 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method, filter press as well as control and regulating device to reduce the water content of solid materials and/or sludges
DE102004038235B4 (de) * 2004-08-05 2013-01-31 Rwe Power Ag Verfahren zur Demineralisierung von Braunkohle
EP3127688A1 (de) * 2015-08-01 2017-02-08 Siempelkamp Maschinen- und Anlagenbau GmbH Vorrichtung und verfahren zur entwässerung von wasser enthaltendem gut

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710708B4 (de) * 1995-09-22 2009-01-29 Dieffenbacher Gmbh + Co. Kg Anlage und Presse zur Reduzierung des Wassergehaltes von Feststoffmaterialien wie Schlämmen und/oder Rohbraunkohle sowie eine Steuer- oder Regeleinrichtung hierfür
DE19535315B4 (de) * 1995-09-22 2006-02-02 Dieffenbacher Gmbh + Co. Kg Verfahren, Anlage und Presse zur Reduzierung des in Faserzellen kapillar gebundenen Wassergehaltes von Kohlenstoffhaltigen, fein zerkleinerten Feststoffmaterialien und/oder Schlämmen, insbesondere Rohbraunkohle
DE19606152A1 (de) * 1996-02-20 1997-08-21 Karl Prof Dr Strauss Verfahren zur Reduzierung des Wassergehaltes von wasserhaltiger Braunkohle
DE19742610A1 (de) 1997-09-26 1999-04-01 Karl Prof Dr Ing Straus Verfahren und Vorrichtung zur Reduzierung des Wassergehaltes von wasserhaltigen, fossilen Brennstoffen und Verbrennung in einer Feuerungsanlage
DE19752653B4 (de) * 1997-11-27 2007-08-16 Dieffenbacher Gmbh + Co. Kg Anlage und Filterpresse zur Entfeuchtung von pastösen Feststoffen
DE10346234A1 (de) * 2003-10-06 2005-05-04 Rag Ag Abreinigungsförderer
CN102061211B (zh) * 2011-01-04 2013-08-28 内蒙古工业大学 水泥生产中一体化褐煤催化轻度热解提质集成系统及工艺
CN103087796B (zh) * 2013-02-07 2014-04-16 中国矿业大学 褐煤振动热压脱水提质工艺及系统
CN113091443B (zh) 2021-04-27 2022-05-24 中国矿业大学 一种褐煤瞬态脱水提质及温压瞬发装置系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE359440C (de) * 1920-04-24 1922-09-22 Theodor Otto Franke Verfahren zum Entwaessern von Torf u. dgl.
DE1080970B (de) * 1954-01-05 1960-05-05 Buckau Wolf Maschf R Verfahren zur Druckentwaesserung von mit Torfstaub vorbehandeltem Rohtorf
DE1902649A1 (de) * 1968-01-26 1969-09-04 Univ Melbourne Verfahren zum Abscheiden von Wasser aus festen organischen Materialien
DE2436290A1 (de) * 1974-07-27 1976-02-05 Woldemar Oelkers Vorrichtung fuer die kontinuierliche schnellentgasung durch schwelung von organischen natur- und kunststoffen
DE4009883A1 (de) * 1990-03-28 1991-10-02 Siempelkamp Gmbh & Co Anlage fuer die herstellung von spanplatten, faserplatten und aehnlichen pressgutplatten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE359440C (de) * 1920-04-24 1922-09-22 Theodor Otto Franke Verfahren zum Entwaessern von Torf u. dgl.
DE1080970B (de) * 1954-01-05 1960-05-05 Buckau Wolf Maschf R Verfahren zur Druckentwaesserung von mit Torfstaub vorbehandeltem Rohtorf
DE1902649A1 (de) * 1968-01-26 1969-09-04 Univ Melbourne Verfahren zum Abscheiden von Wasser aus festen organischen Materialien
DE2436290A1 (de) * 1974-07-27 1976-02-05 Woldemar Oelkers Vorrichtung fuer die kontinuierliche schnellentgasung durch schwelung von organischen natur- und kunststoffen
DE4009883A1 (de) * 1990-03-28 1991-10-02 Siempelkamp Gmbh & Co Anlage fuer die herstellung von spanplatten, faserplatten und aehnlichen pressgutplatten

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862612A (en) * 1995-09-22 1999-01-26 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method and system for dewatering carboniferous materials using a vaportight pressure chamber
GB2305436A (en) * 1995-09-22 1997-04-09 Dieffenbacher Gmbh Maschf Reducing water content of carboniferous material
US5887514A (en) * 1995-09-22 1999-03-30 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method, filter press and control device for reducing the water content of solid materials and/or sludges
AU707679B2 (en) * 1996-02-20 1999-07-15 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Apparatus for reducing the water content of water-containing brown coal
GB2310429B (en) * 1996-02-20 1998-05-20 Dieffenbacher Gmbh Maschf Apparatus for reducing the water content of water-containing brown coal
US5862746A (en) * 1996-02-20 1999-01-26 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Apparatus for reducing the water content of water-containing brown coal
WO1997031222A1 (de) * 1996-02-20 1997-08-28 Karl Strauss Verfahren zur erzeugung von heissdampf zum betreiben eines dampfkraftwerkes
GB2310429A (en) * 1996-02-20 1997-08-27 Dieffenbacher Gmbh Maschf Dewatering brown coal
FR2745074A1 (fr) * 1996-02-20 1997-08-22 Dieffenbacher Gmbh Maschf Dispositif pour reduire la teneur en eau de lignite contenant de l'eau
DE19606153C2 (de) * 1996-02-20 2003-04-03 Karl Strauss Verfahren zur Erzeugung von Heißdampf zum Betreiben eines Dampfkraftwerkes
AU725794B2 (en) * 1997-03-14 2000-10-19 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method, filter press as well as control and regulating device to reduce the water content of solid materials and/or sludges
DE19914098A1 (de) * 1999-03-27 2000-09-28 Rwe Energie Ag Verfahren zur Entwässerung von festen Brennstoffen, insbes. von Rohbraunkohle
DE19914098C2 (de) * 1999-03-27 2002-09-19 Rwe Energie Ag Verfahren zur Entwässerung von Rohbraunkohle durch Zentrifugieren
DE102004038235B4 (de) * 2004-08-05 2013-01-31 Rwe Power Ag Verfahren zur Demineralisierung von Braunkohle
EP3127688A1 (de) * 2015-08-01 2017-02-08 Siempelkamp Maschinen- und Anlagenbau GmbH Vorrichtung und verfahren zur entwässerung von wasser enthaltendem gut
AU2016204480B2 (en) * 2015-08-01 2021-03-04 Siempelkamp Maschinen-Und Anlagenbau Gmbh Apparatus and method for dewatering a material containing water

Also Published As

Publication number Publication date
TR199501177A2 (tr) 1996-11-21
PL319381A1 (en) 1997-08-04
FI971271A0 (fi) 1997-03-26
AU695187B2 (en) 1998-08-06
JPH10506145A (ja) 1998-06-16
CN1160418A (zh) 1997-09-24
FI971271A (fi) 1997-03-26
EP0784660A1 (de) 1997-07-23
EP0784660B1 (de) 1998-12-02
DE4434447A1 (de) 1996-03-28
AU3609695A (en) 1996-04-19
HUT77187A (hu) 1998-03-02
CZ79597A3 (en) 1997-07-16
DE59504443D1 (de) 1999-01-14

Similar Documents

Publication Publication Date Title
EP0784660B1 (de) Verfahren und vorrichtung zur reduzierung des wassergehaltes von wasserhaltiger braunkohle
DE3345052A1 (de) Verbessertes geraet und verfahren fuer die waermebehandlung von organischem kohlenstoffhaltigem material
DE2810479C2 (de) Verfahren zum Trocknen von Roh-Braunkohle in einer mit flüssigen Kohlenwasserstoffen hergestellten Einsatz-Suspension
DE3039001A1 (de) Vorrichtung zum trocknen von organischen stoffen, insbesondere braunkohle
DD235861A5 (de) Verfahren zum entwaessern von schlaemmen und/oder organischen stoffen sowie vorrichtung zur durchfuehrung des verfahrens
DE19606238A1 (de) Vorrichtung zur Reduzierung des Wassergehaltes von wasserhaltiger Braunkohle
EP0835226B1 (de) Verfahren und vorrichtung zur kontinuierlichen trocknung von protein enthaltendem schlamm
DE4446400C2 (de) Thermisch behandelte Kohle und Verfahren und Vorrichtung zur Herstellung derselben
DE2743652A1 (de) Verfahren zur herstellung von faserplatten
DE4243156C1 (de) Verfahren zur Verfestigung von pastösen organischen Rest- und Abfallstoffen, bevorzugt von Klärschlamm, zum Einsatz in der Kohledruckvergasung
DE19535315B4 (de) Verfahren, Anlage und Presse zur Reduzierung des in Faserzellen kapillar gebundenen Wassergehaltes von Kohlenstoffhaltigen, fein zerkleinerten Feststoffmaterialien und/oder Schlämmen, insbesondere Rohbraunkohle
DE3045762C2 (de) Verfahren zum Trocknen von organischen Feststoffen, wie insbesondere Braunkohlen
EP3181664A1 (de) Verfahren und anlage zur kontinuierlichen entwässerung von wasser enthaltendem gut, insbesondere zur entwässerung von braunkohle
DE3103050A1 (de) "kontinuierlich arbeitende spanplattenpresse"
DE529802C (de) Verfahren zur Entwaesserung von Rohtorf
DE102020117914B4 (de) Verfahren zur Aufbereitung und/oder Brenngasgewinnung aus einer organischen, Flüssigkeit enthaltenden Reststofffraktion und aus Holzhackschnitzeln
DE2002870B2 (de) Verfahren zum Vorerhitzen von mit Bindemitteln gemischten Teilchen
EP2029705B1 (de) Verfahren zur herstellung von brennstoffen aus biomasse
WO1997031082A1 (de) Verfahren zur reduzierung des wassergehaltes von wasserhaltiger braunkohle
DE4415949C2 (de) Verfahren zur Klärschlammentsorgung
CH680213A5 (en) Procedure and device for treatment of sewage sludge - comprises dewatering of sludge, mixing with already dried sludge and pressing into briquettes with dia. of 5 to 10 mm which are then dried
DE1234381B (de) Verfahren und Pressbleche fuer die Herstellung von Faserplatten oder Presslingen auslignozelluloschaltigen Materialien
DE834641C (de) Verfahren und Vorrichtung zur Herstellung von Produkten aus Holzfasern usw.
DE2220479A1 (de) Verfahren zur herstellung von briketts aus braunkohle
DE432712C (de) Verfahren der Behandlung von nassem Rohmoor mit poroesen Zusatzmitteln

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195219.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV1997-795

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 971271

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1995933431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 809247

Country of ref document: US

Date of ref document: 19970513

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: PV1997-795

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1995933431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995933431

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1997-795

Country of ref document: CZ