WO1996006156A1 - Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten - Google Patents

Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten Download PDF

Info

Publication number
WO1996006156A1
WO1996006156A1 PCT/EP1995/003169 EP9503169W WO9606156A1 WO 1996006156 A1 WO1996006156 A1 WO 1996006156A1 EP 9503169 W EP9503169 W EP 9503169W WO 9606156 A1 WO9606156 A1 WO 9606156A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
compounds
acid
anionic surfactants
surfactants
Prior art date
Application number
PCT/EP1995/003169
Other languages
English (en)
French (fr)
Inventor
Georg Assmann
Hans-Friedrich Kruse
Jochen Jacobs
Volker Bauer
Günther VOGT
Heinz-Manfred Wilsberg
Sandra Witt
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to KR1019970701086A priority Critical patent/KR970705629A/ko
Priority to DE59504349T priority patent/DE59504349D1/de
Priority to US08/793,021 priority patent/US5866531A/en
Priority to JP8507747A priority patent/JPH10504349A/ja
Priority to EP95929834A priority patent/EP0777721B1/de
Publication of WO1996006156A1 publication Critical patent/WO1996006156A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0082Coated tablets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/26Electric field

Definitions

  • the invention relates to a method for producing detergent tablets containing surfactants using microwave technology.
  • microwaves is understood to mean the entire frequency range between 3 and 300,000 MHz, which thus also includes the radio wave range from 3 to 300 MHz in addition to the actual microwave range of above 300 MHz.
  • This technique can be used to produce so-called macrosolids, which in addition to tablets also include blocks, for example, which can usually contain up to 40% by weight of surfactants.
  • one of the raw materials used in substantial amounts is a crystalline layered silicate, in particular of the type SKS- ⁇ W (crystalline sodium disilicate commercial product from Hoechst AG, Germany)
  • the surfactant content can even be up to 60% by weight.
  • Further possible ingredients are on the one hand the microwave-active hydrated inorganic or organic salts such as alkali phosphate, alkali carbonate, alkali bicarbonate, alkali sulfate and O 96/0615
  • Citrate but also zeolite and even peroxy bleaching agents such as perborate or percarbonate. These are preferably used in encased form.
  • the invention accordingly relates to a process for the preparation of detergent tablets containing anionic surfactants, the tablets being produced using microwave technology and the anionic surfactants being introduced into the process in the form of one or more compounds.
  • surfactant compounds including highly concentrated surfactant compounds with contents of up to about 95% by weight of surfactants, results in local surfactant concentration differences in the tablet, which is not only an advantage in processing, but also in the later disintegration of the tablet in the wash liquor affects.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C 1 -C 3 -alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 1 -C 8 -monoolefins with a terminal or internal double bond Sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products is considered.
  • alkanesulfonates obtained from C12-Ciss alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as the mono-, di- and triesters as well as their mixtures, as they are in the production by esterification of a monoglycerin with 1 to 3 moles of fatty acid or in the esterification of triglycerides with 0.3 to 2 moles of glycerol be preserved.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid. If one starts from fats and oils, that is to say natural mixtures of different fatty acid glycerol esters, it is necessary to largely saturate the starting products with hydrogen in a manner known per se, ie to harden them to iodine numbers less than 5, advantageously less than 2.
  • Suitable feedstocks are palm oil, palm kernel oil, palm stearin, olive oil, turnip oil, coriander oil, sunflower oil, cottonseed oil, peanut oil, linseed oil, lard oil or lard. Because of their high natural proportion of saturated fatty acids, it has proven to be particularly advantageous to start from coconut oil, palm kernel oil or beef tallow.
  • the sulfonation of the saturated fatty acids with 6 to 22 carbon atoms or the mixtures of fatty acid glycerol esters with iodine numbers less than 5, which contain fatty acids with 6 to 22 carbon atoms, is preferably carried out by reaction with gaseous sulfur trioxide and subsequent neutralization with aqueous bases, as described in the international context Patent application WO-A-91/09009 is specified.
  • the sulfonation products are a complex mixture which contains mono-, di- and triglyceride sulfonates with oc and / or internal sulfonic acid groups.
  • Sulfonated fatty acid salts glyceride sulfates, glycerine sulfates, glycerin and soaps are formed as by-products. If one starts with the sulfonation of saturated fatty acids or hardened fatty acid glycerol ester mixtures, the proportion of ⁇ -sulfonated fatty acid disalts can, depending on the procedure, be up to about 60% by weight.
  • Suitable sulfate-type surfactants are the sulfuric acid monoesters from primary alcohols of natural and synthetic origin.
  • alk (en) yl sulfates the alkali and in particular the sodium salts of the sulfuric acid semiesters of the Ci2-Ci8- fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the Cio- C2 ⁇ ⁇ 0xoalcohols and those half esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • Ci6-Ci8-alk (en) yl sulfates are particularly preferred from the point of view of washing technology. It can also be particularly advantageous, and particularly advantageous for machine-wash detergents, to use Ci6-C ⁇ 8-alk (en) yl sulfates in combination with lower melting anionic surfactants and in particular with those anionic surfactants which have a lower Krafft point and relatively low ones Washing temperatures of, for example, room temperature to 40 ° C.
  • the compositions therefore contain mixtures of short-chain and long-chain fatty alkyl sulfates, preferably Ci2-Ci8-fatty alkyl sulfates or mixtures of Ci2-Ci4-fatty alkyl sulfates or Ci2-Ci8-fatty alkyl sulfates with Ci6-C ⁇ 8-fatty alkyl sulfates and in particular Ci2- Ci6-fatty alkyl sulfates with Ci6-Ci8-fatty alkyl sulfates.
  • fatty alkyl sulfates preferably Ci2-Ci8-fatty alkyl sulfates or mixtures of Ci2-Ci4-fatty alkyl sulfates or Ci2-Ci8-fatty alkyl sulfates with Ci6-C ⁇ 8-fatty alkyl sulfates and in particular Ci2- Ci6-fatty alkyl sulfates with Ci6-Ci8-fatty alkyl sulfates.
  • saturated alkyl sulfates not only saturated alkyl sulfates but also unsaturated alkenyl sulfates with an alkenyl chain length of preferably CIOE to C22 are used.
  • Mixtures of saturated sulfated fatty alcohols predominantly consisting of C15 and unsaturated sulfated fatty alcohols predominantly consisting of CQ are particularly preferred, for example those derived from solid or liquid HD-Ocenol ( R ) fatty alcohol mixtures (commercial product of the applicant) ).
  • Weight ratios of alkyl sulfates are too Alkenyl sulfates of 10: 1 to 1: 2 and in particular of about 5: 1 to 1: 1 are preferred.
  • the sulfuric acid monoesters of the straight-chain or branched C7-C2i alcohols ethoxylated with 1 to 6 moles of ethylene oxide such as 2-methyl-branched Cg-Cn alcohols with an average of 3.5 moles of ethylene oxide (EO) or Ci2-Ci8 -Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cg to Cj8 fatty alcohol residues or mixtures thereof.
  • Preferred sulfosuccinates in particular contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols which, viewed in isolation, are nonionic surfactants (for a description, see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myric acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • those soap mixtures are preferred which are composed of 50 to 100% by weight of saturated Ci2-C24 fatty acid soaps and 0 to 50% by weight of oleic acid soap.
  • the anionic surfactants and soaps can be present in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic are preferably located Surfactants in the form of their sodium or potassium salts, especially in the form of the sodium salts.
  • nonionic, cationic, zwitterionic or amphoteric surfactants can also be used in the tablets, optionally also in the compounds containing anionic surfactants.
  • Nonionic surfactants are particularly preferred.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical has a methyl or linear branching in the 2-position may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • the preferred ethoxylated alcohols include, for example, Ci2-Ci4 alcohols with 3 EO or 4 EO, Cg-Cn alcohol with 7 EO, Ci3-Ci5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, Ci2-Ci8- Alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C12-Ci4 alcohol with 3 EO and Ci2-Ci8 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula R0 (G) can also be used as further nonionic surfactants, in which R is a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical with 8 to 22, preferably 12 to 18, carbon atoms. Atoms means and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x, indicating the distribution of monoglycosides and oligoglycosides is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these non-ionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • R2C0 for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R3 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 Hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • compounds containing anionic surfactants which contain various anionic surfactants - for example alkyl sulfates and alkylbenzenesulfonates and / or soap or alkyl sulfates and sulfated fatty acid glycerol esters - and / or anionic surfactants in combination with nonionic surfactants - for example alkyl sulfates and ethoxylated Fatty alcohols or alkyl sulfates, alkyl benzene sulfonates, ethoxylated fatty alcohols and / or alkyl glycosides or alkyl sulfates, soap, ethoxylated fatty alcohols and glucamides - contain. These are preferably compounds which contain anionic surfactants and nonionic surfactants in a weight ratio of 10: 1 to 1: 1.
  • Compounds used with preference have a surfactant content of at least 10% by weight.
  • compounds which have at least 40% by weight, preferably 60 to 95% by weight, based on the compound, of anionic surfactants.
  • a further preferred embodiment of the invention provides that at least two different types of compounds are used in the process.
  • anionic surfactants and nonionic surfactants can contain, for example, 40 to 70% by weight of the nonionic surfactants mentioned and silicates of the known type, organic builder substances such as polymeric polycarboxylates and / or phosphonates.
  • Particularly advantageous embodiments of the invention provide that at least 35% by weight, preferably at least 50% by weight and in particular at least 70% by weight, of the total formulation of the detergent or cleaning tablet consists of one or more different types of compounds ⁇ stand.
  • a method can be particularly advantageous in which even at least 75% by weight and up to 100% by weight of the total formulation are presented as a compound, which has optionally been post-treated.
  • washing or cleaning agents which contain at least one compound containing anionic surfactants can be converted into tablets in the manner according to the invention.
  • spray-dried detergents with bulk densities of about 300 to 600 g / l, which preferably contain 5 to 40% by weight of anionic surfactants in the spray-dried proportions.
  • These spray-dried granules can also be subsequently sprayed or powdered with further ingredients of washing or cleaning agents under granulating conditions, which increases the bulk density.
  • Non-ionic surfactants are to be mentioned as preferred liquid constituents, for example fine zeolites, silicas, sulfates and / or calcium stearates as powdering agents.
  • spray-dried granules containing anionic surfactant are present in addition to spray-dried or granulated compounds which consist of carrier materials such as zeolite, crystalline sheet silicates, polymeric polycarboxylates, carbonates and optionally also silicates and with liquid to pasty or wax-like ingredients such as are impregnated with nonionic surfactants and / or foam inhibitors or conventional textile plasticizers.
  • carrier materials such as zeolite, crystalline sheet silicates, polymeric polycarboxylates, carbonates and optionally also silicates and with liquid to pasty or wax-like ingredients such as are impregnated with nonionic surfactants and / or foam inhibitors or conventional textile plasticizers.
  • Spray-dried granules containing anionic surfactants can be tabletted with zeolite-containing granules which are sprayed with nonionic surfactants and / or individual extrudates, for example extrudates containing enzyme or bleach activator, but also peroxy bleaching agents, using microwave technology. It is also possible to use various extrudates, for example those which have been produced by the process according to the earlier German application P 44 06 210.9, for microwave tableting to use. Compounds which have been produced by means of superheated steam drying or drying by means of microwave radiation can also be used as compounds.
  • At least one of several compounds with high anionic surfactant compounds is used which has anionic surfactant contents above 40% by weight, preferably up to above 90% by weight, and in particular advantageously by granulation with simultaneous drying possibility by a process which takes place in a fluidized bed, as described in international application W093 / 04162.
  • the compounds are connected to one another by local melting / sintering at the contact points.
  • the cavities that exist between the individual compounds before irradiation with microwaves bring about a high porosity of the resulting tablet and thus contribute to improving the dissolving properties of the tablet.
  • compounds which contain proportions of starting materials which are present in hydrated form. If these water-containing components are not present in the compounds or are not available in sufficient quantities for sintering, then so The compounds can be partially or completely coated with such substances in sufficient quantity before tabletting using microwave technology.
  • Enveloping substances used with particular preference are amorphous silicates such as metasilicates or water glasses, alkali carbonates and alkali sulfates, zeolites such as zeolite A, X, Y or P, in particular zeolite A and P or mixtures of these, but also organic components such as water-containing citrates, for example sodium citrate. dihydrate, or water-containing acetates, for example sodium acetate trihydrate.
  • These coating substances are advantageously introduced into the process in amounts of 1 to 30% by weight, based on the overall formulation.
  • the overall formulation consisting of the individual compounds and possibly further individual non-surfactant raw materials, which do not have to be present as a compound, is filled into a shaped body and irradiated with microwaves.
  • the irradiation leads to elevated temperatures and to the local sintering of the compounds at the contact points, the cavities in the molded body being retained, ie complete fusion of the compounds with one another is avoided.
  • the compounds themselves are therefore not burdened by higher temperatures.
  • This type of sintering leads to a surprisingly high breaking strength of the tablet, so that it can be handled and in particular transported without problems.
  • the invention provides that disintegrants are incorporated into the tablets, which cause the tablet to break open after it has come into contact with water.
  • Typical disintegrants which are preferably used in this process are, for example, citric acid or citrates, bicarbonates and carbonates, bisulfate, but also percarbonate. Due to the relatively low temperatures occurring in this process, it is possible to incorporate peroxy bleaching agents such as perborate and even percarbonate into the tablets.
  • Other preferred disintegrants are microcrystalline cellulose, sugar, in particular sorbitol, but also sheet silicates, in particular finely divided and swellable sheet silicates of the bentonite or sectite type. Disintegrants of the type described can be used in amounts of from 0.5 to 30% by weight, preferably from 1 to 25% by weight, based on the overall formulation. It is possible to use the explosives as a single raw material or also as a compound.
  • disintegrants are therefore used which were coated with known hydrophobic components before they were used.
  • paraffin oil or silicone oil are mentioned as coating substances, the use of which is also preferred.
  • the tablets can be post-treated with further substances, preferably ingredients of detergents or cleaning agents, and in particular ingredients that are sensitive to microwaves.
  • Enzymes and perfumes should be mentioned in particular.
  • the tablets can contain all of the usual ingredients of washing or cleaning agents in their overall formulation.
  • surfactants already described in detail, in particular inorganic and organic builder substances, components which prevent the textile fabric from being soiled again (soil repellents), and graying inhibitors, alkaline salts, bleaching agents and bleach activators, foam inhibitors, textile-softening substances, neutral salts and dyes and Contain fragrances.
  • aluminosilicates of the zeolite type are particularly suitable as inorganic builder substances.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite NaA in detergent quality.
  • zeolite X and zeolite P and mixtures of A, X and / or P are also suitable.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x 02 ⁇ + i'yH20, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates are those in which M represents sodium and x assumes the values 2 or 3.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons. and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000.
  • Biodegradable terpolymers are also particularly preferred, for example those which, as monomers, contain salts of acrylic acid and maleic acid and vinyl alcohol or Contain vinyl alcohol derivatives (P 4300772.4) or the salts of acrylic acid and 2-alkylallylsulfonic acid as monomers and sugar derivatives (DE 4221 381).
  • oxidation products of carboxyl group-containing polyglucosans and / or their water-soluble salts are described, for example, in international patent application WO-A-93/08251 or whose preparation is described, for example, in international patent application WO-A-93/16110.
  • polyaspartic acids or their salts and derivatives are also to be mentioned as further preferred builder substances.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0 280 223 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyolcarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the inorganic and / or organic builder substances are preferably used in the tablets in amounts of about 10 to 60% by weight, in particular 15 to 50% by weight.
  • the agents can also contain components which have a positive influence on the oil and fat washability from textiles. This effect is particularly evident when a textile is soiled, which has previously been washed several times with a detergent according to the invention and which is oil and contains fat-dissolving component, is washed.
  • the preferred oil- and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and in particular methyl hydroxypropyl cellulose with a proportion of methoxyl groups from 15 to 30% by weight and of hydroxypropoxyl groups from 1 to 15% by weight, in each case based on the non-ionic cellulose ether, and also the polymers of phthalic acid and / or terephthalic acid or their derivatives, known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic mo ⁇ differentiated derivatives of these. They can take effect in small quantities. Their content is therefore preferably 0.2 to 10% by weight and in particular up to 5% by weight.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing graying.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, e.g. degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the detergent, are preferred used.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates or mixtures of these;
  • alkali carbonate and amorphous alkali silicate especially sodium silicate with a molar ratio Na2 ⁇ : Si ⁇ 2 from 1: 1 to 1: 4.5, preferably from 1: 2 to 1: 3.5, are used.
  • the sodium carbonate content of the agents is preferably up to 20% by weight, advantageously between 5 and 15% by weight.
  • the content of sodium silicate in the compositions is generally up to 10% by weight and preferably between 2 and 8% by weight.
  • amorphous is also understood to mean “X-ray amorphous”. This means that the silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle. However, it is very well possible and can even lead to particularly good image properties that the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size 10 to a few hundred n.
  • X-ray amorphous silicates like some commercially available compounds made of carbonates and amorphous silicates, are suitable for partially or completely replacing the usual builder substances such as phosphate, zeolite and crystalline layer silicates. If such substances are used, their content can also exceed the amounts given above for carbonates and amorphous silicates. Contents of up to 40% by weight or even 60% by weight are entirely within the scope of the invention.
  • alkali metal carbonates can also be replaced by sulfur-free, 2 to 11 carbon atoms and, if appropriate, a further carboxyl and / or amino group and / or salts thereof.
  • the alkali metal carbonates be partially or completely replaced by glycine or glycinate.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H2O2-providing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid or diperdodecanedioic acid.
  • the salary of the The amount of bleaching agent is preferably 5 to 25% by weight and in particular 10 to 20% by weight, advantageously using perborate monohydrate and / or percarbonate.
  • bleach activators can be incorporated into the preparations.
  • these are N-acyl or O-acyl compounds which form organic peracids with H2O2, preferably N, N'-tetraacylated diamines, p- (alkanoyloxy) benzenesulfonate, also carboxylic anhydrides and esters of polyols, such as glucose pentaacetate.
  • Other known bleach activators are acetylated mixtures of sorbitol and mannitol, as described, for example, in European patent application EP-A-0 525 239.
  • the bleach activator content of the bleach-containing agents is in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylenediamine (TAED), 1,5-diacetyl-2,4-dioxo-hexahydro-1,5,5-triazine (DADHT) and acetylated sorbitol mannitol Mixtures (S0RMAN).
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of Ci8-C24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide. Mixtures of various foam inhibitors are also used with advantages, e.g. those made of silicone, paraffins or waxes.
  • the foam inhibitors, in particular silicone or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylene diamides are particularly preferred.
  • the salts of polyphosphonic acids which are preferably used are the neutral sodium salts of, for example, l-hydroxyethane-l, l-diphosphonate, Diethylenetriamine pentamethylene phosphonate or ethylenediaminetetramethylene phosphonate is used in amounts of 0.1 to 1.5% by weight.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymatic active ingredients obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but in particular mixtures containing cellulase, are of particular interest.
  • Peroxides or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the tablets or compounds can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly structured compounds which are used instead of the morpholino group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyryl type may be present, e.g.
  • tablets are produced which contain 15 to 40% by weight, preferably 18 to 35% by weight and in particular 20 to 30% by weight of anionic or anionic and nonionic surfactants, the Anionic surfactant content preferred is above 10% by weight and the weight ratio of anionic surfactants: nonionic surfactants is 5: 1 to 1: 2.
  • Particularly preferred anionic surfactants are alkyl benzene sulfonates and alkyl sulfates and soaps.
  • Preferred nonionic surfactants are ethoxylated Ci2-Ci8 fatty alcohols or oxo-alcohols and alkyl glycosides.
  • preferably manufactured tablets contain 10 to 60% by weight, preferably 15 to 50% by weight and in particular 20 to 40% by weight of builder substances such as zeolite A and / or zeolite P, crystalline layered silicates of the SKS-6 type ( R ) or amorphous or X-ray amorphous silicates and carbonate-silicate compounds with a correspondingly high calcium binding.
  • builder substances such as zeolite A and / or zeolite P, crystalline layered silicates of the SKS-6 type ( R ) or amorphous or X-ray amorphous silicates and carbonate-silicate compounds with a correspondingly high calcium binding.
  • tablets are produced which contain 40 to 60% by weight of compounds, 10 to 90% by weight of anionic surfactants, advantageously alkylbenzenesulfonates and / or alkyl sulfates, and 10 to 90% by weight .-% consist of builder substances, hydrated salts and / or disintegrants.
  • Further advantageous tablets additionally have compounds which are free of anionic surfactants and contain builder substances, advantageously zeolite A and / or zeolite P and 10 to 40% by weight of nonionic surfactants.
  • a tablet was produced from the compounds, powders and liquids listed below in accordance with the teaching of the international patent application PCT / EP94 / 01330.
  • a homogeneous overall mixture was produced from the components in a mixer, which was then filled into a shaped body and pre-pressed for 10 seconds at a pressure of 13 N / cm 2 (the force exerted on the circular surface was 35 N on one surface of 2.7 cm 2 ).
  • the microwave radiation was then carried out at 2450 MHz and 700 watts. The radiation lasted 7 seconds. A temperature of 60 ° C was not exceeded during the irradiation process.
  • the tablet had good breaking strength at pressures between 7.4 to 37 N / cm 2 .
  • the tablet also had a high rate of disintegration in water: Large parts of the tablet had disintegrated after only 1 minute; after 5 minutes the tablet was 100% disintegrated.
  • Percarbonate could also be used instead of the perborate. It was also possible to use the soap as separate soap granules containing more than 80% by weight of soap and also soda and polymeric polycarboxylates.
  • a tablet was produced from the compounds, powders and liquids listed below in accordance with the teaching of the international patent application PCT / EP94 / 01330.
  • a homogeneous total mixture was produced from the components in a mixer, which was then filled into a shaped body and pre-pressed for 10 seconds with a pressure of 2.6 N / cm 2 (the force exerted on the circular surface was 7 N on one surface of 2.7 cm 2 ).
  • the microwave radiation was then carried out at 2450 MHz and 700 watts. The radiation lasted 7 seconds. A temperature of 65 ° C was not exceeded during the irradiation process.
  • anionic surfactant compound consisting of 90.5% by weight
  • sodium silicate Na2 ⁇ : SO2, 1: 2.0 with 18% by weight water.
  • the tablet had good breaking strength at pressures between 7.4 to 22 N / cm 2 .
  • the tablet also had a high rate of disintegration in water: Large parts of the tablet had disintegrated after only 0.5 minutes; after 4 minutes the tablet was 100% disintegrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Aniontensid-haltige Wasch- oder Reinigungsmitteltabletten zeigen ein hervorragendes Löse- und Zerfallsverhalten in Wasser, wenn sie unter Anwendung der Mikrowellentechnik hergestellt werden und die anionischen Tenside in Form eines oder mehrerer Compounds in das Verfahren eingebracht werden.

Description

"Verfahren zur Herstellung von Wasch- oder Reinigungsmitteltabletten"
Die Erfindung betrifft ein Verfahren zur Herstellung tensidhaltiger Wasch¬ oder Reinigungsmitteltabletten unter Anwendung der Mikrowellentechnik.
Der Nachteil von herkömml chen Wasch- und Reinigungsmitteltabletten, ins¬ besondere von Waschmitteltabletten, die üblicherweise durch Verpressung hergestellt wurden, bestand darin, daß sich diese Tabletten aufgrund ihrer Kompaktheit nicht schnell genug lösten und die Aktivsubstanzen im Wasch¬ gang zu langsam freigesetzt wurden. Zusätzlich besaßen insbesondere Waschmitteltabletten eine zu geringe Zerfallsgeschwindigkeit.
Die ältere, nicht vorveröffentlichte internationale Anmeldung PCT/EP94/01330, auf deren Offenbarung ausdrücklich verwiesen wird, be¬ schreibt ausführlich die Herstellung von wasch- und reinigungsaktiven Ta¬ bletten unter Anwendung der Mikrowellentechnik, die eine extrem hohe Lö¬ segeschwindigkeit bzw. Zerfallsgeschwindigkeit aufweisen. Eine wesentliche Voraussetzung für die Herstellung von Tabletten aus pulverför igen oder granulären Rohstoffen unter Anwendung von Mikrowellen besteht darin, daß zumindest ein Teil dieser Ausgangsstoffe in hydratisierter Form vorliegt, wobei unter "hydratisiert" "hydratisiert unter bestimmten Bedingungen bezüglich Temperatur, Druck oder relativer Feuchtigkeit der Atmosphäre, welcher der Rohstoff ausgesetzt ist oder mit welcher der Rohstoff im Gleichgewicht steht" verstanden wird. Unter "Mikrowellen" wird im Rahmen dieser Erfindung der gesamte Frequenzbereich zwischen 3 und 300000 MHz verstanden, der also neben dem eigentlichen Mikrowellenbereich von ober¬ halb 300 MHz auch den Radiowellenbereich von 3 bis 300 MHz umfaßt. Mit Hilfe dieser Technik lassen sich sogenannte Makrosolids, die neben Ta¬ bletten beispielsweise auch Blöcke umfassen, herstellen, die üblicherweise bis zu 40 Gew.-% an Tensiden enthalten können. Falls einer der in sub¬ stantiellen Mengen eingesetzten Rohstoffe ein kristallines Schichtsilikat insbesondere vom Typ SKS-βW (kristallines Natriumdisilikat Handelspro¬ dukt der Hoechst AG, Deutschland) ist, kann der Tensidgehalt sogar bis zu 60 Gew.-% betragen. Weitere mögliche Inhaltsstoffe sind einerseits die Mikrowellen-aktiven hydratisierten anorganischen oder organischen Salze wie Alkaliphosphat, Alkalicarbonat, Alkalibicarbonat, Alkalisulfat und O 96/0615
- 2 -
Citrat, aber auch Zeolith und sogar Peroxybleichmittel wie Perborat oder Percarbonat. Diese werden bevorzugt in umhüllter Form eingesetzt.
Schwierigkeiten bestehen noch bei der Herstellung von Mikrowellen-Tablet¬ ten, welche Aniontenside in substantiellen Mengen, beispielsweise in Men¬ gen oberhalb 10 Gew.-% sowie anorganische Salze in Mengen unterhalb 60 Gew.-% enthalten. Derartige Tabletten lassen sich zwar technisch gemäß der Lehre der PCT/EP94/01330 herstellen; insbesondere Sulfat- und Sulfonat- haltige Aniontenside neigen jedoch in derartig hohen Konzentrationen zu Verbräunungen, wodurch zwar die Waschleistung nicht beeinträchtigt wird, welche jedoch vom Verbraucher nicht akzeptiert werden. Außerdem ver¬ schlechtert sich das Löseverhalten der Tabletten mit steigendem Tensid- gehalt.
Es wurde nun gefunden, daß das Löseverhalten tensidhaltiger Mikrowellen- Tabletten erhöht werden kann, indem ein wesentlicher Teil der Tenside nicht als Einzelrohstoff in die Tabletten eingearbeitet wird.
Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Herstellung aniontensidhaltiger Wasch- oder Reinigungsmitteltabletten, wobei diese unter Anwendung der Mikrowellentechnik hergestellt werden und die anio¬ nischen Tenside in Form eines oder mehrerer Compounds in das Verfahren eingebracht werden.
Der Einsatz von derartigen Tensidcompounds, auch von hochkonzentrierten Tensidcompounds mit Gehalten von bis zu etwa 95 Gew.-% an Tensiden bewirkt lokale Tensidkonzentrationsunterschiede in der Tablette, was sich nicht nur als Vorteil bei der Verarbeitung, sondern auch beim späteren Zerfall der Tablette in der Waschflotte auswirkt.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vor¬ zugsweise Cg-Ci3-Alkylbenzolsulfoπate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie bei¬ spielsweise aus Ci2-Cιβ-Monoolefinen mit end- oder innenständiger Doppel¬ bindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12- Ciß-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α- sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfett¬ säuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Un¬ ter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der U esterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sul¬ fierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesät¬ tigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myrist nsäure, Laurinsäure, Palmi- tinsäure, Stearinsäure oder Behensäure. Geht man dabei von Fetten und Ölen, also natürlichen Gemischen unterschiedlicher Fettsäureglycerinester aus, so ist es erforderlich, die Einsatzprodukte vor der Sulfierung in an sich bekannter Weise mit Wasserstoff weitgehend abzusättigen, d.h. auf lodzahlen kleiner 5, vorteilhafterweise kleiner 2 zu härten. Typische Beispiele geeigneter Einsatzstoffe sind Palmöl, Palmkernöl, Palmstearin, Olivenöl, Rüböl, Korianderöl, Sonnenblumenöl, Baumwollsaatöl, Erdnußöl, Leinöl, Lardöl oder Schweineschmalz. Aufgrund ihres hohen natürlichen An¬ teils an gesättigten Fettsäuren hat es sich jedoch als besonders vorteil¬ haft erwiesen, von Kokosöl, Palmkernöl oder Rindertalg auszugehen. Die Sulfierung der gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen oder der Mischungen aus Fettsäureglycerinestern mit lodzahlen kleiner 5, die Fettsäuren mit 6 bis 22 Kohlenstoffatomen enthalten, erfolgt vorzugsweise durch Umsetzung mit gasförmigem Schwefeltrioxid und anschließender Neu¬ tralisierung mit wäßrigen Basen, wie sie in der internationalen Patentan¬ meldung WO-A-91/09009 angegeben ist. Die Sulfierprodukte stellen ein kom¬ plexes Gemisch dar, das Mono-, Di- und Triglyceridsulfonate mit oc-stän- diger und/oder innenständiger Sulfonsäuregruppierung enthält. Als Neben¬ produkte bilden sich sulfonierte Fettsäuresalze, Glyceridsulfate, Glyce- rinsulfate, Glycerin und Seifen. Geht man bei der Sulfierung von ge- sättigten Fettsäuren oder gehärteten Fettsäureglycerinestergemischen aus, so kann der Anteil der α-sulfonierten Fettsäure-Disalze je nach Verfah¬ rensführung durchaus bis etwa 60 Gew.-% betragen.
Geeignete Tenside vom Sulfat-Typ sind die Schwefelsäuremonoester aus pri¬ mären Alkoholen natürlichen und synthetischen Ursprungs. Als Alk(en)yl- sulfate werden die Alkali- und insbesondere die Natriumsalze der Schwe¬ felsäurehalbester der Ci2-Ci8-Fettalkohole beispielsweise aus Kokosfett¬ alkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cιo-C2θ~0xoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petroche ischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci6-Ci8- Alk(en)ylsulfate insbesondere bevorzugt. Dabei kann es auch von besonderem Vorteil und insbesondere für maschinelle Waschmittel von Vorteil sein, Ci6-Cχ8-Alk(en)ylsulfate in Kombination mit niedriger schmelzenden Anion- tensiden und insbesondere mit solchen Aniontensiden, die einen niedrigeren Krafft-Punkt aufweisen und bei relativ niedrigen Waschtemperaturen von beispielsweise Raumtemperatur bis 40 °C eine geringe Kristallisationsnei¬ gung zeigen, einzusetzen. In einer bevorzugten Ausführungsform der Erfin¬ dung enthalten die Mittel daher Mischungen aus kurzkettigen und langkettigen Fettalkylsulfaten, vorzugsweise Ci2-Ci8-Fettalkylsulfate bzw. Mischungen aus Ci2-Ci4-Fettalkylsulfaten oder Ci2-Ci8-Fettalkylsulfaten mit Ci6-Cχ8-Fettalkylsulfaten und insbesondere Ci2-Ci6-Fettalkylsulfaten mit Ci6-Ci8-Fettalkylsulfaten. In einer weiteren bevorzugten Ausführungs¬ form der Erfindung werden jedoch nicht nur gesättigte Alkylsulfate, son¬ dern auch ungesättigte Alkenylsulfate mit einer Alkenylkettenlänge von vorzugsweise CIÖ bis C22 eingesetzt. Dabei sind insbesondere Mischungen aus gesättigten, überwiegend aus C15 bestehenden sulfierten Fettalkoholen und ungesättigten, überwiegend aus C Q bestehenden sulfierten Fettalko¬ holen bevorzugt, beispielsweise solche, die sich von festen oder flüssigen Fettalkoholmischungen des Typs HD-Ocenol (R) (Handelsprodukt des Anmel¬ ders) ableiten. Dabei sind Gewichtsverhältnisse von Alkylsulfaten zu Alkenylsulfaten von 10:1 bis 1:2 und insbesondere von etwa 5:1 bis 1:1 bevorzugt.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxy- lierten geradkettigen oder verzweigten C7-C2i-Alkohole, wie 2-Methyl-ver- zweigte Cg-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-Ci8-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Wasch¬ mitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobern- steinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernstein- säure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxy- lierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Cg- bis Cj8-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevor¬ zugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtioni¬ sche Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalko¬ holen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myr stinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Be- hensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 bis 100 Gew.-% aus gesät¬ tigten Ci2-C24-Fettsäureseifen und zu 0 bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind.
Die anionischen Tenside und Seifen können in Form ihrer Natrium-, Kalium¬ oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Außer anionischen Tensiden können in den Tabletten, gegebenenfalls auch in den aniontensidhaltigen Compounds auch nichtionische, kationische, zwit¬ terionische oder amphotere Tenside eingesetzt werden. Hierbei sind ins¬ besondere nichtionische Tenside bevorzugt.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhaf¬ terweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-Ci4-Alkohole mit 3 EO oder 4 EO, Cg-Cn-Alkohol mit 7 EO, Ci3-Ci5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-Ci8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12- Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Be¬ vorzugte Alkoholethoxylate weisen eine eingeengte HomologenVerteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Ten¬ siden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Bei¬ spiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R0(G) eingesetzt werden, in der R einen primären ge- radkettigen oder methylverzweigten, insbesondere in 2-Stellung methylver¬ zweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit an¬ deren nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vor¬ zugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung W0-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokos- alkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nicht¬ ionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylier¬ ten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
R3
I
R2-C0-N-[Z] (I)
in der R2C0 für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffato- men, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydro- xyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfol¬ gende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. - 8 -
In einer bevorzugten Ausführungsform der Erfindung werden aniontensidhal- tige Compounds eingesetzt, welche verschiedene Aniontenside - beispiels¬ weise Alkylsulfate und Alkylbenzolsulfonate und/oder Seife oder Alkylsul¬ fate und sulfierte Fettsäureglycerinester - und/oder Aniontenside in Kom¬ bination mit Niotensiden - beispielsweise Alkylsulfate und ethoxylierte Fettalkohole oder Alkylsulfate, Alkylbenzolsulfonate, ethoxylierte Fett¬ alkohole und/oder Alkylglykoside oder Alkylsulfate, Seife, ethoxylierte Fettalkohole und Glucamide - enthalten. Dabei handelt es sich vorzugsweise um Compounds, welche Aniontenside und Niotenside im Gewichtsverhältnis von 10:1 bis 1:1 enthalten.
Bevorzugt eingesetzte Compounds weisen einen Tensidgehalt von mindestens 10 Gew.-% auf. In einer weiteren bevorzugten Ausführungsform der Erfindung werden Compounds eingesetzt, welche mindestens 40 Gew.-%, vorzugsweise 60 bis 95 Gew.-%, bezogen auf das Compound, Aniontenside aufweisen.
Eine weitere bevorzugte Ausführungsform der Erfindung sieht dabei vor, daß in dem Verfahren mindestens 2 verschiedenartige Compounds eingesetzt wer¬ den. Beispielsweise ist es dabei möglich, Aniontenside und Niotenside da¬ bei weitestgehend räumlich voneinander zu trennen, also in verschiedenen Compounds unterzubringen. Niotensidhaltige und aniontensidfreie Compounds können beispielsweise 40 bis 70 Gew.-% der genannten Niotenside sowie Si¬ likate der bekannten Art, organische Buildersubstanzen wie polymere Polycarboxylate und/oder Phosphonate enthalten.
Besonders vorteilhafte Ausführungsformen der Erfindung sehen dabei vor, daß mindestens 35 Gew.-%, vorzugsweise mindestens 50 Gew.-% und insbeson¬ dere mindestens 70 Gew.-% der Gesamtrezeptur der Wasch- oder Reinigungs¬ mitteltablette aus einem oder mehreren verschiedenartigen Compounds be¬ stehen. Dabei kann ein Verfahren besonders vorteilhaft sein, bei dem sogar mindestens 75 Gew.-% und bis 100 Gew.-% der Gesamtrezeptur als Compound, das gegebenenfalls nachbehandelt wurde, vorgelegt werden.
Auf diese Weise lassen sich herkömmliche und handelsübliche Wasch- oder Reinigungsmittel, welche mindestens ein aniontensidhaltiges Compound ent¬ halten, auf die erfindungsgemäße Weise in Tabletten überführen. Beispiele hierfür sind sprühgetrocknete Waschmittel mit Schüttgewichten von etwa 300 bis 600 g/1, die in den sprühgetrockneten Anteilen vorzugsweise 5 bis 40 Gew.-% Aniontenside enthalten. Diese sprühgetrockneten Granulate können auch nachträglich mit weiteren Inhaltsstoffen von Wasch- oder Reinigungs¬ mitteln unter granulierenden Bedingungen besprüht oder abgepudert werden, wodurch das Schüttgewicht erhöht wird. Als bevorzugte flüssige Bestand¬ teile sind hierbei nichtionische Tenside, als Puderungsmittel beispiels¬ weise feinte lige Zeolithe, Kieselsäuren, Sulfate und/oder Calciumstearate zu nennen. In anderen bevorzugt verwendeten Wasch- oder Reinigungsmitteln liegen aniontensidhaltige sprühgetrocknete Granulate neben sprühgetrock¬ neten oder granulierten Compounds vor, welche aus Trägermaterialien wie Zeolith, kristallinen Schichtsilikaten, polymeren Polycarboxylaten, Car- bonaten und gegebenenfalls auch Silikaten bestehen und mit flüssigen bis pastenförmigen oder wachsartigen Inhaltsstoffen wie nichtionischen Tensi- den und/oder Schauminhibitoren oder üblichen Textilweichmachern impräg¬ niert sind.
In einer weiteren Ausführungsform der Erfindung werden nicht nur sprühge¬ trocknete Wasch- oder Reinigungsmittel, sondern auch granulierte oder ex- trudierte Wasch- oder Reinigungsmittel, welche beispielsweise nach den Verfahren gemäß den europäischen Patentanmeldungen EP-A-0 339 996, EP-A-0 420 317 oder den internationalen Patentanmeldungen W0-A-93/23523 oder WO-A-91/02047 hergestellt wurden, beansprucht.
Selbstverständlich ist es auch möglich und im Rahmen dieser Erfindung so¬ gar bevorzugt, nicht nur bereits derartige vorhandene Mittel in der ange¬ gebenen Art zu tablettieren, sondern separat hergestellte Compounds gege¬ benenfalls mit relativ geringen Mengen an Einzelkomponenten zu vermischen und mittels der Mikrowellentechnik zu tablettieren. So können sprühge¬ trocknete aniontensidhaltige Granulate mit zeolithhaltigen Granulaten, die mit nichtionischen Tensiden besprüht sind und/oder einzelnen Extrudaten, beispielsweise Enzym- oder Bleichaktivator-haltigen, aber auch Peroxy¬ bleichmittelhaltigen Extrudaten gemeinsam mittels Mikrowellentechnik ta¬ blettiert werden. Ebenso ist es möglich, auch verschiedene Extrudate, beispielsweise solche, die nach dem Verfahren gemäß der älteren deutschen Anmeldung P 44 06 210.9 hergestellt wurden, zur Mikrowellentablettierung einzusetzen. Ebenso können als Compounds auch solche eingesetzt werden, die mittels Heißdampftrocknung oder Trocknung mittels Mikrowellenbestrah¬ lung hergestellt wurden.
In einer bevorzugten Ausführungsform der Erfindung werden jedoch zumindest als eines von mehreren Compounds hoch aniontensidhaltige Compounds einge¬ setzt, welche Aniontensidgehalte oberhalb von 40 Gew.-%, vorzugsweise bis oberhalb von 90 Gew.-% aufweisen und insbesondere durch Granulierung mit gleichzeitiger Trocknungsmöglichkeit, vorteilhafterweise nach einem in einer Wirbelschicht ablaufenden Verfahren, wie es in der internationalen Anmeldung W093/04162 beschrieben ist, hergestellt wurden.
Werden die obengenannten Compound-haltigen Mischungen Mikrowellen gemäß der internationalen Patentanmeldung PCT/EP94/01330 ausgesetzt, so werden die Compounds durch ein lokales Aufschmelzen/Sintern an den Kontaktstellen untereinander verbunden. Die Hohlräume, die zwischen den einzelnen Com¬ pounds vor der Bestrahlung mit Mikrowellen vorliegen, bewirken ein hohe Porosität der entstandenen Tablette und tragen somit zur Verbesserung der Löseeigenschaften der Tablette bei.
Damit überhaupt ein lokales Sintern der Compounds möglich ist, muß zumin¬ dest ein Teil von ihnen Sintereigenschaften an der Oberfläche besitzen. Dazu ist es erforderlich, daß die Compounds selber oder deren Oberfläche genügend Wasser enthalten, so daß durch die Erhitzung dieses Wassers eine Verschmelzung der Kontaktstellen an den Compounds erfolgt. Gemäß der Lehre der internationalen Patentanmeldung PCT/EP94/01330 muß zumindest ein Teil der mit Mikrowellen zu bestrahlenden Mischung in hydratis erter Form vor¬ liegen, wobei unter "hydratisiert" "hydratisiert unter bestimmten Bedin¬ gungen bezüglich Temperatur, Druck oder relativer Feuchtigkeit der Atmo¬ sphäre, welcher der Rohstoff ausgesetzt ist oder mit welcher der Rohstoff im Gleichgewicht steht" verstanden wird.
In einer Ausführungsform der Erfindung werden deshalb Compounds einge¬ setzt, welche Anteile an Ausgangsstoffen enthalten, die in hydratisierter Form vorliegen. Sind diese wasserhaltigen Komponenten in den Compounds nicht oder für die Sinterung nicht in ausreichender Menge vorhanden, so können die Compounds vor der Tablettierung mittels Mikrowellentechnik mit derartigen Substanzen in ausreichender Menge teilweise oder ganz umhüllt werden. Besonders bevorzugt eingesetzte Umhüllungssubstanzen sind dabei amorphe Silikate wie Metasilikate oder Wassergläser, Alkalicarbonate und Alkalisulfate, Zeolithe wie Zeolith A, X, Y oder P, insbesondere Zeolith A und P bzw. Mischungen aus diesen, aber auch organische Komponenten wie wasserhaltige Citrate, beispielsweise Natriumcitrat-dihydrat, oder was¬ serhaltige Acetate, beispielsweise Natriumacetat-trihydrat. Diese Umhül¬ lungssubstanzen werden vorteilhafterweise in Mengen von 1 bis 30 Gew.-%, bezogen auf die Gesamtrezeptur, in das Verfahren eingebracht.
Die Gesamtrezeptur, bestehend aus den einzelnen Compounds sowie ggf. wei¬ teren einzelnen nicht-tensidischen Rohstoffen, welche nicht als Compound vorliegen müssen, wird gemäß PCT/EP94/01330 in einen Formkörper gefüllt und mit Mikrowellen bestrahlt. Die Bestrahlung führt dabei zu erhöhten Temperaturen und zu der örtlichen Versinterung der Compounds an den Kon¬ taktstellen, wobei die Hohlräume im Formkörper erhalten bleiben, also eine vollständige Verschmelzung der Compounds untereinander vermieden wird. Die Compounds selber werden also nicht durch höhere Temperaturen belastet. Diese Art der Sinterung führt zu einer überraschend hohen Bruchfestigkeit der Tablette, so daß diese ohne Probleme gehandhabt und insbesondere auch transportiert werden kann.
Sollten trotzdem bei diesem Verfahren auch in Abhängigkeit von der Rezep¬ tur Tabletten resultieren, die keine ausreichende Stabilität und Festig¬ keit besitzen, so kann dieses Problem dadurch entstanden sein, daß die Fülldichte der Form nicht hoch genug war, also die Compounds durch ein übliches Befüllen der Form keine ausreichende Menge an Kontaktstellen un¬ tereinander aufwiesen. In diesem Fall kann durch ein Verfahren Abhilfe geleistet werden, wobei die gefüllte Form vor der Bestrahlung mit Mikro¬ wellen einer Vorverpressung mit geringem Druck unterworfen wird. Hierzu sind alle die dem Fachmann bekannten (Vor-)Verpressungsverfahren geeignet. Die Vorverpressungen werden vorzugsweise bei Drucken von 0,1 bis 5 bar und insbesondere bei 0,1 bis 2 bar, entsprechend 1 bis 50 N/cm^ bzw. 1 bis 20 N/rn^, durchgeführt. Hierdurch werden genügend große Kontaktstellen der einzelnen Compounds in der Tablette erzielt. O 96/06156
- 12 -
In einer weiteren bevorzugten Ausführungsform sieht die Erfindung vor, daß in die Tabletten Sprengmittel eingebaut werden, welche ein Aufbrechen der Tablette, nachdem diese mit Wasser in Berührung gekommen ist, bewirken. Typische Sprengmittel, die in diesem Verfahren bevorzugt eingesetzt wer¬ den, sind beispielsweise Citronensäure bzw. Citrate, Bicarbonate und Car- bonate, Bisulfat, aber auch Percarbonat. Aufgrund der in diesem Verfahren auftretenden relativ niedrigen Temperaturen ist es möglich, Peroxybleich¬ mittel wie Perborat und sogar Percarbonat in die Tabletten einzuarbeiten. Weitere bevorzugte Sprengmittel sind mikrokristalline Cellulose, Zucker, insbesondere Sorbit, aber auch Schichtsilikate, insbesondere feinteilige und quellfähige Schichtsilikate von der Art der Bentonite oder S ektite. Sprengmittel der geschilderten Art können dabei in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-%, bezogen auf die Gesamtrezeptur, eingesetzt werden. Dabei ist es möglich, die Sprengmittel als Einzelroh- stoff oder ebenfalls als Compound einzusetzen.
Sollte die Restfeuchte in der einzusetzenden Gesamtmischung einen Wert von etwa 5 bis 10 Gew.-% übersteigen, so empfiehlt es sich, die Sprengmittel vor dieser Feuchtigkeit zu schützen. In einer bevorzugten Ausführungsform der Erfindung werden deshalb Sprengmittel eingesetzt, die vor ihrem Ein¬ satz mit bekannten hydrophoben Komponenten umhüllt wurden. Lediglich bei¬ spielsweise werden an dieser Stelle als Umhüllungssubstanzen Paraffinöl oder Silikonöl genannt, deren Einsatz auch bevorzugt ist.
Die Tabletten können - wie bereits in der älteren Anmeldung PCT/EP94/01330 beschrieben - mit weiteren Substanzen, vorzugsweise Inhaltsstoffen von Wasch- oder Reinigungsmitteln und insbesondere InhaltsStoffen, welche ge¬ genüber Mikrowellen empfindlich sind, nachbehandelt werden. Hierbei sind insbesondere Enzyme und Parfüme zu nennen. Als besonders vorteilhaft ist aber anzusehen, daß Enzyme aufgrund der besseren möglichen Temperatur¬ steuerung bzw. der geringeren Temperaturbelastung der Gesamtmischung bei der erfindungsgemäßen Vorgehensweise auch mit bestrahlt werden können und nicht mehr nachträglich zugesetzt werden müssen.
Die Tabletten können alle üblichen Inhaltsstoffe von Wasch- oder Reini¬ gungsmitteln in ihrer Gesamtrezeptur enthalten. Zu diesen zählen neben den bereits ausführlich beschriebenen Tensiden insbesondere anorganische und organische Buildersubstanzen, Komponenten, welche die Wiederanschmutzung des textilen Gewebes verhindern (soil repellents), und Vergrauungsinhibi- toren, alkalische Salze, Bleichmittel und Bleichaktivatoren, Schauminhi¬ bitoren, textilwe chmachende Stoffe, neutrale Salze sowie Färb- und Duft¬ stoffe enthalten.
Als anorganische Buildersubstanzen eignen sich neben den herkömmlichen Phosphaten insbesondere Alumosilikate vom Zeolith-Typ. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith NaA in Waschmittelqualität. Geeignet sind jedoch auch Zeolith X und Zeolith P sowie Mischungen aus A, X und/oder P.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSix02χ+i'yH20, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsil kate werden beispiels¬ weise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Be¬ vorzugte kristalline Schichtsilikate sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ'-Natriumdisilikate a2Si2θ5*yH2θ bevorzugt.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronen- säure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Ein¬ satz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Ci- tronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zucker¬ säuren und Mischungen aus diesen.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Ge¬ eignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Malein¬ säure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Ma¬ leinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Insbesondere bevorzugt sind auch biologisch abbaubare Terpolymere, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Deri- vate (P 4300772.4) oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate (DE 4221 381) enthalten.
Weitere geeignete Buildersysteme sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung W0-A-93/16110 beschrieben wird.
Ebenso sind als weitere bevorzugte Buildersubstanzen auch die bekannten Polyasparaginsäuren bzw. deren Salze und Derivate zu nennen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umset¬ zung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der euro¬ päischen Patentanmeldung EP-A-0 280 223 beschrieben erhalten werden kön¬ nen. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutar- aldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäu¬ ren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Die anorganischen und/oder organischen Buildersubstanzen werden vorzugs¬ weise in Mengen von etwa 10 bis 60 Gew.-%, insbesondere von 15 bis 50 Gew.-%, in den Tabletten eingesetzt.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wird. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Cellulose- ether wie Methylcellulose und insbesondere Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxy- propoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtioni¬ schen Celluloseether, sowie die aus dem Stand der Technik bekannten Poly¬ mere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Deriva¬ ten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionische mo¬ difizierten Derivaten von diesen. Sie können bereits in geringen Mengen wirksam werden. Ihr Gehalt beträgt deshalb vorzugsweise 0,2 bis 10 Gew.-% und insbesondere bis 5 Gew.-%.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu ver¬ hindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur ge¬ eignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren SchwefelSäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorgani¬ sche Salze wie Bicarbonate, Carbonate, amorphe Silikate oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2θ : Siθ2 von 1:1 bis 1:4,5, vorzugsweise von 1:2 bis 1:3,5, eingesetzt. Der Gehalt der Mittel an Natriumcarbonat beträgt dabei vorzugsweise bis zu 20 Gew.-%, vorteilhafterweise zwischen 5 und 15 Gew.-%. Der Gehalt der Mittel an Na¬ triumsilikat beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%.
Unter dem Begriff "amorph" wird im Rahmen der Erfindung auch "röntgen- amorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexpe- rimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es ist jedoch sehr wohl möglich und kann sogar zu besonders guten BuiIdereigenschaften führen, daß die Silikatpar¬ tikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert n aufweisen.
Diese röntgenamorphen Silikate sind ebenso wie einige im Handel erhält¬ lichen Compounds aus Carbonaten und amorphen Silikaten geeignet, die üb¬ lichen Buildersubstanzen wie Phosphat, Zeolith und kristalline Schichtsi¬ likate teilweise oder ganz zu ersetzen. Werden derartige Substanzen ein¬ gesetzt, so kann ihr Gehalt auch über die oben angegebenen Mengen für Carbonate und amorphe Silikate hinausgehen. Hierbei liegen Gehalte bis 40 Gew.-% oder sogar 60 Gew.-% durchaus im Rahmen der Erfindung.
Nach der Lehre der älteren deutschen Patentanmeldung P 43 19578.4 können Alkalicarbonate auch durch schwefelfreie, 2 bis 11 Kohlenstoffatome und gegebenenfalls eine weitere Carboxyl- und/oder Am nogruppe aufweisende Aminosäuren und/oder deren Salze ersetzt werden. Im Rahmen dieser Erfin¬ dung ist es dabei bevorzugt, daß ein teilweiser bis vollständiger Aus¬ tausch der Alkalicarbonate durch Glycin bzw. Glycinat erfolgt.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbin¬ dungen haben das Natriumperborattetrahydrat und das Natriumperboratmono- hydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind bei¬ spielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate so¬ wie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Per- oxophthalate, Diperazelainsäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbe¬ sondere 10 bis 20 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat und/oder Percarbonat eingesetzt werden.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetra- acylierte Diamine, p-(Alkanoyloxy)benzolsulfonat ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patent¬ anmeldung EP-A-0 525 239 beschrieben werden. Der Gehalt der bleichmittel- haltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vor¬ zugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N' ,N'-Tetra- acetylethylendiamin (TAED), l,5-Diacetyl-2,4-dioxo-hexahydro-l,3,5-triazin (DADHT) und acetylierte Sorbitol-Mannitol-Mischungen (S0RMAN).
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Ci8-C24-Fettsäuren aufweisen. Geeignete nicht- tensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraf¬ fine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemi¬ sche aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Sili¬ konen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylen- diamiden bevorzugt.
Als Salze von Polyphosphonsäuren werden vorzugsweise die neutral reagie¬ renden Natriumsalze von beispielsweise l-Hydroxyethan-l,l-diphosphonat, Diethylentriaminpentamethylenphosphonat oder Ethylendiamintetramethylen- phosphonat in Mengen von 0,1 bis 1,5 Gew.-% verwendet.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus lichenifor- mis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugs¬ weise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischun¬ gen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere je¬ doch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxi- dasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der An¬ teil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Die Tabletten oder Compounds können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Ge¬ eignet sind z.B. Salze der 4,4'- Bis(2-anilino-4-morpholino-l,3,5-triazinyl-6-amino)stilben-2,2'-disulfo- nsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'- Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2- sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
In einer bevorzugten Ausführungsform der Erfindung werden Tabletten her¬ gestellt, welche 15 bis 40 Gew.-%, vorzugsweise 18 bis 35 Gew.-% und ins¬ besondere 20 bis 30 Gew.-% anionische oder anionische und nichtionische Tenside enthalten, wobei der Gehalt an anionischen Tensiden vorzugsweise oberhalb von 10 Gew.-% liegt und das GewichtsVerhältnis Aniontenside : Niotensiden 5:1 bis 1:2 beträgt. Besonders bevorzugte anionische Tenside sind dabei Alkylbenzolsulfonate und Alkylsulfate sowie Seifen. Bevorzugte nichtionische Tenside sind ethoxylierte Ci2-Ci8-Fettalkohole oder -Oxo- alkohole sowie Alkylglykoside. Des weiteren enthalten bevorzugt herge¬ stellte Tabletten 10 bis 60 Gew.-%, vorzugsweise 15 bis 50 Gew.-% und insbesondere 20 bis 40 Gew.-% Buildersubstanzen wie Zeolith A und/oder Zeolith P, kristalline Schichtsilikate vom Typ SKS-6(R) oder amorphe bzw. röntgenamorphe Silikate sowie Carbonat-Silikat-Compounds mit entsprechend hohem Calciumbinde ermögen.
In einer weiteren bevorzugten Ausführungsform der Erfindung werden Ta¬ bletten hergestellt, welche 40 bis 60 Gew.-% Compounds enthalten, die zu 10 bis 90 Gew.-% aus Aniontensiden, vorteilhafterweise aus Alkylbenzolsulfonaten und/oder Alkylsulfaten, sowie zu 10 bis 90 Gew.-% aus Buildersubstanzen, hydratisierten Salzen und/oder Sprengmitteln be¬ stehen.
Weitere vorteilhafte Tabletten weisen zusätzlich Compounds auf, welche aniontensidfrei sind und Buildersubstanzen, vorteilhafterweise Zeolith A und/oder Zeolith P sowie 10 bis 40 Gew.-% Niotenside enthalten.
Beispiele
Beispiel 1:
Aus den unten aufgeführten Compounds, Pulvern und Flüssigkeiten wurde ge¬ mäß der Lehre der internationalen Patentanmeldung PCT/EP94/01330 eine Ta¬ blette hergestellt. Dazu wurde in einem Mischer aus den Bestandteilen ein homogenes Gesamtgemisch hergestellt, welches anschließend in einen Form¬ körper gefüllt und 10 Sekunden mit einem Druck von 13 N/cm2 vorverpreßt wurde (die auf die Kreisfläche ausgeübte Kraft betrug 35 N auf einer Flä¬ che von 2,7 cm2). Anschließend erfolgte die Mikrowellenbestrahlung bei 2450 MHz und 700 Watt. Die Bestrahlung dauerte 7 Sekunden. Eine Temperatur von 60 °C wurde während des Bestrahlungsvorganges nicht überschritten.
Zusammensetzung:
3 Gew.-% An ontensid-Compound (bestehend aus 90,5 Gew.-%
Ci2~Ci8-Alkylsulfat, 5 Gew.-% Natriumsulfat, Rest Wasser)
41 Gew.-% eines sprühgetrockneten Granulats (bestehend aus 10 Gew.-%
Natriumdodecylbenzolsulfonat, 3 Gew.-% Ci2-Ci8-Natriumfettsäure- seife, 1,5 Gew.-% Taigfettalkohol mit 5 Ethylenoxid-Gruppen, 60 Gew.-% Zeolith (berechnet als wasserfreie Aktivsubstanz), 5 Gew.-° Natriumcarbonat, 2,5 Gew.-% Sulfat und sonstigen Salzen aus Lö¬ sungen und Rohstoffen sowie 18 Gew.-% Wasser)
3 Gew.-% eines granulären Schauminhibitors auf Basis von Silikonöl (15 Gew.-%ig)
14 Gew.-% Natriumperboratmonohydrat
7 Gew.-% eines granulären Bleichaktivators auf Basis Tetraacetylethylendiamin
1 Gew.-% Natriumcarbonat (kalzinierte Soda)
1 Gew.- Kieselsäure
2 Gew.-% Zeolith-Pulver
I Gew.-% copolymeres Salz der Acrylsäure und der Maleinsäure
3 Gew.-% einer 30-%igen wäßrigen Lösung dieses Copolymeren
II Gew.-% Natriumhydrogencarbonat 9 Gew.-% Citronensäure
1 Gew.- eines Enzymgranulats auf Basis Protease
2 Gew.-% Ci2-Ci8-Alkohol mit 7 Ethylenoxid-Gruppen 1 Gew.-% Parfüm
Die Tablette wies eine gute Bruchfestigkeit bei Drucken zwischen 7,4 bis 37 N/cm2 auf.
Die Tablette wies außerdem eine hohe Zerfallsgeschwindigkeit in Wasser auf: Bereits nach 1 Minute waren große Teile der Tablette zerfallen; nach 5 Minuten war die Tablette zu 100 % zerfallen.
Anstelle des Perborats konnte auch Percarbonat eingesetzt werden. Ebenso war es möglich, die Seife als separates Seifengranulat, enthaltend mehr als 80 Gew.-% Seife und weiterhin Soda und polymere Polycarboxylate, ein¬ zusetzen.
Beispiel 2:
Aus den unten aufgeführten Compounds, Pulvern und Flüssigkeiten wurde ge¬ mäß der Lehre der internationalen Patentanmeldung PCT/EP94/01330 eine Ta¬ blette hergestellt. Dazu wurde in einem Mischer aus den Bestandteilen ein homogenes Gesamtgemisch hergestellt, welches anschließend in einen Form¬ körper gefüllt und 10 Sekunden mit einem Druck von 2,6 N/cm2 vorverpreßt wurde (Die auf die Kreisfläche ausgeübte Kraft betrug 7 N auf einer Fläche von 2,7 cm2). Anschließend erfolgte die Mikrowellenbestrahlung bei 2450 MHz und 700 Watt. Die Bestrahlung dauerte 7 Sekunden. Eine Temperatur von 65 °C wurde während des Bestrahlungsvorganges nicht überschritten.
Zusammensetzung:
3 Gew.-% Aniontensid-Compound (bestehend aus 90,5 Gew.-%
Cj2-Ci8-Alkylsulfat, 5 Gew.-% Natriumsulfat, Rest Wasser)
48 Gew.-% eines sprühgetrockneten Granulats (bestehend aus 10,3 Gew.-%
Natriumdodecylbenzolsulfonat, 2,9 Gew.-% Ci2-Ci8-Natriumfett- säureseife, 1,5 Gew.-% Taigfettalkohol mit 5 Ethylenoxid-Gruppen, 56,4 Gew.-% Zeolith (berechnet als wasserfreie Aktivsubstanz), 3,4 Gew.-% Natriumcarbonat, 2,3 Gew.-% Polyvinylpyrrolidon, 5,4 Gew.-% copolymeres Salz der Acrylsäure und der Maleinsäure, 1 Gew.-% sonstigen Salzen aus Lösungen und Rohstoffen sowie 16,8 Gew.-% Wasser)
3 Gew.-% eines granulären Schauminhibitors auf Basis von Silikonöl (15 Gew.-%ig)
3 Gew.- Natriumcarbonat (kalzinierte Soda)
1 Gew.-% Kieselsäure
3 Gew.-% Zeolith-Pulver
2 Gew.-% copolymeres Salz der Acrylsäure und der Maleinsäure 11 Gew.-% Natriumhydrogencarbonat
14 Gew.-% Natriumeitrat
1 Gew.-% eines Enzymgranulats auf Basis Protease
5 Gew.-% Ci2-Ci8~Alkohol mit 7 Ethylenoxid-Gruppen
1 Gew.- Parfüm
5 Gew.-% Natriumsilikat (Na2θ : SO2, 1 : 2,0 mit 18 Gew-.% Wasser).
Die Tablette wies eine gute Bruchfestigkeit bei Drucken zwischen 7,4 bis 22 N/cm2 auf.
Die Tablette wies außerdem eine hohe Zerfallsgeschwindigkeit in Wasser auf: Bereits nach 0,5 Minuten waren große Teile der Tablette zerfallen; nach 4 Minuten war die Tablette zu 100 % zerfallen.

Claims

Patentansprüche
1. Verfahren zur Herstellung aniontensidhaltiger Wasch- oder Reinigungs- mitteltabletten, dadurch gekennzeichnet, daß diese unter Anwendung der Mikrowellentechnik hergestellt werden und die anionischen Tenside in Form eines oder mehrerer Compounds in das Verfahren eingebracht wer¬ den.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aniontensid¬ haltige Compounds eingesetzt werden, die verschiedene Aniontenside und/oder Aniontenside in Kombination mit Niotensiden enthalten.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß minde¬ stens 2 verschiedenartige Compounds eingesetzt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens 35 Gew.-%, vorzugsweise mindestens 50 Gew.-% und ins¬ besondere mindestens 70 Gew.-% der Gesamtrezeptur der Wasch- oder Reinigungsmitteltablette aus einem oder mehreren verschiedenenartigen Compounds bestehen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Compounds eingesetzt werden, die Ausgangsstoffe enthalten, welche in hydratisierter Form vorliegen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein, mehrere oder alle Compounds vor der Tablettierung mittels Mikrowellentechnik mit hydratisierten Substanzen, vorzugsweise mit amorphen Alkalisilikaten, Alkalicarbonaten und Bicarbonaten, Alkali¬ sulfaten und Bisulfaten, Zeolith, Citraten und Acetaten teilweise oder ganz umhüllt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Umhül¬ lungsmaterialien in Mengen von 1 bis 30 Gew.- , bezogen auf die Ge¬ samtrezeptur, eingesetzt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die gefüllte Form vor der Bestrahlung mit Mikrowellen einer Vor¬ verpressung unterworfen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Sprengmittel in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% eingesetzt werden, die ein Aufbrechen der Tablette be¬ wirken, nachdem diese mit Wasser in Berührung gekommen sind.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß diese Spreng¬ mittel in umhülHer Form eingesetzt werden, wobei Paraffinöle und Si¬ likonöle als Umhüllungsmaterialien bevorzugt sind.
PCT/EP1995/003169 1994-08-19 1995-08-10 Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten WO1996006156A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019970701086A KR970705629A (ko) 1994-08-19 1995-08-10 세정제 또는 청정제 타블렛의 제조 방법(process for producing tablets of washing or cleaning agents)
DE59504349T DE59504349D1 (de) 1994-08-19 1995-08-10 Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten
US08/793,021 US5866531A (en) 1994-08-19 1995-08-10 Process for the production of detergent or cleaning tablets
JP8507747A JPH10504349A (ja) 1994-08-19 1995-08-10 洗浄または清浄錠剤の製法
EP95929834A EP0777721B1 (de) 1994-08-19 1995-08-10 Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4429550A DE4429550A1 (de) 1994-08-19 1994-08-19 Verfahren zur Herstellung von Wasch- oder Reinigungsmitteltabletten
DEP4429550.2 1994-08-19

Publications (1)

Publication Number Publication Date
WO1996006156A1 true WO1996006156A1 (de) 1996-02-29

Family

ID=6526155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003169 WO1996006156A1 (de) 1994-08-19 1995-08-10 Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten

Country Status (8)

Country Link
US (1) US5866531A (de)
EP (1) EP0777721B1 (de)
JP (1) JPH10504349A (de)
KR (1) KR970705629A (de)
AT (1) ATE173758T1 (de)
DE (2) DE4429550A1 (de)
ES (1) ES2126310T3 (de)
WO (1) WO1996006156A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828000A1 (de) * 1996-09-05 1998-03-11 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung tensidhaltiger Formkörper mit Mikrowellenstrahlung
EP0838519A1 (de) * 1996-10-22 1998-04-29 Unilever Plc Wasserenthärtende Zusammensetzungen und Waschmittelzusammensetzungen
US5914309A (en) * 1994-11-07 1999-06-22 Henkel-Ecolab Gmbh & Co. Ohg Process for the production of detergent tablets by microwave and hot air treatment
WO2000015752A2 (de) * 1998-09-10 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von wasch- oder reinigungsmittelformkörpern
WO2000022089A1 (en) * 1998-10-09 2000-04-20 Unilever Plc Water-softening and detergent compositions
WO2000022088A1 (en) * 1998-10-09 2000-04-20 Unilever Plc Water-softening and detergent compositions
US6093688A (en) * 1998-04-15 2000-07-25 Unilever Home & Personal Care Usa Water softening and detergent compositions
EP1043389A1 (de) * 1999-03-29 2000-10-11 DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. Sprengmittelgranulat enthaltende Waschmitteltabletten
EP1043388A1 (de) * 1999-03-29 2000-10-11 DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. Sprengmittelgranulat enthaltende Geschirrspülmaschinenreinigungstabletten
US6221832B1 (en) 1998-11-11 2001-04-24 Stockhausen Gmbh & Co. Kg Compacted granulate, process for making same and use as disintegrating agent for pressed detergent tablets, cleaning agent tablets for dishwashers, water softening tablets or scouring salt tablets
US6232285B1 (en) 1998-11-11 2001-05-15 Stockhausen Gmbh & Co. Kg Compacted granulate, process for making same and use as disintegrating agent for pressed detergent tablets, cleaning agent tablets for dishwashers, water softening tablets and scouring salt tablets
US6410500B1 (en) 1997-12-30 2002-06-25 Henkel Kommanditgesellschaft Auf Aktien Moulded body dishwasher detergents with soil release polymers
US6506720B1 (en) 1997-03-13 2003-01-14 Henkel Kommanditgesellschaft Auf Aktien Process for preparing household detergent or cleaner shapes
US6992056B1 (en) 1997-12-30 2006-01-31 Henkel Kgaa Process for preparing detergent tablets having two or more regions
US7008912B1 (en) 1997-03-11 2006-03-07 Henkel Kgaa Pressed piece which disintegrates in liquids
EP1261686B1 (de) * 2000-03-04 2016-06-15 Henkel AG & Co. KGaA Mehrphasige wasch- und reinigungsmittelformkörper mit nicht-gepressten anteile

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601840A1 (de) * 1996-01-19 1997-07-24 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
EP0881282B2 (de) * 1997-05-27 2009-06-03 The Procter & Gamble Company Tabletten und Verfahren zu deren Herstellung
ES2178273T5 (es) 1997-10-22 2011-02-25 Unilever Plc Composiciones detergentes en forma de comprimidos.
EP1146114A4 (de) * 1999-01-18 2004-06-02 Kao Corp Waschmittelzusammensetzung mit hohem schüttgewicht
AU2110500A (en) * 1999-02-05 2000-08-25 Unilever Plc Dish washing process and compositions relating thereto
JP3352977B2 (ja) * 1999-06-15 2002-12-03 花王株式会社 固形状洗剤
DE19941934A1 (de) * 1999-09-03 2001-03-15 Cognis Deutschland Gmbh Detergentien in fester Form
DE19942287A1 (de) * 1999-09-04 2001-03-15 Cognis Deutschland Gmbh Formkörper mit verbesserter Wasserlöslichkeit
US6541441B2 (en) * 1999-12-01 2003-04-01 Jose Alejandro Mumoli Single-dose soap unit and method
DE10031619A1 (de) * 2000-06-29 2002-01-10 Cognis Deutschland Gmbh Tensidgranulate mit verbesserter Auflösegeschwindigkeit
JP3604623B2 (ja) 2000-10-23 2004-12-22 花王株式会社 アニオン界面活性剤粉粒体の製造方法
DE10125441A1 (de) * 2001-05-25 2002-12-05 Henkel Kgaa Verfahren und benötigte Zusätze zur Erhöhung der Stabilität von Tabletten
US7233550B2 (en) * 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US6669929B1 (en) * 2002-12-30 2003-12-30 Colgate Palmolive Company Dentifrice containing functional film flakes
DE10327682A1 (de) * 2003-06-20 2005-01-05 Bayer Chemicals Ag Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
GB0422026D0 (en) * 2004-10-05 2004-11-03 Unilever Plc Laundry product
US20070148213A1 (en) * 2005-12-22 2007-06-28 Sayed Ibrahim Film containing compositions
DE102006047619B4 (de) * 2006-10-09 2008-11-13 Clariant International Limited Verfahren zur Herstellung basischer Fettsäureamide
DE102006047617B4 (de) * 2006-10-09 2008-11-27 Clariant International Limited Verfahren zur Herstellung basischer (Meth)acrylamide
DE102008017216B4 (de) * 2008-04-04 2013-08-14 Clariant International Ltd. Kontinuierliches Verfahren zur Herstellung von Fettsäureamiden
DE102009031059A1 (de) 2009-06-30 2011-01-05 Clariant International Ltd. Vorrichtung zur kontinuierlichen Durchführung chemischer Reaktionen bei hohen Temperaturen
DE102009042523B4 (de) 2009-09-22 2012-02-16 Clariant International Ltd. Vorrichtung und Verfahren zur kontinuierlichen Durchführung heterogen katalysierter chemischer Reaktionen bei hohen Temperaturen
DE102009042522A1 (de) 2009-09-22 2011-04-07 Clariant International Ltd. Kontinuierliches Umesterungsverfahren
DE102010056565A1 (de) 2010-12-30 2012-07-05 Clariant International Ltd. Verfahren zur Modifizierung Hydroxylgruppen tragender Polymere
DE102010056564A1 (de) 2010-12-30 2012-07-05 Clariant International Limited Hydroxylgruppen und Estergruppen tragende Polymere und Verfahren zu ihrer Herstellung
CN106833934B (zh) * 2017-01-16 2020-04-10 广州立白企业集团有限公司 含酶片状洗涤剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327956A1 (de) * 1973-06-01 1974-12-19 Henkel & Cie Gmbh Verfahren zur herstellung von wasserloesliche hydratisierte salze enthaltenden granulaten, insbesondere wasch- und reinigungsmittelgranulaten
US4118333A (en) * 1975-10-20 1978-10-03 Colgate-Palmolive Company Manufacture of particulate detergents
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
WO1994025563A1 (en) * 1993-05-05 1994-11-10 Henkel-Ecolab Gmbh & Co. Ohg Process for consolidating particulate solids and cleaning products therefrom

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894912A (en) * 1954-09-21 1959-07-14 Lever Brothers Ltd Isethionate detergent bar
BE617684A (de) * 1961-05-15
GB1407997A (en) * 1972-08-01 1975-10-01 Procter & Gamble Controlled sudsing detergent compositions
JPS58217598A (ja) * 1982-06-10 1983-12-17 日本油脂株式会社 洗剤組成物
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4885108A (en) * 1986-08-12 1989-12-05 Colgate-Palmolive Company Method of shaping of soap bar
DE3706036A1 (de) * 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
US4867899A (en) * 1987-11-30 1989-09-19 Colgate-Palmolive Company Sodium monoglyceride sulfate detergent composition bar and process for manufacture thereof
CA1323277C (en) * 1988-04-29 1993-10-19 Robert Donaldson Process for preparing detergent compositions
DE3914131A1 (de) * 1989-04-28 1990-10-31 Henkel Kgaa Verwendung von calcinierten hydrotalciten als katalysatoren fuer die ethoxylierung bzw. propoxylierung von fettsaeureestern
DE4010533A1 (de) * 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
WO1991002047A1 (de) * 1989-08-09 1991-02-21 Henkel Kommanditgesellschaft Auf Aktien Herstellung verdichteter granulate für waschmittel
GB8922018D0 (en) * 1989-09-29 1989-11-15 Unilever Plc Detergent compositions and process for preparing them
DE3941365A1 (de) * 1989-12-15 1991-06-20 Henkel Kgaa Verfahren zur herstellung von salzen sulfierter fettsaeureglycerinester
DE69126778T2 (de) * 1991-07-31 1998-01-02 Ausimont Spa Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes
DE4127323A1 (de) * 1991-08-20 1993-02-25 Henkel Kgaa Verfahren zur herstellung von tensidgranulaten
DE4134914A1 (de) * 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
DE4203923A1 (de) * 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
DE4216774A1 (de) * 1992-05-21 1993-11-25 Henkel Kgaa Verfahren zur kontinuierlichen Herstellung eines granularen Wasch und/oder Reinigungsmittels
DE4300772C2 (de) * 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4319578A1 (de) * 1993-06-14 1994-12-15 Henkel Kgaa Waschmittel, enthaltend Aminosäuren und/oder deren Salze
DE4406210A1 (de) * 1994-02-25 1995-08-31 Henkel Kgaa Granulares Wasch- oder Reinigungsmittel
AU3386695A (en) * 1994-08-19 1996-03-14 Unilever Plc Detergent bleach composition
US5567389A (en) * 1995-07-07 1996-10-22 United Technologies Corporation Method for controlled dispensing of extended-release chemical formulation in tablet form
US5660821A (en) * 1995-07-07 1997-08-26 United Technologies Corporation Extended-release chemical formulation in tablet form for urine pretreatment
DE19601840A1 (de) * 1996-01-19 1997-07-24 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327956A1 (de) * 1973-06-01 1974-12-19 Henkel & Cie Gmbh Verfahren zur herstellung von wasserloesliche hydratisierte salze enthaltenden granulaten, insbesondere wasch- und reinigungsmittelgranulaten
US4118333A (en) * 1975-10-20 1978-10-03 Colgate-Palmolive Company Manufacture of particulate detergents
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
WO1994025563A1 (en) * 1993-05-05 1994-11-10 Henkel-Ecolab Gmbh & Co. Ohg Process for consolidating particulate solids and cleaning products therefrom

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914309A (en) * 1994-11-07 1999-06-22 Henkel-Ecolab Gmbh & Co. Ohg Process for the production of detergent tablets by microwave and hot air treatment
EP0828000A1 (de) * 1996-09-05 1998-03-11 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung tensidhaltiger Formkörper mit Mikrowellenstrahlung
EP0838519A1 (de) * 1996-10-22 1998-04-29 Unilever Plc Wasserenthärtende Zusammensetzungen und Waschmittelzusammensetzungen
EP0972824A2 (de) * 1996-10-22 2000-01-19 Unilever Plc Wasserenthärtende Zusammensetzungen und Waschmittelzusammensetzungen
EP0972824A3 (de) * 1996-10-22 2000-03-15 Unilever Plc Wasserenthärtende Zusammensetzungen und Waschmittelzusammensetzungen
US7008912B1 (en) 1997-03-11 2006-03-07 Henkel Kgaa Pressed piece which disintegrates in liquids
USRE39139E1 (en) * 1997-03-13 2006-06-20 Henkel Kgaa Process for preparing household detergent or cleaner shapes
US6506720B1 (en) 1997-03-13 2003-01-14 Henkel Kommanditgesellschaft Auf Aktien Process for preparing household detergent or cleaner shapes
US6992056B1 (en) 1997-12-30 2006-01-31 Henkel Kgaa Process for preparing detergent tablets having two or more regions
US6410500B1 (en) 1997-12-30 2002-06-25 Henkel Kommanditgesellschaft Auf Aktien Moulded body dishwasher detergents with soil release polymers
US6380141B1 (en) 1998-04-15 2002-04-30 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Water-softening and detergent compositions
US6093688A (en) * 1998-04-15 2000-07-25 Unilever Home & Personal Care Usa Water softening and detergent compositions
WO2000015752A2 (de) * 1998-09-10 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von wasch- oder reinigungsmittelformkörpern
WO2000015752A3 (de) * 1998-09-10 2007-07-26 Henkel Kgaa Verfahren zur herstellung von wasch- oder reinigungsmittelformkörpern
US6310028B1 (en) 1998-10-09 2001-10-30 Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. Water-softening and detergent compositions containing partially hydrated Na acetate
US6153574A (en) * 1998-10-09 2000-11-28 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Water-softening and detergent compositions
WO2000022088A1 (en) * 1998-10-09 2000-04-20 Unilever Plc Water-softening and detergent compositions
WO2000022089A1 (en) * 1998-10-09 2000-04-20 Unilever Plc Water-softening and detergent compositions
US6232285B1 (en) 1998-11-11 2001-05-15 Stockhausen Gmbh & Co. Kg Compacted granulate, process for making same and use as disintegrating agent for pressed detergent tablets, cleaning agent tablets for dishwashers, water softening tablets and scouring salt tablets
US6221832B1 (en) 1998-11-11 2001-04-24 Stockhausen Gmbh & Co. Kg Compacted granulate, process for making same and use as disintegrating agent for pressed detergent tablets, cleaning agent tablets for dishwashers, water softening tablets or scouring salt tablets
EP1043388A1 (de) * 1999-03-29 2000-10-11 DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. Sprengmittelgranulat enthaltende Geschirrspülmaschinenreinigungstabletten
EP1043389A1 (de) * 1999-03-29 2000-10-11 DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. Sprengmittelgranulat enthaltende Waschmitteltabletten
EP1261686B1 (de) * 2000-03-04 2016-06-15 Henkel AG & Co. KGaA Mehrphasige wasch- und reinigungsmittelformkörper mit nicht-gepressten anteile

Also Published As

Publication number Publication date
KR970705629A (ko) 1997-10-09
ATE173758T1 (de) 1998-12-15
JPH10504349A (ja) 1998-04-28
US5866531A (en) 1999-02-02
ES2126310T3 (es) 1999-03-16
DE4429550A1 (de) 1996-02-22
DE59504349D1 (de) 1999-01-07
EP0777721B1 (de) 1998-11-25
EP0777721A1 (de) 1997-06-11

Similar Documents

Publication Publication Date Title
EP0777721B1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten
EP0746599A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
WO1995018766A2 (de) Silikatische builder und ihre verwendung in wasch- oder reinigungsmitteln
WO1995021908A1 (de) Tablette mit buildersubstanzen
EP0720644B1 (de) Detergensgemische und wasch- oder reinigungsmittel mit verbesserten löseeigenschaften
EP0804529B1 (de) Amorphes alkalisilikat-compound
WO1994018295A1 (de) Gerüststoff für wasch- oder reinigungsmittel
EP0828818B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
WO1994013771A1 (de) Granulare wasch- und reinigungsmittel mit hohem tensidgehalt
EP0877791B1 (de) Verfahren zur herstellung von wasch- oder reinigungsmittelformkörpern
EP0814152A2 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
DE19637606A1 (de) Bruchfeste Wasch- oder Reinigungsmittelformkörper
EP0840780B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
EP0724620B1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate mit verbessertem redispergiervermögen
DE19622443A1 (de) Granulare Waschmittel, enthaltend optischen Aufheller
EP0814149A2 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
EP0888428A1 (de) Verfahren zur herstellung von granularen silikaten mit hohem schüttgewicht
EP0874684A1 (de) Verfahren zur herstellung eines granularen additivs
WO1994024249A1 (de) Waschmittel mit farbübertragungsinhibierenden eigenschaften
WO1995004129A1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate
WO1994009110A1 (de) Verfahren zur herstellung eines granularen wasch- und reinigungsmittels
WO1996029390A1 (de) Pulverförmige bis granulare wasch- oder reinigungsmittel
EP0888444A1 (de) Verfahren zur herstellung rieselfähiger wasch- oder reinigungsmittelgranulate
DE19752388A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmitteln mit hoher Schüttdichte
WO1996011254A1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995929834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970701086

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08793021

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995929834

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701086

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995929834

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970701086

Country of ref document: KR