WO1996000463A1 - Detecteur de defaillance pour convertisseur de puissance auto-commute sur une source de tension - Google Patents

Detecteur de defaillance pour convertisseur de puissance auto-commute sur une source de tension Download PDF

Info

Publication number
WO1996000463A1
WO1996000463A1 PCT/JP1995/001278 JP9501278W WO9600463A1 WO 1996000463 A1 WO1996000463 A1 WO 1996000463A1 JP 9501278 W JP9501278 W JP 9501278W WO 9600463 A1 WO9600463 A1 WO 9600463A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
arm
circuits
circuit
anode
Prior art date
Application number
PCT/JP1995/001278
Other languages
English (en)
French (fr)
Inventor
Kenichi Suzuki
Noriko Kawakami
Haruhisa Inokuchi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to US08/600,922 priority Critical patent/US5675482A/en
Priority to DE69534981T priority patent/DE69534981T2/de
Priority to CA002170539A priority patent/CA2170539C/en
Priority to EP95922767A priority patent/EP0730340B1/en
Publication of WO1996000463A1 publication Critical patent/WO1996000463A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through

Definitions

  • the present invention relates to a voltage used in a flicker suppressing device for suppressing a flicker force of an AC receiving voltage, a reactive power compensating device for compensating a reactive power, an active filter for suppressing a harmonic of an AC receiving current, and the like.
  • the present invention relates to an accident detection circuit for detecting a converter accident due to short-circuiting of an arm, etc. in a high-speed self-excited power converter.
  • a conventional three-phase voltage-type self-excited power converter it consists of six arm circuits.Each arm circuit is connected to a self-extinguishing type power semiconductor element and anti-parallel to this semiconductor element. And a diode connected in series with the diode of the semiconductor element to suppress the current rise rate.
  • a current detector and an overcurrent relay have been provided for each arm circuit. This is done by detecting the current flowing in the arm circuit with a current detector, detecting that the detected current has become an overcurrent exceeding a certain value with an overcurrent relay, and simultaneously detecting the semiconductor elements that constitute the power converter. An off-gate signal was given to all to shut off the short-circuit fault current and protect the power converter.
  • Such a protection scheme has the following disadvantages. In other words, if an off-gate signal is applied to interrupt a current greater than or equal to a certain cutoff current value as a rating of the semiconductor device, the semiconductor device will be damaged.
  • An object of the present invention is to eliminate the above-described drawbacks, and detects a self-excited power converter fault at high speed before a short-circuit fault current leads to an overcurrent, so that an anodized reactor or
  • An object of the present invention is to provide a fault detection circuit for a voltage-type self-excited power converter that can detect a power converter fault without making the self-extinguishing power semiconductor element unnecessarily large.
  • the present invention includes voltage direction detecting means, arm current direction detecting means, and output means.
  • the voltage direction detecting means detects that the voltage in the direction generated in the anode reactor when the current flowing in the cathode direction from the anode of the self-extinguishing power semiconductor element is equal to or higher than a certain value.
  • the arm current direction detecting means detects that a current flows from the node of the self-extinguishing type power semiconductor device toward the cathode.
  • the output means delays the arm current direction detection signal for a certain period of time, and outputs an accident detection signal when the anodic reactor voltage direction detection signal is present at the same time. As a result, it is possible to quickly detect a power converter fault before the fault current reaches an overcurrent.
  • the present invention includes a voltage direction detecting means, a conduction period control means, and an output means.
  • the voltage direction detecting means detects that the voltage in the direction generated in the anode reactor when the current flowing from the anode of the self-extinguishing power semiconductor element in the cathode direction increases is not less than a certain value.
  • the conduction period control means determines the timing for starting the commutation operation of the self-extinguishing type power semiconductor element, and controls the conduction period.
  • the output means delays the signal for controlling the conduction period for a certain period of time, and outputs an accident detection signal when this signal and the anode reactor voltage direction detection signal are present simultaneously. As a result, an accident of the power converter can be detected, and it is not necessary to provide a current detector in the power converter.
  • the present invention includes voltage direction detecting means, voltage detecting means, and output means.
  • the voltage direction detecting means detects that the voltage in the direction in which the anode reactor is generated when the current flowing from the node of the self-extinguishing type power semiconductor element in the cathode direction increases is greater than a predetermined value.
  • the voltage detecting means detects an off-gate voltage between the gate electrodes of the self-extinguishing power semiconductor device.
  • the output means delays the signal obtained by inverting the off-gate voltage detection signal for a predetermined time, and outputs an accident detection signal when this signal and the anode reactor voltage detection signal are present simultaneously. As a result, an accident of the power converter can be detected, and furthermore, the breakage of the self-extinguishing type power semiconductor device can be detected. You can also.
  • the present invention includes a voltage direction detecting means and a delay means.
  • the voltage direction detection means detects that the voltage in the direction in which an anodic reactor is generated when the current flowing from the anode to the cathode of the self-extinguishing power semiconductor device increases is equal to or higher than a certain value. I do.
  • the delay means outputs an accident detection signal when detecting that the anodic reactor voltage detection signal has passed for a predetermined time. As a result, an accident of the power converter can be detected without adding a current detector or the like.
  • the fault of the voltage type self-excited power converter is detected at high speed before the short-circuit fault current reaches the overcurrent, and the anodized reactor or the fault is detected. Does not make the self-extinguishing power semiconductor device larger than necessary.
  • FIG. 1 is a main circuit diagram showing an example of the voltage type self-excited power converter of the present invention.
  • FIG. 2 is a configuration diagram showing a first embodiment of the fault detection circuit of the voltage type self-excited power converter of the present invention.
  • FIG. 3 is a detailed explanatory diagram of the anode reactor voltage direction detection circuit of FIG.
  • FIG. 4 is a detailed explanatory diagram of the arm current direction detection circuit of FIG.
  • FIG. 5 is a time chart showing a conduction period control signal, an on-gate signal, and an off-gate signal for explaining the operation of the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a commutation operation when a current is flowing through the self-extinguishing type power semiconductor device of FIG.
  • FIG. 7 is a diagram illustrating a commutation operation when a current is flowing through the diode in FIG.
  • FIG. 8 is a diagram for explaining a phenomenon at the time of an accident when a current is flowing through the self-extinguishing type power semiconductor device of FIG.
  • FIG. 9 is a diagram for explaining a phenomenon at the time of an accident when a current is flowing through the diode of FIG.
  • FIG. 10 is a block diagram showing a second embodiment of the fault detection circuit of the voltage type self-excited power converter of the present invention.
  • FIG. 11 is a time chart showing a conduction period control signal, an on-gate signal, and an off-gate signal for explaining the operation of the second embodiment of the present invention.
  • FIG. 12 is a block diagram showing a third embodiment of the fault detection circuit of the voltage source self-excited power converter according to the present invention.
  • FIG. 13 is a block diagram showing a fourth embodiment of the fault detection circuit of the voltage source self-excited power converter according to the present invention.
  • FIG. Fig. 1 shows a three-phase voltage-type self-excited power converter, in which the high-voltage side arm circuits 1, 3, and 5, the low-voltage side arm circuits 2, 4, and 6, and the DC current of the arm circuits 1 to 6 are shown. And a DC capacitor 7 for maintaining a constant DC voltage.
  • the arm circuit 1 includes a self-extinguishing type power semiconductor element 11 composed of, for example, a GTO (gate turn-off thyristor), a diode 12 connected in antiparallel to the semiconductor element 11, and a semiconductor element 11 1 And a diode reactor 13 connected in series with the diode 12 and for suppressing the current rise rate di / dt of the self-extinguishing power semiconductor element 11.
  • a self-extinguishing type power semiconductor element 11 composed of, for example, a GTO (gate turn-off thyristor), a diode 12 connected in antiparallel to the semiconductor element 11, and a semiconductor element 11 1
  • a diode reactor 13 connected in series with the diode 12 and for suppressing the current rise rate di / dt of the self-extinguishing power semiconductor element 11.
  • the arm circuits 2 to 6 include the self-extinguishing type power semiconductor elements 21, 31, 41, 51, 61, and the semiconductor elements 21, 31, 41, 51, 61. It consists of diodes 22, 32, 42, 52, 62, and anode reactors 23, 33, 43, 43, 53, 63 connected in parallel, respectively.
  • the AC terminals R, S, and T are connected to the connection points 3, 4, and 5, and 6, respectively, and the DC terminals P and N are connected to both terminals of the DC capacitor 7. It is connected.
  • a snubber circuit is generally connected in parallel with the self-extinguishing power semiconductor elements 11 and 21 in order to reduce the gradient dv Z dt of the voltage applied to the self-extinguishing power semiconductor elements 11 and 21.
  • a reactor energy regeneration circuit or a circuit in which a resistor and a diode are connected in series are connected to the anode reactor 13, Although connected in parallel with 23, these circuits have no direct relation to the present invention, and therefore description thereof is omitted.
  • FIG. 2 is a diagram showing a first embodiment of the present invention.
  • An armor reactor voltage direction detecting circuit 16 which is an example of the voltage direction detecting means of the present invention is provided in the arm circuit 1 of FIG.
  • a current detector 14 and an arm current direction detecting circuit 17 as an example of the arm current direction detecting means, a delay circuit 18 as an example of the delay means of the present invention, and an output means of the present invention.
  • An AND circuit 19 which is an example of the present invention is provided, and the arm circuit 2 includes an anode current direction detecting circuit 26 which is an example of the arm current direction detecting means of the present invention, and an arm current direction detecting means 26 of the present invention.
  • a current detector 24 and an arm current direction detection circuit 27 as an example, a delay circuit 28 as an example of the delay means of the present invention, and an AND circuit 29 as an example of the output means of the present invention are provided. It is provided.
  • the anode reactor voltage direction detection circuit 16 is connected in parallel to the anode reactor 13 to connect the anode reactor 13 of the semiconductor element 11. It detects that the voltage in the direction generated in the anode reactor 13 when the current flowing in the direction of the force source from the node increases exceeds a certain value.
  • the anode reactor voltage direction detection circuit 26 is connected in parallel with the anode reactor 23, and is connected to the anode reactor 23 when the current flowing from the anode of the semiconductor element 21 to the cathode increases. Detects that the voltage in the direction of occurrence is equal to or higher than a certain value.
  • the arm current direction detection circuit 17 receives the current detected by the current detector 14 and detects that a current flows from the anode of the semiconductor element 11 toward the cathode.
  • the arm current direction detection circuit 27 receives the current detected by the current detector 24 and detects that a current is flowing from the anode of the semiconductor element 21 toward the cathode.
  • Each of the anode reactor voltage direction detection circuits 16 and 26 is a circuit similar to the forward voltage detector applied to the power semiconductor element constituting the high-voltage separately-excited converter, and is shown in FIG.
  • the light-emitting element 61, the light-receiving element 62, the resistor 63, the light guide 64, and the amplifier circuit 65 are provided.
  • the delay circuit 18 delays the output signal of the arm current direction detection circuit 17 for a certain time, and the delay circuit 28 delays the output signal of the arm current direction detection circuit 27 for a certain time. .
  • the AND circuit 19 inputs the output signal of the anode reactor voltage direction detection circuit 16 and the output signal of the delay circuit 18, When these two output signals are present at the same time, an output signal, that is, an accident detection signal is output.
  • the AND circuit 29 inputs the output signal of the anode reactor voltage direction detection circuit 26 and the output signal of the delay circuit 28, and outputs an output signal, that is, an accident detection signal when both output signals are present at the same time. .
  • the arm current direction detection circuits 17 and 27 are the same circuits as the overcurrent relays 15 and 25 in FIG. 14, which are both a light emitting element 71 and a light receiving element as shown in FIG. 7, a resistor 73, a light guide 74, an amplifier circuit 75, and a resistor 76.
  • the currents detected by the current detectors 14 and 24 are supplied to the light emitting element 71 and the light receiving element 72. It is configured to detect with.
  • the arm current direction detection circuits 17 and 27 are different from those in FIG. 4, and may be configured by a level determination circuit that determines whether the currents detected by the current detectors 14 and 24 in FIG. 2 are positive or negative.
  • a voltage source will be described. The operation method of the self-excited power converter and the phenomena at the time of an accident are explained using the R phase as an example.
  • the voltage type self-excited power converter is operated by a known technique such as PWM control. Examples of the PWM control method and the phenomenon of commutation are described on pages 108 and 31 of “Semiconductor Power Conversion Circuits” published by the Institute of Electrical Engineers of Japan (first edition on March 31, 1987). Therefore, detailed description is omitted.
  • the self-extinguishing type power half that constitutes the arm circuits 1 and 2 prevents the high-voltage side arm circuit 1 and the low-voltage side arm circuit 2 from energizing at the same time and causing a DC short circuit accident.
  • On and off gate signals are alternately applied to the conductor elements 11 and 21.
  • the control device of the self-excited power converter determines the timing to determine the start of the commutation operation, and includes the signals that control the conduction period of the low-voltage side and high-voltage side arm circuits 1 and 2. It is driven by and.
  • the self-extinguishing power semiconductor element 2 when current is flowing through the self-extinguishing power semiconductor element 21 of the low-voltage side arm circuit 2, the self-extinguishing power semiconductor element 2 If an off-gate signal is given to 1, the current flowing through the self-extinguishing type power semiconductor element 21 is cut off. As a result, the current flowing through the low-voltage anode reactor 23 is also attenuated, and the anode reactor 23 has a voltage of the polarity shown in FIG. A voltage is generated in a direction that occurs when the current flowing from the anode of the arc-shaped power semiconductor element 21 to the cathode decreases. Also, as shown by the dotted line in FIG.
  • the alternating current flows through the self-extinguishing type power semiconductor element 21 on the low voltage side and flows into the arm circuit 1 on the high voltage side. Then, a voltage having the polarity shown in FIG. 6 is generated in the anode reactor 13 on the high voltage side.
  • the current flowing from the anode of the self-extinguishing power semiconductor element 21 to the cathode is applied to the anodic reactor 23.
  • the voltage in the direction that occurs when the voltage is applied is applied.
  • a voltage is also applied to the anode reactor 13 on the high voltage side, and the value is almost the value of 1 to 2 of the DC voltage.
  • the self-extinguishing type power semiconductor device constituting the low-voltage side arm circuit 2 will be described.
  • the self-extinguishing type power semiconductor element 11 of the high-voltage side arm circuit 1 is damaged or conducts due to some failure, or both ends of the high-voltage side arm circuit 1 are flashed.
  • a short circuit occurs due to the above.
  • the short-circuit current flows from the P side of the DC circuit through the anode reactor 13, the self-extinguishing power semiconductor device 11, the self-extinguishing power semiconductor device 21, and the anodic reactor 23. Flows to the N side of the DC circuit.
  • the voltage of the DC capacitor 7 is shared by approximately 1 Z2 between the high-voltage-side anode reactor 13 and the low-voltage-side anode reactor 23, and the anode capacitors 13 and 23
  • the direction of the voltage applied to the power supply is the voltage in the direction in which the current flowing from the anode of the self-extinguishing type power semiconductor elements 11 and 21 to the power source increases, and has the polarity shown in Fig. 8. Voltage.
  • the low voltage side anode reactor has the polarity shown in Fig. 9, that is, the voltage in the direction generated when the current flowing from the anode of the self-extinguishing type power semiconductor element 21 in the direction of the power source increases. Applied to the low pressure side anode reactor 23.
  • the power semiconductor element 21 When the power semiconductor element 21 is energized, current flows to the high-voltage side arm circuit 1.
  • the polarity is opposite to the direction of the voltage generated in the anode reactor 23 on the low voltage side. Therefore, if the voltage generated in the anode reactor 23 generates a voltage that increases the current flowing from the anode of the self-extinguishing type power semiconductor element 21 to the cathode, the power converter An accident may have occurred.
  • the operation of commutating the current to the high-voltage side arm circuit 2 from the state where the diode 22 is conducting is described in the case where the current flows to the low-voltage side diode 22.
  • the current flowing from the anode of the self-extinguishing type power semiconductor device .21 to the cathode increases in the low-pressure side reactor 23 as in the case of an accident.
  • a direction voltage is applied.
  • a voltage is applied to the low-voltage side anode reactor 23 in a direction that increases the current flowing from the anode of the self-extinguishing type power semiconductor element 21 to the cathode.
  • Current, the current flowing in the arm circuit 2 is the current flowing through the diode 22 and is flowing from the power source of the self-extinguishing power device 21 to the anode. It is a current.
  • the self-extinguishing power is applied to the anode reactor 23.
  • the low-voltage side anode reactor 23 If a voltage is applied in the direction in which this occurs, this means that an accident has occurred rather than the normal commutation operation.
  • the arm circuit 2 is conducting, but even when the high-side arm circuit 1 is conducting, the low-voltage side in the above description is the high-pressure side and the high-voltage side is the low-pressure side. It is evident that, if replaced with, the fault of the voltage-type self-excited power converter can be detected similarly.
  • the reason for detecting the voltage exceeding a certain value of the anode reactors 13 and 23 is that the self-excited power converter supplies AC current to the AC side. Is the AC voltage, that is, the polarity in both directions Voltage appears. Therefore, it is necessary to detect a voltage equal to or higher than a certain value in order not to detect the voltage generated in the anode reactors 13 and 23 due to the current change during the normal operation.
  • the voltage generated in the anode reactors 13 and 23 by a normal current change is extremely small compared to the DC voltage because the inductance values of the anode reactors 13 and 23 are small.
  • the peak value of the AC voltage waveform is almost equal to the DC voltage value.
  • the voltage generated in the anode reactors 13 and 23 at the time of an accident is much larger than the voltage generated by a normal current change, and, as already explained, almost 1 2 3 Or a higher voltage value.
  • the current increase rate at the time of an accident is an extremely large value that occurs at the normal current increase rate.
  • the anode reactor voltage direction detection circuits 16 and 26 for detecting the directions of the voltages applied to the anode reactors 13 and 23 are connected to the anode reactors 13 and 23.
  • the voltage in the direction generated in the anode reactors 13 and 23 when the current flowing from the anodes of the self-extinguishing type power semiconductor elements 11 and 21 to the cathode increases increases to a certain value or more. Is detected. That is, when a current flows from the anode to the cathode in the self-extinguishing power semiconductor elements 11 and 21, the current flows from the cathode to the self-extinguishing power semiconductor elements 11 and 21.
  • Current flowing in the direction of The increase in the current increase rate that occurs at the current increase rate in normal operation is detected by the voltage generated in the anode reactors 13 and 23.
  • Delay circuits 18 and 28 are provided to delay the output signals of the arm current direction detection circuits 17 and 27 for a fixed time, and the output signals of the anodic reactor voltage direction detection circuits 16 and 26 and the output signals of the delay circuits 18 and 28 are combined.
  • AND circuits 19, 29 are provided as input signals.
  • the reason for delaying the arm current direction detection signal for a predetermined time will be described. Similar to the description of the commutation operation shown in FIG. 7, the operation of commutating the current to the high-voltage arm circuit 1 while the current is flowing to the low-voltage diode 22 will be described in further detail. I do. With the current flowing through the diode 22 on the low voltage side, the self-extinguishing type power semiconductor element 11 on the high voltage side is turned on. When a high-side current is commutated by applying a gate signal, a current flows from the anode to the power source through the self-extinguishing type power semiconductor element 11 on the high-voltage side.
  • the anode reactor 13 To the anode reactor 13 is applied a voltage which is generated when the current flowing from the anode of the self-extinguishing type power semiconductor element 11 to the cathode increases. Therefore, if the commutation operation to the high voltage side is performed while the low voltage side diode 22 is conducting, the high voltage side fault detection circuit operates. To solve this problem, the current flowing from the anode to the cathode is detected during the time until commutation ends and the voltage generated in the anodic reactors 13 and 23 disappears. You need to delay the signal you are on.
  • the low-voltage side diode 2 2 If the commutation operation to the high voltage side is performed while the current is conducting and an accident occurs at the same time, it is detected after the time determined by the time delay of the accident delay circuit. However, since this time delay is originally coordinated with the commutation time of the normal current, the fault current at the time when the fault is detected is about the magnitude of the current that performs the normal commutation operation. Before the fault current reaches the overcurrent, the condition of the input signal of the AND circuit is satisfied and the fault can be detected.
  • the low-voltage side arm circuit 2 In this state, it is assumed that the high-voltage side arm circuit 1 is damaged or conducts due to some trouble, or that both ends of the high-voltage side arm circuit 1 are flashed. Will be described. In this case, when the low-voltage side arm circuit 2 is conducting, the high-voltage side arm circuit 1 is damaged or conducts due to some trouble, or both ends of the high-voltage side arm circuit 1 flash. Explain that an accident occurred.
  • the anode reactor 13 And 23 When an accident occurs, or when an on-gate signal is given to the self-extinguishing power semiconductor element 11 in a state where current is flowing through the diode 22 on the low voltage side, the anode reactor 13 And 23, the current flowing from the anodes of the semiconductor elements 11 and 21 in the direction of the force increases, and the voltage at the anode reactor is the polarity shown in FIG. A voltage is applied in the direction that occurs when the current flowing from the anode of the power semiconductor elements 11 and 21 to the cathode increases, and as a result, the anodic reactor voltage direction shown in Fig. 3 A current flows through the light receiving element 61 constituting the detection circuits 16 and 26 to emit light.
  • the emitted light is guided to the light receiving element 62 by the light guide 64, and it can be detected that a voltage has been applied to the end reactor by the interaction with the width circuit 65.
  • the voltage value that can be detected can be set arbitrarily by appropriately selecting the value of the resistor connected in series with the light emitting element 61, so that the anode reactor voltage direction detection circuit 16 , 26 are detected at the current increase rate in normal operation. If a constant value is set, an on-gate signal is given to the self-extinguishing type power semiconductor element 11 1 in the event of an accident or when current is flowing through the diode 22 on the low voltage side. At this time, the anode reactor voltage direction detection circuit 16 operates and does not operate during normal operation.
  • the arm circuit 1 is powered from the node of the self-extinguishing power semiconductor element 11 1 by the power source.
  • Current flows through the light emitting element 71 constituting the arm current direction detecting circuits 17 and 27 shown in FIG. 4 and emits light, and this light passes through the light guide 74.
  • the electric signal is guided to the light receiving element 72 via the light receiving element 72, and the obtained electric signal is amplified by the amplifier circuit 75.
  • the arm current direction detection circuits 17 and 27 do not operate, and the detection operation is performed. Absent.
  • the high side arm current direction detection circuit 17 operates. However, no signal is input to the AND circuit 19 due to the operation of the delay circuit 18. Therefore, if the delay time of the delay circuit 18 is set so that there is a time delay corresponding to the commutation time with the normal current, the anodic reactor 13 Since no voltage is generated at, the anodic reactor voltage direction detection circuit 16 does not operate. Therefore, since the input condition of the AND circuit 19 is not satisfied, the fault detection circuit of this embodiment does not operate.
  • the low-voltage-side fault detection circuit also operates after a certain period of time after the current starts flowing in the low-voltage-side arm circuit 2 from the anode of the self-extinguishing power semiconductor device 21 in the power source direction. .
  • the above explanation has been made on the assumption that the high-voltage side arm circuit 1 conducts and the accident occurs.However, even in the event of an accident in which both ends of the high-voltage side arm circuit 1 flash, or a short circuit between the R and S phases, The delay circuit 2 S at the subsequent stage of the low-voltage side arm current direction detection circuit 27 is already operating, or operates after a certain period of time has elapsed after the occurrence of an accident, and the anodic reactor voltage direction detection circuit 2 6 operates immediately when an accident occurs, so that the accident detection circuit of this embodiment operates.
  • the fault detection circuit of this embodiment is Power converter accidents can be detected at high speed.
  • the anodic reactor voltage direction detection circuits 16 and 26 operate immediately, and the accident current flows to the arm circuit from the anode of the self-extinguishing type power semiconductor device in the cathode direction.
  • the arm current direction detection circuits 17 and 27 operate, and the fault can be detected by the AND circuits 19 and 29 by the output signals.
  • the output signal does not appear in the AND circuits 19, 29 due to the action of the delay circuits 18, 28, and the fault detection circuit detects the power converter fault at high speed. it can,
  • FIG. 10 shows a second embodiment of the present invention, in which the same reference numerals are given to the same parts as in FIG. 2 and the description thereof is omitted, and the difference here is the conduction period control circuit 1. 7 1 and 27 1, delay circuits 181 and 281, and AND circuits 19 1 and 29 1 will be described.
  • the conduction period control circuit 17 1 controls the conduction period of the high-voltage side self-extinguishing power semiconductor element 11 1, and the conduction period control circuit 27 1 controls the conduction of the low-voltage side self-extinguishing power semiconductor element 21. Control the duration.
  • the delay circuit 18 1 delays the output signal of the conduction period control circuit 17 1 for a predetermined time, and the delay circuit 281 delays the output signal of the conduction period control circuit 27 1 for a predetermined time.
  • the AND circuit 191 inputs the output signal of the delay circuit 181 and the output signal of the anode reactor voltage direction detection circuit 16 and outputs an accident detection signal when both output signals are input simultaneously.
  • the circuit 291 inputs the output signal of the delay circuit 281 and the output signal of the anode reactor voltage direction detection circuit 26, and outputs an accident detection signal when both output signals are input simultaneously.
  • the self-excited power converter It determines the timing to start the commutation operation of the semiconductor elements 11 and 21 and is operated by a signal that controls the conduction period.
  • the current flowing from the anode of the self-extinguishing type power semiconductor elements 11 and 21 to the cathode increases in the anode reactors 13 and 23.
  • the voltage in the direction that occurs when the current flows is applied to the anode reactors 13 and 23 when the current flows through the diodes 12 and 22 as shown in Fig. 11. This is the period of A immediately after the on-gate signal is given to the arc-shaped power semiconductor elements 11 and 21.
  • the output signals of the conduction period control circuits 17 1 and 27 1 are connected to the self-extinguishing type power semiconductor elements 11 and 21 by using the delay circuits 181 and 281.
  • the conduction period After detecting the conduction period after a certain period of time immediately after commutation, a period that is not a phenomenon immediately after commutation can be determined, and the logic of the signal detected by the anodic reactor voltage direction detection circuit 16 and 26 can be determined.
  • the product can detect an accident. That is, AND circuits 11 and 291, which use the output signals of the anode reactor voltage direction detection circuits 16 and 26 and the output signals of the delay circuits 181 and 281 as input signals, are provided.
  • FIG. 12 shows a third embodiment of the present invention.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the detection circuits 17 2, 27 2 Inverter circuits 17 3 and 27 3 and the delay circuits 1 82 and 282 AND circuits 19 2 and 29 2 are described.
  • the G-K voltage detection circuit 17 2 detects the off-gate voltage between G (gate) and 1 K (power source) of the self-extinguishing type power semiconductor element 11 1, and detects the G-K voltage.
  • 272 detects the off-gate voltage between G (gate) and K (force source) of the self-extinguishing power semiconductor element 21.
  • the inverter circuit 173 inverts the output signal of the G-K voltage detection circuit 172, and the inverter circuit 273 inverts the output signal of the G-K voltage detection circuit 272.
  • the delay circuit 182 delays the output signal of the inverter circuit 173 for a predetermined time, and the delay circuit 282 delays the output signal of the inverter circuit 273 for a predetermined time.
  • AND circuit 1 9 2 is the output of delay circuit 1 82
  • the signal and the output signal of the anode reactor voltage direction detection circuit 16 are input.When both output signals are input simultaneously, an accident detection signal is output, and the AND circuit 292 outputs the delay circuit 2S2. Inputs the force signal and the output signal of the anode reactor voltage direction detection circuit 26, and outputs an accident detection signal when both output signals are input simultaneously.
  • Self-extinguishing power semiconductor elements are provided in parallel with the anode reactors 13 and 23 to detect the direction of the voltage applied to the anode reactors 13 and 23. It detects that the voltage in the direction generated in the anode reactors 13, 23 when the current flowing in the direction of the force source from the anodes 11 and 21 increases is greater than a certain value. However, even during normal commutation, a voltage of the same polarity as that at the time of the accident is generated in the anode reactors 13 and 23. Judgment needs to be made.
  • the G-K voltage detection circuit 17 detects the off-gate voltage between the gates of the self-extinguishing type power semiconductor elements 11 and 21. Since 2, 2, 72 are provided, the conduction state of the elements 11, 21, including the breakage of the self-extinguishing type semiconductor elements 11, 21, can be detected.
  • the output signals of the G-K The signals are inverted via inverter circuits 17 3 and 27 3, respectively, and the inverted signal is delayed for a certain time by delay circuits 18 2 and 28 2, and the self-extinguishing type power semiconductor element 1 1 1 , 21 are conduction periods after a certain period of time immediately after commutation.
  • the output signals of the anode reactor voltage direction detection circuits 16 and 26 and the output signals of the delay circuits 18 2 and 28 2 are input to the AND circuits 19 2 and 29 2. Therefore, when the self-extinguishing power semiconductor elements 11 and 21 have been conducting for more than a certain period of time, the anode direction voltage direction detection circuits 16 and 26 have been operating. It is possible to detect an accident in the power converter at high speed by identifying the phenomenon at the time of commutation, and also to detect damage to the self-extinguishing type power semiconductor elements 11 and 21.
  • FIG. 13 shows a fourth embodiment of the present invention.
  • the same reference numerals are given to the same parts as in FIG. 2, and the description thereof will be omitted.
  • a delay circuit 183 is provided on the output side of the anode reactor voltage direction detection circuit 16.
  • the output signal of the anode reactor voltage direction detection circuit 16 is delayed for a fixed time, and is obtained from the delay circuit 183.
  • the output signal is treated as a failure detection signal.
  • a delay circuit 283 is provided on the output side of the anode reactor voltage direction detection circuit 26 to delay the output signal of the anode reactor voltage direction detection circuit 26 for a fixed time, and the delay circuit 283 From The obtained output signal is handled as a failure detection signal.
  • the voltage applied to the anode reactors 13 and 23 becomes a state in which the transient phenomenon during commutation is completed and the normal operation current flows to the anode reactors 13 and 23.
  • the generated voltage is extremely small compared to the voltage at the time of the accident. That is, after the time required for the commutation of the normal current has elapsed, almost no voltage is generated in the anode reactors 13 and 23. Therefore, since the delay circuits 193 and 293 are provided for delaying the anode reactor detection signal for a certain period of time, the anode reactor voltage direction detection circuits 16 and 26 operate for a fixed time or more. This makes it possible to detect a power converter accident by distinguishing it from a normal commutation phenomenon.
  • the voltage-type self-excited power converter is an arm series circuit in which arm circuits 1 and 2 shown in FIG. 1 are connected in series, an arm series circuit in which arm circuits 3 and 4 are connected in series, and an arm circuit 5 shown in FIG.
  • a three-phase circuit consisting of an arm series circuit in which the arm series circuits 6 and 6 are connected in series, but this is not a limitation.
  • a single-phase circuit with two arm series circuits and a similar effect with four or more arm series circuits Can be given.
  • the number of arm circuits in the arm series circuit is not limited to two, but may be three or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Protection Of Static Devices (AREA)

Description

明 細 書 電圧形自励式電力変換器の事故検出回路 [技術分野]
本発明は交流受電電圧のフ リ ッ力を抑制するフ リ ッ力抑 制装置、 無効電力を補償する無効電力補償装置や交流受電 電流の高調波を抑制するァクティ ブフィ ルタ等に使用され る電圧形自励式電力変換器において、 アーム短絡等による 変換器事故を高速に検出する事故検出回路に関する。
[背景技術]
従来の三相の電圧形自励式電力変換器の一例と して、 6 個のアーム回路からなり、 各アーム回路は、 自己消弧形電 力用半導体素子と、 この半導体素子に逆並列に接続された ダイォー ドと、 半導体素子のァノ一ドに直列に接続され電 流立ち上がり率を抑制するためのァノー ドリアク トルから 構成されている。
いま、 このような構成の電圧形自励式電力変換器におい て、 低圧側のアーム回路の半導体素子が導通している時に 高圧側のアーム回路の半導体素子が何らかの不具合により 破損、 或いは導通すれば、 直流回路から直流短絡事故電流 が流れる。 同様に、 高圧側のアーム回路の両端が閃絡等の 事故により短絡された場合、 或いは、 変換器の交流側で線 間短絡事故等が発生した場合にも、 同様に直流短絡電流が 半導体素子に流れる。
従来、 かかる事故を検出して保護するために、 各アーム 回路毎に電流検出器と過電流継電器を設けていた。 これは アーム回路に流れる電流を電流検出器で検出し、 この検出 電流が一定値以上の過電流になつたことを過電流継電器で 検出し、 一斉に電力変換器を構成している半導体素子の全 てに対してオフゲー ト信号を与えて短絡事故電流を遮断し、 電力変換器を保護していた。
このような保護方式では次のような欠点がある。 すなわ ち、 半導体素子の定格として遮断可能な電流値がある遮断 可能電流値以上の電流をオフゲー ト信号を与えて遮断しよ うとすれば、 半導体素子は破損する。
又、 事故を検出して、 半導体素子に事故電流を遮断する ためのオフ信号を出力するためには、 オフゲー ト信号を出 力する回路に遅れ時間があるため、 若干の時間が必要であ 従って、 かかる事故は、 事故を検出してから事故電流が 半導体素子の遮断可能な電流値に至る前にオフゲー ト信号 を出力する必要がある。 そのために、 従来は、 過電流を検 出してからオフゲー ト信号を出力するための時間遅れを考 慮して、 ァノー ドリアク トルを大きく し、 事故電流の立ち 上がりを遅く していた。 その結果、 通常の転流時のァノー ドリアク トルのエネルギーを処理するための回路損失の增 加を招き、 電力変換器の効率が低下する等の欠点があつた, 或いは、 事故電流を遮断するために、 通常の運転で流れ る電流を遮断するために必要な遮断電流定格以上の大容量 遮断電流定格の半導体素子を使用しなければならないと言 う欠点があつた。
本発明の目的は、 前述の欠点を除去するためになされた ものであって、 短絡事故電流が過電流に至る前に、 自励式 電力変換器の事故を高速に検出し、 アノー ドリアク トル、 或いは自己消弧形電力用半導体素子を必要以上に大きくす ることなく、 電力変換器の事故を検出できる電圧形自励式 電力変換器の事故検出回路を提供するこ とにある。
[発明の開示]
本発明は、 電圧方向検出手段と、 アーム電流方向検出手 段と、 出力手段を備えている。 電圧方向検出手段は自己消 弧形電力用半導体素子のァノ一ドからカソー ド方向に流れ る電流が増加する時にァノー ドリアク トルに発生する向き の電圧が一定値以上であることを検出する。 アーム電流方 向検出手段は自己消弧形電力用半導体素子のァノー ドから カソー ドの向きに電流が流れていることを検出する。 そし て、 出力手段はアーム電流方向検出信号を一定時間遅らせ て、 アノー ドリアク トル電圧方向検出信号とが同時に存在 したとき、 事故検出信号を出力する。 このため、 事故電流 が過電流にいたる前に電力変換器の事故を高速に検出でき る o
又、 本発明は、 電圧方向検出手段と、 導通期間制御手段 と、 出力手段を備えている。 電圧方向検出手段は、 自己消 弧形電力用半導体素子のァノ一ドからカソー ド方向に流れ る電流が増加する時にァノー ドリアク トルに発生する向き の電圧が一定値以上であることを検出する。 導通期間制御 手段は、 自己消弧形電力用半導体素子の転流動作を開始さ せるタイ ミ ングを決定し、 導通期間を制御している。 出力 手段は導通期間を制御している信号を一定時間遅らせて、 この信号とァノー ドリアク トル電圧方向検出信号が同時に 存在したとき、 事故検出信号を出力する。 この結果、 電力 変換器の事故を検出でき、 電力変換器に電流検出器を設け る必要もなく なる。
更に、 本発明は、 電圧方向検出手段と、 電圧検出手段と、 出力手段を備えている。 電圧方向検出手段は自己消弧形電 力用半導体素子のァノー ドからカソー ド方向に流れる電流 が増加する時にァノ一ドリアク トル発生する向きの電圧が —定値以上であることを検出する。 電圧検出手段は自己消 弧形電力用半導体素子のゲー トー力ソー ド間のオフゲー ト 電圧を検出する。 出力手段はオフゲー ト電圧検出信号を反 転した信号を一定時間遅らせて、 この信号とアノー ドリア ク トル電圧検出信号が同時に存在したとき、 事故検出信号 を出力する。 この結果、 電力変換器の事故を検出でき、 更 に自己消弧形電力用半導体素子の破損を検出するようにす ること もできる。
また、 本発明は、 電圧方向検出手段と、 遅延手段を備え ている。 電圧方向検出手段は、 自己消弧形電力用半導体素 子のァノ一ドからカソ一ド方向に流れる電流が増加する時 にアノー ドリアク トル発生する向きの電圧が一定値以上で あることを検出する。 遅延手段は、 アノー ドリアク トル電 圧検出信号が一定時間経過していることを検出したとき、 事故検出信号を出力する。 この結果、 特別に電流検出器等 を付加することなく電力変換器の事故を検出できる。
本発明の電圧形自励式電力変換器の事故検出回路によれ ば、 短絡事故電流が過電流に至る前に、 電圧形自励式電力 変換器の事故を高速に検出し、 アノー ドリアク トル、 或い は自己消弧形電力用半導体素子を必要以上に大きくするこ とない。
[図面の簡単な説明]
第 1図は本発明の電圧形自励式電力変換器の一例を示す 主回路図である。
第 2図は本発明の電圧形自励式電力変換器の事故検出回 路の第 1実施例を示す構成図である。
第 3図は第 2図のァノー ドリアク トル電圧方向検出回路 の詳細説明図である。
第 4図は第 2図のアーム電流方向検出回路の詳細説明図 " める。 第 5図は本発明の第 1実施例の動作を説明するための導 通期間制御信号と、 オンゲー ト信号、 オフゲー ト信号を示 すタイムチヤ一トである。
第 6図は第 2図の自己消弧形電力用半導体素子に電流が 流れていた時の転流動作を説明する図である。
第 7図は第 2図のダイォー ドに電流が流れていた時の転 流動作を説明する図である。
第 8図は第 2図の自己消弧形電力用半導体素子に電流が 流れていた時の事故時の現象を説明する図である。
第 9図は第 2図のダイオー ドに電流が流れていた時の事 故時の現象を説明する図である。
第 1 0図は本発明の電圧形自励式電力変換器の事故検出 回路の第 2実施例を示す構成図である。
第 1 1図は本発明の第 2実施例の動作を説明するための 導通期間制御信号と、 オンゲ一ト信号、 オフゲー ト信号を 示すタイムチヤ一トである。
第 1 2図は本発明の電圧形自励式電力変換器の事故検出 回路の第 3実施例を示す構成図である。
第 1 3図は本発明の電圧形自励式電力変換器の事故検出 回路の第 4実施例を示す構成図である。
[発明を実施するための最良の形態]
以下、 本発明の実施例について図面を参照して説明する < はじめに、 本発明の対象である電圧形自励式電力変換器に ついて、 第 1図を参照して説明する。 第 1図は三相の電圧 形自励式電力変換器を示すもので、 高圧側のアーム回路 1 , 3 , 5と、 低圧側のアーム回路 2, 4 , 6と、 アーム回路 1〜 6の直流側に接続され直流電圧を一定に維持するため の直流コ ンデンサ 7からなつている。
アーム回路 1 は、 例えば G T O (ゲー トターンオフサイ リ スタ) からなる自己消弧形電力用半導体素子 1 1、 半導 体素子 1 1 に逆並列に接続されたダイォー ド 1 2、 半導体 素子 1 1、 ダイオー ド 1 2に直列に接続され、 かつ自己消 弧形電力用半導体素子 1 1の電流立ち上がり率 d i / d t を抑制するためのァノ一 ドリアク トル 1 3から構成されて いる。
同様に、 アーム回路 2〜6は、 自己消弧形電力用半導体 素子 2 1, 3 1, 4 1, 5 1 , 6 1、 半導体素子 2 1 , 3 1 , 4 1 , 5 1 , 6 1にそれぞれ並列に接続されたダイ オー ド 2 2, 3 2, 4 2, 5 2, 6 2、 アノー ドリアク ト ル 2 3, 3 3, 4 3, 5 3, 6 3から構成されている。
そして、 アーム回路 1 , 2を直列接続したアーム直列回 路、 アーム回路 3 , 4を直列接続したアーム直列回路、 ァ ーム回路 5, 6を直列接続したアーム直列回路における各 アーム回路 1 , 2の接続点、 3, 4の接続点、 5, 6の接 続点には、 それぞれ交流側端子 R, S , Tが接続され、 直 流コンデンサ 7の両端子には直流側端子 P , Nが接続され ている。 なお、 自己消弧形電力半導体素子 1 1, 2 1 に印加され る電圧の傾き d v Z d t等を軽減するために、 一般にスナ バ回路が自己消弧形電力半導体素子 1 1 , 2 1に並列に設 けられ、 又、 転流時にアノー ドリアク トルに蓄えられるェ ネルギーを処理するために、 リアク トルエネルギー回生回 路、 或いは抵抗とダイォー ドを直列接続した回路がァノ一 ドリアク トル 1 3 , 2 3と並列に接続されるが、 これらの 回路は本発明と直接の関係がないので、 説明は省略する。
<第 1実施例 >
第 2図は本発明の第 1実施例を示す図であり、 第 1図の アーム回路 1に、 本発明の電圧方向検出手段の一例である アノー ドリアク トル電圧方向検出回路 1 6と、 本発明のァ ーム電流方向検出手段の一例である電流検出器 1 4 とァー ム電流方向検出回路 1 7と、 本発明の遅延手段の一例であ る遅延回路 1 8と、 本発明の出力手段の一例である論理積 回路 1 9を設け、 アーム回路 2に、 本発明のアーム電流方 向検出手段の一例であるアノー ドリアク トル電圧方向検出 回路 2 6と、 本発明のアーム電流方向検出手段の一例であ る電流検出器 2 4 とアーム電流方向検出回路 2 7と、 本発 明の遅延手段の一例である遅延回路 2 8と、 本発明の出力 手段の一例である論理積回路 2 9を設けたものである。
アノー ドリアク トル電圧方向検出回路 1 6は、 アノー ド リアク トル 1 3に並列に接続し、 半導体素子 1 1のァノー ドから力ソー ド方向に流れる電流が増加する時にァノ一ド リアク トル 1 3に発生する向きの電圧が一定値以上である こ とを検出する。 ァノ ー ドリ アク トル電圧方向検出回路 2 6は、 アノー ドリアク トル 2 3に並列に接続し、 半導体 素子 2 1のアノー ドからカソ一 ド方向に流れる電流が増加 する時にアノー ドリアク トル 2 3に発生する向きの電圧が —定値以上であることを検出する。
アーム電流方向検出回路 1 7は、 電流検出器 1 4で検出 した電流を入力し、 半導体素子 1 1のアノー ドからカソー ドの向きに電流が流れていることを検出する。 アーム電流 方向検出回路 2 7は、 電流検出器 2 4で検出した電流を入 力し、 半導体素子 2 1のアノー ドからカソー ドの向きに電 流が流れていることを検出する。 アノー ドリアク トル電 圧方向検出回路 1 6 , 2 6は、 いずれも高圧他励式変換器 を構成する電力用半導体素子に印加される順方向電圧検出 器等と同様の回路で、 第 3図に示すように発光素子 6 1 と. 受光素子 6 2、 抵抗 6 3、 ライ トガイ ド 6 4、 増幅回路 6 5から構成されている。
遅延回路 1 8は、 アーム電流方向検出回路 1 7の出力信 号を一定時間遅らせるものであり、 また遅延回路 2 8は、 アーム電流方向検出回路 2 7の出力信号を一定時間遅らせ る ものである。
論理積回路 1 9は、 アノー ドリアク トル電圧方向検出回 路 1 6の出力信号と遅延回路 1 8の出力信号とを入力し、 この両出力信号が同時に存在したとき出力信号すなわち事 故検出信号を出力する。 論理積回路 2 9は、 アノー ドリア ク トル電圧方向検出回路 26の出力信号と遅延回路 28の 出力信号とを入力し、 この両出力信号が同時に存在したと き出力信号すなわち事故検出信号を出力する。
アーム電流方向検出回路 1 7 , 2 7は第 14図の過電流 継電器 1 5, 2 5と同様の回路で、 これはいずれも第 4図 に示すよ う に、 発光素子 7 1 と、 受光素子 7 2と、 抵抗 7 3と、 ライ トガイ ド 74と、 増幅回路 7 5と、 抵抗 76 から構成され、 電流検出器 14, 24で検出された電流を 発光素子 7 1に流し、 受光素子 7 2で検出するように構成 したものである。
アーム電流方向検出回路 1 7 , 27は、 第 4図とは異な り、 第 2図の電流検出器 14 , 24で検出された電流の正 負を判別するレベル判定回路で構成するようにしてもよい, 以下、 このように構成された第 1実施例の作用効果につ いて、 第 5図〜第 9図を参照して説明するが、 始めに事故 の検出方式を理解するために、 電圧形自励式電力変換器の 運転方式と事故時の現象を R相を例にして説明する。
電圧形自励式電力変換器は PWM制御等の公知の技術に よって運転される。 PWM制御の方式、 転流時の現象は一 例としては、 電気学会発行 ( 1 987年 3月 3 1 日初版) の 「半導体電力変換回路」 の 1 0 8頁、 3 1頁に記載され ているので、 詳細な説明は省略する。 第 5図に示すように、 高圧側のアーム回路 1 と低圧側の アーム回路 2が同時に通電して直流短絡事故に至らないよ うに、 アーム回路 1 , 2を構成する自己消弧形電力用半導 体素子 1 1 , 2 1 には交互にオン, オフゲー ト信号が与え られる。 なお、 自励式電力変換器の制御装置には、 転流動 作を開始を決定するタイ ミ ングを決定し、 低圧側、 高圧側 のアーム回路 1, 2の導通期間を制御している信号のもと に運転されている。
即ち、 例えば、 低圧側のアーム回路 2から高圧側のァー ム回路 1 に電流を転流させる場合には、 アーム回路 2の自 己消弧形電力用半導体素子 2 1にオフゲー ト信号を与えて 自己消弧形電力用半導体素子 2 1を遮断した後に、 アーム 回路 1を構成する自己消弧形電力用半導体素子 1 1にオン ゲー ト信号が与えられるようにして、 電圧形自励式電力変 換器は運転される。 その結果、 電力変換器の交流側の電圧 波形は直流電圧をピーク値とする矩形波の電圧波形の集合 体になるのは周知の事実である。
第 6図に示すように、 通常の転流時において、 低圧側の アーム回路 2の自己消弧形電力用半導体素子 2 1 に電流が 流されている時に、 自己消弧形電力用半導体素子 2 1 にォ フゲー ト信号を与えれば、 自己消弧形電力用半導体素子 2 1に流れる電流は遮断される。 その結果、 低圧側のァノ 一ドリアク トル 2 3を流れる電流も減衰し、 アノー ドリア ク トル 2 3には第 6図に示した極性の電圧、 即ち、 自己消 弧形電力用半導体素子 2 1のァノー ドからカソー ドに流れ る電流が減少する時に発生する向きの電圧が発生する。 又、 交流側の電流は第 6図に点線で示したように、 低圧側の自 己消弧形電力用半導体素子 2 1が遮断され、 高圧側のァー ム回路 1 に流れるので、 過渡的に第 6図に示した極性の電 圧が高圧側のァノー ドリアク トル 1 3に発生する。
しかしながら、 第 7図に示すように、 低圧側のアーム回 路 2のダイオー ド 2 2が導通して、 ダイオー ド 2 2を介し て電流が流れている時に、 転流動作を行わせるために、 低 圧側の自己消弧形電力用半導体素子 2 1にオフゲー ト信号 を与えても、 転流動作は行われない。 ところが、 次に高圧 側の自己消弧形電力用半導体素子 1 1にオンゲ一ト信号が 与えられた時に、 転流動作が開始される。 自己消弧形電力 用半導体素子 1 1にオン信号を与えれば、 第 6図に点線で 示したように、 ダイォー ド 2 2から交流側に流れている電 流が、 自己消弧形電力用半導体素子 1 1を介して交流側に 流れるようになるまでの転流期間の間、 アノー ドリアク ト ル 2 3には、 自己消弧形電力用半導体素子 2 1のアノー ド からカソー ドに流れる電流が增加する時に発生する向きの 電圧が印加される。 同様に、 この時には高圧側のアノー ド リアク トル 1 3にも電圧が印加され、 その値はほぼ直流電 圧の 1ノ 2の値である。
今、 第 1実施例の作用の説明を簡単化するために、 低圧 側のアーム回路 2を構成する自己消弧形電力用半導体素子 2 1が導通期間である時に、 何らかの不具合により、 高圧 側のアーム回路 1の自己消弧形電力用半導体素子 1 1が破 損、 或いは導通する叉は高圧側のアーム回路 1の両端が閃 絡等により短絡した場合を考える。
低圧側の自己消弧形電力用半導体素子 2 1 に電流が流れ ている時に、 高圧側の自己消弧形電力用半導体素子 1 1が 何らかの不具合により破損、 或いは導通すれば、 第 7図に 示すように、 短絡電流が直流回路の P側からアノー ドリア ク トル 1 3、 自己消弧形電力用半導体素子 1 1、 自己消弧 形電力用半導体素子 2 1、 アノー ドリアク トル 2 3の回路 を介して直流回路の N側に流れる。 従って、 直流コンデン サ 7の電圧は、 高圧側のァノ一ドリアク トル 1 3と低圧側 のァノ一 ドリ アク トル 2 3 とでほぼ 1 Z 2づっ分担され、 アノー ドリアク トル 1 3 , 2 3に印加される電圧の向きは、 自己消弧形電力用半導体素子 1 1 , 2 1のアノー ドから力 ソー ドに流れる電流が増加する方向の向きの電圧で、 第 8 図に示した極性の電圧である。
低圧側のダイォー ド 2 2に電流が流れている時に、 高圧 側の自己消弧形電力用半導体素子 1 1が何らかの不具合に より破損、 或いは導通すれば、 第 9図に示すように短絡電 流が流れる。 事故の初期は第 7図に示した通常の転流と同 様であるが、 低圧側の自己消弧形電力用半導体素子 2 1は 導通区間であるためにォンゲー ト信号が与えられているの で、 短絡電流は低圧側のダイオー ド 2 2を逆流して、 次に 低圧側の自己消弧形電力半導体素子 2 1を介して流れつづ ける。 交流側から電流が流れ込んで来ていることを除けば、 低圧側の自己消弧形電力用半導体素子 2 1 に電流が流れて いた場合を説明した第 8図の場合と全く 同様である。 低圧 側のアノー ドリアク トルには第 9図に示した極性、 即ち、 自己消弧形電力用半導体素子 2 1のアノー ドから力ソー ド の向きに流れる電流が増加する時に発生する向きの電圧が 低圧側のアノー ドリアク トル 2 3に印加される。
高圧側のアーム回路 1の両端が閃絡等で短絡した場合に も低圧側のァノ一 ドリアク トル 2 3には、 第 8図, 第 9図 で示した極性で直流電圧相当の電圧が発生することは明か である。 又、 交流側で線間短絡が発生した場合にも、 例え ば、 R相の低圧側のアーム回路 2と S相の高圧側のアーム 回路 3が導通している時に、 R - S相間の線間短絡が発生 すれば、 S相の高圧側のアーム回路 3に具備されているァ ノー ドリ アク トル 3 3には、 アーム回路 3の自己消弧形電 力用半導体素子 3 1のァノー ドからカソー ドに流れる電流 が増加する時に発生する向きの電圧が印加されるのは明か である。 当然、 R相の低圧側のァノ一ドリアク トル 2 3に も同様の向きの電圧が印加される。
以上、 説明したように、 第 8図, 第 9図に示した事故時 に低圧側のァノー ドリアク トル 2 3に印加される電圧の向 きは、 第 5図に示した低圧側の自己消弧形電力用半導体素 子 2 1が通電している時に、 高圧側のアーム回路 1に電流 を転流させた場合に低圧側のァノ ー ドリアク トル 2 3に発 生する電圧の向きとは逆方向の極性である。 従って、 ァノ 一ドリアク トル 2 3に発生する電圧が自己消弧形電力用半 導体素子 2 1のアノー ドからカ ソー ドに流れる電流を増加 させる向きの電圧が発生すれば、 電力変換器に事故が発生 している可能性があることになる。
しかしながら、 第 7図においてダイオー ド 2 2が導通し ている状態から高圧側のアーム回路 2に電流を転流させる 動作を説明したように、 低圧側のダイォー ド 2 2に電流が 流れている場合には、 低圧側のァノ一 ドリアク トル 2 3に は、 事故時の場合と同様に、 自己消弧形電力用半導体素子 .2 1のアノー ドからカソー ドに流れる電流が增加する時に 発生する向きの電圧が印加される。 しかし、 通常の転流時 において、 低圧側のァノ一ドリアク トル 2 3に自己消弧形 電力用半導体素子 2 1のァノー ドからカソー ドに流れる電 流を增加させる向きに電圧が印加されている時には、 ァー ム回路 2に流れている電流はダイォー ド 2 2を介して流れ ている電流であり、 自己消弧形電力用素子 2 1の力ソー ド からァノー ドの向きに流れている電流である。
従って、 低圧側のアーム回路 2に流れている電流が自己 消弧形電力用半導体素子 2 1のァノー ドからカソー ドの向 きに流れている時に、 アノー ドリアク トル 2 3に自己消弧 形電力用半導体素子 2 1のァノー ドからカソ一 ド方向に流 れる電流が増加する時に低圧側のァノ一ドリアク トル 2 3 に発生する向きの電圧が印加されていれば、 これは通常の 転流動作ではなく、 事故が発生していることを意味してい 又、 以上の説明は説明を簡単化するために、 低圧側のァ ーム回路 2が導通している状態で説明したが、 高圧側のァ —ム回路 1が導通している場合にも、 上記の説明における 低圧側を高圧側に、 高圧側を低圧側に置き換えれば、 同様 に電圧形自励式電力変換器の事故を検出できることは明か める。
従って、 以上の説明で高圧側を非導通側と置き換えて言 えば、 非導通側のアーム回路が導通した事故、 非導通側の アーム回路 1の両端が閃絡した事故、 或いは線間短絡事故 が発生した場合には、 アーム回路 2に自己消弧形電力用半 導体素子のァノ一ドからカソ一 ドに流れる電流が流れてい る時に、 アノー ドリアク トルに自己消弧形電力用半導体素 子のァノ一ドから力ソー ドに流れる電流が増加する時に発 生する向きの電圧が一定値以上であることを検出できれば、 事故の発生を高速に検出でき、 従来例のように、 事故電流 が過電流領域に至る前に事故を検出できることは明かであ o
なお、 アノー ドリアク トル 1 3 , 2 3の一定値以上の電 圧を検出する理由は、 自励式電力変換器は交流側に交流電 流を流しているので、 アノー ドリ アク トル 1 3 , 2 3には 交流電流の変化に伴い、 交流の電圧、 即ち、 両方向の極性 の電圧が現れる。 従って、 通常運転中の電流変化でァノー ドリアク トル 1 3 , 2 3に発生する電圧を検出しないよう にするために、 一定値以上の電圧を検出するようにする必 要がある。 しかし、 通常の電流変化でァノー ドリアク トル 1 3 , 2 3に発生する電圧はァノー ドリ アク トル 1 3 , 2 3のイ ンダクタ ンス値が小さいため、 直流電圧に比較し て極めて小さい値であり、 交流電圧の波形のピーク値はほ ぼ直流電圧値と等しい。
—方、 事故時にアノー ドリアク トル 1 3 , 2 3に発生す る電圧は、 通常の電流変化で発生する電圧に比べて非常に 大きい値であり、 既に説明したように、 直流電圧のほぼ 1 2の値、 或いはそれ以上の電圧値である。 即ち、 事故 時の電流の増加率は通常の電流の増加率で発生する以上の 極めて大きな値である。
従って、 第 1実施例によれば、 アノー ドリアク トル 1 3 , 2 3に印加される電圧の向きを検出するァノー ドリアク ト ル電圧方向検出回路 1 6, 2 6をアノー ドリアク トル 1 3, 2 3 と並列に設け、 自己消弧形電力用半導体素子 1 1 , 2 1のァノー ドからカソー ド方向に流れる電流が増加する 時にアノー ドリアク トル 1 3 , 2 3に発生する向きの電圧 が一定値以上であることを検出する。 即ち、 自己消弧形電 力用半導体素子 1 1 , 2 1 にァノー ドからカソー ドの向き に電流が流れている時に、 自己消弧形電力用半導体素子 1 1 , 2 1 にァノー ドからカソー ドの向きに流れる電流が 通常の運転での電流増加率で発生する以上の電流増加率で 増加しているこ とをアノー ドリ アク トル 1 3, 23に発生 する電圧で検出する。
しかしながら、 通常の転流時のおいても、 アノー ドリア ク トル 1 3, 23には事故時と同極性の電圧が発生するの で、 通常の転流時の現象と事故時の現象との判別を行うた めに、 アーム回路 1 , 2に流れている電流の向きを検出す る電流方向検出回路 1 7, 27をアーム回路 1, 2に設け、 自己消弧形電力用半導体素子 1 1 , 2 1のアノー ドから力 ソ一ドの向きに電流が流れていることを検出する。
アーム電流方向検出回路 1 7, 27の出力信号を一定時 間遅らせる遅延回路 18, 28を設け、 アノー ドリアク ト ル電圧方向検出回路 1 6, 26の出力信号と遅延回路 18, 28の出力信号とを入力信号とする論理積回路 1 9, 29 を設け、 アーム電流方向検出回路 1 7, 27が動作して一 定時間以上経過している時に、 アノー ドリアク トル電圧検 出回路 1 6, 26が動作しているこ とで、 通常の転流時の 現象と識別して変換器の事故を高速に検出できる。
こ こで、 アーム電流方向検出信号を一定時間遅らせる理 由について説明する。 第 7図に示した転流動作の説明と同 様に、 低圧側のダイォ一ド 22に電流が流れている状態で、 高圧側のアーム回路 1に電流を転流させる動作を更に詳細 に説明する。 低圧側のダイォ一 ド 22に電流が流れている 状態で、 高圧側の自己消弧形電力用半導体素子 1 1にオン ゲー ト信号を与えて、 高圧側の電流を転流させる時に、 高 圧側の自己消弧形電力用半導体素子 1 1 にはァノー ドから 力ソー ド方向への電流が流れ、 又、 高圧側のアノー ドリア ク トル 1 3には、 自己消弧形電力用半導体素子 1 1のァノ 一ドからカソ一 ドに流れる電流が増加する時に発生する向 きの電圧が印加される。 従って、 低圧側のダイォー ド 2 2 が導通している時にいる時に高圧側への転流動作が行われ れば、 高圧側の事故検出回路が動作する不具合が生じる。 この不具合を解決するために、 転流が終了してアノー ドリ ァク トル 1 3 , 2 3に発生する電圧がなく なるまでの時間 の間、 ァノー ドからカソー ドの向きに流れる電流を検出し ている信号を遅らせる必要がある。
しかしながら、 高圧側と低圧側のアーム回路 1 , 2のい ずれにも事故を検出するための回路を設けているので、 既 に説明したことから明らかなように、 低圧側のダイォ一ド 2 2が導通している時に高圧側への転流動作が行われると 同時に事故が発生した場合には、 事故の遅延回路の時間遅 れで決まる時間後に検出される。 しかしながら、 本来この 時間遅れは通常の電流の転流時間と協調が図れているため、 事故が検出された時点での事故電流は通常の転流動作を行 う電流の大きさ程度であるので、 事故電流が過電流に至る 前に、 論理積回路の入力信号の条件が満足されて事故を検 出することができる。
今までの説明と同様に、 低圧側のアーム回路 2が導通状 態である時に、 高圧側のアーム回路 1が何らかの不具合に より破損、 或いは導通する、 叉は高圧側のアーム回路 1の 両端が閃絡する事故が発生したと して、 第 1実施例の作用 を説明する。 こ こでは、 低圧側のアーム回路 2が導通状態 である時に、 高圧側のアーム回路 1が何らかの不具合によ り破損、 或いは導通する、 叉は高圧側のアーム回路 1の両 端が閃絡する事故が発生したとして説明する。
事故が発生した時、 或いは低圧側のダイォー ド 2 2に電 流が流れている状態で、 自己消弧形電力用半導体素子 1 1 にオンゲ一ト信号が与えられた時に、 アノー ドリアク トル 1 3, 2 3には、 半導体素子 1 1 , 2 1のアノー ドから力 ソ一ド方向へ流れる電流が増加して、 アノー ドリアク トル に電圧が第 7図に示した極性、 即ち自己消形弧形電力用半 導体素子 1 1 , 2 1のアノー ドからカソー ドに流れる向き の電流が増加したときに発生する向きの電圧が印加される, その結果、 第 3図に示したアノー ドリアク トル電圧方向 検出回路 1 6 , 2 6を構成する受光素子 6 1に電流が流れ て発光する。 発光した光はライ トガイ ド 6 4で受光素子 6 2に導かれ、 增幅回路 6 5との相互作用により、 了 ノ ー ドリアク トルに電圧が印加されたことが検出できる。 この 時に、 発光素子 6 1 と直列に接続されている抵抗の値を適 正に選定するこ とにより検出できる電圧値を任意に設定で きるので、 ァノ ー ドリ アク トル電圧方向検出回路 1 6 , 2 6の電圧検出値を通常の運転での電流増加率では検出し ない一定値に設定すれば、 事故が発生した時、 或いは低圧 側のダイォー ド 2 2に電流が流れている状態で、 自己消弧 形電力用半導体素子 1 1 にオンゲ一ト信号が与えられた時 に、 アノー ドリアク トル電圧方向検出回路 1 6は動作し、 通常の運転中には動作しないことになる。
なお、 アノー ドリアク トル 1 3 , 2 3に自己消弧形電力 用半導体素子 1 1 , 2 1のアノー ドから力ソー ドの向きに 電流が減少するような電圧が発生したような場合には、 そ の電圧の向きが上記の説明と逆方向であるので、 発光素子 6 1 には電流が流れないため、 アノー ドリアク トル電圧方 向検出回路 1 6 , 2 6は動作しない。
. 次に、 高圧側の自己消弧形電力用半導体素子 1 1に転流 時のオ ンゲー ト信号が与えれば、 アーム回路 1に自己消弧 形電力用半導体素子 1 1のァノー ドから力ソー ド方向に電 流が流れるので、 第 4図に示したアーム電流方向検出回路 1 7, 2 7を構成する発光素子 7 1には電流が流れて発光 し、 この光がライ トガイ ド 7 4を介して受光素子 7 2に導 かれ、 ここで得られる電気信号が増幅回路 7 5に増幅され る。 一方、 アーム回路 1 , 2に流れる電流が電力用半導体 素子 1 1の力ソー ドからアノー ド方向のときは、 アーム電 流方向検出回路 1 7, 2 7が動作せず、 検出動作は行われ ない。
低圧側のダイォー ド 2 2が導通している時の転流動作で あれば、 高圧側のアーム電流方向検出回路 1 7が動作する が、 遅延回路 1 8の作用により論理積回路 1 9には信号は 入力されない。 従って、 通常の電流での転流時間に相当す る時間遅れがあるよ όに遅延回路 1 8の遅れ時間を設定す れば、 この転流時間が経過した後では、 アノー ドリアク ト ル 1 3には電圧が発生していないため、 アノー ドリアク ト ル電圧方向検出回路 1 6は動作していない。 従って、 論理 積回路 1 9の入力条件が満足されないので、 本実施例の事 故検出回路が動作することはない。
しかし、 低圧側のダイォー ド 2 2に電流が流れている状 態で、 高圧側のアーム回路 1が導通したようような事故の 場合には、 事故が発生して一定時間が経過した後に、 高圧 側の事故検出回路が動作することは以上の説明から明かで ある ο
また、 低圧側の事故検出回路も、 低圧側のアーム回路 2 に自己消弧形電力半導体素子 2 1 のアノー ドから力ソー ド 方向に電流が流れはじめた一定時間後に動作するのは明か である。
又、 低圧側の自己消弧形電力用半導体素子 2 1に電流が 流れている時には、 事故が発生した場には、 既にアーム電 流方向検出回路 2 7から遅延回路 2 8を介して論理積回路 2 9に入力されている条件は既に成立しているので、 事故 が発生した時点でァノー ドリ アク トル電圧方向検出回路 2 6が動作し、 直ちに本検出回路が動作するのは明かであ ο 以上の説明は高圧側のアーム回路 1が導通して事故を想 定して説明したが、 高圧側のアーム回路 1の両端が閃絡す る事故、 或いは R - S相間の線間短絡でも、 低圧側のァー ム電流方向検出回路 2 7の後段の遅延回路 2 Sは既に動作 しているか、 或いは事故が発生して一定時間が経過した後 に動作し、 アノー ドリアク トル電圧方向検出回路 2 6は事 故が発生すれば、 直ちに動作するので、 本実施例の事故検 出回路が動作する。
以上の説明は低圧側を高圧側に、 高圧側を低圧側に置き 換えても、 同様であるので、 本実施例の事故検出回路は、 変換器の高圧側、 低圧側の事故に関係なく、 電力変換器の 事故を高速に検出できる。
また、 以上の説明は高圧側のアーム回路が導通する事故 が発生したとして説明したが、 高圧側のアーム回路 1の両 端が閃絡した事故の場合には、 本発明の高圧側の事故検出 回路は動作しないが、 低圧側の回路が同様に動作して、 事 故を検出するのは明かである。 又、 線間短絡事故が発生し た場合も同様である。
従って、 事故が発生すれば、 直ちにアノー ドリアク トル 電圧方向検出回路 1 6 , 2 6が動作し、 事故電流がアーム 回路に自己消弧形電力半導体素子のァノー ドからカソー ド 方向に電流が流れれば、 アーム電流方向検出回路 1 7 , 2 7が動作し、 論理積回路 1 9 , 2 9に出力信号で事故を 検出できる。 —方、 通常の転流時には遅延回路 1 8, 28の作用によ り論理積回路 1 9, 29には出力信号は現れないので、 事 故検出回路により、 高速に電力変換器の事故を検出できる,
<第 2実施例 >
第 1 0図は本発明の第 2実施例を示すもので、 第 2図と 同一部に同一符号を付してその説明を省略し、 こ こでは異 なる点、 すなわち、 導通期間制御回路 1 7 1 , 27 1、 遅 延回路 181 , 281、 論理積回路 1 9 1 , 29 1につい て説明する。
導通期間制御回路 1 7 1は高圧側の自己消弧形電力用 半導体素子 1 1の導通期間を制御し、 導通期間制御回路 27 1は低圧側の自己消弧形電力用半導体素子 2 1の導 通期間を制御する。 遅延回路 1 8 1 は導通期間制御回路 1 7 1の出力信号を所定時間遅延させ、 遅延回路 281は 導通期制御回路 27 1の出力信号を所定時間遅延させる。 論理積回路 1 9 1は遅延回路 181の出力信号とァノー ド リアク トル電圧方向検出回路 1 6の出力信号を入力し、 両 出力信号が同時に入力されたとき、 事故検出信号を出力し. 論理積回路 29 1は遅延回路 281の出力信号とァノー ド リ アク トル電圧方向検出回路 26の出力信号を入力し、 両 出力信号が同時に入力されたとき、 事故検出信号を出力す
O o
前述したように、 自励式電力変換器は、 自己消弧形電力 用半導体素子 1 1 , 2 1の転流動作を開始させるタイ ミ ン グを決定し、 導通期間を制御している信号により運転され ている。
また、 事故時と同様に転流動作を行う時に、 アノー ドリ ァク トル 1 3, 23に自己消弧形電力用半導体素子 1 1 , 2 1のァノー ドからカソー ドの向きに流れる電流が増加す る時に発生する向きの電圧がァノ ー ドリ アク トル 1 3, 23に印加されるのは、 第 1 1図に示すようにダイオー ド 1 2, 22に電流が流れている時に、 自己消弧形電力用半 導体素子 1 1, 2 1にオンゲー ト信号が与えられた直後の Aの期間である。
. 従って、 第 1 1図に示したように、 導通期間制御回路 1 7 1 , 27 1の出力信号を遅延回路 181 , 281を用 いて、 自己消弧形電力用半導体素子 1 1, 2 1の転流直後 から一定時間経過した導通期間であることを検出すれば、 転流直後の現象ではない期間を判定でき、 アノー ドリアク トル電圧方向検出回路回路 1 6, 26で検出された信号と の論理積により事故を検出できる。 即ち、 アノー ドリアク トル電圧方向検出回路 1 6 , 26の出力信号と遅延回路 181 , 281の出力信号とを入力信号とする論理積回路 1 1 , 29 1を設け、 自己消弧形電力用半導体素子 1 1 , 2 1を導通期間を制御している信号が一定時間以上経過し ている時に、 ァノー ドリアク トル電圧方向検出回路 1 6, 26が動作していることで、 通常の転流時の現象と識別し て電力変換器の事故を高速に検出できる。
以上述べた第 2実施例の事故検出回路によれば、 前述し た第 1実施例の効果に加えて、 次のような効果も得られる, 図 2の実施例のようにアーム回路 1 , 2の電流を検出して いないので、 アーム回路 1 , 2に電流検出器 14 , 24を 設ける必要がないという効果も得られる。 く第 3実施例 >
第 1 2図は本発明の第 3実施例を示すもので、 第 2図と 同一部に同一符号を付してその説明を省略し、 こ こでは異 なる点、 すなわち、 G— K間電圧検出回路 1 7 2, 2 7 2 イ ンバー夕回路 1 7 3, 2 7 3、 遅延回路 1 82 , 282 論理積回路 1 9 2, 2 9 2について説明する。
G - K間電圧検出回路 1 7 2は自己消弧形電力用半導体 素子 1 1の G (ゲー ト) 一 K (力ソー ド) 間のオフゲー ト 電圧を検出し、 G - K間電圧検出回路 2 7 2は自己消弧形 電力用半導体素子 2 1の G (ゲー ト) 一 K (力ソー ド) 間 のオフゲー ト電圧を検出する。
イ ンバータ回路 1 7 3は G— K間電圧検出回路 1 7 2の 出力信号を反転し、 イ ンバー夕回路 2 7 3は G— K間電圧 検出回路 2 7 2の出力信号を反転する。 遅延回路 1 82は イ ンバ一タ回路 1 7 3の出力信号を所定時間遅延させ、 遅 延回路 282はイ ンバータ回路 2 7 3の出力信号を所定時 間遅延させる。 論理積回路 1 9 2は遅延回路 1 82の出力 信号とアノー ドリアク トル電圧方向検出回路 1 6の出力信 号を入力し、 両出力信号が同時に入力されたとき、 事故検 出信号を出力し、 論理積回路 29 2は遅延回路 2 S 2の出 力信号とァノー ドリアク トル電圧方向検出回路 26の出力 信号を入力し、 両出力信号が同時に入力されたとき、 事故 検出信号を出力する。
以上述べた第 3実施例の事故検出回路によれば、 前述し た第 1実施例の効果に加えて、 次のような効果も得られる。 ァノー ドリアク トル 1 3 , 2 3に印加される電圧の向きを 検出するアノー ドリアク トル電圧方向検出回路 1 6, 26 をアノー ドリアク トル 1 3, 23と並列に設け、 自己消弧 形電力用半導体素子 1 1 , 2 1のアノー ドから力ソー ド方 向に流れる電流が増加する時にァノー ドリアク トル 1 3, 23に発生する向きの電圧が一定値以上であることを検出 する。 しかしながら、 通常の転流時のおいても、 アノー ド リアク トル 1 3, 2 3には事故時と同極性の電圧が発生す るので、 通常の転流時の現象と事故時の現象との判別を行 う必要がある。
このため、 第 1 2図の実施例では自己消弧形電力用半導 体素子 1 1 , 2 1のゲー ト一力ソー ド間のオフゲー ト電圧 を検出する G— K間電圧検出回路 1 7 2, 2 7 2が設けて あるので、 自己消弧形半導体素子 1 1 , 2 1の破損を含め て、 素子 1 1 , 2 1の導通状態を検出できる。
従って、 G— K間電圧検出回路 1 7 2, 2 7 2の出力信 号を、 それぞれイ ンバータ回路 1 7 3 , 2 7 3を介して反 転し、 この反転信号を遅延回路 1 8 2 , 2 8 2により一定 時間遅らせ、 自己消弧形電力用半導体素子 1 1 1 , 2 1が 転流直後から一定時間経過した導通期間であることを判定 する。 アノー ドリアク トル電圧方向検出回路 1 6 , 2 6の 出力信号と遅延回路 1 8 2 , 2 8 2の出力信号を論理積回 路 1 9 2 , 2 9 2に入力している。 このため、 自己消弧形 電力用半導体素子 1 1 , 2 1が導通して一定時間以上経過 している時に、 アノー ドリアク トル電圧方向検出回路 1 6 , 2 6が動作していることで、 通常の転流時の現象と識別し て電力変換器の事故を高速に検出でき、 更に自己消弧形電 力用半導体素子 1 1 , 2 1 の破損も検出できる。
<第 4実施例 >
第 1 3図は本発明の第 4実施例を示すもので、 第 2図と 同一部に同一符号を付してその説明を省略し、 こ こでは異 なる点を主として説明する。 すなわち、 アノー ドリアク ト ル電圧方向検出回路 1 6の出力側に遅延回路 1 8 3を設け. ァノー ドリアク トル電圧方向検出回路 1 6の出力信号を一 定時間遅延させ、 遅延回路 1 8 3から得られる出力信号を 故障検出信号として扱うようにしたものである。 また、 ァ ノー ドリアク トル電圧方向検出回路 2 6の出力側に遅延回 路 2 8 3を設け、 アノ ー ドリ アク トル電圧方向検出回路 2 6の出力信号を一定時間遅延させ、 遅延回路 2 8 3から 得られる出力信号を故障検出信号として扱うようにしたも のである。
このように構成した第 4実施例によれば、 以下のような 作用効果が得られる。 アノー ドリアク トル 1 3 , 2 3に印 加される電圧は、 転流時の過渡現象が完了して、 アノー ド リアク トル 1 3 , 2 3に通常の運転での電流が流れている 状態になれば、 発生する電圧は事故時の電圧に比較し、 極 めて小さな値であることは既に説明した通りである。 即ち、 通常の電流の転流に必要な時間が経過した後では、 ァノー ドリアク トル 1 3 , 2 3には電圧はほとんど発生していな い。 従って、 アノー ドリアク トル検出信号を、 一定時間遅 らせる遅延回路 1 9 3 , 2 9 3を設けているので、 ァノー ドリアク トル電圧方向検出回路 1 6 , 2 6がー定時間以上 動作していることで、 通常の転流時の現象と識別して、 電 力変換器の事故を検出できる。
以上述べた実施例では、 電圧形自励式電力変換器として、 第 1図に示すアーム回路 1, 2を直列接続したアーム直列 回路、 アーム回路 3 , 4を直列接続したアーム直列回路、 アーム回路 5 , 6を直列接続したアーム直列回路からなる 三相回路をあげたが、 これに限らず、 アーム直列回路を 2 個とした単相回路、 アーム直列回路が 4個以上であっても 同様な効果をあげることができる。 また、 アーム直列回路 はアーム回路の個数が 2個に限らず 3個以上であってもよ い。

Claims

請求 の 範囲
( 1 ) アーム回路が複数直列接続されたアーム直列回 路を備え、 前記各アーム回路は自己消弧形電力用半導体素 子と、 この半導体素子に有するアノー ドに直列に接続され 電流立上がり率を抑制するためのァノ一 ドリアク トルを有 してなる電圧形自励式電力変換器において、
前記各アーム回路の半導体素子毎のァノ一ドからカソー ド方向に流れる電流が増加する時に前記各アーム回路のァ ノ一 ドリアク トルに発生する向きの電圧が一定値以上であ ることを各々検出する電圧方向検出手段と、
. 前記各アーム回路の半導体素子毎のアノー ドからカソー ドの向きに電流が流れていることを各々検出するアーム電 流方向検出手段と、
前記各アーム回路毎の前記電流方向検出手段の出力信号 をそれぞれ一定時間遅らせる遅延手段と、
前記各アーム回路毎に、 前記電圧方向検出手段の出力信 号と前記遅延手段の出力信号が同時に存在したとき前記電 力変換器の事故検出信号とする出力手段と、
を具備した電圧形自励式電力変換器の事故検出回路。
( 2 ) アーム回路が複数直列接続されたアーム直列回 路を備え、 前記各アーム回路は自己消弧形電力用半導体素 子と、 この半導体素子に逆並列に接続されたダイォー ドと. 前記半導体素子に有するァノ一ドに直列に接続され電流立 上がり率を抑制するためのァノー ドリアク トルを有してな る電圧形自励式電力変換器において、
前記各アーム回路のァノー ドリアク トルにそれぞれ並列 に接続され、 前記各半導体素子のアノー ドから力ソー ド方 向に流れる電流が増加する時に前記各ァノ一ドリアク トル に発生する向きの電圧が一定値以上であることを検出する 電圧方向検出手段と、
前記各アーム回路毎に設けられ、 前記各半導体素子のァ ノー ドからカソー ドの向きに電流が流れていることを検出 するアーム電流方向検出手段と、
前記各アーム回路毎に設けられ、 前記各アーム電流方向 検出手段の出力信号をそれぞれ一定時間遅らせる遅延手段 と、
前記各アーム回路毎に設けられ、 前記各電圧方向検出手 段および前記各遲延手段の出力信号をそれぞれ入力し、 こ の両信号が同時に存在したとき前記電力変換器の事故検出 信号とする出力手段と、
を具備した電圧形自励式電力変換器の事故検出回路。
( 3 ) 前記アーム直列回路が複数個並列接続されるも のであって、 前記アーム直列回路のうちの一つのアーム直 列回路のアーム回路毎に、 前記電圧方向検出手段と、 前記 アーム電流方向検出手段と、 前記出力手段を設けた請求の 範囲第 1項または第 2項記載の電圧形自励式電力変換器の 事故検出回路。
( 4 ) アーム電流方向検出手段は、 電流が流れたとき 発光する発光素子と、 この発光素子に直列に接続され電圧 を設定するための第 1 の抵抗と、 この第 1 の抵抗と前記発 光素子に対して並列に接続された第 2の抵抗と、 前記発光 素子からの光を受光したとき電気信号に変換する受光素子 と、 前記発光素子からの光を前記受光素子に導く ライ トガ ィ ドと、 前記受光素子から得られる電気信号を増幅する増 幅回路とからなる請求の範囲第 1項〜第 3項のいずれかに 記載の電圧形自励式電力変換器の事故検出回路。
( 5 ) アーム電流方向検出手段は、 アノー ドリアク ト ルに流れる電流を検出し、 この検出された電流の正負を判 別するレベル判定回路からなる請求の範囲第 1項〜第 3項 のいずれかに記載の電圧形自励式電力変換器の事故検出回 路。
( 6 ) アーム回路が複数直列接続されたアーム直列回 路を備え、 前記各アーム回路は自己消弧形電力用半導体素 子と、 この半導体素子に有するァノ一ドに直列に接続され 電流立上がり率を抑制するためのアノー ドリアク トルを有 してなる電圧形自励式電力変換器において、
前記各アーム回路の半導体素子のァノ一 ドからカソー ド 方向に流れる電流が増加する時に前記各アーム回路のァノ 一ドリアク トルに発生する向きの電圧が一定値以上である ことを各々検出する電圧方向検出手段と、
前記各アーム回路の半導体素子の導通期間をそれぞれ制 御する導通期間制御手段と、
前記各導通期間制御手段の出力信号をそれぞれ一定時間 遅らせる遅延手段と、
前記各アーム回路毎に、 前記電圧方向検出手段の出力信 号と前記遅延手段の出力信号が同時に存在したとき前記電 力変換器の事故検出信号とする出力手段と、
'を具備した電圧形自励式電力変換器の事故検出回路。
( 7 ) ァーム回路が複数直列接続されたアーム直列回 路を備え、 前記各アーム回路は自己消弧形電力用半導体素 子と、 この半導体素子に逆並列に接続されたダイォー ドと、 前記半導体素子に有するァノ一ドに直列に接続され電流立 上がり率を抑制するためのァノー ドリアク トルを有してな る電圧形自励式電力変換器において、
前記各アーム回路のァノ一ドリアク トルにそれぞれ並列 に接続され、 前記各半導体素子のァノ一 ドからカ ソ一 ド方 向に流れる電流が増加する時に前記各アーム回路のァノ一 ドリアク トルに発生する向きの電圧が一定値以上であるこ とを検出する電圧方向検出手段と、
前記各アーム回路に設けられ、 前記半導体素子の導通期 間をそれぞれ制御する導通期間制御手段と、
前記各導通期間制御手段の出力信号をそれぞれ一定時間 遅らせる遅延手段と、
前記各アーム回路毎に設けられ、 前記電圧方向検出手段 の出力信号と前記遅延手段の出力信号が同時に存在したと き前記電力変換器の事故検出信号とする出力手段と、 を具備した電圧形自励式電力変換器の事故検出回路。
( 8 ) 前記アーム直列回路が複数個並列接続されるも のであって、 前記アーム直列回路のうちの一つのアーム直 列回路のアーム回路毎に、 前記電圧方向検出手段と、 前記 導通期間制御手段と、 前記遅延手段と、 前記出力手段を設 けた請求の範囲第 6項または第 7項記載の電圧形自励式電 力変換器の事故検出回路。
( 9 ) アーム回路が複数直列接続されたアーム直列回 路を備え、 前記各アーム回路は自己消弧形電力用半導体素 子と、 この半導体素子に有するァノ一ドに直列に接続され 電流立上がり率を抑制するためのァノ一ドリアク トルを有 してなる電圧形自励式電力変換器において、
前記各アーム回路の半導体素子毎ののァノ一ドからカ ソ 一ド方向に流れる電流が増加する時に前記各アーム回路の アノー ドリアク トルに発生する向きの電圧が一定値以上で あることを各々検出する電圧方向検出手段と、
前記各アーム回路の半導体素子毎のゲー トおよびカ ソー ド間のオフゲー ト電圧を各々検出する電圧検出手段と、 前記各電圧検出手段の出力信号をそれぞれ反転して一定 時間遅らせる遅延手段と、
前記各アーム回路毎に前記電圧方向検出手段の出力信号 と前記遅延手段の出力信号が同時に存在したとき前記電力 変換器の事故検出信号とする出力手段と、 を具備した電圧形自励式電力変換器の事故検出回路。
( 1 0 ) アーム回路が複数直列接続されたアーム直列 回路を備え、 前記各アーム回路は自己消弧形電力用半導体 素子と、 この半導体素子に逆並列に接続されたダイォー ド と、 前記半導体素子に有するァノ一ドに直列に接続され電 流立上がり率を抑制するためのァノー ドリアク トルを有し てなる電圧形自励式電力変換器において、
前記各アーム回路のァノ一ドリアク トルにそれぞれ並列 に接続され、 前記各半導体素子のァノー ドからカソー ド方 向に流れる電流が増加する時に前記各アーム回路のァノ一 ドリアク トルに発生する向きの電圧が一定値以上であるこ とを各々検出する電圧方向検出手段と、
前記各アーム回路毎に設けられ、 前記各アーム回路の半 導体素子のゲー トおよび力ソー ド間のオフゲー ト電圧を各 々検出する電圧検出手段と、
前記各アーム回路毎に設けられ、 前記電圧検出手段の出 力信号をそれぞれ反転して一定時間遅らせる遅延手段と、 前記各アーム回路毎に、 前記電圧方向検出手段の出力信 号と前記遅延手段の出力信号が同時に存在したとき前記電 力変換器の事故検出信号とする出力手段と、
を具備した電圧形自励式電力変換器の事故検出回路。
( 1 1 ) 前記アーム直列回路が複数個並列接続される ものであって、 前記アーム直列回路のうちの一つのアーム 直列回路のアーム回路毎に、 前記電圧方向検出手段と、 前 記電圧検出手段と、 前記遅延手段と、 前記出力手段を設け た請求の範囲第 9項または第 1 0項記載の電圧形自励式電 力変換器の事故検出回路。
( 1 2 ) アーム回路が複数直列接続されたアーム直列 回路を備え、 前記各アーム回路は自己消弧形電力用半導体 素子と、 この半導体素子に有するアノー ドに直列に接続さ れ電流立上がり率を抑制するためのァノ一 ドリアク トルを 有してなる電圧形自励式電力変換器において、
前記各アーム回路の半導体素子毎のァノー ドからカソー ド方向に流れる電流が増加する時に前記各アーム回路のァ ノー ドリアク トルに発生する向きの電圧が一定値以上であ ることを各々検出する電圧方向検出手段と、
この電圧方向検出手段の出力信号をそれぞれ一定時間遅 らせて出力される信号を前記電力変換器の事故検出信号と する遅延手段と、
を具備した電圧形自励式電力変換器の事故検出回路。
( 1 3 ) アーム回路が複数直列接続されたアーム直列 回路を備え、 前記各アーム回路は自己消弧形電力用半導体 素子と、 この半導体素子に逆並列に接続されたダイォー ド と、 前記半導体素子に有するァノ一ドに直列に接続され電 流立上がり率を抑制するためのァノー ドリアク トルを有し てなる電圧形自励式電力変換器において、
前記各アーム回路のァノー ドリアク トルにそれぞれ並列 に接続され、 前記各半導体素子のァノ一ドから力ソー ド方 向に流れる電流が増加する時に前記各アーム回路のァノ一 ドリアク トルに発生する向きの電圧が一定値以上であるこ とを各々検出するアノー ドリアク トル電圧方向検出手段と、 この各電圧方向検出手段の出力信号をそれぞれ一定時間 遅らせて出力される信号を前記電力変換器の事故検出信号 とする遅延手段と、
を具備した電圧形自励式電力変換器の事故検出回路。
( 1 4 ) 前記アーム直列回路が複数個並列接続される ものであって、 前記アーム直列回路のうちの一つのアーム 直列回路のアーム回路毎に、 前記電圧方向検出手段と、 前 記遅延手段を設けた請求の範囲第 1 2項または第 1 3項記 載の電圧形自励式電力変換器の事故検出回路。
( 1 5 ) 電圧方向検出手段は、 電流が流れたとき発光 する発光素子と、 この発光素子に直列に接続され電圧を設 定するための抵抗と、 前記発光素子からの光を受光したと き電気信号に変換する受光素子と、 前記発光素子からの光 を前記受光素子に導く ライ トガイ ドと、 前記受光素子から 得られる電気信号を増幅する増幅回路とからなつている請 求の範囲第 1項〜第 3項、 第 6項〜第 1 4項のいずれか一 つに記載の電圧形自励式電力変換器の事故検出回路。
PCT/JP1995/001278 1994-06-27 1995-06-27 Detecteur de defaillance pour convertisseur de puissance auto-commute sur une source de tension WO1996000463A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/600,922 US5675482A (en) 1994-06-27 1995-06-27 Accident detection circuit of a voltage-type self-excited power converter
DE69534981T DE69534981T2 (de) 1994-06-27 1995-06-27 Fehlerdetektor für selbstgeführten spannungsquelle-leistungswandler
CA002170539A CA2170539C (en) 1994-06-27 1995-06-27 Accident detection circuit of a voltage-type self-excited power converter
EP95922767A EP0730340B1 (en) 1994-06-27 1995-06-27 Fault detector for voltage source self-commutated power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14436694A JP3321298B2 (ja) 1994-06-27 1994-06-27 電圧形自励式変換器の事故検出回路
JP6/144366 1994-06-27

Publications (1)

Publication Number Publication Date
WO1996000463A1 true WO1996000463A1 (fr) 1996-01-04

Family

ID=15360446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001278 WO1996000463A1 (fr) 1994-06-27 1995-06-27 Detecteur de defaillance pour convertisseur de puissance auto-commute sur une source de tension

Country Status (7)

Country Link
US (1) US5675482A (ja)
EP (1) EP0730340B1 (ja)
JP (1) JP3321298B2 (ja)
CN (1) CN1041677C (ja)
CA (1) CA2170539C (ja)
DE (1) DE69534981T2 (ja)
WO (1) WO1996000463A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632173A1 (de) * 1996-08-09 1998-02-12 Asea Brown Boveri Stromrichterschaltungsanordnung
JP2001186771A (ja) * 1999-10-15 2001-07-06 Seiko Epson Corp チョッパ回路、チョッパ回路の制御方法、チョッパ式充電回路、電子機器及び計時装置
JP2002027737A (ja) * 2000-07-03 2002-01-25 Fujitsu Ltd Dc−dcコンバータ、dc−dcコンバータ用制御回路、監視回路、電子機器、およびdc−dcコンバータの監視方法
US6883852B2 (en) * 2003-01-06 2005-04-26 Intier Automotive Inc. Articulated door with integrated handle latch
US7576528B2 (en) * 2006-10-04 2009-08-18 Power Integrations, Inc. Control circuit responsive to an impedance
JP2009011117A (ja) * 2007-06-29 2009-01-15 Kansai Electric Power Co Inc:The 電力変換装置
CN102646976A (zh) * 2011-02-22 2012-08-22 台达电子工业股份有限公司 多电源并联供电系统
WO2012119645A1 (de) * 2011-03-08 2012-09-13 Siemens Aktiengesellschaft Anlage zum übertragen elektrischer energie von einer gleichstromleitung zu einem wechselspannungsnetz
JP6187093B2 (ja) 2013-09-26 2017-08-30 株式会社ジェイテクト 電力変換装置
CN106849021A (zh) * 2017-03-17 2017-06-13 深圳市禾望电气股份有限公司 半导体开关过流检测方法及变流器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932366A (ja) * 1982-08-16 1984-02-21 Hitachi Ltd 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329008A (en) * 1976-08-30 1978-03-17 Nec Corp Supervision control uni t of radio transmitter output level
US4384248A (en) * 1979-06-22 1983-05-17 Hitachi, Ltd. Method and apparatus for detecting shortcircuit in arm of GTO inverter
JPS59123478A (ja) * 1982-12-28 1984-07-17 Toshiba Corp 電圧形インバ−タの制御装置
JPS61214775A (ja) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp インバ−タの異常検出回路
US4651270A (en) * 1985-11-06 1987-03-17 Westinghouse Electric Corp. Delay circuit for inverter switches
US4641231A (en) * 1985-12-06 1987-02-03 General Electric Company Apparatus and method for failure testing of a control turn-off semiconductor
US4745513A (en) * 1986-09-15 1988-05-17 General Electric Company Protection of GTO converters by emitter switching
JP2774685B2 (ja) * 1990-09-12 1998-07-09 株式会社東芝 3相変圧器の直流偏磁抑制制御を備えたインバータ制御装置
US5057987A (en) * 1990-11-27 1991-10-15 General Electric Company Fault detection and protection strategy for a pair of complementary GTO thyristors
JPH0519390A (ja) * 1991-07-17 1993-01-29 Hitachi Medical Corp X線カセツテレス速写装置
US5436819A (en) * 1991-07-25 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of compensating for an output voltage error in an inverter output
US5204563A (en) * 1992-01-22 1993-04-20 Jason Barry L Mosfet output circuit with improved protection method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932366A (ja) * 1982-08-16 1984-02-21 Hitachi Ltd 電力変換装置

Also Published As

Publication number Publication date
JPH0819268A (ja) 1996-01-19
EP0730340A1 (en) 1996-09-04
JP3321298B2 (ja) 2002-09-03
EP0730340A4 (en) 1999-11-03
CA2170539A1 (en) 1996-01-04
DE69534981T2 (de) 2007-01-18
EP0730340B1 (en) 2006-05-10
CN1131477A (zh) 1996-09-18
US5675482A (en) 1997-10-07
CN1041677C (zh) 1999-01-13
DE69534981D1 (de) 2006-06-14
CA2170539C (en) 1999-09-07

Similar Documents

Publication Publication Date Title
CN112740529A (zh) 马达驱动装置、送风机、压缩机以及空气调节器
WO1996000463A1 (fr) Detecteur de defaillance pour convertisseur de puissance auto-commute sur une source de tension
JPH114150A (ja) 半導体装置とこの半導体装置を用いた電力変換装置
US5179510A (en) Power converting apparatus capable of suppressing a fault current
US5057987A (en) Fault detection and protection strategy for a pair of complementary GTO thyristors
JP3160414B2 (ja) 変換装置
JPH10164854A (ja) 電力変換器
JP3237719B2 (ja) 電力回生制御装置
US11271495B2 (en) Intermediate circuit coupling in drive assemblies
JP3864793B2 (ja) Pwmサイクロコンバータ及びpwmサイクロコンバータの保護方法
JPH0821861A (ja) 電力変換装置の故障検出回路
US11831249B2 (en) Power conversion apparatus
JP3084645B2 (ja) インバータ装置
JPH11196578A (ja) 多重式インバータ装置
JP4042531B2 (ja) 交流−交流直接変換形電力変換装置
WO2005029690A1 (ja) Pwmサイクロコンバータ
JPH08154374A (ja) 電力変換装置の保護装置
JPH0145837B2 (ja)
JP3019555B2 (ja) Gtoサイリスタインバータ
JP3019554B2 (ja) Gtoサイリスタインバータ
JPS6327950B2 (ja)
JPH0866047A (ja) 電圧形電力変換装置
CN114678838A (zh) 一种交流驱动保护电路及装置
JPH0851780A (ja) 中性点クランプ式インバータ
JPH07123730A (ja) 電流供給型インバータのトリップ動作制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE SE

WWE Wipo information: entry into national phase

Ref document number: 2170539

Country of ref document: CA

Ref document number: 08600922

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995922767

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995922767

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995922767

Country of ref document: EP