WO1995035273A1 - Procede de production de methacroleine - Google Patents

Procede de production de methacroleine Download PDF

Info

Publication number
WO1995035273A1
WO1995035273A1 PCT/JP1995/001234 JP9501234W WO9535273A1 WO 1995035273 A1 WO1995035273 A1 WO 1995035273A1 JP 9501234 W JP9501234 W JP 9501234W WO 9535273 A1 WO9535273 A1 WO 9535273A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst composition
composition
methacrolein
selectivity
Prior art date
Application number
PCT/JP1995/001234
Other languages
English (en)
French (fr)
Inventor
Osamu Nagano
Toru Watanabe
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019960705233A priority Critical patent/KR100186659B1/ko
Priority to US08/700,469 priority patent/US5728894A/en
Priority to EP95922726A priority patent/EP0767161B1/en
Priority to DE69513172T priority patent/DE69513172T2/de
Publication of WO1995035273A1 publication Critical patent/WO1995035273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a method for producing methacrolein. More specifically, the present invention provides that at least one selected from the group consisting of isobutylene and tert-butyl alcohol is vaporized using a molecular oxygen-containing gas in the presence of an oxide catalyst composition.
  • the oxide catalyst composition has a specific relatively simple composition, is easy to prepare, and has a relatively small composition.
  • the environment in which the contents and relative ratios of Bi, CeFe, and K contained in the composition are controlled to specific ranges which was conventionally required to exhibit high catalyst performance It does not contain undesired elements or toxic elements, and does not require the use of low-solubility tin stannates, antimony compounds or niobium compounds which are disadvantageous for the preparation of homogeneous catalysts.
  • the heat It has excellent qualitative and reduction resistance long catalyst life, a method of manufacturing a main Tak port Tray down, wherein the Mochiiruko the Matame Taku b lay down the catalyst composition also excellent in selectivity.
  • At least one selected from the group consisting of isobutylene and tert-butyl alcohol Numerous proposals have been made for catalysts used in the production of mouth lanes. These are mainly concerned with the selection of the components constituting the catalyst and the ratios thereof. For example, a technique for improving mainly the yield of methacrolein by including Ce as a catalyst component is known, but other techniques that are important in industrial practice are known. Conventional catalysts are not yet sufficient in terms of requirements, that is, the longevity of the catalyst, the simplicity and safety in preparing the catalyst, and the environmental issues, and improvements have been desired.
  • references describing examples of catalysts containing C e include, for example, DE Patent Publication No. 200335517 (Japanese Patent Publication No.
  • EP Patent Publication No. 0 102 641 (corresponding to Japanese Patent Publication No. 62-36640) discloses a catalyst ring. It is proposed to reduce the heat storage phenomenon by applying a force.
  • US Patent No. 5,276,178 publication (corresponding to Japanese Patent Application Laid-Open No. 3-176440 and Japanese Patent Application Publication No.
  • the catalyst bed be divided into multiple reaction zones, and the reaction zones be filled with catalysts having different activities to adjust the temperature distribution so that heat storage is unlikely to occur.
  • EP Patent No. 0 460 932 (corresponding to Japanese Patent Application Laid-Open No. 414/533) discloses that the catalyst contains 5 to 15% by weight of silicic acid.
  • the stability of the catalyst by It has been proposed to improve performance. As described above, when the catalyst is formed into a ring, there is a problem that the physical strength of the catalyst is weakened. There is a problem that is necessary.
  • the addition of silica to the catalyst has problems such as lowering the selectivity to the target metachlorin. Therefore, improvement of the thermal stability of the oxide composition itself constituting the catalyst is desired from the viewpoint of catalyst life.
  • the present inventors have found that not only the selectivity of metallochlorin is high but also the heat resistance and the reduction resistance are excellent, the catalyst life is long, and the catalyst composition Source of heterogeneous composition during preparation It does not require the use of compounds of low solubility W, Sb, and Nb as raw materials, and is a catalyst composition that is as simple as possible and has a simple preparation method.
  • the catalyst composition Source of heterogeneous composition during preparation It does not require the use of compounds of low solubility W, Sb, and Nb as raw materials, and is a catalyst composition that is as simple as possible and has a simple preparation method.
  • Cu, Zn, Mn,. Cr, Cd, Pb, As, Hg, Tl, Te We worked diligently to develop catalyst compositions that do not contain Se, Th, U, F, W, Sb, and Nb.
  • At least one member selected from the group consisting of isobutylene and tert-butyl alcohol is subjected to gas phase catalytic oxidation using a molecular oxygen-containing gas in the presence of an oxide catalyst composition to form a metal.
  • an oxide catalyst composition to be used, Mo, Bi, Ce, Fe, Fe, Co, Mg, K, R are used as elements constituting the catalyst composition.
  • b and C s were selected and intensively studied.
  • the atomic ratio of each element constituting the above-mentioned catalyst composition and the relative amounts of Bi, Ce, K, and Fe among the above-mentioned elements are set within appropriate ranges.
  • an object of the present invention is to provide at least one gas selected from the group consisting of isobutylene and tert-butyl alcohol by using a molecular oxygen-containing gas in the presence of an oxide catalyst composition.
  • the oxide catalyst composition In the process of producing catalytic chlorin by catalytic oxidation, the oxide catalyst composition has a relatively simple composition, is easy to prepare, is easy to use, and of course has environmental problems. In addition, when the catalyst composition is used in the production of a metal-cooked lane on an industrial scale, it has excellent heat resistance, reduction resistance, a long catalyst life, and excellent metal-cooked lane yield.
  • An object of the present invention is to provide a method for producing a metal-carrying lane characterized by using a catalyst composition.
  • At least one selected from the group consisting of isobutylene and rt_butyl alcohol is subjected to gas-phase catalytic oxidation using a molecular oxygen-containing gas to produce a metallo-lane.
  • a method for producing a metal-opened line characterized by using an oxide catalyst composition represented by the following formula (I).
  • A is cobalt alone or a mixture of cobalt and magnesium, wherein the atomic ratio of magnesium to cobalt in the mixture is 0.7 or less
  • B is rubidium, cesium, or a mixture thereof
  • poly, a, b, c, d, e, f, and g are bismuth, cerium, potassium, iron, and A, respectively, for 12 atoms of molybdenum.
  • g is the number of oxygen atoms required to satisfy the valence conditions of the other elements present.
  • Bismuth (B i) is an essential element for synthesizing methacrolein, and in order for the catalyst composition of the present invention to exhibit its intended function, molybdenum (Mo) is required.
  • the atomic ratio (a) of B i to 12 atoms must satisfy the condition 0 ⁇ a 8.
  • Cerium (Ce) not only gives the catalyst heat resistance and reduction resistance, but also In order for the catalyst composition of the present invention to exhibit its function, the atomic ratio (b) of Ce to Mo 12 atoms satisfies the condition of 0 ⁇ b ⁇ 8. There is a need.
  • C (K) is essential for further enhancing the effect of adding Ce, and is also an important element for improving the selectivity of methacrolein.
  • the atomic ratio (c) of K to 12 atoms must satisfy the condition 0 ⁇ cl. When the amount of K is large and c> l.2, even if the recalcining temperature is adjusted by adjusting the amount of elements other than K, the desired catalytic activity cannot be sufficiently exhibited.
  • Iron (F e) is an essential element in order to synthesis industrially main Taku b lay down as with B i, appears a tendency that the F e content increased CO and C_ ⁇ 2 such by-products is increased, main Taku Mouth-line selection rate decreases.
  • the atomic ratio (d) of F e to Mo 12 atoms must satisfy the condition 0 ⁇ d ⁇ 2.5.
  • the relative amounts of F e and B i, C e are important, and the hulls, a, b, and d are expressed by the equation 0 and d Z (a + b + d) ⁇ 0.9. It is necessary to satisfy the condition expressed by the following formula.Furthermore, satisfying the condition expressed by the formula 0.1 ⁇ d / (a + b + d) ⁇ 0.5 provides good catalytic performance. Preferred above. In particular, for the Mo 12 atom, the methacro must satisfy the two conditions of Fe force SO and d ⁇ 2.5 and 0 and d / (a + b + d) ⁇ 0.9. This is necessary to achieve high selectivity for rain.
  • the relative amounts of Bi, Ce and K must be specified in order to maintain high selectivity and significantly improve the heat resistance and reduction resistance of the catalyst. It is necessary to be within the range. That is, in the catalyst composition represented by the formula (I), a, b, and c satisfy the condition represented by the following formula: 0.05 b / (a + b + c) ⁇ 0.7. It is preferable to satisfy the condition expressed by the expression 0.1 b / (a + b + c) ⁇ 0.5.
  • Magnesium (M g) is one of the elements that can be used as an alternative element for a part of Co in A of the above formula (I), but it does not contain C 0, and Mg alone has sufficient catalytic activity. Cannot be raised to a higher level. Mg raw material is cheaper than C 0 raw material, and it is industrially significant that part of Co can be replaced with Mg from the viewpoint of catalyst production cost.
  • the atomic ratio of Mg to Co in the mixture of Co and Mg (A) is 0.7 or less. This is necessary, and the atomic ratio (e) of A to the Mo 12 atoms must satisfy the condition of 1.0 ⁇ e ⁇ 12 as in the case of using Co alone. There is.
  • nickel (N i) which is a homologous element to C o, can be used as a partial substitute element for C 0, but Ni is C 0 or CO 2 It is not preferable to add Ni to increase the by-products of nitrogen. Contains Ni as an impurity If raw materials must be used, care must be taken that the atomic ratio of Ni to Mo 12 atoms does not exceed 1 in the catalyst composition.
  • the catalyst composition of the present invention was obtained by a known method, for example, a first step of preparing a raw slurry, a second step of spray-drying the raw slurry, and a second step. It can be obtained by a method including a third step of firing the dried particles.
  • a raw material slurry is obtained by preparing a raw material for the catalyst, and the raw material slurry is prepared from the following elements: mor- sium, bismuth, cerium, potassium, iron, cobalt, magnesium, norebidium, and cesium.
  • the element source include ammonium salts, nitrates, hydrochlorides, sulfates, and organic salts that are soluble in water or nitric acid.
  • ammonium salt is used as an elemental source of bismuth, cerium, potassium, iron, konokoleto, magnesium, norebidium, and cesium. Each nitrate is preferred.
  • the raw material slurry can be prepared by mixing a solution obtained by dissolving ammonium molybdate in warm water and a solution obtained by dissolving other elements as nitrates in water or an aqueous nitric acid solution.
  • the raw slurry obtained in the first step is spray-dried to obtain a pseudo-spherical particulate catalyst precursor.
  • material The slurry can be atomized by a method such as a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method which is usually industrially performed.
  • the drying heat source is steam or electric heat. It is preferable to use air heated by a heater or the like. At this time, it is desirable that the temperature at the inlet of the dryer of the spray dryer is in the range of 150 to 400 ° C.
  • a desired oxide catalyst composition is obtained by calcining the dried particulate catalyst precursor obtained in the second step. Drying The calcination of the particulate catalyst precursor is performed by pre-baking for about 1 to 24 hours in a temperature range of 180 to 400 ° C, tableting into an appropriate shape if necessary, and then 3 Perform for 1 to 24 hours in a temperature range of 50 to 600 ° C. The firing can be performed using a firing furnace such as a rotary furnace, a tunnel furnace, and a muffle furnace.
  • the oxide catalyst composition of the present invention is porous, and the total pore volume of pores having a pore diameter of 1 ⁇ m or less is 95% or more of the total pore volume of the oxide catalyst composition. It is desirable that there be.
  • the specific pore size distribution as described above gives the catalyst composition itself physical strength, and controls the molecular diffusion rate into the catalyst composition by the pore size. The reaction in the composition can be prevented from excessively promoting.
  • the catalyst composition contains silica. It is desirable to include a force that is not included, or to contain as little as possible.
  • the raw material is silicic acid sol, silica gel, or silicate such as calcium silicate or sodium silicate. Etc. can be used.
  • the Si component be 3 atoms or less, preferably 1 atom or less, and more preferably 0.1 atom or less based on the Mo 12 atom standard.
  • the gas phase catalytic oxidation reaction is carried out by isobutylene, tert-butyl alcohol or a mixed gas of 1 to 10% by volume, and a mixed gas of a molecular oxygen-containing gas and a diluent gas 90 to 99 %
  • the raw material gas in the fixed bed reactor is formed of the above-mentioned oxide catalyst composition, preferably in a tableted catalyst bed at a temperature in the range of 250 to 450 ° C. and normal pressure to 5 ° C. Under the pressure of atmospheric pressure, space velocity 400 to 400 / hour (Normal temperature and press ure
  • NTP nitrogen, carbon dioxide, water vapor, and a mixed gas thereof.
  • the volume ratio is 0.04 ⁇ molecular oxygen / (molecular oxygen-containing gas + diluent gas) ⁇ 0.3. Satisfy the conditions of Is preferred.
  • the concentration of molecular oxygen in the source gas is 4 to 20 volumes. / 0 is preferred.
  • Water vapor in the raw material gas is necessary to prevent coking of the catalyst.However, in order to suppress by-products of carboxylic acids such as methacrylic acid and acetic acid, the concentration of water vapor in the diluent gas should be as low as possible. It is preferable to lower Water vapor in the source gas usually exceeds 30% by volume. It is preferable to use within the range of / 0
  • 364 g of ammonium heptamolybdate was dissolved in 180 g of warm water at about 50 ° C (solution A). Also, 133 g of bismuth nitrate, 29.8 g of cerium nitrate, 69.4 g of iron nitrate, 13.4 g of cesium nitrate, 3.4.6 g of potassium nitrate and 400 g of Baltic weighs 15 weight. / 0 were dissolved in nitric acid solution 2 9 0 g (B solution). The solution A and the solution B were stirred and mixed for about 2 hours to obtain a raw material slurry.
  • This raw material slurry was spray-dried, and the obtained spray-dried catalyst composition precursor was calcined at 200 ° C. for 3 hours.
  • the pseudo-spherical particulate calcined catalyst composition precursor thus obtained was tableted into a column having a diameter of 5 mm and a height of 4 mm, and calcined at 460 ° C for 3 hours.
  • the pore size distribution of the obtained tableting catalyst composition was measured using an automatic porosimeter manufactured by Shimadzu Corporation of Japan, and as a result, the pore size was found to be between ⁇ 0.11 and 1.0 ⁇ m.
  • the total pore volume of the pores is 97% of the total pore volume, and the total pore volume of pores having a pore diameter of more than 1.0 / m and 10 or less is 2% of the total pore volume. there were.
  • the tableting catalyst composition As an initial performance evaluation of the catalyst composition, 4.0 g of the tableting catalyst composition was filled into a SUS304 reaction tube with a jacket having a diameter of 10 mm, and the reaction temperature was 350 ° C. With isobutylene 6 capacity. / 0 , oxygen 10.8 capacity. /. was aerated at a flow rate of water vapor 1 0. 0% by volume and nitrogen 7 3. 2 volumes 0/0 mixed gas consisting of 1 0 0 ml / min (NTP), performs main Taku b lay down the synthesis reaction, the reaction evaluation Was conducted. As a result, the conversion of isobutylene was 97.3%, the selectivity of methacrolein was 87.1%, and the selectivity of methacrylic acid was 97.3%. It was 2.5%.
  • reaction temperature was raised to 400 ° C, the mixed gas flow rate was changed to 150 m1 / min (NTP), and the continuous operation was performed for about 400 hours.
  • reaction temperature: 350 ° C, gas flow rate: 100 ml Zmin) the reaction was evaluated (life test of catalyst composition).
  • the conversion of isobutylene was 97.4%
  • the selectivity of methacrolein was 87.2%
  • the selectivity of methacrylic acid was 2.4%.
  • no deterioration in the catalytic activity was observed, and no discoloration or shrinkage of the catalyst composition was observed.
  • Example 1 a tableting catalyst composition having the same composition as the oxide catalyst composition obtained in Example 1 was obtained.
  • the pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1.
  • the above tableting catalyst composition 4. O'g was evaluated for initial performance in the same manner as in Example 1, and the same results as in Example 1 were obtained (isobutylene conversion: 97.3%; Lorain selectivity: 87.1%; methacrylic acid selectivity: 2.5%).
  • the reaction temperature was raised to 455 ° C, and isobutylene was 6% by volume, oxygen was 10.8% by volume, and steam was 10.0% by volume.
  • a mixed gas consisting of / 0 and 73.2% by volume of nitrogen was passed for 24 hours at a flow rate of 180 m] Zmin (NTP) to conduct a metachlorine synthesis reaction.
  • NTP 180 m] Zmin
  • the reaction temperature was set to 350 ° C
  • the raw material mixed gas aeration was set to 10 O ml.
  • results similar to those obtained in the initial performance evaluation were obtained. That is, the conversion of isobutylene was 97.2%, the selectivity of methacrolein was 87.2%, and the selectivity of methacrylic acid was 2.5%.
  • Example 1 catalyst composition Except using no nitric cell re ⁇ beam, represented by Example 1 catalyst composition in a similar manner to, i.e. M o 1 2 B i z. O F en C o s. O C so ⁇ K 0. 2 A tableting catalyst composition was prepared. The pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1. Using the tableting catalyst composition described above, the raw material mixed gas ventilation rate was 60 m.
  • reaction temperature was raised to 400 ° C, and the mixed gas flow rate was 90 m.
  • a tableting catalyst composition having the same composition (excluding Ce) as the oxide catalyst composition obtained in Comparative Example 1 was prepared.
  • the pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1.
  • initial performance evaluation and severe condition tests of the catalyst composition were performed in the same manner as in Example 2.
  • the catalyst activity was remarkably reduced, and the conversion of isobutylene was 70% or less.
  • a discoloration phenomenon peculiar to reduction degradation and a shrinkage phenomenon peculiar to thermal degradation were observed in the catalyst composition.
  • the results of the reaction evaluation are shown in Table 1.
  • Example 3 to 18 the tableting catalyst compositions having the compositions shown in Table 1 were adjusted, and the element sources and amounts of the respective metal elements were adjusted so that the oxide catalyst compositions shown in Table 1 were obtained. Except as described above, it was prepared in the same manner as in Example 1. The pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1. Same as in Example 2 except that the amount of the used catalyst composition or the flow rate of the raw material mixed gas was adjusted in order to compare the catalyst performance of each catalyst composition under substantially the same isobutylene conversion conditions. Catalyst group in a simple way An initial performance evaluation of the product and a severe condition test were performed. Furthermore, in Example 5, the life test of the catalyst composition was performed in the same manner as in Example 1 except that the reactor operating time was changed to 300 hours. In Example 8, the life test of the catalyst composition was performed. To go. Table 1 shows the results.
  • Comparative Examples 3 to 10 the tableting catalyst compositions having the compositions shown in Table 1 were adjusted, and the element sources of the respective metal elements and the amounts thereof were adjusted so that the oxide catalyst compositions shown in Table 1 were obtained. Except as described above, it was prepared in the same manner as in Example 1. The pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1. Using the above tableting catalyst composition, initial performance evaluation and severe condition tests were performed in the same manner as in Example 2. In Comparative Example 5, the life of the catalyst composition was changed in the same manner as in Example 1 except that the operating time of the reactor was changed to 300 hours, and in Comparative Example 6, the life of the catalyst composition was changed in the same manner as in Example 1. A test was performed. Table 1 shows the results.
  • the obtained catalyst composition has excellent heat resistance and reduction resistance. You can see this. Furthermore, it can be seen that if the catalyst composition has a high Ce content and is 0.7 and bZ (a + b + c), the selectivity of metachlorin is reduced.
  • the results of Example 5 and Comparative Example 5 are shown, and the results of Example 8 and Comparative Example 6 are shown. Comparing the results shows that the presence of K affects the catalyst life.
  • the catalyst composition represented by M012Bi.eCeo.ei.c ⁇ OB.Cs0.4K0.2 was prepared as follows.
  • Solution B was prepared by dissolving 149.8 g of covanolate nitrate and 26.0 g of ferric nitrate in 150 ml of water.
  • Bismuth nitrate (49.9 g) was dissolved in an aqueous nitric acid solution consisting of 60% nitric acid (26 ml) and water (260 ml) to obtain solution C.
  • Solution B and Solution C were sequentially added dropwise to Solution A, and the resulting slurry solution was spray-dried and calcined in the same manner as in Example 1 to obtain an atomic ratio of Mo ZB i ZF e / Co.
  • a composition (I) having a ZC s ZK of 11.2 to 1.6 / 1 / 80.4 / 0.2 was obtained.
  • composition (I) and the composition ( ⁇ ) have an atomic ratio of Mo / BiZCe / Fe / Co / Cs / K ⁇ si2 / l.6 / 0.4.1 / 1/8/0.
  • Example 1 It was calcined at 540 ° C for 4 hours to obtain a catalyst composition. After pulverizing this catalyst composition, it was tableted into a column having a diameter of 5 mm and a height of 4 mm, and the pore size distribution of the obtained catalyst was measured in the same manner as in Example 1. Using the above tableting catalyst, the reaction was evaluated in the same manner as in Example 1.
  • the present comparative example was prepared using this catalyst composition system.
  • the selectivity of the metal mouth lane was low. That is, the conversion of isoptylene was 97.1%, the selectivity for methacrolein was 75.3%, and the selectivity for methacrylic acid was 4.1%.
  • Comparative Example 11 The main difference between Comparative Example 11 and the embodiment described in US Pat. No. 5,138,100 (corresponding to Japanese Patent Application Laid-Open No. 414,454) is as follows.
  • the catalyst compositions in the examples of US Pat. No. 5,138,100 no alkali metal is used, and Fe is more than 2.5 atoms on the basis of Mo 12 atoms.
  • the catalyst composition prepared in Comparative Example 1.1 contains K and C s and Fe is less than 2.5 atoms.
  • Example 19 to 24 the tableting catalyst compositions having the compositions shown in Table 2 were used, and the element sources and amounts of the respective metal elements so that the oxide catalyst compositions shown in Table 2 were obtained. It was prepared in the same manner as in Example 1 except that was adjusted. The pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1. Using the above tableting catalyst, tert-butyl alcohol 6.4% by volume, oxygen 115% by volume, steam 4.3% by volume. / 0 , nitrogen 77.8 capacity. A metachlorine synthesis reaction was carried out in the same manner as in the initial performance evaluation of Example 1 except that the raw material gas consisting of / 0 was used. The selectivity and the by-product isobutylene rate were measured. Further, a methacrolein synthesis reaction was carried out in the same manner as in the severe condition test of Example 2, and a by-product isobutylene ratio was measured. Table 2 shows the results.
  • a tableting catalyst composition having the composition shown in Table 2 (the same composition as the oxide composition not containing Ce obtained in Comparative Example 1) was prepared in the same manner as in Example 1.
  • the pore size distribution of the obtained tableting catalyst was measured in the same manner as in Example 1.
  • tert -.-Butyl alcohol 6 4 ⁇ amount% oxygen 1 1 5 volume 0/0 steam 4 3 volume%, nitrogen 7 7 8 raw material gas consisting of volume% The same procedure as in the initial performance evaluation of Example 1 was carried out, except that methacryloline was used, and the selectivity of methacrolein, the selectivity of methacrylic acid, and the by-product isobutylene were determined. The rate was measured. Further, a metal-oral-lane synthesis reaction was performed in the same manner as in the severe condition test of Example 2, and the by-product isobutylene ratio was measured. Table 2 shows the results.
  • Table 2 shows that the activity of the catalyst composition containing no Ce is reduced even when tert-butyl alcohol is used as a raw material.
  • the oxide catalyst composition to be used has a specific relatively simple composition, the preparation thereof is simple, and particularly, The content of each of BiCe, Fe, and K contained in the composition is controlled to a specific range, which is an unfavorable element in terms of environmental problems that was conventionally required to achieve high catalyst performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

発明の名称
メ タク ロ レイ ンの製造方法
発明の背景
技術分野
本発明は、. メ タク ロ レイ ンの製造方法に関する。 更に詳細 には、 本発明は、 イ ソブチレン及び t e r t —ブチルアルコ ー ルょ リ なる群から選ばれる少なく と も 1 種を、 酸化物触媒組 成物存在下に、 分子状酸素含有ガスを用いて気相接触酸化し てメ タク 口 レイ ンを製造する方法において、 該酸化物触媒組 成物と して、 特定の比較的簡単な組成を持っていてその調製 が簡単でぁ リ 、 そ して、 特にその組成に含まれる B i 、 C e F e , Kのそれぞれの含有量及び相対量比が特定の範囲に制 御されていて、 従来、 高い触媒性能を発揮させるために必要 であった環境問題上好ま しく ない元素や毒性元素を含まず、 更に、 均一な触媒の調製上不利と なる溶解度の低いタ ンダス テン酸塩、 アンチモン化合物あるいはニオブ化合物を原料に 用いる こ と を必要とせず、 それでいて、 熱安定性及び耐還元 性に優れていて触媒寿命が長く 、 またメ タク ロ レイ ン選択率 にも優れた触媒組成物を用いるこ と を特徴とするメ タク 口 レ イ ンの製造方法に関する。
従来技術
ィ ソブチレン及び t e r t —ブチルアルコールカゝらなる群よ リ選ばれる少なく と も 1 種を気相接触酸化反応して、 メ タク 口 レイ ンを製造する際に用いられる触媒に関しては数多く の 提案がなされている。 これらは主と して触媒を構成する成分 およびその量比の選択にかかわる ものである。 例えば、 C e を触媒構成成分と して含有させる こ とによ リ 、 主にメ タク ロ レイ ンの収率を改善させる技術が知られているが、 工業的実 施において重要であるその他の要件、 すなわち触媒の長寿命 性、 触媒調製時の簡便性や安全性、 さ らには環境問題等の面 では従来の触媒は未だ充分とは言えず、 その改良が望まれて いた。
C e を含む触媒に関して実施例を記載した文献と しては、 例えば、 D E特許第 2 0 3 5 5 1 7号公報 (日本国特公昭 4
3 — 1 3 9 8 7号公報に対応) 、 日本国特開昭 6 0 — 1 6 1 9 3 2号公報、 日本国特開昭 6 0 — 1 6 3 8 3 0号公報、 日 本国特開昭 6 3 — 1 0 7 7 4 5号公報、 日本国特開昭 6 3 — 1 2 2 6 4 1 号公報、 E P特許第 0 2 6 7 5 5 6 号公報
(日本国特開昭 6 3 — 1 2 2 6 4 2号公報に対応) 、 日本国 特開平 2 — 2 2 7 1 4 0号公報、 E P特許第 0 4 2 0 0
4 8号公報 (日本国特開平 3 — 1 0 9 9 4 3 号公報に対応) 、 E P特許第 0 5 2 3 7 2 7号公報 (日本国特開平 5 — 2
3 5 9 6号公報に対応) 、 日本国特開平 6 — 1 9 2 1 4 4号 公報、 日本国特開昭 5 2 — 1 1 1 5 0 5 号公報、 E P特許第
0 1 0 2 6 4 1 号公報 (日本国特公昭 6 2 — 3 6 7 4 0 号公報に対応) 、 U S特許第 4, 5 3 7 , 8 7 4号公報 (日 本国特公平' 2 — 3 2 0 1 7号公報に対応) 、 E P特許第 0 2 7 9 3 7 4号公報 (日本国特開昭 6 3 — 3 1 5 1 4 7号 公報に対応) 、 U S特許第 5, 2 7 6 , 1 7 8号公報 (日本 国特開平 3 — 1 7 6 4 4 0号公報、 日本国特開平 3 — 2 0 0 7 3 3号公報、 日本国特開平 3 — 2 1 5 4 4 1 号公報及び日 本国特開平 3 — 2 9 4 2 3 8号公報に対応) 、 日本国特公昭 5 3 — 2 3 8 0 8号公報 (U S特許第 3, 9 3 6, 5 0 5号 公報及び U S特許第 4, 0 2 5 , 5 6 5号に対応) 、 日本国 特公昭 5 5 - 4 4 7 3 0号公報等があげられる。 し力 し、 レヽ ずれの文献の実施例においても、 毒性問題、 環境問題あるい は触媒調製の容易性や金属成分の回収の面で問題とな リ得る T l 、 T e 、 Z n、 C r 、 T h、 U、 W、 S b 、 N b のいず れかが C e と 同時に使用されている。 そのため、 これらの従 来技術は、 最近の厳しい環境問題、 また触媒製造コ ス ト削減 の観点、 あるいは触媒構成元素の リ サイ ク ル使用の容易さの 観点からは、 未だ工業的実施に充分と は言えない。 例えば、 W、 S b、 N b等の化合物は溶解度が低いため、 触媒組成物 調製時に多量の水を使用 した リ 、 原料化合物を微粉碎して使 用する こ とが必要と なる。 多量の水の使用は、 触媒原料液の 乾燥操作時にエネルギーを多く 必要と し、 原料化合物を微粉 砕して使用 しても、 触媒性能の不均一化は避け られず、 触媒 寿命が短く なる不利益が生じる。 また、 触媒原料液の噴霧乾 燥に於いて、 原料液の濃度が低い場合、 所望の大き さの疑似 球形粒子が得られず、 打錠形成時に不利となる。
また、 単に反応成績の面から好ま しい触媒を得たと しても、 触媒の構成成分数が多ければ触媒調製工程が煩雑になる。 更 に、 触媒製造時に生じる廃液や、 使用済み触媒からの金属成 分の回収操作時に発生する廃液の処理を考慮する と、 構成成 分数が多かった リ 、 環境汚染問題に大いに関わって く る金属 や、 酸 · 塩基に対して難溶性の化合物を造る金属を含んだ触 媒は、 結局コ ス ト高となって しま う。
また、 日本国特公昭 5 5 — 4 5 2 5 6 号公報、 日本国特開 昭 6 0 — 8 4 2 4 3 号公報、 日本国特公昭 5 9 — 4 5 4 1 5 号公報、 (上記 3件の特許文献は、 何れも U S特許第 4, 1 5 5, 9 3 8公報及び U S特許第 4 , 1 8 6, 1 5 2号公報 に対応) 日本国特開昭 5 2 - 1 1 1 5 0 6 号公報、 U S特許 第 4 , 7 7 8, 9 3 0号公報 (日本国特開昭 5 1 — 3 4 1 0 7号公報に対応) 、 英国特許第 1 5 2 3 7 7 2号公報 (日本 国特公昭 6 0 — 3 6 8 1 2 号公報に対応) 、 U S特許第 4, 1 6 2, 2 3 4号公報 (日本国特開昭 6 1 — 1 8 4 3 5号公 報に対応) 等では、 C e を含む触媒において F e の含有量が 多すぎた リ 、 N i を含有させているため、 工業的に充分なメ タク 口 レイ ン選択率が得られていない。
一方、 触媒性能を高める方法と して希土類元素を用いる従 来の方法では、 例えば U S特許第 5, 1 3 8, 1 0 0号公報 (日本国特開平 4 — 4 1 4 5 4号公報に対応) には、 別々に 調製された 2種類の特定の組成物を機械的に混合した後、 焼 成して得られる触媒が、 活性やメ タク ロ レイ ン選択性に優れ る こ とが記載されている。 しかし、 上記の U S特許第 5, 1 3 8 , 1 0 0号公報においては、 2種類の組成物の別々の調 製が必要であるため触媒調製工程が煩雑でぁ リ 、 工業的規模 で触媒を調製する際には機械的混合操作に於ける不均一混合 の問題が生じやすく 、 この不均一混合性が触媒性能の不均一 性を生じさせ、 触媒寿命を縮める とい う 問題がある。
また、 メ タク ロ レイ ン合成反応は多量の発熱を伴 う酸化反 応であるため、 触媒床での蓄熱が反応成績を低下させるのみ ならず、 熱負荷によって触媒の劣化が起こ リやすいこ とが、 工業的規模での実施に際して大きな問題となっている。 触媒 の熱負荷を低減させる対策と して、 E P特許第 0 1 0 2 6 4 1 号公報 (日本国特公昭 6 2 - 3 6 7 4 0号公報に対応) には、 触媒形状を リ ング状にし蓄熱現象を緩和させる こ と力 S 提案されている。 また、 U S特許第 5, 2 7 6 , 1 7 8号公 報 (日本国特開平 3 — 1 7 6 4 4 0号公報及び日本国特開平 3 — 2 0 0 7 3 3号公報に対応) には、 触媒床を分割して複 数個の反応帯を設け、 この複数個の反応帯に活性の異なる触 媒を充填して蓄熱が生じにく い温度分布に調節する こ とが提 案されている。 また、 E P特許第 0 4 6 0 9 3 2号公報 (日本国特開平 4 一 4 1 4 5 3号公報に対応) には、 触媒中 にシ リ 力を 5〜 1 5重量%含ませる こ と によって触媒の安定 性を改善す'る こ とが提案されている。 上記のよ う に、 触媒を リ ング状に した場合には、 触媒の物理的強度を弱める という 問題があ リ 、 また触媒床を分割する触媒の充填方法において は、 複数種の触媒の調製が必要である とい う 問題がある。 さ らに、 触媒へのシリ カの添加は目的メ タ ク ロ レイ ンへの選択 率を低下させるなどの問題がある。 そのため、 触媒を構成す る酸化物組成物自体の熱安定性の改良が触媒寿命の観点から 望まれている。
また、 上記酸化反応においては、 触媒上で常に酸化反応と 還元反応が繰リ返されてぉ リ 、 こ の酸化還元反応のバラ ンス によって触媒機能が維持されている。 しかし、 原料に対する 酸素量が何らかの原因で、 例えば操作ミ スや局部的暴走反応 によって、 著しく 低下する場合、 触媒は還元され、 触媒を構 成する化学種の結晶相が変化し、 触媒劣化が促進されて しま う。 E P特許第 0 1 6 9 4 4 9号公報 (日本国特開昭 6 1 一 3 3 2 3 4号公報に対応) には劣化触媒を酸化するこ と で触媒機能を回復させる手段が提案されているが、 さ らなる ' 耐還元性の強い触媒の開発が触媒寿命の観点から望まれてい た。
発明の概要
本発明者らは、 上記のよ う な状況下にあって、 メ タク ロ レ イ ン選択率が高いのみならず耐熱性及び耐還元性にも優れて いて触媒寿命が長く 、 触媒組成物の調製時に不均一組成の原 因となる溶解度の低い W、 S b 、 N bの化合物を原料に用い る こ と を必要とせず、 でき るだけ単純な触媒組成であって調 製法も簡便である触媒組成物でぁ リ 、 しかも触媒調製時や触 媒成分の回収操作時に環境問題を生じさせないため、 C u、 Z n、 M n、. C r 、 C d、 P b 、 A s 、 H g、 T l 、 T e 、 S e 、 T h、 U、 F、 W、 S b、 N b を含まない触媒組成物 を開発すべく 鋭意研究を行った。 即ち、 イ ソブチ レン及び t e r t—ブチルアルコールよ リ なる群から選ばれる少なく と も 1種を、 酸化物触媒組成物の存在下に、 分子状酸素含有ガス を用いて気相接触酸化してメ タク ロ レイ ンを製造する方法に おいて、 用いる酸化物触媒組成物に関し、 触媒組成物を構成 する元素と して M o 、 B i 、 C e 、 F e 、 C o 、 M g、 K、 R b、 C s を選定し、 鋭意検討を行った。 その結果、 驚く ベ き こ と に、 上記の触媒組成物を構成する各元素の原子比及び 上記各元素の う ち B i 、 C e 、 K、 F e の相対量を適切な範 囲に設定する こ とによ リ 、 従来、 高い触媒性能を発揮させる ために必要であった環境問題上好ま しく ない元素や毒性元素 を含まず、 更に、 均一な触媒の調製上不利と なる溶解度の低 ぃタングステン酸塩、 アンチモン化合物あるいはニオブ化合 物を原料に用いる こ と を必要とせず、 それでいて、 熱安定性 及び耐還元性に優れていて触媒寿命が長く 、 またメ タク 口 レ イ ン選択率にも優れた触媒組成物が得られる こ と を見いだし た。 本発明は、 この知見に基づいて完成したものである。 即ち、 本発明の目的は、 イ ソブチ レン及び t e r t—ブチル アルコールよ リ なる群から選ばれる少なく と も 1 種を、 酸化 物触媒組成物の存在下に、 分子状酸素含有ガスを用いて気相 接触酸化し、 メ タク ロ レイ ンを製造する方法において、 該酸 化物触媒組成.物と して、 比較的簡単な組成を持っていてその 調製が簡単でぁ リ 、 しかも、 環境問題面はもちろんの こ と 、 その触媒組成物を用いるメ タ ク 口 レイ ン製造の工業的規模の 実施において、 耐熱性及び耐還元性に優れていて触媒寿命が 長く 、 メ タク 口 レイ ン収率に優れた触媒組成物を用いる こ と を特徴とするメ タク 口 レイ ンの製造方法を提供する こ と にあ る。
発明の詳細な説明
本発明によれば、 イ ソプチレン及び r t _ブチルアルコ ールょ リ なる群から選ばれる少なく と も 1 種を分子状酸素含 有ガスを用いて気相接触酸化してメ タク 口 レイ ンを製造する 方法において、 下記の式 ( I ) で表される酸化物触媒組成物 を用いる こ と を特徴とする メ タク 口 レイ ンの製造方法が提供 される。
M o , 2 B i a C e bKc F e dAe B f O g ( I ) (式中、
Aはコバル ト単独、 またはコバル ト とマグネシウムの混合 物であって、 該混合物中のマグネシウムのコバル トに対する 原子比率が 0 . 7以下でぁ リ 、 Bはルビジウム、 セシウムまたはそれらの混合物でぁ リ 、 a 、 b 、 c , d 、 e 、 f 及び g は、 それぞれ、 モ リ ブデン 1 2原子に対する ビスマス 、 セ リ ウム、 カ リ ウム、 鉄、 A、 B及び酸素の原子比率を表し、
0 < a ≤ 8 、
0 < b ≤ 8 ,
0 < c ≤ 1 . 2 、 ·
0 < d ≤ 2 . 5 、
1 . 0 ≤ e ≤ 1 2 ,
0 < f ≤ 2 . 0 、
g は存在する他の元素の原子価条件を満足させる のに必要な酸素の原子数であ リ 、
a 、 b 、 c及び d は以下の式
0 . 0 5 ≤ b / ( a + b + c ) ≤ 0 . 7 、
0 < c / ( a + b + c ) ≤ 0 . 4 、
0 < d / ( a + b + d ) ≤ 0 . 9 、
の条件を満足する。 )
ビス マス ( B i ) は、 メ タク ロ レイ ンを合成する上で必須 元素であ り 、 本発明の触媒組成物に目的とする機能を発現さ せるためには、 モ リ ブデン (M o ) 1 2原子に対する B i の 原子比率 ( a ) が、 0 < a 8 の条件を満足する必要がある。 セ リ ウム ( C e ) は触媒に耐熱性、 耐還元性を持たせる上 で必須元素でぁ リ 、 本発明の触媒組成物にその機能を発現さ せるためには、 M o 1 2原子に対する C e の原子比率 ( b ) が、 0 < b ≤ 8の条件を満足する必要がある。
カ リ ウム ( K ) は C e の添加効果を さ らに高める上で必須 であ リ 、 また、 メ タ ク ロ レイ ンの選択率を改善する上でも重 要な元素でぁ リ 、 M o 1 2原子に.対する Kの原子比率 ( c ) が、 0 < c l . 2の条件を満足する必要がある。 K量が多 く 、 c > l . 2になる と、 K以外の元素量を調節した リ焼成 温度を調節しても充分な所望の触媒活性を発現できなく なる , 鉄 ( F e ) は、 B i と 同様に工業的にメ タク ロ レイ ンを合 成する上で必須元素であるが、 F e含量が多く なる と C Oや C〇 2等の副生物が増加する傾向が現れ、 メ タク 口 レイ ン選 択率が低下して しま う。 M o 1 2原子に対する F e の原子比 率 ( d ) が 0 < d ≤ 2 . 5 の条件を満足する必要がある。
さ らに、 F e については、 F e と B i 、 C e との相対量が 重要でぁ リ 、 a 、 b 、 dが、 式 0 く d Z ( a + b + d ) ≤ 0 . 9で表わされる条件を満足するこ とが必要でぁ リ 、 更に式 0 . 1 ≤ d / ( a + b + d ) ≤ 0. 5で表わされる条件を満足す る こ とが良い触媒性能を出す上で好ま しい。 特に、 M o 1 2 原子に対し、 F e 力 S O く d ^ 2. 5及び 0 く d / ( a + b + d ) ≤ 0. 9 の 2つの条件を満足する こ とが、 メ タク ロ レイ ンに対する高い選択率を発揮するために必要である。 さ らに、 C e を添加する こ と によ リ 、 高選択率を維持し、 触媒の耐熱性、 耐還元性を著しく 改善するためには、 B i 、 C e 及び Kの相対量が特定の範囲にある こ とが必要である。 即ち、 式 ( I ) で表わされる触媒組成物において、 a 、 b 、 c が、 式 0 . 0 5 b / ( a + b + c ) ≤ 0 . 7 で表わされ る条件を満足するこ とが必要でぁ リ 、 さ らに、 式 0 . 1 b / ( a + b + c ) ≤ 0 . 5 で表わされる条件を満足する こ と が好ま しい。
また、 C e の添加効果を相乗効果的に高めるために必須で ある Kの B i 、 C e との相対量に関しては、 a 、 b 、 c が、 式 0 < c Z ( a + b + c ) ≤ 0 . 4 で表わされる条件を満足 する こ とが必要でぁ リ 、 さ らに式 0 . 0 2 ≤ c / ( a + b + c ) ≤ 0 . 2 で表わされる条件を満足する こ とが好ま しい。
B i 、 C e および Kの量関係が上記の条件を満たすこ と に よって、 本発明で望まれる効果が得られる理由は明 らかでは ないが、 B i 、 C e および Kのモ リ ブデン酸化合物が、 特定 な原子比領域において、 互いに固溶化し合い、 本発明におい て望まれる有利な特性を発揮している ものと考えられる。 式 ( I ) で表わされる触媒組成物において、 メ タク ロ レイ ン選択率を低下させるこ と なく 触媒活性を高める上で、 式 ( I ) における Aと して、 C o の存在が不可欠である。 M o 1 2原子に対する C o の原子比率 ( e ) 力 S I . 0 ≤ e ≤ 1 2 の条件を満足する必要がある。 マグネシウム (M g ) は上記式 ( I ) の Aにおいて、 C o の一部を代替する元素と して使用でき る元素の一つであるが C 0 を含まず M gのみでは触媒活性を充分に高める こ とがで きない。 M g原料は C 0原料に比べて安価でぁ リ 、 触媒製造 コ ス トの面から C o の一部を M g に代替でき る こ とは、 工業 的に意義が大きい。 式 ( I ) の Aと して、 M g と C o の混合 物を使用する場合、 C o と M gの混合物 (A) 中、 M gの C o に対する原子比率が 0. 7以下である こ とが必要でぁ リ M o 1 2原子に対する Aの原子比率 ( e ) が、 C o を単独で 用いた場合と 同 じく、 1 . 0 ≤ e ≤ 1 2の条件を満足する必 要がある。
メ タ ク 口 レイ ンの選択率をよ り 高めるためには、 上記式
( I )における B と して、 触媒組成物中にルビジウム ( R b ) . セシウム ( C s ) 又はそれ等の混合物を添加する こ とが必須 である。 M o 1 2原子に対する Bの原子比率 ( f ) が、 0 く f ≤ 2 . 0の条件を満足する必要がぁ リ 、 また、 0 . 1 f ≤ 1 . 0の条件を満足する こ とが好ま しい。 f > 2 . 0にな る と 、 R b 、 C s 以外の元素量を調節した リ焼成温度を調節 しても充分な触媒活性を発現できなく なる。
一方、 本発明においては、 C 0 の部分的代替元素と して、 C o と 同族元素であるニ ッケル (N i ) を使用するこ と もで き るが、 N i は C 0や C O 2の副生物を増加させるため、 N i を添加する こ とは好ま しく ない。 不純物と して N i を含む 原料を使用せざるを得ない場合は、 触媒組成物中において、 M o 1 2原子に対する N i の原子比が 1 を超えないよ う注意 する必要がある。
本発明の触媒組成物は、 公知の方法、 例えば原料ス ラ リ ー を調製する第 1 の工程、 該原料ス ラ リ ーを噴霧乾燥する第 2 の工程、 および第 2 の工程で得られた乾燥粒子を焼成する第 3 の工程を包含する方法によって得る こ とができ る。
次に、 本発明の触媒組成物の第 1 〜第 3 工程よ リ なる製造 方法の好ま しい態様について説明する。
第 1 の工程では、 触媒原料を調製して原料ス ラ リ ーを得る が、 モ リ ズデン、 ビスマス、 セ リ ウム、 カ リ ウム、 鉄、 コバ ル ト、 マグネシウム、 ノレビジゥム及びセシウムの各元素の元 素源と しては、 水または硝酸に可溶なアンモニゥム塩、 硝酸 塩、 塩酸塩、 硫酸塩、 有機酸塩などを挙げる こ とができ る。 特にモ リ ブデン源と してはア ンモユ ウム塩が、 ビスマス、 セ リ ウム、 カ リ ウム、 鉄、 コ ノくノレ ト、 マグネシウム、 ノレビジゥ ム及びセシウ ムの各元素の元素源と してはそれぞれの硝酸塩 が好ま しい。
例えば、 原料スラ リ ーはモ リ ブデン酸アンモニゥムを温水 に溶解させた溶液と 、 他の元素を硝酸塩と して水または硝酸 水溶液に溶解させた溶液を混合して調製する こ とができ る。
第 2 の工程では、 上記の第 1 工程で得られた該原料ス ラ リ 一を噴霧乾燥して疑似球形の粒子状触媒前駆体を得る。 原料 ス ラ リ ーの噴霧化は、 通常工業的に実施される遠心方式、 二 流体ノ ズル方式及び高圧ノ ズル方式等の方法によって行う こ とができ、 乾燥熱源と しては、 スチームまたは電気ヒ ーター 等によって加熱された空気を用いるこ と が好ま しい。 この際 噴霧乾燥装置の乾燥機入リ 口の温度は 1 5 0 〜 4 0 0 °Cの範 囲にするこ とが望ま しい。 該乾燥粒子状触媒前駆体を原料と する こ と によって、 押出成形触媒、 ょ リ 好ま しく はバラツキ の少ない打錠成型触媒の作製が可能となる。
第 3 の工程では、 第 2 の工程で得られた乾燥粒子状触媒前 駆体を焼成するこ とで所望の酸化物触媒組成物を得る。 乾燥 粒子状触媒前駆体の焼成は、 1 8 0 〜 4 0 0 °Cの,温度範囲で 1 〜 2 4 時間程度前焼成を行い、 必要に応じて適切な形状に 打錠成形し、 その後 3 5 0 〜 6 0 0 °Cの温度範囲で 1 〜 2 4 時間行う。 焼成は回転炉、 ト ンネル炉、 マ ツ フル炉等の焼成 炉を用いて行う こ とができ る。
また、 本発明の酸化物触媒組成物は多孔質でぁ リ 、 孔径が 1 μ m以下の細孔の孔容積の合計が、 該酸化物触媒組成物の 総細孔容積の 9 5 %以上であるこ とが望ま しい。 上記のよ う な特定の細孔径分布によって、 触媒組成物自体に物理的強度 を持たせる と共に、 触媒組成物内への分子拡散速度を細孔径 によって制御 し、 不慮の暴走的温度上昇時に、 触媒組成物内 の反応を過度に促進させない様にする こ とができ る。
選択率を改善させる観点からは、 触媒組成物中に、 シリ カ は含ませない力 、 あるいはでき るだけ少量含有させる こ とが 望ま しい。 しかし、 触媒組成物の表面積を増大させ、 活性を 高める 目的でシリ 力を使用する場合は、 その原料と してシリ 力ゾル、 シリ カゲル、 または珪酸カ リ 、 珪酸ナ ト リ ウム等の 珪酸塩等を使用する こ とができ る。 この場合、 M o 1 2原子 基準に対して S i 成分を 3原子以下、 好ま しく は 1 原子以下、 更に好ま しく は 0 . 1 原子以下にする こ とが望ま しい。
本発明の方法において、 気相接触酸化反応は、 イ ソブチレ ン、 t e r t—ブチルアルコールまたは両者の混合ガス 1 〜 1 0 容量%と、 分子状酸素含有ガス と希釈ガス の混合ガス 9 0〜 9 9容量%からなる原料ガスを固定床反応器内で上記の酸化 物触媒組成物よ リ なる、 好ま しく は打錠成型触媒床に 2 5 0 〜 4 5 0 °Cの温度範囲および常圧〜 5気圧の圧力下、 空間速 度 4 0 0〜 4 0 0 0 / h r [Normal temperature and press u r e
( N T P ) 条件下] で導入させる こ とで行う こ とができ る。 上記分子状酸素含有ガスの例と しては、 純酸素ガス、 及び 空気等の酸素を含むガスが挙げられる。 また、 上記希釈ガス の例と しては、 窒素、 二酸化炭素、 水蒸気及びこれらの混合 ガス等が挙げられる。
上記の混合ガスにおける、 分子状酸素含有ガス と希釈ガス の混合比に関 しては、 体積比で 0 . 0 4 <分子状酸素/ (分 子状酸素含有ガス +希釈ガス) < 0 . 3 の条件を満足するこ とが好ま しい。 さ らに、 原料ガスにおける分子状酸素の濃度 は 4 〜 2 0容量。 /0である こ とが好ま しい。
原料ガス中の水蒸気は、 触媒へのコーキングを防ぐ点では 必要であるが、 メ タ ク リ ル酸や酢酸等のカルボン酸の副生を 抑制するために、 でき るだけ希釈ガス中の水蒸気濃度を下げ るこ とが好ま しい。 原料ガス中において水蒸気は、 通常 0容 量%を超えて 3 0容量。 /0以内の範囲で使用する こ とが好ま し
発明を実施するための最良の形態 次に実施例および比較例によって本発明をさ らに詳細に説 明するが、 本発明はこれら実施例に限定される ものではない c 尚、 触媒組成物における酸素原子の数は、 他の元素の原子 価条件によ リ決定される ものでぁ リ 、 実施例及び比較例にお いては、 触媒組成物の組成を表わす式中、 酸素原子は省略す る。 実施例及び比較例において、 反応成績を表わすために用い た転化率と収率は次式で定義される。
反応したィソブチレンまたは tert—ブチルアルコールのモル数 転化率 = X 100 供給したィソブチレンまたは tert—ブチルアルコールのモル数 生成したメタク口レインまたはメタクリル酸のモル数 選択率: X 100 反応したィソブチレンまたは tert—プチルァノレコールのモル数 実施例 1 組成が M o 1 2原子を基準と した原子比と して M 0 ! 2 B i 1 . 6 C e 0. F e i .0 C o 8. o C S 0. 4 K 0. 2で表わ 2· れる触媒組成物を次のよ う に して調製した。 約 5 0 °Cの温水 1 8 2 0 gにへプタモ リ ブデン酸アンモニ ゥム 3 6 4 g を溶解させた ( A液) 。 また、 硝酸ビスマス 1 3 3 g、 硝酸セ リ ウム 2 9 . 8 g、 硝酸鉄 6 9 . 4 g、 硝酸 セシウム 1 3 . 4 g 、 硝酸カ リ ウム 3. 4 6 gおよび硝酸コ バル ト 4 0 0 g を 1 5重量。 /0の硝酸水溶液 2 9 0 g に溶解さ せた ( B液) 。 A液と B液の両液を約 2 時間程度撹拌混合し て原料スラ リ ーを得た。 この原料スラ リ ーを噴霧乾燥し、 さ らに得られた噴霧乾燥触媒組成物前駆体を 2 0 0 °Cで 3 時間 仮焼した。 かく して得られた疑似球形粒子状の仮焼触媒組成 物前駆体を直径 5 mm高さ 4 mmの円柱状に打錠成型し、 4 6 0 °Cで 3 時間焼成した。 得られた打錠触媒組成物の細孔径 分布を 日本国島津製作所社製 A u t o - P o r e - 9 2 0 0 自動ポロシメ ーターで測定した結果、 孔径が ◦ . 0 1 〜 1 . 0 μ mの細孔の孔容積の合計が総細孔容積の 9 7 %であ リ 、 孔径が 1 . 0 / mを越え 1 0 以下の細孔の孔容積の合計 が、 総細孔容積の 2 %であった。
大きな細孔が少ないため、 触媒強度が強く 、 直径 2 . 5 4 c mで長さ 3 mの管内を 自然落下させたが触媒組成物の破砕 は生じなかった。
触媒組成物の初期性能評価と して、 この打錠触媒組成物 4 . 0 g を直径 1 0 mmのジャ ケ ッ ト付き S U S 3 0 4製反応管 に充填し、 反応温度 3 5 0 °Cでイ ソブチ レン 6 容量。 /0、 酸素 1 0 . 8容量。/。、 水蒸気 1 0 . 0容量%および窒素 7 3 . 2 容量0 /0からなる混合ガスを 1 0 0 m l /m i n ( N T P ) の 流量で通気し、 メ タク ロ レイ ン合成反応を行い、 反応評価を 行った。 その結果、 イ ソブチレン転化率は 9 7 . 3 %であ リ 、 メ タク ロ レイ ン選択率は 8 7 . 1 %、 メ タク リ ル酸選択率は 2. 5 %であった。
次いで反応温度を 4 0 0 °Cに高め、 上記の混合ガス流量を 1 5 0 m 1 /m i n ( N T P ) に変更して約 4 0 0 0時間の 連続運転を行った後、 再び上記の条件 (反応温度 : 3 5 0 °C ガス流量 : l O O m l Zm i n ) に戻して反応評価を行った (触媒組成物の寿命テス ト) 。 その結果、 イ ソブチ レン転化 率は 9 7. 4 %、 メ タク ロ レイ ン選択率は 8 7 . 2 % メ タ ク リル酸選択率は 2 . 4 %であった。 このよ う に触媒活性の 劣化は見られず、 また触媒組成物の変色、 縮みは観察されな かった。
実施例 2
実施例 1 と 同様の方法で、 実施例 1 で得た酸化物触媒組成 物と 同 じ組成を持つ打錠触媒組成物を得た。 得られた打錠触 媒の細孔径分布を実施例 1 と同様の方法で測定した。 上記の 打錠触媒組成物 4 . O'g を実施例 1 と 同様の方法で初期性能 評価し、 実施例 1 と 同様の結果を得た (イ ソブチ レン転化率 9 7 . 3 % ; メ タク ロ レイ ン選択率 : 8 7 . 1 % ; メ タク リ ル酸選択率 : 2. 5 %) 。 過酷条件テス ト と して、 反応温度 を 4 5 5 °Cに高め、 イ ソブチレン 6容量%、 酸素 1 0 . 8容 量%、 水蒸気 1 0 . 0容量。 /0および窒素 7 3 . 2容量%から なる混合ガスを 1 8 0 m 】 Zm i n (N T P ) の流量で 2 4 時間通気し、 メ タク ロ レイ ン合成反応を行った。 その後、 反 応温度を 3 5 0 °C、 原料混合ガス通気量を 1 0 O m l m i n に戻したと こ ろ、 初期性能評価で得られた結果をほぼ 同様の結果が得られた。 すなわち、 イ ソブチ レン転化率は 9 7 . 2 %であ リ 、 メ タク ロ レイ ン選択率は 8 7 . 2 %、 メ タ ク リ ル酸選択率は 2 . 5 %であった。
比較例 1
硝酸セ リ ゥムを用いない以外は、 実施例 1 と 同様の方法で 触媒組成物、 すなわち M o 1 2 B i z. o F e n C o s. o C s o^ K 0. 2で表わされる打錠触媒組成物を調製した。 得られた打 錠触媒の細孔径分布を実施例 1 と 同様の方法で測定した。 上 記の打錠触媒組成物を用いて、 原料混合ガス通気量を 6 0 m
1 /m i n と した以外は実施例 1 と 同様な方法で初期性能評 価を行ったと ころ、 イ ソブチ レン転化率は 9 7 . 3 %であ リ 、 メ タク ロ レイ ン選択率は 8 4 . 0 %、 メ タ ク リ ノレ酸選択率は
2 . 7 %であった。
次いで反応温度を 4 0 0 °Cに高め、 混合ガス流量を 9 0 m
1 /m i n ( N T P ) に変更 して約 4 0 0 0時間の連続運転 を行った後、 再び上記の反応条件 (反応温度 : 3 5 0 °C ; ガ ス流量 : 6 0 m 1 /m i n ) に戻して触媒組成物の反応評価 を行った (触媒組成物の寿命テス ト) 。 その結果、 イ ソプチ レン転化率は 9 4 . 6 %、 メ タ ク ロ レイ ン選択率は 8 4 . 0 %、 メ タク リ ル酸選択率は 3 . 4 %であった。 明らかに触媒 活性の劣化が認められ、 また触媒組成物の変色と若干の縮み が観察された。 比較例 2
比較例 1 と 同様の方法で、 比較例 1 で得た酸化物触媒組成 物と同 じ組成を持つ ( C e を含まない) 打錠触媒組成物を調 製した。 得られた打錠触媒の細孔径分布を実施例 1 と 同様の 方法で測定した。 上記の打錠触媒組成物 6 . 7 g を用いて、 実施例 2 と同様な方法で触媒組成物の初期性能評価と過酷条 件テス トを行った。 触媒活性の低下が著し く 、 イ ソプチレン 転化率は 7 0 %以下と なって しまい、 触媒組成物には還元劣 化した時に特有な変色現象と熱劣化に特有な縮み現象が観察 された。 反応評価結果を表 1 に示した。
実施例 1及び 2 と比較例 1 及び 2 の結果を比較する と、 C e の添加効果にょ リ 、 触媒組成物の耐熱性及び耐還元性が著 しく 改善され、 また、 触媒寿命が長く なつている こ とがわか つた。
実施例 3 〜 1 8
実施例 3 〜 1 8 において、 それぞれ表 1 に示した組成の打 錠触媒組成物を、 表 1 に示す酸化物触媒組成物が得られる よ う に、 各金属元素の元素源及びその量を調節した以外は、 実 施例 1 と同様な方法で調製した。 得られた打錠触媒の細孔径 分布を実施例 1 と同様の方法で測定した。 各触媒組成物につ いて、 ほぼ同等のィ ソブチレン転化率条件下で各々の触媒性 能を比較するために、 使用触媒組成物量または原料混合ガス 通気速度を調節した以外は、 実施例 2 と 同様な方法で触媒組 成物の初期性能評価と過酷条件テス ト を行った。 更に、 実施 例 5 においては反応器運転時間を 3 0 0 0 時間に変えた以外 は実施例 1 と 同様な方法で、 実施例 8 においては実施例 1 と 同様な方法で触媒組成物の寿命テス ト を行った。 結果を表 1 に示す。
比較例 3 〜 1 0
比較例 3 〜 1 0 において、 それぞれ表 1 に示した組成の打 錠触媒組成物を、 表 1 に示す酸化物触媒組成物が得られる よ う に、 各金属元素の元素源及びその量を調節した以外は、 実 施例 1 と同様な方法で調製した。 得られた打錠触媒の細孔径 分布を実施例 1 と同様の方法で測定した。 上記の打錠触媒組 成物を用いて、 実施例 2 と 同様な方法で初期性能評価と過酷 条件テス トを行った。 なお、 比較例 5 においては反応器運転 時間を 3 0 0 0 時間に変えた以外は実施例 1 と 同様な方法で、 比較例 6 においては実施例 1 と同様な方法で触媒組成物の寿 命テス トを行った。 結果を表 1 に示す。
表 1 に示す実施例と比較例の結果から、 B i 、 C e および
Kの原子比が式 0 . 0 5 ≤ b / ( a + b + c ) ≤ 0 . 7 で表 わされる条件を満足する と得られた触媒組成物は、 耐熱性 · 耐還元性に優れる こ とがわかる。 更に、 触媒組成物の C e含 有量が多く 、 0 . 7 く b Z ( a + b + c ) である と メ タク ロ レイ ン選択率が低下して しま う こ とがわかる。 実施例 5 の結 杲と比較例 5 の結果を、 また実施例 8 の結果と比較例 6 の結 果を比較する と 、 Kの存在が触媒寿命に影響を与えている こ とがわかる。 実施例 1 及び 4 の結果と比較例 7 の結果を比較 する と R b または C s の添加がメ タク 口 レイ ン選択率の向上 化に必要である こ とがわかる。 さ らに、 比較例 8及び 9 の結 果から C o の一部を N i で代替する と メ タ ク 口 レイ ン選択率 が低下する こ とがわかる。
比較例 1 1
M 0 1 2 B i i . e C e o . e i . c^ O B . o C S 0. 4 K 0. 2で表わ される触媒組成物を次のよ う にして調製した。
水 1 2 0 O m l を加熱撹拌しつつ、 モ リ ブデン酸ア ンモニ ゥム 1 2 7 . 2 g 、 次いで硝酸セシウム 5 . 0 g 、 硝酸カ リ ゥム 1 . 3 g を溶解し A液と した。 水 1 5 0 m 1 に硝酸コバ ノレ ト 1 4 9 . 8 g 、 硝酸第二鉄 2 6 . 0 g を溶解し B液と し た。 6 0 %硝酸 2 6 m 1 と水 2 6 0 m l と からなる硝酸水溶 液に硝酸ビスマス 4 9 . 9 g を溶解し C液と した。 A液に B 液、 C液を順次滴下混合し、 得られたス ラ リ ー溶液を噴霧乾 燥し、 実施例 1 と 同様に仮焼して、 原子比 M o Z B i Z F e / C o Z C s Z Kが 1 1 . 2ノ 1 . 6 / 1 / 8 0 . 4 / 0 . 2 である組成物 ( I ) を得た。
水 3 0 0 m 1 を加熱撹拌しつつ、 モ リ ブデン酸アンモニゥ ム 2 8 . 6 g を溶解し D液と した。 6 0 %硝酸 1 0 m l と水 1 0 0 m l とからなる硝酸水溶液に硝酸セ リ ゥム 3 5 . 2 g を溶解し E液と した。 D液に E液を滴下混合した後、 ア ンモ ニァ水で中和し、 1 0 0 °Cで 8時間加熱撹拌し、 得られた沈 澱を良く 水洗した後、 乾燥し仮焼して、 原子比 C e ZM oが 0. 5 / 1 なる組成物 ( Π ) を得た。
組成物 ( I ) と組成物 ( Π ) を原子比 M o / B i Z C e / F e / C o / C s /K^s i 2 / l . 6 / 0 . 4 / 1 / 8 / 0
4 / 0 . 2なるよ う に混合し、 更に蒸留水を加え、 1 6時間 加熱下撹拌混合した後、 1 2 0 °Cで 1 2時間乾燥し、 ついで
5 4 0 °Cで 4時間焼成して触媒組成物を得た。 この触媒組成 物を粉末化した後、 直径 5 mm高さ 4 mmの円柱状に打錠成 型し、 得られた触媒の細孔径分布を実施例 1 と 同様の方法で 測定した。 上記の打錠触媒を用いて実施例 1 と 同様の方法で 反応評価を行った。
U S特許第 5, 1 3 8 , 1 0 0号公報 ( 日本国特開平 4 一 4 1 4 5 4号公報に対応) に記載される効果を期待して本触 媒組成系で本比較例を実施したが、 メ タ ク 口 レイ ン選択率は , 低い値であった。 即ち、 イ ソプチレ ン転化率は 9 7 . 1 %、 メ タク ロ レイ ン選択率は 7 5 . 3 %、 メ タク リ ル酸選択率が 4 . 1 %であった。
比較例 1 1 と U S特許第 5, 1 3 8 , 1 0 0号公報 (日本 国特開平 4 一 4 1 4 5 4号公報に対応) に記載される実施例 との主だった違いは、 U S特許第 5, 1 3 8, 1 0 0号公報 の実施例における触媒組成物ではアルカ リ 金属が使用 されて おらず M o 1 2原子基準で F e も 2. 5原子よ リ 多く 含まれ ているが、 比較例 1 .1 で調製した触媒組成物では Kと C s を 含み F e は 2 . 5原子以下になっている こ とである。
実施例 1 9 〜 2 4
実施例 1 9 〜 2 4 において、 それぞれ表 2 に示した組成の 打錠触媒組成物を、 表 2 に示す酸化物触媒組成物が得られる よ う に、 各金属元素の元素源及ぴその量を調節 した以外は、 実施例 1 と 同様な方法で調製した。 得られた打錠触媒の細孔 径分布を実施例 1 と 同様の方法で測定した。 上記の打錠触媒 を用いて、 t e r t —ブチルアルコール 6 . 4容量%、 酸素 1 1 5容量%、 水蒸気 4 . 3容量。 /0、 窒素 7 7 . 8 容量。 /0からな る原料ガスを用いた以外は、 実施例 1 の初期性能評価と 同様 の方法でメ タク ロ レイ ン合成反応を行い、 メ タ ク ロ レイ ン選 択率、 メ タク リ ル酸選択率及び副生ィ ソブチ レ ン率を測定し た。 更に実施例 2 の過酷条件テ ス ト と同様の方法でメ タク ロ レイ ン合成反応を行い、 副生イ ソブチ レ ン率を測定した。 結 果を表 2 に示す。
比較例 1 2
表 2 に示した組成 (比較例 1 で得た C e を含まない酸化物 組成物と 同 じ組成) の打錠触媒組成物を実施例 1 と同様な方 法で調製した。 得られた打錠触媒の細孔径分布を実施例 1 と 同様の方法で測定した。 上記の打錠触媒組成物を用いて、 t e r t —ブチルアルコール 6 . 4 ^量%、 酸素 1 1 . 5容量0 /0 . 水蒸気 4 . 3容量%、 窒素 7 7 . 8容量%からなる原料ガス を用いた以外は、 実施例 1 の初期性能評価と 同様の方法でメ タク ロ レイ ン合成反応を行い、 メ タク ロ レイ ン選択率、 メ タ ク リ ル酸選択率及び副生イ ソブチ レン率を測定した。 更に実 施例 2 の過酷条件テス ト と 同様の方法でメ タ ク 口 レイ ン合成 反応を行い、 副生ィ ソブチ レン率を測定した。 結果を表 2 に 示す。
表 2 から、 C e を含まない触媒組成物では、 t e r t —ブチ ルアルコールを原料に使用 した場合においても、 活性の低下 が認め られる こ とがわかる。
表 1 (続く)
触媒本焼 細孔容積 細孔容積 成温度 率 率 (で) (%) * 1 (%) * 2 実施例 1 o 】 2 B C e F e i C 0 . oし 4Ko. 4 6 0 9 7 2
// 2 M o ,2B ] . C e F C . o C s .Ko. 4 6 0 9 7 2
// 3 M o 1 2 B C e 3 F e C 0 . oR b K 5 0 0 9 6 2
// 4 o ,2B 8 c e e i C . oR b , Ko. 5 0 0 9 5 3
5 M o B C e F e ] C 0 C s R b . Ko. 4 6 0 9 6 2
6 o 2 B 1. C e 0. 5F e i . 0 C 0 . o R b 0 2 K 0. 5 0 0 9 6 2
// 7 M o > B 1■ C e F e i C 0 . o C s 3R b . Ko. 4 6 0 9 8 1
8 o B oC e oF e i C 0 C s K 4 8 0 9 7 2
9 M o 15B oC e oF e C . o C s 4 9 0 9 7 2
1 0 M o , 2 B C e F e i C 0 . o C s 4 8 0 9 7 2
1 1 ] 2 oF e 】 4 8 0 9 8 1
1 2 B C e , F e . o C a . a C s K 5 0 0 9 5 2
1 3 M o B C e F e i C 0 a . o C s R b K 4 6 5 9 6 2
;/ 1 4 M o B - c e F e o C 0 . o C s Ko. 4 3 0 9 8 1
1 5 o B . c e F e C R b 4 3 5 9 7 1
1 6 M o , 2 B 1. C e F e 】 C 0 . oM g C s K 4 7 0 9 7 1
1 7 M o , 2 B C e F e i C 0 . oM g C s 4 7 0 9 6 2
1 8 M o 12B C e o s F e C 0 C K 4 8 0 9 6 2 >例 1 M o B F e i C 0 . oし , Ko. 4 R n Q 4
2 M o B F e C C s Ko. 4 6 0 9 6 4
3 M o ! ,B 9C e , F e C 0 . o C s 4 6 0 9 5 3
4 M o , 2 B C e F e i C 0 . o C s o K 5 0 0 9 6 2
5 M o , 2 B C e F e i C 0 . o C s R b 4 6 0 9 7 1
6 o 12B 2. oC e 1. oF e i . 0 C 0 . 5 C s 0 5 4 8 0 9 7 1
" 7 M o 12B . ] - 6c e , F e i C 0 . o K o . 5 4 0 9 5 3
// 8 M o B 6c e , F e i C 0 . oN i C s R b K 4 6 5 9 5 3
// 9 o 6c e F e i C 0 . oN i C s R b K 4 6 5 9 5 2
" 1 0 M o ] . C e F e C 0 . o C s 4 8 0 9 6 2
1 1 M o , 2 B 1. 6C e F e j C 0 'C s K 5 4 0
表 1 (続き)
ィ ソブチレン メ タク ロ レイ ン メ タ ク リ 'レ酸 過酷条件テス ト 寿命テス ト
転化率 ®択率 51択率 後の転化率 後の転化率
(%) ( %) (%) (%) (%)
9 7 . 3 8 7 . 1 . c
0 ― 9 7 . 4 * 4
ο c
9 7 · 2 8 7 . 9 7 . 2
ο Q
9 7 . 5 8 6 . 4 Ζ . 9 7 . 4
9 7 . 3 8 6 . 4 ώ , 1 9 7 . 2
9 7 . 1 8 7 . π U 9 Ό 9 7 . 1 9 7 . 1 * 3
Q
7 . 3 8 6 o 9 g
9 o 9 7 . 3
9 7 . 2 8 7 Z 9 i 9 7 . 1 一
o
9 7 - 1 8 6 Ό o 9 7 . 1 9 7 . 1 * 4
9 7 . 2 8 6 4 3 . 1 9 7 . 3
9 7 . 3 8 6 5 2 . 7 9 7 . 1
9 7 . 6 8 6 9 Q 9 7 . 5
9 7 . 4 8 6 π 9 7 9 7 . 5
9 7 . 4 8 6 o 9 9 7 . 4
9 7 . 1 8 6 丄 9 Q
Ό 9 7 . 1
ο Q
9 7 . 2 8 6 9 7 . 1 ― 00
9 7 . 3 8 6 y 9 7 . 2 ―
9 7 . 2 o η Q
8 6 . 9 7 . 3
9 7. 3 8 6 u (J 9 7. 2
9 7 . 3 8 4 ϋ ο
. 7 9 4 . 6 * 4
9 7 . 2 8 4 1 2 . 3 6 9 . 8
9 7 . 3 8 5 4 2 . 5 7 2 . 8
9 7 . 3 8 4 9 2 - 9 9 7 . 1
9 7 . 0 8 7 1 2 . 5 9 7 . 1 9 5 . 9 * 3
9 7 . 0 8 6 5 2 . 9 9 7 . 1 9 5 . 3 * 4
9 7 . 4 7 1 4 4 . 8 9 7 . 3
9 7 . 2 8 5 4 3 . 2 9 7 . 3
9 7 . 5 8 2 6 3 . 5 9 7 . 4
9 7 . 3 7 5 6 4 . 2 9 7 . 1
9 7 . 1 7 5 . 3 4 . 1 9 7 . 0
孔容積) X I 0 0
計ノ総細孔容賴) X I 0 0
Figure imgf000030_0001
表 2 (続く ) 触媒本焼 細孔??稍 細孔容積
触 媒 成 成温度 率 率
(°C) (%) * 1 (%) * 2
実施例 1 9 M ! B , し G F ! . o C β . o ^ S o . K 4 6 0 9 7 2
2 0 M o B し G o. I4 e ] C R b K 5 0 0 9 5 3
2 1 M o B G F e , C S 5 0 0 9 6 2
2 2 o B し G F e , . o C S , R b ο. , Κ 5 0 0 9 5 3
2 3 M o B し G Τ' e i . o C S 4 6 0 9 7 1
2 4 M D G ^ F e i C oM g 2. ο C S ο . Κ 4 7 0 9 7 1
比較例 1 2 M o • 213 F e , . o C C S 4 6 0 9 7 2
■X)
表 2 (続き) 初期反応評価 メタクロ レイン メタク リル酸 過酷条件テス ト
副生 i - -c 選択率 選択率 後の副生 i - C .
(%) (%) (%) (%)
2 8 8 6. 2 2. 6 2. 9
2 8 8 6. 5 2. 5 2. 7
2 9 8 5. 3 2. 9 2. 8
2 7 8 5. 2 2. 7 2. 8
2 9 8 6. 1 2. 5 2. 7
2 8 8 6. 2 2. 7 2. 8
3 0 8 3. 3 2. 5 1 8. 2
C
* 1印 (孔径 0. 0 1〜 1 . 0 ju mの細孔の孔容積の合計 Z総細孔容積) X I 0 0
* 2印 (孔径 1 . 0 μ mを越え 1 0 / m以下の細孔の孔容稿の合計 総細孔容積) X I 0 0
卜 ' (副生イ ソブチレン量/ ^仕込み l i l —ブチルアルコール量) X I 0 0
産業上の利用可能性
本発明によれば、 イ ソブチレン及び t e r t —ブチルアルコ 一ルょ リ なる群から選ばれる少な く と も 1 種を、 酸化物触媒 組成物の存在下に、 分子状酸素含有ガスを用いて気相接触酸 ィ匕し、 メ タク ロ レイ ンを製造する方法において、 用いる該酸 化物触媒組成物が、 特定の比較的簡単な組成を持っていてそ の調製が簡単であ り 、 そ して、 特にその組成に含まれる B i C e、 F e、 Kのそれぞれの含有量が特定の範囲に制御され ていて、 従来、 高い触媒性能を発揮させるために必要であつ た環境問題上好ま しく ない元素や毒性元素を含まず、 更に、 均一な触媒の調製上不利と なる溶解度の低いタ ングステン酸 塩、 アンチモン化合物あるいはニオブ化合物を原料に用いる こ と を必要とせず、 それでいて、 熱安定性及び耐還元性に優 れていて触媒寿命が長く 、 またメ タ ク 口 レイ ン選択率にも優 れているので、 メ タ ク 口 レイ ンの高収率な製造を有利に行う こ とができ る。

Claims

請求の範囲
1 . イ ソブチレン及び t e r t—ブチルアルコールよ リ なる群 から選ばれる少なく と も 1 種を分子状酸素含有ガスを用いて 気相接触酸化してメ タク ロ レイ ンを製造する方法において、 下記の式 ( I ) で表される酸化物触媒組成物を用いる こ と を 特徴とするメ タク 口 レイ ンの製造方法。
M o iz B i a C e bKc F e dA e B ( O g ( I ) (式中、
Aはコバル ト単独、 またはコバル ト とマグネシウムの混合 物であって、 該混合物中のマグネシウムのコバル トに対する 原子比率が 0 . 7以下であ り 、
Bはルビジウム、 セシウムまたはそれらの混合物でぁ リ 、 a 、 b 、 c 、 d 、 e 、 f 及び g は、 それぞれ、 モ リ ブデン 1 2原子に対する ビスマス、 セ リ ウム、 カ リ ウム、 鉄、 A、 B及び酸素の原子比率を表し、
0 < a ≤ 8 ,
0 < b ≤ 8 ,
0 < c ≤ 1 . 2 、
0 < d ≤ 2 . 5 、
1 . 0 ≤ e ≤ 1 2 、
0 < f ≤ 2 . 0 、
g は存在する他の元素の原子価条件を満足させる のに必要な酸素の原子数であ リ 、 a 、 b 、 c 及び d は以下の式
0 . 0 5 ≤ b / ( a + b + c ) ≤ 0 . 7
0 < c / ( a + b + c ) ≤ 0 - 4
0 < d / ( a + b + d ) ≤ 0 . 9
の条件を満足する。 )
2 . 該 Aが、 コバル ト単独である請求項 1 に記載の方法。
3 . 該酸化物触媒組成物が多孔質でぁ リ 、 孔径が 1 m以下 の細孔の孔容積の合計が、 該酸化物触媒組成物の総細孔容積 の 9 5 %以上である請求項 1 に記載の方法。
4 . 式 ( I ) における a 、 b 、 c が式 0 . b / ( a + b
+ c ) ≤ 0 . 5 の条件を満足する請求項 1 に記載方法。
5 . 式 ( I ) における a 、 b 、 c が式 0 . 0 2 ≤ c Z ( a + b + c ) ≤ 0 . 2 の条件を満足する請求項 1 に記載の方法。
6 . 式 ( I ) における a 、 b 、 d が式 0 . l ≤ d Z ( a + b + d ) ≤ 0 . 5 の条件を満足する請求項 1 に記載の方法。
PCT/JP1995/001234 1994-06-22 1995-06-21 Procede de production de methacroleine WO1995035273A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019960705233A KR100186659B1 (ko) 1994-06-22 1995-06-21 메타크롤레인의 제조 방법
US08/700,469 US5728894A (en) 1994-06-22 1995-06-21 Method for producing methacrolein
EP95922726A EP0767161B1 (en) 1994-06-22 1995-06-21 Process for producing methacrolein
DE69513172T DE69513172T2 (de) 1994-06-22 1995-06-21 Verfahren zur herstellung von methacrolein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14015194 1994-06-22
JP6/140151 1994-06-22

Publications (1)

Publication Number Publication Date
WO1995035273A1 true WO1995035273A1 (fr) 1995-12-28

Family

ID=15262061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001234 WO1995035273A1 (fr) 1994-06-22 1995-06-21 Procede de production de methacroleine

Country Status (9)

Country Link
US (1) US5728894A (ja)
EP (1) EP0767161B1 (ja)
KR (1) KR100186659B1 (ja)
CN (1) CN1046499C (ja)
DE (1) DE69513172T2 (ja)
ES (1) ES2140684T3 (ja)
MY (1) MY117568A (ja)
TW (1) TW299316B (ja)
WO (1) WO1995035273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053570A1 (fr) 2001-12-21 2003-07-03 Asahi Kasei Chemicals Corporation Composition catalytique d'oxyde
WO2013002029A1 (ja) 2011-06-28 2013-01-03 旭化成ケミカルズ株式会社 酸化物触媒
WO2014051090A1 (ja) 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、並びに、不飽和アルデヒド、ジオレフィン及び不飽和ニトリルの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513664B1 (ko) * 2002-05-16 2005-09-07 주식회사 엘지화학 프로필렌의 부분 산화 반응용 촉매의 제조 방법
KR100497175B1 (ko) * 2003-03-26 2005-06-23 주식회사 엘지화학 프로필렌 및 이소부틸렌 부분산화 반응용 촉매의 제조방법
US7501377B2 (en) * 2003-03-31 2009-03-10 Saudi Basic Industries Corporation Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
US20040192973A1 (en) * 2003-03-31 2004-09-30 Saudi Basic Industries Corporation Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
US7232788B2 (en) * 2003-03-31 2007-06-19 Saudi Basic Industries Corporation Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
US7229945B2 (en) * 2003-12-19 2007-06-12 Saudi Basic Industrics Corporation Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
US7851397B2 (en) 2005-07-25 2010-12-14 Saudi Basic Industries Corporation Catalyst for methacrolein oxidation and method for making and using same
US7649112B2 (en) 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
US7649111B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Catalyst for the oxidation of a mixed aldehyde feedstock to methacrylic acid and methods for making and using same
US7732367B2 (en) 2005-07-25 2010-06-08 Saudi Basic Industries Corporation Catalyst for methacrolein oxidation and method for making and using same
US7799946B2 (en) * 2007-02-14 2010-09-21 Saudi Basic Industries Corporation Process for separating methacrolein from methacrylic acid in a gas phase product from the partial oxidation of isobutene
CN101385978B (zh) * 2007-09-12 2011-04-20 上海华谊丙烯酸有限公司 一种合成甲基丙烯醛的催化剂及其制备方法
US8921257B2 (en) 2011-12-02 2014-12-30 Saudi Basic Industries Corporation Dual function partial oxidation catalyst for propane to acrylic acid conversion
US8722940B2 (en) 2012-03-01 2014-05-13 Saudi Basic Industries Corporation High molybdenum mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
CN103721722B (zh) * 2012-10-10 2017-03-08 上海华谊丙烯酸有限公司 复合氧化物催化剂及其制备方法
CN110420643A (zh) * 2019-08-16 2019-11-08 中国科学院过程工程研究所 一种蛋壳型复合金属催化剂的制备方法及其应用
EP3862080A4 (en) * 2019-09-30 2022-11-02 LG Chem, Ltd. PROPYLENE AMMOOXIDATION CATALYST, ASSOCIATED PREPARATION PROCESS AND PROPYLENE AMMOOXIDATION PROCESS USING THIS CATALYST

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111506A (en) * 1976-03-15 1977-09-19 Nippon Zeon Co Ltd Simultaneous preparation of 1,3-butadiene and methacrolein

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699099A (en) * 1969-08-07 1972-10-17 Colgate Palmolive Co 11-aminoalkylidenemorphanthridines
US4025565A (en) * 1972-02-22 1977-05-24 Asahi Glass Co., Ltd. Process for preparing unsaturated aldehyde having three to four carbon atoms
GB1377325A (en) * 1972-02-22 1974-12-11 Asahi Glass Co Ltd Process for preparing unsaturated aldehydes having three or four carbon atoms
US4162234A (en) * 1974-07-22 1979-07-24 The Standard Oil Company Oxidation catalysts
GB1523772A (en) * 1974-07-22 1978-09-06 Standard Oil Co Oxidation catalysts
US4778930A (en) * 1974-08-05 1988-10-18 The Standard Oil Company Process for the oxidation of olefins using catalysts contaning antimony
JPS52111505A (en) * 1976-03-15 1977-09-19 Nippon Zeon Co Ltd Simultaneous preparation of 1,3-butadiene and methacrolein
JPS5319188A (en) * 1976-08-06 1978-02-22 Nippon Zeon Co Ltd Olefin oxidation catalyst
JPS5945415B2 (ja) * 1976-12-13 1984-11-06 日本ゼオン株式会社 オレフイン酸化用触媒
JPS5544730A (en) * 1978-09-27 1980-03-29 Toshiba Corp Electric machine transducer
JPS5867349A (ja) * 1981-10-20 1983-04-21 Asahi Chem Ind Co Ltd 触媒組成物
JPS5946132A (ja) * 1982-09-06 1984-03-15 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレイン合成用触媒
US4537874A (en) * 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
JPS6028824A (ja) * 1983-07-27 1985-02-14 Nippon Shokubai Kagaku Kogyo Co Ltd メタクロレイン製造用触媒の調製方法
JPH0699335B2 (ja) * 1984-02-01 1994-12-07 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
JPH0662463B2 (ja) * 1984-02-03 1994-08-17 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
JPS6133234A (ja) * 1984-07-23 1986-02-17 Mitsubishi Petrochem Co Ltd 触媒の再生法
JPS6236740A (ja) * 1985-08-09 1987-02-17 Pioneer Electronic Corp 光学式ピツクアツプ装置
JPH0811187B2 (ja) * 1986-10-27 1996-02-07 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造用触媒の調製法
JPS63122642A (ja) * 1986-11-11 1988-05-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
JPS63122641A (ja) * 1986-11-11 1988-05-26 Mitsubishi Rayon Co Ltd メタクロレイン及びメタクリル酸の製造法
BR8800627A (pt) * 1987-02-17 1988-09-27 Nippon Catalytic Chem Ind Catalisador usado para producao por oxidacao catalitica em fase gasosa,de uma olefina ou alcool terciario c3-5,processo para preparar um catalisador,catalisador para oxidacao de uma olefina c3-5 e catalisador para oxidacao de isobutileno ou butenol terciario
JP2742413B2 (ja) * 1987-06-18 1998-04-22 株式会社日本触媒 メタクロレイン合成用触媒および再現性に優れたその製造方法
GB8813766D0 (en) * 1988-06-10 1988-07-13 Efamol Holdings Essential fatty acid compositions
JP2657693B2 (ja) * 1989-03-01 1997-09-24 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造用触媒の調製法
JPH0813332B2 (ja) * 1989-09-25 1996-02-14 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造用触媒の調製法
SG50687A1 (en) * 1989-12-06 1998-07-20 Nippon Catalytic Chem Ind Process for producing methacrolein and methacrylic acid
JP2934267B2 (ja) * 1989-12-06 1999-08-16 株式会社日本触媒 メタクロレインおよびメタクリル酸の製造方法
JP2841324B2 (ja) * 1990-06-06 1998-12-24 三井化学株式会社 メタクロレインの製造方法
EP0460932B1 (en) * 1990-06-06 1995-05-17 MITSUI TOATSU CHEMICALS, Inc. Method for preparing acrolein or methacrolein
JP2974826B2 (ja) * 1991-07-17 1999-11-10 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸製造用触媒の調製法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111506A (en) * 1976-03-15 1977-09-19 Nippon Zeon Co Ltd Simultaneous preparation of 1,3-butadiene and methacrolein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053570A1 (fr) 2001-12-21 2003-07-03 Asahi Kasei Chemicals Corporation Composition catalytique d'oxyde
US7012039B2 (en) 2001-12-21 2006-03-14 Asahi Kasei Chemicals Corporation Oxide catalyst composition
WO2013002029A1 (ja) 2011-06-28 2013-01-03 旭化成ケミカルズ株式会社 酸化物触媒
US9346036B2 (en) 2011-06-28 2016-05-24 Asahi Kasei Chemicals Corporation Oxide catalyst
WO2014051090A1 (ja) 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、並びに、不飽和アルデヒド、ジオレフィン及び不飽和ニトリルの製造方法
US9364817B2 (en) 2012-09-28 2016-06-14 Asahi Kasei Chemicals Corporation Oxide catalyst and method for producing the same, and methods for producing unsaturated aldehyde, diolefin, and unsaturated nitrile

Also Published As

Publication number Publication date
DE69513172D1 (de) 1999-12-09
TW299316B (ja) 1997-03-01
DE69513172T2 (de) 2000-08-24
MY117568A (en) 2004-07-31
KR970701686A (ko) 1997-04-12
US5728894A (en) 1998-03-17
KR100186659B1 (ko) 1999-05-15
CN1046499C (zh) 1999-11-17
EP0767161B1 (en) 1999-11-03
EP0767161A4 (en) 1997-09-17
CN1143946A (zh) 1997-02-26
ES2140684T3 (es) 2000-03-01
EP0767161A1 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
WO1995035273A1 (fr) Procede de production de methacroleine
EP1055662B1 (en) A process for producing acrylic acid
JP3744750B2 (ja) 複合酸化物触媒およびアクリル酸の製造方法
JP2003514788A (ja) プロペンのアクリル酸への触媒的気相酸化方法
CN101242896B (zh) 具有高(甲基)丙烯酸选择性的复合金属氧化物催化剂
JPH0550489B2 (ja)
JPH0523596A (ja) メタクロレイン及びメタクリル酸製造用触媒の調製法
JP2841324B2 (ja) メタクロレインの製造方法
JPH0420419B2 (ja)
EP0501794A1 (en) Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP3139285B2 (ja) アクロレインおよびアクリル酸の製造方法
JPH0813332B2 (ja) メタクロレイン及びメタクリル酸の製造用触媒の調製法
JP4045693B2 (ja) メタクリル酸の製造方法
JPH09316023A (ja) (メタ)アクリル酸の製造方法
JPS6048496B2 (ja) メタクリル酸の製造方法
JPH0547265B2 (ja)
JP3028327B2 (ja) メタクロレイン及びメタクリル酸の製造方法
JP2003146920A (ja) アクロレインおよびアクリル酸の製造方法
JP3257818B2 (ja) メタクロレインの製造方法、メタクロレインの製造に用いる触媒及びその触媒の製造方法
JPH0840969A (ja) アクロレインおよび触媒の製造方法
JP3523455B2 (ja) 固定床反応器および不飽和カルボン酸の製造方法
JP3810877B2 (ja) メタクロレイン製造用触媒およびメタクロレインの製造方法
JPH05293389A (ja) アクロレイン及びアクリル酸製造用触媒の調製法
JP2003164763A (ja) プロピレン酸化用複合酸化物触媒の製造方法
JP3505547B2 (ja) アクリロニトリルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95192158.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08700469

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995922726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019960705233

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995922726

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995922726

Country of ref document: EP