WO1995021393A2 - Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung - Google Patents
Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung Download PDFInfo
- Publication number
- WO1995021393A2 WO1995021393A2 PCT/DE1995/000124 DE9500124W WO9521393A2 WO 1995021393 A2 WO1995021393 A2 WO 1995021393A2 DE 9500124 W DE9500124 W DE 9500124W WO 9521393 A2 WO9521393 A2 WO 9521393A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- light beam
- light
- stimulation
- excitation light
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000008569 process Effects 0.000 title abstract description 6
- 230000005284 excitation Effects 0.000 claims abstract description 93
- 230000000638 stimulation Effects 0.000 claims abstract description 92
- 238000009826 distribution Methods 0.000 claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000010287 polarization Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000004936 stimulating effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000003384 imaging method Methods 0.000 description 22
- 238000013507 mapping Methods 0.000 description 13
- 230000006872 improvement Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000005352 clarification Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
Definitions
- the invention relates to a device for optically measuring a sample point of a sample with a high spatial resolution, with a light source for emitting an excitation light beam suitable for exciting an energy state of the sample, a lens for focusing the excitation light beam onto the sample point, the sample that can be arranged in the focal area of the lens Separation device for separating out the emission light spontaneously emitted by the sample due to the excitation of the energy state and a detector for detecting the emission light. Furthermore, the invention relates to a method for optically measuring a sample point of a sample with a high spatial resolution, in which an excitation light beam is focused on the sample point to be measured using a lens and excites the energy state there, and in which the above. spontaneously emitted emission light is separated out and detected from the sample point due to the excitation of the energy state.
- Such a device and such a method are known from practice. They find their application e.g. B. in microscopes and in particular in scanning microscopes. Individual sample points are scanned and measured with a scanning microscope. In this way, the sample can be measured three-dimensionally.
- Luminescent, in particular fire-resisting or phosphorescent, samples or samples provided with appropriate dyes are used.
- the spatial resolution is given by the spatial expansion of the so-called effective point imaging function.
- This is a location-based function, which is the probability quantify with which a photon is spontaneously emitted from a specific point in the focal region. It is more spatial with. Distribution of the probability that the energy state is excited at a certain point in the focal region is identical.
- the effective point imaging function is identical to the point mapping function of the objective at the wavelength of the excitation light, which indicates the intensity distribution of the excitation light in the focal range of the objective and quantifies from a quantum mechanical point of view the probability with which a lighting photon can be found in a particular point of the focal range.
- the subdivision of the screening is limited by the spatial resolution. With a better spatial resolution, a finer subdivision can therefore be selected, with which a better resolution of the reconstructed image can be achieved.
- the resolution can be improved by imaging the light emitted by the sample onto the point detector, which is arranged in a plane conjugate to the focal plane of the objective.
- Such an arrangement is called a confocal arrangement.
- the better resolution comes about because two point mapping functions determine the image in the convocal scanning microscope: the effective point mapping function and the detection imaging function, which describes the mapping of the light emitted by the sample to be detected into the point detector and quantifies the probability from a quantum mechanical point of view with which a photon emitted from the focal area reaches the point detector. Since both illumination and detection have to take place, the point mapping function of a confocal scanning microscope is the product of both probability distributions, ie of the effective point mapping function and the detection point mapping function.
- the invention has for its object to improve the generic device and the generic method such that a greater spatial resolution is achieved.
- this object is achieved according to the invention by a stimulation light beam coming from the light source for generating stimulated emission of the sample excited by the excitation light beam in the sample point, the excitation light beam and the stimulation light beam being arranged in such a way that their intensity distributions in the focal region partially overlap.
- the object is achieved according to the invention in that the sample excited by the excitation light beam is caused to stimulate emission in the sample point by a stimulation light beam, the intensity distributions of the excitation light beam and the stimulation light beam partially overlapping in the focal area of the objective.
- the stimulated emission, induced by the stimulation light beam, of the sample excited by the excitation light beam in the coverage area of the intensity distributions of the excitation light and of the stimulation light in the focal area of the objective has the effect that the excited energy states in the coverage area are de-energized and no longer contribute to the spontaneously emitted radiation to be detected can.
- the effective point imaging function which is identical to the radio image in the normal fluorescence microscope function of the lens at the wavelength of the excitation light is thereby smeared. This corresponds to an increased spatial resolution.
- the improvement of the spatial resolution depends on the type of coverage of the intensity distributions. Both a lateral and an axial improvement in the spatial resolution can be achieved.
- the sample is arranged on a positioning table with which a mechanical grid movement can be carried out at least in the direction of the optical axis.
- the device corresponds to a scanning microscope in which the sample can be scanned at least along the optical axis.
- an improvement in the spatial resolution in the axial direction is particularly advantageous, since then a better resolution can be achieved in this direction by finer screening.
- a further advantage can be achieved if a beam raster device for controlled scanning of the sample with the excitation light beam and the stimulation light beam is provided between the light source and the objective.
- the device is used as a scanning microscope in which the sample can be scanned laterally or three-dimensionally. With such a scanning microscope, a better spatial resolution can also be achieved in the lateral direction by reducing the screening.
- the stimulation light beam is laterally offset in the focal plane with respect to the excitation light beam.
- the effective point mapping function of the device is narrowed in the lateral direction.
- the stimulation light beam is offset along the optical axis with respect to the excitation light beam. Then an improvement in the spatial resolution of the device in the axial direction is brought about.
- at least one further stimulation light beam coming from the light source can be provided, the intensity distribution of which in the focal region of the objective is different from the intensity distribution of the other stimulation beams.
- the intensity distributions of the additional stimulation beams are also superimposed on the intensity distribution of the excitation light beam in the focal region of the objective, whereby a further narrowing of the effective point mapping function of the device is achieved.
- the type of narrowing of the effective point imaging function can be selected accordingly by the spatial arrangement of the stimulation light beams.
- the stimulation light beams are advantageously arranged spatially symmetrically with respect to the excitation light beam. Then a spatially symmetrical narrowing of the main maxiroum of the effective point imaging function in the focal area is achieved.
- the stimulation light beams can be arranged in such a way that they run through a circular ring which is concentric with the excitation light beam.
- the stimulation beams can each have the same distance from one another. In this way, the main maximum of the intensity distribution of the excitation light beam is narrowed, so to speak, from several sides. Further arrangements of the stimulation light beams are also possible and the exact choice of the arrangement is left to the person skilled in the art.
- the light source can comprise a laser which emits light components of different wavelengths.
- the light of one wavelength is used as excitation light.
- the wavelength of the light should be chosen so that the energy state of the sample can be excited with it.
- the light component with the other wavelength is selected for the stimulation light.
- the wavelength must be selected so that the sample is excited in the excited state via stimulated emission can be.
- the wavelengths required for the excitation light and the stimulation light are different from one another. In the event that these wavelengths are the same, it is of course sufficient to use a laser which emits only one wavelength.
- the light source comprises at least two lasers that emit light of different wavelengths. Then one laser is used to generate the excitation light and the other laser (s) is used to generate the stimulation light. Either several stimulation light beams can be generated with one laser, which is possible, for example, by means of a suitable aperture or by suitably arranging mirrors, or several lasers can be used to generate one or more stimulation beams.
- the use of lasers as a light source also has the advantage that spatially highly localizable light beams with high intensity are available.
- a continuous wave emitting the excitation light can advantageously be provided.
- the arrangement is inexpensive by using continuous wave lasers. There may be little ⁇ least one laser may be provided which emits light pulses chronological order.
- a stimulation light is favorably generated by a laser which emits light pulses in a chronological sequence.
- An advantageous arrangement is that a continuous wave laser is used to generate the excitation light and at least one laser that emits light pulses in chronological order is used to generate the stimulation light.
- the time within which the luminescence is not to be detected by the detector is determined by the pulse duration of the stimulation light. It is advantageous if the pulse duration of the laser that emits the stimulation light is 10 -10 to 10 -5 s.
- both the excitation light and the stimulation light are generated by lasers which emit light pulses in chronological order. In this case, the pulse duration of the excitation light and the stimulation light should be shorter than the characteristic times for the spontaneous emission of the sample in the excited energy state.
- the pulse duration of the stimulation light should be longer than the characteristic time for a decay process of the final state, in which the sample is located after the energy state has been de-stimulated by stimulated emission, into an even lower ground state. From the latter, the sample is typically excited into the energy state.
- the pulse duration of the excitation light is advantageously 10 -15 to 10 -9 s; the pulse duration of the stimulation light is advantageously 10 -12 to 10 -9 s.
- the laser can advantageously emit a light beam with a Gaussian intensity distribution to generate the stimulation light. This also results in a Gaussian spatial intensity distribution in the focal plane.
- Such an intensity distribution has the advantage that it has no secondary maxima by which the resolution could be deteriorated.
- This is particularly advantageous in the case of the stimulation beams, since these can then be superimposed on the excitation light beam such that they laterally overlap the main maximum of the intensity distribution of the excitation beam. In this case, any side maxima present in the intensity distribution of the excitation light beam are eliminated due to the effect of the stimulation light beams in the effective point mapping function.
- the stimulation light rays of the intensity distribution of the excitation light beam can be superimposed from the outside without new secondary maxima appearing in the effective point imaging function.
- the main maximum of the effective point imaging function is significantly narrowed without secondary maxima occurring. It is also advantageous if the light source for generating the stimulated emission is of high intensity, so that there is a non-linear relationship between this intensity and the occupation of the energy state of the sample. As a result, the stimulated light state in the coverage area of the intensity distribution of the excitation and stimulation light can be spatially very sharply delimited by stimulated emission, so that the effective point imaging function is spatially very sharply delimited and at the same time the reduction in the overall luminescence intensity is minimized.
- the separation device comprises a time control device with which the detector can be switched on immediately after a pulse of the stimulation light has decayed.
- the timing control device can also control the lasers in such a way that a stimulation light pulse is emitted as soon as an excitation light pulse has subsided.
- the detector can then be actuated after the pulse of the stimulation light has decayed using the same time control device.
- the preferred pulse durations of the lasers have already been mentioned above. It is possible to easily and cleanly separate the emission light of the sample, even if the excitation light has the same wavelength as the emission light.
- the construction of the device is mechanically simple since no further filter elements have to be used.
- the separation device can have a poiarization element upstream of the objective for polarizing the stimulation light and a poiarization element downstream of the objective for polarizing the one going to the detector Include light with an orthogonal transmission direction to that of the clarification element upstream of the lens.
- a polarization element for polarizing the excitation light can also be arranged upstream of the lens and a further polarization element can be connected downstream of the lens, which has an orthogonal transmission direction to the polarization element for polarizing the light going to the detector.
- the separation device has at least one wavelength filter.
- the wavelength filters the light emitted by the sample can be separated from the excitation light if there are different wavelengths.
- a wavelength filter is installed downstream of the lens. Color filters, dichroic filters, monochromators, prisms etc. can be used as wavelength filters.
- the separation device can have a dichroic mirror. The mirror is then arranged between the light source and the lens, so that the light emitted by the sample is directed by the dichroic mirror, if it has a certain wavelength, into the detector.
- the detector can be a point detector.
- a focusing element and a diaphragm can be connected upstream of the detector, the diaphragm being arranged in a plane optically conjugate to the focal plane of the objective.
- the aperture is, for example, a perforated aperture, and its diameter is preferably so large that its image in the sample area is of the order of magnitude of the extension of the effective point imaging function that is at the wavelength of the light to be detected.
- the point mapping function of the The device results from the product of the effective point imaging function and the detection point imaging function. Because of the point detector, an additional narrowing of the main maximum of the point mapping function of the device and thus a further improvement in the resolution is achieved.
- a further improvement in the spatial resolution of the device can be achieved in that a filter element which is transparent to the wavelength of the stimulation light and which has an opaque central region and a transparent outer region for the wavelength of the excitation light is arranged between the light source and the objective.
- a filter element shifts light in the intensity distribution of the excitation light in the focal region from the main maximum to the secondary diffraction maxima, the main maximum being significantly narrowed. This leads to a further narrowing of the effective point mapping function.
- the increase in intensity in the secondary maxima of the intensity distribution of the excitation light is not disturbing in this case, since these are suppressed in the effective point imaging function due to the intensity distribution of the stimulation light, since the intensity distributions partially overlap.
- FIG. 1 shows a schematic illustration of an exemplary embodiment of the device according to the invention
- FIG. 2 shows an example for the intensity distribution of the excitation light and for the intensity distributions of the stimulation light in the focal plane of the objective of the inventive device and
- FIG. 1 shows the arrangement of a scanning microscope as an exemplary embodiment of the device according to the invention.
- the scanning microscope comprises a light source 1 with a laser 2 for emitting excitation light and a laser 3 for emitting stimulation light.
- dichroic mirrors 4 and 5 and a lens 6 are provided, with which the excitation light and stimulation light coming from the lasers 2 and 3 are directed or focused onto a sample point 7 of the sample 8.
- the sample point 7 has a spatial extent, which is an area here.
- a detector 9 is arranged to detect the emission light emitted by the sample 8, which is separated out of the excitation light 18 with the dichroic mirror 5.
- the sample is arranged on a positioning table 10.
- a beam raster device 11 is provided for the controlled scanning of the sample 8 with the excitation light and the stimulation light.
- the light source 1 comprises lenses 12 and 13 and an aperture 14.
- the lens 12 is used to focus the laser beam coming from the laser 2 onto the aperture 14.
- the lens 13 serves to adjust the divergence of the excitation light beam and the stimulation light beams so that they can be focused in the same plane with the aid of the lens 6. Pinholes are usually used as apertures.
- a beam splitter 23 and a mirror 24 for splitting the beam coming from the laser 3 into two stimulation light beams 17 are arranged behind the laser 3. The arrangement is chosen so that the excitation light beam and the stimulation light beams strike the mirror 4 in such a way that the intensity distributions of the beams partially overlap after deflecting the mirror 5 and passing through the lens 6 in the focal region of the lens 6.
- two stimulation light beams are shown. But it can also only be one or more further stimulation light beams can be used.
- further lasers can be used which are more analogous to the beam structure of laser 3.
- criminal; are used, the beams being directed in a suitable manner onto the mirror 4 and from there via the mirror 5 and the objective 6 onto the sample point 7.
- a laser 3 can also be used as shown, and the stimulation light beam coming from the laser 3 can be broken down into individual stimulation light beams via further beam splitters. It is important that the stimulation light beams are all arranged in such a way that their intensity distributions in the focal region of the objective 6 partially coincide with the intensity distribution of the excitation light beam.
- the lasers 3 or the associated beam elements must be arranged in such a way that a desired predetermined arrangement of the intensity distributions in the focal area of the objective 6 is obtained.
- different stimulation light beams can be arranged on a circular ring, through the center of which the excitation light beam 16 coming from the laser 2 runs.
- the energy state of the sample 8 is excited with the excitation light beam 16 impinging there.
- the wavelength of the excitation light is selected to excite this energy state.
- the stimulation light beam 17 coming from the laser 3 strikes, the energy state of the sample 8 excited with the excitation light is excited in a lower state by stimulated emission.
- the laser 3 can emit the stimulation light as light pulses in a chronological sequence.
- the emission light emitted spontaneously by the sample 8 is directed through the lens 6 and the mirror 5 into the detector 9 and is detected there.
- the emission light for detection in the detector 9 is separated from the excitation light 16 by the dichroic mirror 5. This is possible since the excitation light 16 generally has a different wavelength than the emission light 18.
- To further improve the Selection of the emission light 13 based on its wavelength has a color filter 19 arranged in front of the detector 9.
- polarizer 20 connected upstream of the objective 6 for polarizing the stimulation light 17 and a polarizer 21 connected downstream of the objective 6. Polarization of the light going to the detector is provided.
- the polarizers 20 and 21 have an orthogonal transmission direction. With the help of the polarizers 20 and 21, the emission light coming from the sample 8 can be separated from the stimulation light.
- the polarizers 20, 21 are required because the stimulation light and the emission light do not have the same wavelengths and are therefore not separable from one another by color filters.
- the color filter 19 and the polarizer 21 are preceded by a pinhole 15, which is located in a plane optically conjugate to the focal plane of the objective.
- the emission light coming from the sample can be separated from the stimulation light or the excitation light by a timing control device, not shown.
- a timing control device not shown.
- the timing device must turn on the detector immediately after a pulse of the stimulation light has subsided. In this way, the emission light can be easily and reliably separated from the stimulation light.
- the filter 19 and polarizers 20, 21 can also be arranged as shown in FIG. 1 as required.
- a lens 22, with which the excitation light beam 16 and the stimulation light beams 17 are focused into the beam grid device 11, is connected upstream of the beam grid device 11.
- the excitation light beam 16 and the stimulation light beam 17 are controlled with the beam raster device 11 in such a way that they scan the points 7, 7 ',... Of the sample 8 in a desired sequence.
- the measurement described above is carried out in each of the points 7, 7 '.
- FIG. 2 shows the intensity distribution 25 of the excitation light beam and the intensity distribution 26 of two stimulation light beams 17.
- the intensity distribution 25 of the excitation light beam 16 has a main maximum and, in addition, symmetrical secondary maxima in the lateral direction.
- the intensity distribution 26 of the stimulation beams 17 are in each case Gaussian.
- the maxima of the Gaussian distributions of the stimulation light are laterally offset with respect to the maximum of the intensity distribution 25 of the excitation light.
- a symmetrical arrangement is selected in which the two stimulation light beams are shifted in the opposite direction with the same distance with respect to the central axis through the intensity distribution 25 of the excitation light.
- the intensity of the stimulation light is significantly greater than the intensity of the excitation light.
- the intensity of the stimulation light beam is selected so that there is a non-linear relationship between this intensity and the occupation of the energy state of the sample.
- FIG. 3 shows the effective point imaging function in the focal plane of the objective, into which the intensity distributions of FIG. 2 are incorporated.
- the effective point imaging function determines the spatial resolution of a scanning microscope.
- the resulting effective point imaging function has a maximum whose half-value width is significantly narrower than the half-value width of the intensity distribution of the excitation light, compare FIG. 2.
- the secondary maxima contained in the excitation light are eliminated by the overall effect of the intensity distributions shown in FIG .
- the positioning table 10 is used to bring the sample 8 into a specific position on the optical axis A.
- the lasers 2, 3 as well as the lenses 12, 13, the diaphragm 14, the beam splitter 23 and the mirror 24 are arranged in such a way that the stimulating light beams 17 and the excitation light beam 16 are directed by the mirror 5 and the objective 6 onto a selected sample point 7 .
- the stimulation light beams 17 are aligned in such a way that their intensity distributions coincide in the focal region of the objective 6 with the intensity distribution of the excitation light beam 16 in a desired manner.
- the filter 19 and the polarizers 20, 21 are arranged such that the emission light emitted by the sample in the sample point 7 is separated from the excitation light and the separation light and directed into the detector 9 and detected there.
- a new sample point 7 ' is selected.
- the excitation light beam 16 and the stimulation light beam 17 are directed onto the sample point 7 '.
- the measurement takes place there in the same way as in the sample point 7.
- the excitation light beam 16 and the stimulation light beams 17 are directed by the beam scanning device II to a further sample point until the sample 8 is scanned and measured in the desired area in the lateral direction.
- the positioning table 10 in the direction of the optical Axis A shifted. In this position of sample 8, the entire measurement process begins again. In this way, the sample 8 can be scanned three-dimensionally and measured.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT95908872T ATE204086T1 (de) | 1994-02-01 | 1995-02-01 | Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung |
US08/682,793 US5731588A (en) | 1994-02-01 | 1995-02-01 | Process and device for optically measuring a point on a sample with high local resolution |
EP95908872A EP0801759B1 (de) | 1994-02-01 | 1995-02-01 | Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4403027.4 | 1994-02-01 | ||
DE4403027 | 1994-02-01 | ||
DEP4416558.7 | 1994-05-11 | ||
DE4416558A DE4416558C2 (de) | 1994-02-01 | 1994-05-11 | Verfahren zum optischen Messen eines Probenpunkts einer Probe und Vorrichtung zur Durchführung des Verfahrens |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1995021393A2 true WO1995021393A2 (de) | 1995-08-10 |
WO1995021393A3 WO1995021393A3 (de) | 1995-10-19 |
Family
ID=25933462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000124 WO1995021393A2 (de) | 1994-02-01 | 1995-02-01 | Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung |
Country Status (4)
Country | Link |
---|---|
US (1) | US5731588A (de) |
EP (1) | EP0801759B1 (de) |
AT (1) | ATE204086T1 (de) |
WO (1) | WO1995021393A2 (de) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5969824A (en) * | 1996-04-02 | 1999-10-19 | Eastman Kodak Company | Illumination for scanners |
US6184535B1 (en) | 1997-09-19 | 2001-02-06 | Olympus Optical Co., Ltd. | Method of microscopic observation |
DE10056384A1 (de) * | 2000-11-14 | 2002-05-29 | Leica Microsystems | Verfahren und Vorrichtung zur Messung der Lebensdauer eines angeregten Zustandes in einer Probe |
DE10105391A1 (de) * | 2001-02-06 | 2002-08-29 | Leica Microsystems | Scanmikroskop und Modul für ein Scanmikroskop |
US6555826B2 (en) | 2000-03-15 | 2003-04-29 | Leica Microsystems Heidelberg Gmbh | Apparatus for illuminating a specimen and confocal fluorescence scanning microscope |
DE10325460A1 (de) * | 2003-04-13 | 2004-11-11 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Räumlich hochauflösendes Abbilden |
US6914236B2 (en) | 2000-12-19 | 2005-07-05 | Leica Microsystems Heidelberg Gmbh | Scanning microscope |
US7005654B2 (en) | 2002-06-25 | 2006-02-28 | Leica Microsystems Heidelberg Gmbh | Method for microscopy, and microscope |
US7064824B2 (en) | 2003-04-13 | 2006-06-20 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High spatial resoulution imaging and modification of structures |
WO2006100013A2 (de) * | 2005-03-19 | 2006-09-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur herstellung räumlicher feinstrukturen |
DE102005020003A1 (de) * | 2005-04-27 | 2006-11-09 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fluoreszenzmikroskop |
US7430045B2 (en) | 2003-04-13 | 2008-09-30 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High spatial resolution imaging |
US7474462B2 (en) | 2003-09-25 | 2009-01-06 | Leica Microsystems Cms Gmbh | Microscope with evanescent wave illumination |
US7539115B2 (en) | 2003-04-13 | 2009-05-26 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Creating a permanent structure with high spatial resolution |
DE102008011993A1 (de) | 2008-02-29 | 2009-09-10 | Leica Microsystems Cms Gmbh | Synchronisierte Bildgebung mittels optischer Verfahren und Rasterkraftmikroskopie |
DE202009010772U1 (de) | 2009-08-11 | 2009-11-26 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anordnung zur Abbildungsstabilisierung |
DE202009007250U1 (de) | 2009-05-20 | 2009-11-26 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Feldveränderungsmittel zur Erzeugung komplementärer Lichtintensitätsmuster |
US7639361B2 (en) | 2007-05-14 | 2009-12-29 | Watkins Manufacturing Corporation | Apparatus for measuring chemical levels using pH shift |
US7671994B2 (en) | 2007-05-14 | 2010-03-02 | Watkins Manufacturing Corporation | Method for measuring chemical levels using pH shift |
US7772569B2 (en) | 2008-04-01 | 2010-08-10 | The Jackson Laboratory | 3D biplane microscopy |
DE102009008646A1 (de) | 2009-02-12 | 2010-08-19 | Dodt, Hans-Ulrich, Dr. | Vorrichtung zum optischen Abbilden einer Probe |
DE102010035003A1 (de) | 2010-08-20 | 2012-02-23 | PicoQuant GmbH. Unternehmen für optoelektronische Forschung und Entwicklung | Räumlich und zeitlich hochauflösende Mikroskopie |
US8217992B2 (en) | 2007-01-11 | 2012-07-10 | The Jackson Laboratory | Microscopic imaging techniques |
US8520280B2 (en) | 2008-12-19 | 2013-08-27 | Deutsches Krebsforschungszentrum | Method and apparatus for dynamically shifting a light beam with regard to an optic focussing the light beam |
DE202013006817U1 (de) | 2013-07-30 | 2014-10-31 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Gepulste Laserlichtquelle für die Fluoreszenzanregung |
DE102013227107A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Mikroskop mit einem Element zum Verändern der Form des Beleuchtungslichtfokus |
DE102013227104A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Scanmikroskop und akustooptischer Hauptstrahlteiler für ein Scanmikroskop |
DE102013227105A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Mikroskop und akustooptischer Strahlvereiniger für ein Mikroskop |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5952668A (en) * | 1994-07-15 | 1999-09-14 | Baer; Stephen C. | Resolution in microscopy and microlithography |
US6259104B1 (en) | 1994-07-15 | 2001-07-10 | Stephen C. Baer | Superresolution in optical microscopy and microlithography |
US6903347B2 (en) | 1994-07-15 | 2005-06-07 | Stephen C. Baer | Superresolution in microlithography and fluorescence microscopy |
US7071477B2 (en) * | 1994-07-15 | 2006-07-04 | Baer Stephen C | Superresolution in microlithography and fluorescence microscopy |
US5866911A (en) * | 1994-07-15 | 1999-02-02 | Baer; Stephen C. | Method and apparatus for improving resolution in scanned optical system |
US20050111089A1 (en) * | 1994-07-15 | 2005-05-26 | Baer Stephen C. | Superresolving microscopy apparatus |
IL118030A0 (en) * | 1996-04-25 | 1996-08-04 | Scitex Corp Ltd | A confocal measuring device and method |
DE19908883A1 (de) | 1999-03-02 | 2000-09-07 | Rainer Heintzmann | Verfahren zur Erhöhung der Auflösung optischer Abbildung |
DE10056382B4 (de) * | 2000-11-14 | 2004-07-01 | Leica Microsystems Heidelberg Gmbh | Scanmikroskop |
DE10154699B4 (de) * | 2001-11-09 | 2004-04-08 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren und Vorrichtung zum räumlich eng begrenzten Anregen eines optischen Übergangs |
US7196843B2 (en) * | 2002-03-27 | 2007-03-27 | Olympus Optical Co., Ltd. | Confocal microscope apparatus |
DE10235914B4 (de) * | 2002-08-06 | 2020-12-31 | Leica Microsystems Cms Gmbh | Lichtquelle zur Beleuchtung mikroskopischer Objekte und Scanmikroskopsystem |
JP5414147B2 (ja) * | 2003-04-13 | 2014-02-12 | マックス−プランク−ゲゼルシヤフト・ツーア・フェルデルング・デア・ヴィッセンシャフテン・アインゲトラーゲナー・フェライン | 立体的高解像度結像 |
DE10340965A1 (de) * | 2003-09-05 | 2005-03-24 | Leica Microsystems Heidelberg Gmbh | Rastermikroskop |
DE10340964A1 (de) * | 2003-09-05 | 2005-03-31 | Leica Microsystems Heidelberg Gmbh | Lichtquelle mit einem mikrostrukturierten optischen Element |
DE10347712A1 (de) * | 2003-10-14 | 2005-05-12 | Leica Microsystems | Rastermikroskop |
JP3993553B2 (ja) * | 2003-10-15 | 2007-10-17 | 独立行政法人科学技術振興機構 | 3次元分析装置 |
DE102004044626B4 (de) * | 2004-09-13 | 2008-11-20 | Leica Microsystems Cms Gmbh | Verfahren zur Untersuchung von Transportprozessen |
WO2006058187A2 (en) * | 2004-11-23 | 2006-06-01 | Robert Eric Betzig | Optical lattice microscopy |
JP5139077B2 (ja) * | 2005-01-16 | 2013-02-06 | ベア,ステフェン,シー | 単一波長誘導放出制御顕微鏡法 |
EP2453239B1 (de) | 2005-05-23 | 2017-04-26 | Harald F. Hess | Optische Mikroskopie mit transformierbaren optischen Markern |
DE502006004676D1 (de) * | 2005-07-22 | 2009-10-08 | Zeiss Carl Microimaging Gmbh | Auflösungsgesteigerte lumineszenz-mikroskopie |
US7485875B2 (en) * | 2005-07-22 | 2009-02-03 | Carl Zeiss Microimaging Gmbh | Resolution-enhanced luminescence microscopy |
DE102006026203A1 (de) * | 2006-05-31 | 2007-12-06 | Carl Zeiss Microimaging Gmbh | Verfahren zum räumlich hochauflösenden Abbilden |
DE102006026204A1 (de) * | 2006-05-31 | 2007-12-06 | Carl Zeiss Microimaging Gmbh | Mikroskop mit erhöhter Auflösung |
DE102006047816A1 (de) * | 2006-10-07 | 2008-04-17 | Leica Microsystems Cms Gmbh | Verfahren und Vorrichtung zum hochaufgelösten optischen Abtasten einer Probe |
JP5065668B2 (ja) * | 2006-12-26 | 2012-11-07 | オリンパス株式会社 | 顕微鏡法および顕微鏡 |
DE102007011305A1 (de) | 2007-03-06 | 2008-09-11 | Leica Microsystems Cms Gmbh | Vorrichtung und Verfahren zur Strahljustage in einem optischen Strahlengang |
DE102007039111B4 (de) | 2007-08-18 | 2014-11-20 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | STED-Fluoreszenzmikroskopie mit Zweiphotonen-Anregung |
US8053743B2 (en) * | 2008-03-17 | 2011-11-08 | Baer Stephen C | Superresolution in devices with single wavelength illumination |
JP5208825B2 (ja) | 2008-09-12 | 2013-06-12 | オリンパス株式会社 | 光学顕微鏡 |
DE102008054317A1 (de) | 2008-11-03 | 2010-05-06 | Carl Zeiss Microlmaging Gmbh | Kombinationsmikroskopie |
EP2438555B1 (de) * | 2009-06-02 | 2017-03-08 | Sofast GmbH | Statistische Schwankungsanalyse für hochaufgelöste Abbildungen (SOFI) |
WO2011052248A1 (en) * | 2009-11-02 | 2011-05-05 | Olympus Corporation | Beam splitter apparatus, light source apparatus, and scanning observation apparatus |
US8237786B2 (en) | 2009-12-23 | 2012-08-07 | Applied Precision, Inc. | System and method for dense-stochastic-sampling imaging |
US8547533B2 (en) | 2009-12-28 | 2013-10-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Composite probes and use thereof in super resolution methods |
JP5771422B2 (ja) | 2010-06-17 | 2015-08-26 | オリンパス株式会社 | 顕微鏡 |
DE102010060121C5 (de) | 2010-10-22 | 2023-09-28 | Leica Microsystems Cms Gmbh | SPIM-Mikroskop mit sequenziellem Lightsheet |
US8809808B2 (en) * | 2010-11-09 | 2014-08-19 | National Yang Ming University | Stimulated emission-based optical detection system |
JP5776992B2 (ja) | 2010-11-22 | 2015-09-09 | マックス−プランク−ゲゼルシャフト ツル フォルデルング デル ヴィッゼンシャフテン イー.ヴイ. | 自然放出蛍光をパルス励起、連続脱励起、およびゲート記録するsted顕微鏡法、sted蛍光相関分光法、およびsted蛍光顕微鏡 |
EP2535755A1 (de) | 2011-06-14 | 2012-12-19 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Kumulantmikroskopie |
CN102313723B (zh) * | 2011-06-20 | 2014-06-25 | 河海大学 | 偏振光激发显微联合超分辨率重建的成像方法 |
WO2013007726A1 (en) | 2011-07-11 | 2013-01-17 | Facultes Universitaires Notre-Dame De La Paix | Method for high resolution sum-frequency generation and infrared microscopy |
GB201111976D0 (en) | 2011-07-13 | 2011-08-31 | Ucl Business Plc | Super resolution fluorescence microscopy |
CA2854675C (en) | 2011-11-08 | 2017-08-22 | Universite Laval | Method and system for improving resolution in laser imaging microscopy |
DE102011086230B4 (de) | 2011-11-11 | 2023-02-23 | Leica Microsystems Cms Gmbh | Verfahren und Vorrichtung zur Beleuchtung und Detektion in der RESOLFT-Mikroskopie |
EP2831497A2 (de) | 2012-03-29 | 2015-02-04 | École Polytechnique Fédérale de Lausanne (EPFL) | Verfahren und vorrichtung für bildgebung mit multimodalen glasfasern |
US9075013B2 (en) * | 2012-04-29 | 2015-07-07 | Periodic Structures, Inc. | Apparatus and methods for microscopy having resolution beyond the Abbe limit |
CN102809672A (zh) * | 2012-08-06 | 2012-12-05 | 中国科学院化学研究所 | 超分辨共聚焦光学显微镜与扫描探针显微镜联用系统 |
CN102830102B (zh) * | 2012-08-21 | 2015-03-18 | 浙江大学 | 基于空心聚焦光斑激发的共聚焦显微方法和装置 |
EP2888596B1 (de) | 2012-08-22 | 2022-07-20 | President and Fellows of Harvard College | Rastersensoren im nanobereich |
WO2014106657A1 (en) | 2013-01-04 | 2014-07-10 | University Of Limerick | Differential infra red nanoscopy system and method |
DE102013100172A1 (de) * | 2013-01-09 | 2014-07-10 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zum räumlich hochaufgelösten Abbilden einer einen Luminophor aufweisenden Struktur einer Probe |
US20150085106A1 (en) * | 2013-03-12 | 2015-03-26 | Christopher J. Brittain | Method and apparatus for imaging using mechanical convolution |
WO2014196854A1 (en) | 2013-06-03 | 2014-12-11 | Stichting Vu-Vumc | Method and system for imaging a molecular strand |
CN103335988B (zh) * | 2013-06-06 | 2016-12-07 | 西北大学 | 基于柱透镜聚焦的线扫描受激发射损耗显微成像装置 |
FR3011931A1 (fr) | 2013-10-14 | 2015-04-17 | Bioaxial Sas | Procede et dispositif de mesure optique |
DE102013226277A1 (de) * | 2013-12-17 | 2015-06-18 | Leica Microsystems Cms Gmbh | Verfahren und Vorrichtung zum Untersuchen einer Probe mittels optischer Projektionstomografie |
JP2016012114A (ja) * | 2014-06-02 | 2016-01-21 | オリンパス株式会社 | 照明装置、これを有する顕微鏡装置及び顕微鏡観察方法 |
US9791371B2 (en) * | 2014-10-29 | 2017-10-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Systems and methods for distinguishing stimulated emissions as a means of increasing the signal of fluorescence microscopy |
WO2016092161A1 (fr) | 2014-12-09 | 2016-06-16 | Bioaxial Sas | Procédé et dispositif de mesure optique |
DE102015111702A1 (de) | 2015-07-20 | 2017-01-26 | Carl Zeiss Microscopy Gmbh | Hochauflösende, spektral selektive Scanning-Mikroskopie einer Probe |
CN105182523B (zh) * | 2015-09-23 | 2017-11-07 | 北京大学 | 一种基于一阶贝塞尔光束的sted超分辨显微镜及调节方法 |
DE102015116435A1 (de) | 2015-09-29 | 2017-03-30 | Carl Zeiss Microscopy Gmbh | Hochauflösende Scanning-Mikroskopie mit der Unterscheidung mindestens zweier Spektralbereiche |
US10345565B2 (en) | 2016-03-22 | 2019-07-09 | Robert David Frankel | Depth and speed enhanced orthogonal beam stimulated fluorescent and stimulated Raman emission for in-vivo imaging |
US10054778B2 (en) * | 2016-03-22 | 2018-08-21 | Robert David Frankel | Orthogonal confocal stimulated emission microscopy |
EP3336596B1 (de) | 2016-12-14 | 2022-04-13 | Universitätsklinikum Jena | Verfahren zur sted mikroskopie |
DE102017113683A1 (de) | 2017-06-21 | 2018-12-27 | Carl Zeiss Microscopy Gmbh | Hochauflösende Scanning-Mikroskopie mit der Unterscheidung mindestens zweier Wellenlängenbereiche |
CN107632392B (zh) * | 2017-08-22 | 2021-04-20 | 北京理工大学 | 动态局部放大高分辨成像系统 |
DE102019110160B4 (de) * | 2019-04-17 | 2023-07-27 | Leica Microsystems Cms Gmbh | Fluoreszenzmikroskop und Verfahren zur Abbildung einer Probe |
JP2022551174A (ja) | 2019-10-09 | 2022-12-07 | ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 低光子計数撮像条件における改善された信号対ノイズ比を用いたsted顕微鏡法 |
RO134585A0 (ro) | 2019-10-17 | 2020-11-27 | Institutul Naţional De Cercetare-Dezvoltare Pentru Fizica Laserilor, Plasmei Şi Radiaţiei-Inflpr | Sistem optic pentru producerea de fascicule optice elicoidale vectoriale |
EP3885813A1 (de) * | 2020-03-27 | 2021-09-29 | Leica Microsystems CMS GmbH | Verfahren und vorrichtung zur schätzung einer sted-auflösung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3831880A1 (de) * | 1987-10-21 | 1989-05-03 | Jenoptik Jena Gmbh | Verfahren zur untersuchung ultraschneller vorgaenge |
WO1991007651A1 (en) * | 1989-11-14 | 1991-05-30 | Cornell Research Foundation, Inc. | Two-photon laser scanning microscopy |
-
1995
- 1995-02-01 WO PCT/DE1995/000124 patent/WO1995021393A2/de active IP Right Grant
- 1995-02-01 EP EP95908872A patent/EP0801759B1/de not_active Expired - Lifetime
- 1995-02-01 US US08/682,793 patent/US5731588A/en not_active Expired - Lifetime
- 1995-02-01 AT AT95908872T patent/ATE204086T1/de active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3831880A1 (de) * | 1987-10-21 | 1989-05-03 | Jenoptik Jena Gmbh | Verfahren zur untersuchung ultraschneller vorgaenge |
WO1991007651A1 (en) * | 1989-11-14 | 1991-05-30 | Cornell Research Foundation, Inc. | Two-photon laser scanning microscopy |
Non-Patent Citations (2)
Title |
---|
APPLIED PHYSICS B. PHOTOPHYSICS AND CHEMISTRY, Bd.60, Nr.5, Mai 1995, HEIDELBERG DE Seiten 495 - 497 S.W.HELL ET AL. 'Ground-state depletion fluorescence microscopy: a concept for breaking the diffraciton resolution limit' * |
OPTICS LETTERS, Bd.19, Nr.11, 1. Juni 1994, WASHINGTON US Seiten 780 - 782 S.W.HELL ET AL. 'Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy' * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5969824A (en) * | 1996-04-02 | 1999-10-19 | Eastman Kodak Company | Illumination for scanners |
US6184535B1 (en) | 1997-09-19 | 2001-02-06 | Olympus Optical Co., Ltd. | Method of microscopic observation |
US6555826B2 (en) | 2000-03-15 | 2003-04-29 | Leica Microsystems Heidelberg Gmbh | Apparatus for illuminating a specimen and confocal fluorescence scanning microscope |
DE10012462B4 (de) * | 2000-03-15 | 2004-07-08 | Leica Microsystems Heidelberg Gmbh | Beleuchtungsvorrichtung für die konfokale Fluoreszenz-Rastermikroskopie |
DE10056384A1 (de) * | 2000-11-14 | 2002-05-29 | Leica Microsystems | Verfahren und Vorrichtung zur Messung der Lebensdauer eines angeregten Zustandes in einer Probe |
DE10056384C2 (de) * | 2000-11-14 | 2003-06-05 | Leica Microsystems | Vorrichtung zur Messung der Lebensdauer eines angeregten Zustandes in einer Probe und Verwendung der Vorrichtung |
US6975394B2 (en) | 2000-11-14 | 2005-12-13 | Leica Microsystems Heidelberg Gmbh | Method and apparatus for measuring the lifetime of an excited state in a specimen |
US6914236B2 (en) | 2000-12-19 | 2005-07-05 | Leica Microsystems Heidelberg Gmbh | Scanning microscope |
DE10105391A1 (de) * | 2001-02-06 | 2002-08-29 | Leica Microsystems | Scanmikroskop und Modul für ein Scanmikroskop |
DE10105391B4 (de) * | 2001-02-06 | 2004-11-25 | Leica Microsystems Heidelberg Gmbh | Scanmikroskop und Modul für ein Scanmikroskop |
US6958470B2 (en) | 2001-02-06 | 2005-10-25 | Leica Microsystems Heidelberg Gmbh | Scanning microscope with a detector and light source for exciting an energy state in a specimen and module for a scanning microscope |
US7005654B2 (en) | 2002-06-25 | 2006-02-28 | Leica Microsystems Heidelberg Gmbh | Method for microscopy, and microscope |
US7539115B2 (en) | 2003-04-13 | 2009-05-26 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Creating a permanent structure with high spatial resolution |
US7430045B2 (en) | 2003-04-13 | 2008-09-30 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High spatial resolution imaging |
US7064824B2 (en) | 2003-04-13 | 2006-06-20 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High spatial resoulution imaging and modification of structures |
DE10325460A1 (de) * | 2003-04-13 | 2004-11-11 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Räumlich hochauflösendes Abbilden |
US7474462B2 (en) | 2003-09-25 | 2009-01-06 | Leica Microsystems Cms Gmbh | Microscope with evanescent wave illumination |
WO2006100013A3 (de) * | 2005-03-19 | 2007-03-08 | Max Planck Gesellschaft | Verfahren zur herstellung räumlicher feinstrukturen |
US7764369B2 (en) | 2005-03-19 | 2010-07-27 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Method of producing spatial fine structures |
WO2006100013A2 (de) * | 2005-03-19 | 2006-09-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur herstellung räumlicher feinstrukturen |
DE102005020003B4 (de) * | 2005-04-27 | 2007-10-11 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fluoreszenzmikroskop |
DE102005020003A1 (de) * | 2005-04-27 | 2006-11-09 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Fluoreszenzmikroskop |
US8217992B2 (en) | 2007-01-11 | 2012-07-10 | The Jackson Laboratory | Microscopic imaging techniques |
US7639361B2 (en) | 2007-05-14 | 2009-12-29 | Watkins Manufacturing Corporation | Apparatus for measuring chemical levels using pH shift |
US7671994B2 (en) | 2007-05-14 | 2010-03-02 | Watkins Manufacturing Corporation | Method for measuring chemical levels using pH shift |
DE102008011993A1 (de) | 2008-02-29 | 2009-09-10 | Leica Microsystems Cms Gmbh | Synchronisierte Bildgebung mittels optischer Verfahren und Rasterkraftmikroskopie |
US7772569B2 (en) | 2008-04-01 | 2010-08-10 | The Jackson Laboratory | 3D biplane microscopy |
US7880149B2 (en) | 2008-04-01 | 2011-02-01 | The Jackson Laboratory | 3D biplane microscopy |
US8520280B2 (en) | 2008-12-19 | 2013-08-27 | Deutsches Krebsforschungszentrum | Method and apparatus for dynamically shifting a light beam with regard to an optic focussing the light beam |
DE102009008646A1 (de) | 2009-02-12 | 2010-08-19 | Dodt, Hans-Ulrich, Dr. | Vorrichtung zum optischen Abbilden einer Probe |
DE202009007250U1 (de) | 2009-05-20 | 2009-11-26 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Feldveränderungsmittel zur Erzeugung komplementärer Lichtintensitätsmuster |
DE202009010772U1 (de) | 2009-08-11 | 2009-11-26 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Anordnung zur Abbildungsstabilisierung |
DE102010035003B4 (de) * | 2010-08-20 | 2015-08-06 | PicoQuant GmbH. Unternehmen für optoelektronische Forschung und Entwicklung | Räumlich und zeitlich hochauflösende Mikroskopie |
DE102010035003A1 (de) | 2010-08-20 | 2012-02-23 | PicoQuant GmbH. Unternehmen für optoelektronische Forschung und Entwicklung | Räumlich und zeitlich hochauflösende Mikroskopie |
DE202013006817U1 (de) | 2013-07-30 | 2014-10-31 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Gepulste Laserlichtquelle für die Fluoreszenzanregung |
DE102013227104A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Scanmikroskop und akustooptischer Hauptstrahlteiler für ein Scanmikroskop |
DE102013227105A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Mikroskop und akustooptischer Strahlvereiniger für ein Mikroskop |
WO2015032819A1 (de) | 2013-09-03 | 2015-03-12 | Leica Microsystems Cms Gmbh | Mikroskop mit einem element zum verändern der form des beleuchtungslichtfokus |
DE102013227107A1 (de) | 2013-09-03 | 2015-03-05 | Leica Microsystems Cms Gmbh | Mikroskop mit einem Element zum Verändern der Form des Beleuchtungslichtfokus |
US20160216498A1 (en) * | 2013-09-03 | 2016-07-28 | Leica Microsystems Cms Gmbh | Microscope with an element for changing the shape of the illuminating light focus point |
DE102013227104B4 (de) | 2013-09-03 | 2018-05-30 | Leica Microsystems Cms Gmbh | Scanmikroskop und akustooptischer Hauptstrahlteiler für ein Scanmikroskop |
Also Published As
Publication number | Publication date |
---|---|
EP0801759B1 (de) | 2001-08-08 |
WO1995021393A3 (de) | 1995-10-19 |
US5731588A (en) | 1998-03-24 |
ATE204086T1 (de) | 2001-08-15 |
EP0801759A2 (de) | 1997-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0801759B1 (de) | Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung | |
DE4416558C2 (de) | Verfahren zum optischen Messen eines Probenpunkts einer Probe und Vorrichtung zur Durchführung des Verfahrens | |
DE19653413C2 (de) | Rastermikroskop, bei dem eine Probe in mehreren Probenpunkten gleichzeitig optisch angeregt wird | |
DE69635521T2 (de) | Multiphoton-lasermikroskopie | |
EP2069761B1 (de) | Verfahren und vorrichtung zum hochaufgelösten optischen abtasten einer probe | |
DE102007039111B4 (de) | STED-Fluoreszenzmikroskopie mit Zweiphotonen-Anregung | |
DE69737475T2 (de) | Mit makro- und mikroabtastobjektiven kompatibles fluoreszenzabbildungssystem | |
EP2803977B1 (de) | Verfahren zur 3D-hochauflösenden Lokalisierungsmikroskopie | |
DE10154699B4 (de) | Verfahren und Vorrichtung zum räumlich eng begrenzten Anregen eines optischen Übergangs | |
DE202011052060U1 (de) | STED-Fluoreszenzlichtmikroskop mit gepulster Anregung, kontinuierlicher Stimulation und zeitlich aufgelöster Registrierung von spontan emittiertem Fluoreszenzlicht | |
DE10056382B4 (de) | Scanmikroskop | |
DE102013208415A1 (de) | Mikroskop und Verfahren für die 3D-hochauflösende Lokalisierungsmikroskopie | |
EP3290983A1 (de) | Verfahren zum justieren eines laserscanning-fluoreszenzmikroskops und laserscanning-fluoreszenzmikroskop mit einer automatischen justiervorrichtung | |
DE4331570C2 (de) | Verfahren zum optischen Anregen einer Probe | |
DE102004017956A1 (de) | Mikroskop zur Untersuchung der Lebensdauer angeregter Zustände in einer Probe | |
WO2020212563A1 (de) | Fluoreszenz-rastermikroskop und verfahren zur abbildung einer probe | |
DE102011051086A1 (de) | Verfahren und Vorrichtung zur Abbildung einer mit einem Fluoreszenzfarbstoff markierten Struktur in einer Probe | |
DE2309181A1 (de) | Mit elektronenstrahlabtastung arbeitende analysevorrichtung | |
DE4324681C2 (de) | Verfahren zur optischen Anregung eines Energiezustands einer Probe in einem Probenpunkt und Vorrichtung zur Durchführung des Verfahrens | |
EP1926985B1 (de) | Verfahren und vorrichtung zum hochaufgelösten optischen abtasten einer probe | |
DE102013208872B4 (de) | Verfahren zur Erzeugung eines Bildes einer Probe | |
DE102018215831B4 (de) | Optische Anordnung für fluoreszenzmikroskopische Anwendungen | |
DE102018215833B4 (de) | Optische Anordnung für fluoreszenzmikroskopische Anwendungen | |
EP0950893A2 (de) | Vorrichtung zum Nachweis eines Fluoreszenzfarbstoffs | |
DE10001954B4 (de) | Laserscanmikroskop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995908872 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08682793 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1995908872 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995908872 Country of ref document: EP |