WO1995007419A1 - Support caoutchouc etanche au liquide - Google Patents

Support caoutchouc etanche au liquide Download PDF

Info

Publication number
WO1995007419A1
WO1995007419A1 PCT/JP1993/001782 JP9301782W WO9507419A1 WO 1995007419 A1 WO1995007419 A1 WO 1995007419A1 JP 9301782 W JP9301782 W JP 9301782W WO 9507419 A1 WO9507419 A1 WO 9507419A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
rubber
mount
vibration
damper plate
Prior art date
Application number
PCT/JP1993/001782
Other languages
English (en)
French (fr)
Inventor
Kuniaki Nakada
Hikosaburou Hiraki
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to EP94902091A priority Critical patent/EP0718524A4/en
Priority to BR9307884A priority patent/BR9307884A/pt
Priority to US08/596,356 priority patent/US5845895A/en
Publication of WO1995007419A1 publication Critical patent/WO1995007419A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • F16F13/16Units of the bushing type, i.e. loaded predominantly radially specially adapted for receiving axial loads

Definitions

  • the present invention relates to a liquid-filled rubber mount for vibration isolation, and more particularly to a liquid-filled rubber mount suitable for mounting a driver's cab on a vehicle body.
  • the rubber mount has a cushioning material such as rubber between a vibration source such as a vehicle body and a vibrating object such as a driver's cab, and reduces vibrations of the driver's cab and the like by vibrating vibration.
  • a vibration source such as a vehicle body
  • a vibrating object such as a driver's cab
  • FIG. 1 shows the overall structure of the dump truck's cap mount. Brackets 3 and 4 fixed to frame 2 of dump truck 1 are connected to cap 5 via anti-vibration mount 10. A floor 6 is installed to prevent vibrations from the road surface and the like from being transmitted directly to the cabinet 5.
  • FIG. 2 is a detailed view of a portion P in FIG. 1.
  • a case 11 of an anti-vibration mount 10 is fastened to a bracket 4 by bolts 12 and nuts 13.
  • the guide shaft 14 of the anti-vibration mount 10 is fastened to the floor 6 by the nut 15 to mount the anti-cab 5 on the anti-vibration mount.
  • the boss 6 3 having ⁇ is connected by a mounting rubber 6 4.
  • a rubber diaphragm 65 having an orifice 66 therein is attached to the tip of the boss 63, and the periphery of the diaphragm 65 is fixed to a case 61.
  • the diaphragm 65 divides the case 61 into an A room 67 and a B room 68.
  • a liquid 69 is sealed in the chamber A 67 and the chamber B 68, and both chambers communicate with each other through an orifice 66.
  • the damping characteristics of the liquid-filled mount 60 having such a configuration depend on the orifice diameter divided by the flow rate through the orifice.
  • the damping characteristics are shown in FIG.
  • the solid line shows the characteristics of the liquid-filled mount 60, and shows the relationship between the frequency and the loss factor when the input amplitude is ⁇ 0.2 mm and ⁇ 3.0 mm.
  • a large damping effect can be obtained at a certain frequency, for example, around 10 Hz, but the value of the mouth sputter in the other frequency bands is small, such as the impact vibration. Resonance is induced by input vibration in a wide frequency band, and vibration occurs.
  • FIG. 20 shows a side cross-sectional view of a viscous mount (see, for example, Japanese Utility Model Laid-Open No. 411,035), which is a liquid-filled mount.
  • FIG. 21 shows a sectional view taken along line X--X of FIG.
  • a case 1 1 and Guy Doshafu sheet 1 4 having bolt 1 6, are connected by the hardness H s 7 0 ° about Ma ⁇ down Togomu 1 7, Case 1 1
  • a liquid enclosing chamber 20 is fixed to one end.
  • a damper plate 23 having a rubber stopper 32 is fastened with a bolt 22.
  • the damper plate 23 is housed in the liquid filling chamber 20. I have.
  • the damper plate 23 is provided with a hole 72, and the liquid filling chamber 20 is provided with an inlet ⁇ 1.
  • the high-attenuation liquid 21 is injected into the liquid filling chamber 20 from the inlet 71, and the hole 72 of the damper plate 23 is provided at the upper surface of the damper plate 23 from the inlet 71. Used when injecting 2 1.
  • the viscosity of the high attenuation liquid 21 is about 5,000 to: I 000 est. In the viscous mount 70 having such a configuration, a vibration load is applied to the guide shaft 14 in the vertical direction.
  • the damper plate 23 stirs the highly damped liquid 21 and attenuates the vibration by the damping force generated at that time. Its damping characteristics
  • the broken line in FIG. 22 shows the relationship between the frequency and the loss factor when the input amplitude is ⁇ 0.2 mm and ⁇ 3.0 mm.
  • the loss factor of the viscous mount 70 is larger in a wider frequency band than that of the liquid-filled mount 60, and it does not induce resonance even when shock vibration is applied, but it does not induce vibration suppression.
  • the required large-amplitude attenuation is small, and there is a problem that the small-amplitude in the medium and high-frequency ranges required for low vibration and low noise, on the contrary, has a large attenuation and no vibration damping effect can be obtained.
  • the frequency range below 20 Hz is described as low frequency range, approximately 20 Hz to several hundred Hz is defined as middle frequency range, and several hundred Hz or more is described as high frequency range.
  • the viscous mount 70 has a problem that the damping property in the lateral direction is small structurally and the roll is generated. This is because a large damping force is obtained because the damping force acts on the area of the diameter d of the damper plate 13 (see Fig. 20) for the vertical displacement, but a large displacement is obtained. This is because the damping force acts only on the projected area of the thickness b of the stopper rubber 32. Furthermore, as shown in FIG.
  • the present invention has been made in order to solve the above-mentioned drawbacks of the conventional technology.
  • the present invention exerts an excellent anti-vibration effect in a medium / high frequency range required for low vibration and low noise, and also has a rough road.
  • a liquid-filled rubber that exerts a vibration damping effect without resonating against shock vibrations in a wide frequency band such as at times, and exhibits a large damping force at large amplitudes, and also prevents the occurrence of roll. It is intended to provide a mount. Disclosure of the invention
  • an attenuating liquid and an attenuating liquid are connected to a liquid enclosing chamber fixed to one member by connecting one independent member and the other member via a cylindrical mount rubber.
  • a damper plate fixed to the other member in a liquid-filled anti-vibration mount in which liquid is provided with an elastic body that can be minutely deformed by resistance of the damping liquid when the damper plate vibrates up and down. It is a rubber mount.
  • the elastic body is firmly fixed to the upper and lower surfaces of the damper plate, or is sandwiched between two plates, which are components of the damper plate.
  • a damper with an elastic body fixed to the lower surface of the damper plate It is fixed to the surface of rubber or to the surface of stopper rubber and damper rubber fixed to the upper and lower surfaces of the damper plate.
  • the independent one member and the other member are connected via a cylindrical mount rubber, and the damping liquid and the other member are provided in a liquid sealing chamber fixed to one member.
  • a liquid-filled anti-vibration mount that incorporates a damper plate fixed to a member, a liquid that has a cylindrical plate in which a cylindrical mount rubber is sandwiched to form a laminated shape It is an enclosed rubber mount.
  • a cylindrical mount down Togomu is, the hardness exceeds the H s 4 5 °, H s 7 is 0 ° or less.
  • the viscosity of the attenuation liquid that can be sealed in the liquid sealing chamber is more than 500 000 est and less than 150 000 O cst.
  • FIG. 1 is an overall configuration diagram of the dump mount's cap mount
  • Fig. 2 is a diagram showing the mount part of the cap mount in detail of P part in Fig. 1
  • Fig. 3 is liquid filling related to the first invention.
  • FIG. 4 is a side sectional view of a rubber mount according to a first embodiment
  • FIG. 4 is a table showing a relationship between a frequency and a vibration transmissibility according to the first embodiment
  • FIG. 5 is a view of a cabin floor according to the first embodiment.
  • Fig. 6 is a table showing vertical acceleration
  • Fig. 6 is a side sectional view of a second embodiment of the liquid-filled rubber mount according to the first invention
  • Fig. 7 is a view of the liquid-filled rubber mount according to the first invention.
  • FIG. 8 is a side cross-sectional view of a third embodiment
  • FIG. 8 is a side cross-sectional view of a fourth embodiment of the liquid-filled rubber mount according to the first invention
  • FIG. 9 is a cross-sectional view of the elastic body according to the first invention
  • FIG. 10 is a side sectional view
  • FIG. 10 shows another elastic body according to the first invention.
  • FIG. 11 is a side sectional view
  • FIG. 11 is a side sectional view of a fifth embodiment of the liquid filled rubber mount according to the second invention
  • FIG. 12 is a plan view of the fifth embodiment
  • FIG. 3 is a table showing the vertical vibration transmissibility according to the fifth embodiment
  • FIG. 14 is a table showing the horizontal vibration transmissibility according to the fifth embodiment.
  • FIG. 16 is a table showing acceleration at resonance according to the fifth embodiment
  • Fig. 16 is a table showing static spring characteristics in the axial direction according to the fifth embodiment
  • Fig. 17 is a table showing the fifth embodiment.
  • FIG. 18 is a table showing the static characteristics in the radial direction according to the present invention
  • FIG. 18 is a table showing the damping characteristics according to the fifth embodiment
  • FIG. 19 is a side sectional view of the conventional liquid filled mount.
  • FIG. 20 is a side sectional view of a conventional viscous mount
  • FIG. 21 is a sectional view taken along line X--X of FIG. 20
  • FIG. 22 is a conventional liquid seal. Is a chart representing the attenuation characteristic of the form mounted Bok.
  • FIG. 3 is a side sectional view of the liquid-filled rubber mount of the first embodiment.
  • the liquid-filled rubber mount 40 has a case 11 and a case 1 which are fastened to the bracket 4 (see FIG. 2). It is composed of a liquid sealing chamber 20 fixed to the front end of the housing 1, a mount rubber 17 fixed to the inside of the case 11, and a guide shaft 14 fixed to the inside of the mount rubber 17.
  • the high-attenuating liquid 21 is filled in the liquid filling chamber 20, and the guide shaft 14 has a bolt 16 at one end for fastening the floor 6 of the cabinet 5 (see Fig. 2) with a nut 15.
  • a damper plate 23 is fastened to the other end with a bolt 22.
  • an elastic body 24 such as a closed-cell air-filled foam containing air is fixed, and the elastic body 24 is immersed in the high attenuation liquid 21. ing.
  • the damper plate 23 vibrates up and down in the liquid filling chamber 20, the elastic body 24 is deformed into the elastic body 24 a shown by the dotted line due to the resistance of the high attenuation liquid 21, and the deformation amount is small by about a.
  • the hardness is such that it is deformed.
  • the operation of the liquid-filled rubber mount 40 having such a configuration is as follows.
  • the elastic body 24 is deformed by the resistance a of the high damping liquid 21 by about a deformation amount a as shown by a dotted line as described above. Therefore, in a high-frequency range where the amplitude of the vibration is equal to or less than the soil a, the damper plate 23 is not affected by the high-attenuating liquid 21, and the mount rubber 17 provides excellent vibration isolation.
  • FIG. 4 shows the relationship between the frequency and the vibration transmissibility of the liquid-filled rubber mount 40 and the conventional rubber mount.
  • a solid line L1 indicates the liquid-filled rubber mount 40 of the present invention
  • a broken line L2 indicates a conventional general rubber mount
  • a dashed line L3 indicates a conventional viscous mount 70 (see FIG. 20).
  • the liquid-filled rubber mount 40 of the present invention has no resonance phenomenon like a general rubber mount in a low frequency range, In medium and high frequency ranges, the vibration damping of the vibration transmissibility is greater than that of the viscous mount, and it has excellent vibration damping properties.
  • Fig. 5 Regarding the performance of the liquid-filled rubber mount 40 and the conventional product, measurement of acceleration in the vertical direction with respect to the time axis is shown in Fig. 5.
  • the directional acceleration measurement results are shown.
  • the shake table was set at a predetermined vertical acceleration. While vibrating, the vertical acceleration of the cabin floor was measured.
  • the upward / downward acceleration shows the maximum value ⁇ 1 in the conventional rubber mount, while the maximum value ⁇ 2 is greatly reduced in the liquid-sealed rubber mount 40 of the present invention, and the steep load is increased. It is clear that it has excellent vibration damping against fluctuations.
  • FIG. 6 shows a liquid-filled rubber mount according to the second embodiment.
  • the basic structure is the same as that of the first embodiment, but the structure of the damper plate is different.
  • the liquid-filled rubber mount 41 has an elastic body 26 such as urethane foam sandwiched between two plates 25 at the end of the guide shaft 14, and is mounted on the upper surface of one plate 25. It has a damper plate 28 to which stopper rubber 27 is fixed.
  • the damper plate 28 is fastened to the guide shaft 14 by a bolt 31 via a spring plate 30 and housed in the liquid filling chamber 20.
  • Components having the same shape or function as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted. '
  • FIG. 7 shows a liquid-filled rubber mount 42 of the third embodiment, in which an elastic body 35 such as polyurethane foam is fixed to the lower surface of a damper rubber 33 fixed to a damper plate 23.
  • FIG. 8 shows the liquid-filled rubber mount 43 of the fourth embodiment.
  • the stopper rubber 32 and the damper rubber 33 are fixed to the upper and lower surfaces of the damper plate 23, and furthermore, the surface of those rubbers is fixed. In this configuration, elastic members 34 and 35 are firmly attached.
  • the stopper rubber 32 and the damper rubber 33 are integrated rubber parts, but they have different names because their actions during operation are somewhat different.
  • the elastic bodies 24, 26, 34, and 35 are not limited to polyurethane foam of closed cells containing air.
  • the elastic body may be a member capable of being deformed by a predetermined amount when an external force is applied to the guide shaft and vibrates in the vertical direction.
  • a soft urethane rubber elastic body 36 a , 36b may be vulcanized to the surface of the rubber strip 32 and the rubber strip 33.
  • an elastic body 39 made of a rubber film 38 enclosing air 37 may be used, and the air 37 may be a soft material that is easily deformed, such as sponge rubber or liquid.
  • the material of the stopper rubber may be an elastomer other than rubber, plastic, or the like, and may be a material in which the damper plate and the stopper rubber are integrated.
  • FIG. 11 is a side sectional view of the liquid-filled rubber mount of the fifth embodiment
  • FIG. 12 is a plan view.
  • a liquid sealing chamber 53 having a stopper plate 52 is fixed to the tip of the case 51 of the liquid sealing rubber mount 50.
  • a damper plate 55 having a stopper rubber 54 is housed in the liquid filling chamber 53, and a gap c is provided between the outer periphery of the damper plate 55 and the liquid filling chamber 53.
  • An elastic body 56 for example, urethane foam is fixed to the rubber pad 54.
  • a guide shaft 14 having a bolt 16 is fastened to the damper plate 55 by a nut 22.
  • the guide shaft 14 and the case 51 are connected by a mounting rubber 58 that sandwiches a cylindrical laminated plate 57.
  • the hardness of the mount Togomu 5 8 is H s 4 5 ° ⁇ 7 0 °. This hardness was determined by manufacturing a liquid-filled rubber mount 50 and performing various load levels from the characteristic test results such as the loss factor and spring constant described later. The hardness at which the effect was obtained. Na us, in general, the rubber hardness data have variations (e.g. ⁇ 5 °), it is difficult to determine the exact Hardness range, the hardness is more effective in H s 4 5 ° ⁇ 6 0 ° Is large and has a preferable hardness.
  • an attenuation liquid 59 having a high viscosity of 5,000 to 150,000 est such as a silicon liquid is enclosed.
  • This viscosity is also obtained from the result of the characteristic test similarly to the hardness described above. Viscosity is more effective for required performance such as vibration proofing and vibration damping properties when the viscosity is in the range of 1000 to 150 est, which is preferable. It is presumed that a viscosity higher than 1500 est is preferable as an excellent viscosity of the loss factor in a low frequency range described later.
  • the case 51 and the guide shaft 14 are displaced relative to each other due to vibration from the road surface, but the hardness of the mounting rubber 58 is reduced, so that the vertical spring constant decreases. It exhibits anti-vibration properties against vibrations in medium and high frequency ranges.
  • the mounting rubber 58 was formed into a cylindrical lamination by the lamination plate 57, so that the spring constant in the horizontal direction became large, and the roll of the cap 5 (see Fig. 1) was reduced. Reduce the occurrence.
  • the damper plate 55 becomes the liquid filling chamber 53.
  • the solid line indicates the liquid-filled rubber mount 50 of the present embodiment
  • the broken line indicates the conventional viscous mount.
  • the vibration transmissibility of the liquid-filled rubber mount of the present invention shows a low value over almost the entire frequency range (from low frequency range to high frequency range) as compared with the conventional viscous mount. It shows the effect and the effect of rolling reduction.
  • Fig. 15 shows the vibration waveform at the time of resonance when the frequency is changed. The horizontal axis is time, and the vertical axis is acceleration. This test was performed in the same manner as the measurement method described in FIG.
  • the resonance acceleration has a maximum value of ⁇ 3 in the conventional viscous mount
  • the liquid-filled rubber mount 50 of the present invention has a maximum value of ⁇ 4 and a large vibration peak at resonance. It is clear that the material has excellent vibration damping properties.
  • FIG. 16 shows the static spring characteristics in the axial direction
  • FIG. 17 shows the static spring characteristics in the radial direction.
  • the liquid-filled rubber mount 50 of the present invention has a structure in which the vertical panel characteristics are soft and the horizontal panel characteristics are hard, as compared with the conventional viscous mount, and thus the characteristics of suppressing the lateral vibration.
  • Fig. 18 shows the damping performance of the liquid-filled rubber mount 50 of the present invention, and shows the relationship between the frequency and the loss factor for five levels of input amplitude ⁇ 0.2 mm to soil 5.0 mm. is there. Compared with the conventional viscous mount (see Fig. 22), the product of the present invention is required for low noise and low vibration.
  • the mouth spout is large and indicates excellent vibration damping.
  • Industrial applicability INDUSTRIAL APPLICABILITY The present invention exhibits an excellent vibration damping effect in medium and high frequency ranges, has a vibration damping effect without resonating even with shock vibration in a wide frequency band, and has a large damping force at a large amplitude.
  • it is useful as a device that requires low vibration and low noise, such as a liquid-filled rubber mount for an operator's cab of an industrial vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Body Structure For Vehicles (AREA)

Description

明 細 書
4 液体封入ゴムマウ ン ト 技 術 分 野
本発明は、 防振用の液体封入形のゴムマウン トに関し、 特には運転室を車体に 防振マウン 卜するのに適した液体封入ゴムマウン 卜に関する。 背 景 技 術
ゴムマウン トは、 車体など振動源と運転室等披振動物との間にゴムなどの緩衝 材を有し、 防振作用などにより運転室などの振動を低減している。 まず、 ゴムマ ゥン 卜が適用される一般的なダンプトラッ クの運転室への装着について述べる。 第 1 図はダンプトラ ッ クのキヤブマウ ン トの全体構成を示し、 ダンプトラック 1 のフ レーム 2に固着されたブラケッ ト 3、 4 には、 防振マウン ト 1 0を介してキ ャブ 5のフロア 6が装着されており、 路面その他からの振動がキヤブ 5 に直接伝 達されるのを防止している。 第 2図は第 1図の P部詳細図であり、 ブラケッ ト 4 には防振マウン ト 1 0 のケース 1 1がボル ト 1 2およびナッ ト 1 3により締着さ れている。 防振マウン ト 1 0のガイ ドシャフ ト 1 4 はナツ ト 1 5によりフロア 6 に締着され、 キヤブ 5を防振マウン ト している。
ゴムマウン 卜の従来技術と して、 多用される液体封入形マウン 卜の一である液 体封入マウ ン ト (例えば、 日本実開昭 6 4 — 1 2 9 4 6号公報参照) の側面断面 , 図を第 1 9図に示す。 液体封入マゥン ト 6 0において、 ケース 6 1 とボルト 6 2
^ を有するボス 6 3 とはマウン トゴム 6 4 により連結されている。 ボス 6 3の先端 にはオリ フィ ス 6 6を内設したゴム製の隔膜 6 5が装着され、 隔膜 6 5の周囲は ケース 6 1 に固着されている。 隔膜 6 5 はケース 6 1 を A室 6 7 と B室 6 8 とに 分割している。 A室 6 7 と B室 6 8 とには液体 6 9が封入され、 両室はォリ フィ ス 6 6を介して連通している。 上下方向に振動負荷が加わるとケース 6 1 とボス 6 3 とはマウン トゴム 6 4を変形させながら相対変位する。 そのとき、 液体 6 9 はオリ フィ ス 6 6を通って A室 6 7 と B室 6 8 との間を移動し、 オリ フ ィ ス 6 6 通過時の抵抗力によつて振動を減衰させる。
かかる構成の液体封入マウン ト 6 0の減衰特性は、 オリ フィ ス径ゃオリ フィ ス 通過流量に依存するが、 その減衰特性を第 2 2図に示す。 図中、 実線が液体封入 マウン ト 6 0の特性であり、 入力振幅が ± 0 . 2 m mおよび ± 3 . O m mにおけ る、 周波数とロスファ クタとの関係を表している。 図に示すように、 ある特定の 周波数、 例えば 1 0 H z近傍、 では大きな制振効果が得られるが、 それ以外の周 波数帯域での口スファ クタの値は小さ く、 衝撃振動のような広い周波数帯での入 力振動に対しては共振を誘発し、 揺れが発生する。 また、 横方向の減衰性が得ら れず、 横揺れが発生するという問題がある。
次に、 別の従来技術と して、 液体封入形マウン トであるビスカスマウン ト (例 えば、 日本実開平 4一 1 0 1 8 3 5号公報参照) の側面断面図を図 2 0に、 第 2 0図の X— X断面図を第 2 1図に示す。 ビスカスマウン ト 7 0において、 ケース 1 1 と、 ボル ト 1 6を有するガイ ドシャフ ト 1 4 とは、 硬度 H s 7 0 ° 程度のマ ゥン トゴム 1 7により連結されており、 ケース 1 1 の一端には液体封入室 2 0が 固着されている。 また、 ガイ ドシャフ ト 1 4の先端には、 ス ト ツバゴム 3 2を有 するダンパプレー 卜 2 3がボルト 2 2により締着され、 ダンパプレー ト 2 3 は液 体封入室 2 0に収納されている。 このダンパプレー ト 2 3 には穴 7 2が設けられ ており、 液体封入室 2 0 には注入口 Ί 1が設けられている。 液体封入室 2 0には 注入口 7 1 から高減衰液 2 1が注入されており、 ダンパプレ一 ト 2 3の穴 7 2 は 注入口 7 1 からダンパプレー ト 2 3の上面部に高減衰液 2 1 を注入するときに利 用される。 この高減衰液 2 1の粘度は 5 0 0 0 0〜: I 0 0 0 0 0 es t 程度である かかる構成のビスカスマウン ト 7 0 において、 ガイ ドシャフ ト 1 4 に上下方向 に振動負荷が加わった場合、 ダンパプレー ト 2 3が高減衰液 2 1 を攪拌し、 その とき発生する減衰力によつて振動を減衰するようになつている。 その減衰特性を 第 2 2図中の破線にて示すが、 入力振幅が ± 0 . 2 m mおよび ± 3 . O m mにお ける、 周波数とロスファクタとの関係を表している。 図に示すように、 ビスカス マウン ト 7 0のロスファクタは液体封入マウント 6 0に比して広い周波数帯域で 大きく、 また、 衝撃振動が加わったような場合でも共振は誘発しないが、 制振に 必要な大振幅の減衰は小さく、 低振動、 低騒音化のために必要な中 ·高周波域の 微小振幅では逆に減衰が大きく防振効果が得られないという問題がある。 なお、 周波数域に関し、 おおよそ 2 0 H z以下を低周波域、 おおよそ 2 0 H z〜数百 H zを中周波域、 数百 H z以上を高周波域として述べる。
その対策としてマウントゴム 1 7の硬度を下げ、 ばね定数を小さく して中 ·高 周波域での防振効果を向上しょうとすると、 横方向の荷重に対するたわみが大き くなり、 横揺れが発生するという問題がある。 更に、 ビスカスマウン ト 7 0には 構造的に横方向の減衰性が小さく、 横揺れが発生するという問題がある。 これは 、 上下方向の変位に対してはダンパプレート 1 3部の直径 d (第 2 0図参照) の 面積部分に対して減衰力が働くため、 大きな減衰力が得られるが、 横方向の変位 に対してはストッパゴム 3 2の厚さ bの投影面積にしか減衰力が働かないためで ある。 しかも、 第 2 0図の X— X断面図である第 2 1図に示すように、 ダンパプ レート 2 3が点線位置 2 3 aに変位する場合、 液体は E部から F部に矢印のよう に円周に沿って滑らかに移動するため、 減衰力は殆ど得られない。 このため横揺 れを起こしやすく、 ス トツバゴム 3 2と液体封入室 2 0の干渉を防ぐため、 隙間 gは小さくすることができない。 この小さくできない隙間 gと穴 7 2とを合わせ ると通路面積が大きくなり、 大きな減衰力を得ることが更に困難である。
本発明は、 かかる従来技術の欠点を解消するためになされたもので、 低振動、 低騒音化のために要求される中 ·高周波域のにおいて優れた防振効果を発揮する とともに、 悪路走行時等の広い周波数帯域の衝撃振動に対しても共振することな く防振効果を発揮し、 また大振幅時には、 大きな減衰力を発揮させ、 更には横揺 れの発生を防止する液体封入ゴムマウントを提供することを目的としている。 発 明 の 開 示
本発明に係る第 1 の発明は、 それぞれ独立した一方の部材と他方の部材とを、 円筒形のマウン 卜ゴムを介して連結し、 一方の部材に固着された液体封入室に、 減衰液と、 他方の部材に固着されたダンパプレー 卜とを内蔵せる液体封入形防振 マウン トにおいて、 ダンパプレー 卜が上下振動した場合に減衰液の抵抗により微 小変形可能な弾性体を具備する液体封入ゴムマウ ン トである。 また、 この弾性体 力く、 ダンパプレー トの上下面に固着したり、 ダンパプレー トの構成部材である 2 枚のプレー ト間に挾着される。 さ らに、 弾性体が、 ダンパプレー トの下面に固着 されたダンハ。ゴムの表面に固着したり、 ダンパプレー 卜の上下面に固着されたス ト ッパゴムおよびダンバゴムの表面に固着する。
かかる構成により、 ダンパプレー トに上下振動が加わった場合、 振幅の小さい 中 · 高周波振動に対しては弾性体が微小変形するため、 ダンパプレー トは減衰液 の影響を受けることなく 、 マウ ン トゴムにより優れた防振性が得らる。 また、 衝 撃振動のような振幅の大きい低周波振動が加わった場合には、 ダンパプレー トと 弾性体とは一体となって作動するため、 減衰液により振動は減衰され、 共振する ことはない。
第 2の発明は、 それぞれ独立した一方の部材と他方の部材とを、 円筒形のマウ ン トゴムを介して連結し、 一方の部材に固着された液体封入室に、 減衰液と、 他 方の部材に固着されたダンパプレー トとを内蔵せる液体封入形防振マウン トにお いて、 円筒形のマウ ン トゴムが、 内部に挾着して積層状を成す円筒形のプレー ト を具備せる液体封入ゴムマウ ン トである。 また、 円筒形のマウ ン トゴムが、 硬度 が H s 4 5 ° を越え、 H s 7 0 ° 以下である。 さらに、 液体封入室に封入せる減 衰液が、 粘度が 5 0 0 0 0 es t を越え、 1 5 0 0 0 O cs t 以下である。
かかる構成により、 マウン トゴムが積層状であるため、 水平方向のばね定数は 大き く なり、 横揺れの発生を防止できる。 また、 マウ ン ト ゴムの硬度を選定する ことで上下方向のばね定数は小さ く なり、 振動、 騒音の防止に必要な中 ' 高周波 域の防振性が優れている。 しかも、 前記の減衰液粘度とすることで、 広い周波数 域において高い減衰性が得られ、 衝撃振動のような広い周波数帯の入力振動に対 しても共振を誘発することはない。 図面の簡単な説明
第 1図はダンプトラックのキヤブマウントの全体構成図であり、 第 2図は第 1 図の P部詳細のキヤブマウントの取り付け部を示す図であり、 第 3図は第 1の発 明に係わる液体封入ゴムマウン卜の第 1実施例の側面断面図であり、 第 4図は第 1実施例に係わる周波数と振動伝達率との関係を表す図表であり、 第 5図は第 1 実施例に係わるキヤブフロアの上下方向加速度を表す図表であり、 第 6図は第 1 の発明に係わる液体封入ゴムマウン 卜の第 2実施例の側面断面図であり、 第 7図 は第 1の発明に係わる液体封入ゴムマウントの第 3実施例の側面断面図であり、 第 8図は第 1の発明に係わる液体封入ゴムマウントの第 4実施例の側面断面図で あり、 第 9図は第 1の発明に係わる弾性体の側面断面図であり、 第 1 0図は第 1 の発明に係わる別の弾性体の側面断面図であり、 第 1 1図は第 2の発明に係わる 液体封入ゴムマウン 卜の第 5実施例の側面断面図であり、 第 1 2図は第 5実施例 の平面図であり、 第 1 3図は第 5実施例に係わる上下方向の振動伝達率を表す図 表であり、 第 1 4図は第 5実施例に係わる水平方向の振動伝達率を表す図表であ り、 第 1 5図は第 5実施例に係わる共振時の加速度を表す図表であり、 第 1 6図 は第 5実施例に係わる軸方向の静バネ特性を表す図表であり、 第 1 7図は第 5実 施例に係わる半径方向の静バネ特性を表す図表であり、 第 1 8図は第 5実施例に 係わる減衰特性を表す図表であり、 第 1 9図は従来の液体封入マウン卜の側面断 面図であり、 第 2 0図は従来のビスカスマウントの側面断面図であり、 第 2 1図 は第 2 0図の X— X断面図であり、 第 2 2図は従来の液体封入形マウン卜の減衰 特性を表す図表である。 発明を実施するための最良の形態
第 1 の発明に係る液体封入ゴムマウン トについて、 好ましい実施例を添付図面 に従って以下に詳述する。
第 3図は第 1実施例の液体封入ゴムマウン 卜の側面断面図であって、 液体封入 ゴムマウン ト 4 0 は、 ブラケッ ト 4 (第 2図参照) に締着されるケース 1 1 と、 ケース 1 1 の先端に固着される液体封入室 2 0 と、 ケース 1 1 の内方に固着する マウン トゴム 1 7 と、 マウン トゴム 1 7の内方に固着するガイ ドシャフ ト 1 4 と から構成される。 液体封入室 2 0には高減衰液 2 1が封入され、 ガイ ドシャフ ト 1 4 は、 一端にはキヤブ 5 (第 2図参照) のフロア 6をナッ ト 1 5により締着す るボルト 1 6を備え、 他端にはダンパプレー ト 2 3がボルト 2 2により締着され ている。 このダンパプレー ト 2 3の周囲には、 空気が内封された独立気泡のゥ レ 夕ンフォームのごとき弾性体 2 4が固着されており、 弾性体 2 4 は高減衰液 2 1 に浸漬している。 弾性体 2 4 はダンパプレー ト 2 3が液体封入室 2 0内で上下振 動した場合、 高減衰液 2 1の抵抗により点線に示す弾性体 2 4 aに変形し、 変形 量 a程度だけ微小変形するような硬度になっている。
かかる構成による液体封入ゴムマウン ト 4 0の作動は次のようになる。 第 3図 において、 ガイ ドシャフ ト 1 4が外力により上下方向に振動すると、 前述のごと く弾性体 2 4 は高減衰液 2 1 の抵抗により点線に示すように変形量 a程度変形す る。 したがって、 振動の振幅が土 a以下となる中 ' 高周波域においては、 ダンバ プレー ト 2 3 は高減衰液 2 1 の影響を受けることなく、 マウン トゴム 1 7 により 優れた防振性が得られる。 一方、 衝撃振動のように振動の振幅が土 aを越える低 周波域においては、 ダンパプレー ト 2 3 と弾性体 2 4 との動きは一体となり、 ダ ンパプレー ト 2 3 には高減衰液 2 1 の攪拌抵抗が生じ、 共振すること無く減衰力 が得られる。
この液体封入ゴムマウン ト 4 0および従来のゴムマウン 卜に関し、 第 4図に周 波数と振動伝達率との関係を示す。 図中、 実線 L 1 は本発明の液体封入ゴムマウ ン ト 4 0、 破線 L 2 は従来の一般ゴムマウン ト、 一点鎖線 L 3 は従来のビスカス マウン ト 7 0 (第 2 0図参照) を示す。 図に示すように、 本発明の液体封入ゴム マウン ト 4 0 は、 低周波域において一般ゴムマウン トのごとき共振現象はなく 、 中 ·高周波域においてはビスカスマウン トよりも振動伝達率の防振が大きく、 優 れた防振性を発揮している。
液体封入ゴムマウン ト 4 0と従来品との性能に関し、 時間軸に対する上下方向 の加速度測定について、 第 5図に本発明の液体封入ゴムマウント 4 0と従来の一 般ゴムマウントとでのキヤブフロアの上下方向加速度測定結果を示す。 本測定は 、 図示しない加振台上に被測定物である液体封入ゴムマウン 卜を介してキヤブ 5 のフロア 6 (第 2図参照) をセッ ト後、 所定の上下方向の加速度で加振台を振動 させるとともに、 キヤブフロアの上下方向加速度を測定した。 その結果、 上下方 向加速度は従来のゴムマウン卜で最大値 α 1を示すのに対して、 本発明の液体封 入ゴムマウント 4 0では最大値 α 2と大幅に低減されており、 急峻な負荷変動に 対して極めて優れた防振性を有することが明らかである。
次に、 第 1の発明に係わる好ましい第 2実施例を添付図面に従って以下に詳述 する。
第 6図は第 2実施例の液体封入ゴムマウントを示し、 基本的構造は第 1実施例 と同様であるが、 ダンパプレート部分の構成が異なる。 液体封入ゴムマウ ン ト 4 1 は、 ガイ ドシャフ ト 1 4の先端には 2枚のプレート 2 5の間にウレタンフォー ムのごとき弾性体 2 6を挾着し、 1枚のプレート 2 5の上面にス トッパゴム 2 7 を固着したダンパプレート 2 8を具備している。 ダンパプレート 2 8はばね板 3 0を介してボルト 3 1によりガイ ドシャフ ト 1 4に締着され、 液体封入室 2 0に 収納されている。 なお、 第 3図と同一の形状あるいは機能の部品には同一符号を 付して説明は省略する。 '
かかる構成により、 ガイ ドシャ フ ト 1 4に上下振動が加わった場合には、 第 1 実施例と同様に、 振幅が小さい中 ·高周波域においては、 高減衰液 2 1の抵抗に より弾性体 2 6が微小変形するためダンパプレート 2 8には減衰力が作用せず、 マウ ン トゴム 1 7により優れた防振性が発揮される。 一方、 振幅の大きい低周波 域になるとプレート 2 5と弾性体 2 6とが一体となって運動するため、 ダンパプ レー ト 2 8に高減衰液 2 1 による減衰力が作用して振動を減衰し、 第 1実施例と 同様の効果を奏する。
第 1 の発明に係わる好ま しい実施例である第 3実施例および第 4実施例を添付 図面に従って以下に述べる。 両実施例と も基本的構造は第 1実施例と同様であり 、 ダンパプレー ト部分の構成を変更したものである。 なお、 第 1実施例を示す第 3図と同一の形状あるいは機能の部品には同一符号を付して説明は省略する。 第 7図は第 3実施例の液体封入ゴムマウン ト 4 2を示し、 ダンパプレー ト 2 3 に固着されたダンバゴム 3 3の下面にゥ レタンフォームのごとき弾性体 3 5を固 着したものである。 また、 第 8図は第 4実施例の液体封入ゴムマウン ト 4 3を示 し、 ダンパプレー ト 2 3の上下面にス ト ッパゴム 3 2およびダンバゴム 3 3を固 着し、 さ らにそれらの表面に弾性体 3 4および 3 5を固着した構成である。 ここ で、 ス ト ツバゴム 3 2 とダンバゴム 3 3 とは一体のゴム部品であるが、 作動時の 作用が多少異なるので別の名称と した。
かかる構成により、 第 3実施例および第 4実施例とも、 作動時には外部からの 負荷振動に対して、 弾性体 3 4、 3 5の微小変形による作用が発揮され、 第 1実 施例と同様の効果を奏する。
以上、 第 1 の発明に係わる好ま しい実施例を詳述したが、 弾性体 2 4、 2 6、 3 4 , 3 5 は空気が内封された独立気泡のゥレタンフオームに限定するものでは ない。 弾性体は、 ガイ ドシャフ トに外力が加わり上下方向に振動する際に、 所定 量変形可能な部材であれば良く、 例えば、 第 9図に示すように、 軟質ウ レタンゴ ム製弾性体 3 6 a、 3 6 bをス ト ツバゴム 3 2、 ダンバゴム 3 3の表面に加硫接 着してもよい。 また、 第 1 0図に示すように、 エア 3 7を内封したゴム膜 3 8か らなる弹性体 3 9でよく、 エア 3 7 はスポンジゴム、 液体等変形しやすい軟質材 料でよい。 さ らに、 ス ト ッパゴム (ダンバゴム) の材質はゴム以外のエラス トマ 一、 プラスチッ ク等でよく、 ダンパプレー トとス ト ツバゴムとを一体化したもの でもよい。
第 2の発明に係る液体封入ゴムマウン トについて、 好ま しい実施例を添付図面 に従って以下に詳述する。 第 1 1図は第 5実施例の液体封入ゴムマウントの側面断面図、 第 1 2図は平面 図を示す。 液体封入ゴムマウン ト 5 0のケース 5 1の先端にはス トツパプレート 5 2を有する液体封入室 5 3が固着されている。 液体封入室 5 3にはス トッパゴ ム 5 4を備えるダンパプレート 5 5が収納されており、 ダンパプレート 5 5部の 外周と液体封入室 5 3との間には隙間 cが設けられている。 また、 ストツバゴム 5 4には弾性体 5 6、 例えばウレタンフオームが固着されている。 ダンパプレ一 卜 5 5にはボルト 1 6を有するガイ ドシャフ ト 1 4がナッ ト 2 2により締着され ている。 ガイ ドシャフ ト 1 4とケース 5 1 とは円筒状の積層プレート 5 7を挾着 したマウン トゴム 5 8により連結されている。 マウン トゴム 5 8の硬度は H s 4 5 ° 〜 7 0 ° である。 この硬度は、 液体封入ゴムマウン ト 5 0を製作し、 各種負 荷水準に対して、 後述するロスファクタ、 ばね定数等の特性試験結果より求めた ものであり、 従来の液体封入形マウン トに対して効果の得られた硬度である。 な お、 一般的にゴムの硬度データにはバラツキ (例えば ± 5 ° ) があり、 厳密な硬 度範囲を定めることは困難であるが、 硬度が H s 4 5 ° 〜 6 0 ° でより効果が大 きく、 好ましい硬度である。 また液体封入室 5 3にはシリ コン液のように粘度が 5 0 0 0 0〜 1 5 0 0 0 0 es t の粘度の高い減衰液 5 9が内封されている。 この 粘度も上述の硬度と同様に特性試験結果より求めたものである。 防振、 制振性等 の要求性能に対して、 粘度が 1 0 0 0 0 0〜 1 5 0 0 0 0 es t の範囲で効果がよ り大きく、 好ましい。 なお、 後述する低周波域でのロスファ クタの優れた粘度と しては、 1 5 0 0 0 0 es t よりさらに大きい粘度が好ましいと推察される。
かかる構成において、 車両が走行開始すると路面等からの振動により、 ケース 5 1 とガイ ドシャフ ト 1 4とは相対変位するが、 マウン トゴム 5 8の硬度を低く したため、 上下方向のばね定数は小さくなり、 中 ·高周波域の振動に対する防振 性を発揮する。 また、 第 1 2図に示すように、 マウン トゴム 5 8を積層プレー ト 5 7により円筒積層状にしたため、 水平方向のばね定数は大きぐなり、 キヤブ 5 (第 1図参照) の横揺れの発生を低減させる。 更に、 ケース 5 1 とガイ ドシャフ 卜 1 4 とが上下方向に相対変位する場合、 ダンパプレー ト 5 5は液体封入室 5 3 - 1 o - 内の減衰液 5 9を上下に攪拌し、 攪拌された高粘度の減衰液 5 9は狭い隙間 cを 通って移動するので、 大きな減衰力を発生する。 これらにより、 従来のビスカス マウン ト (第 2 0図参照) よりも高い減衰力を広い周波数帯域で発揮し、 衝撃振 動のように広い周波数帯域での入力振動に対しても共振を誘発することはない。 本実施例の液体封入ゴムマウン ト 5 0の特性に関し、 第 1 3図から第 1 8図で 説明する。 第 1 3図は周波数と上下方向振動伝達率との関係、 第 1 4図は周波数 と水平方向振動伝達率との関係を示す。 いずれも、 実線が本実施例の液体封入ゴ ムマウント 5 0、 破線が従来のビスカスマウントを示す。 いずれの場合も従来の ビスカスマウントに比較して、 本発明の液体封入ゴムマウン卜の振動伝達率はほ ぼ全周波数域 (低周波域から高周波域) にわたつて低い値を示しており、 防振効 果および横揺れ低減の効果を表している。 第 1 5図は周波数を変化させた時の共 振時の振動波形を示し、 横軸は時間、 縦軸は加速度である。 本試験は、 前述の第 5図で説明した測定方法と同様に行った。 その結果は図に示すように、 共振時の 加速度は従来のビスカスマウン卜で最大値 α 3に対して、 本発明の液体封入ゴム マウント 5 0では最大値 α 4と共振時の振動ピークが大幅に小さくなつており、 優れた防振性を有することが明らかである。
次に、 静バネ特性に関し、 第 1 6図に軸方向の静バネ特性、 第 1 7図に半径方 向の静バネ特性を示す。 本発明の液体封入ゴムマウント 5 0は従来のビスカスマ ゥントに比べ、 上下方向のパネ特性は柔らかく、 一方横方向パネ特性は硬いので 、 横揺れを抑制する特性の構造である。 第 1 8図は本発明の液体封入ゴムマウン ト 5 0の減衰性能を示し、 入力振幅が ± 0 . 2 m m〜土 5 . O m mの 5水準につ いての、 周波数とロスファクタとの関係である。 本発明品は従来のビスカスマウ ン ト (第 2 2図参照) に比べて、 低騒音 ·低振動化に必要となる、 小振幅では口 スファクタが小さく防振性に優れ、 また、 乗り心地向上に必要な、 低周波域、 大 振幅では口スファク夕が大きく制振性に優れていることを示す。 産業上の利用可能性 本発明は、 中 ·高周波域のにおいて優れた防振効果を発揮するとともに、 広い 周波数帯域の衝撃振動に対しても共振することなく防振効果を有し、 また大振幅 時には大きな減衰力が得られ、 更には横揺れの発生を防止するので、 低振動、 低 騒音化の要求される装置、 例えば産業車両等の運転室等の液体封入ゴムマウン ト として有用である。

Claims

請 求 の 範 囲
1 . それぞれ独立した一方の部材と他方の部材とを、 円筒形のマウントゴムを介 して連結し、 前記一方の部材に固着された液体封入室に、 減衰液と、 前記他方の 部材に固着されたダンパプレートとを内蔵せる液体封入形防振マウントにおいて 、 前記ダンパプレートが上下振動した場合に前記減衰液の抵抗により微小変形可 能な弾性体を具備することを特徴とする液体封入ゴムマウ ン ト。
2 . 前記弾性体が、 前記ダンパプレー 卜の上下面に固着することを特徴とする請 求の範囲 1記載の液体封入ゴムマウント。
3 . 前記弾性体が、 前記ダンパプレートの構成部材である 2枚のプレート間に挾 着されることを特徴とする請求の範囲 1記載の液体封入ゴムマウン ト。
4 . 前記弾性体が、 前記ダンパプレートの下面に固着されたダンバゴムの表面に 固着することを特徴とする請求の範囲 1記載の液体封入ゴムマウント。
5 . 前記弾性体が、 前記ダンパプレー トの上下面に固着されたス ト ツバゴムおよ びダンバゴムの表面に固着することを特徴とする請求の範囲 1記載の液体封入ゴ ムマウ ン ト。
6 . それぞれ独立した一方の部材と他方の部材とを、 円筒形のマウン トゴムを介 して連結し、 前記一方の部材に固着された液体封入室に、 減衰液と、 前記他方の 部材に固着されたダンパプレー卜とを内蔵せる液体封入形防振マウン トにおいて 、 前記円筒形のマウントゴムが、 内部に挾着して積層状を成す円筒形のプレー ト を具備せることを特徴とする液体封入ゴムマウ ン ト。
7 . 前記円筒形のマウン トゴムが、 硬度が H s 4 5 ° を越え、 H s 7 0 ° 以下で あることを特徴とする請求に範囲 6記載の液体封入ゴムマウン ト。
8. 前記液体封入室に封入せる減衰液が、 粘度が 5 0 0 0 0 est を越え、 1 5 0 0 0 0 est 以下であることを特徴とする請求の範囲 6又は 7記載の液体封入ゴム マウ ン ト。
PCT/JP1993/001782 1993-09-08 1993-12-09 Support caoutchouc etanche au liquide WO1995007419A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94902091A EP0718524A4 (en) 1993-09-08 1993-12-09 LIQUID-TIGHT RUBBER SUPPORT
BR9307884A BR9307884A (pt) 1993-09-08 1993-12-09 Suporte de borracha com selo líquido
US08/596,356 US5845895A (en) 1993-09-08 1993-12-09 Liquid sealed rubber mount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5362893 1993-09-08
JP5/53628U 1993-09-08

Publications (1)

Publication Number Publication Date
WO1995007419A1 true WO1995007419A1 (fr) 1995-03-16

Family

ID=12948180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001782 WO1995007419A1 (fr) 1993-09-08 1993-12-09 Support caoutchouc etanche au liquide

Country Status (5)

Country Link
US (1) US5845895A (ja)
EP (1) EP0718524A4 (ja)
JP (1) JPH07133841A (ja)
BR (1) BR9307884A (ja)
WO (1) WO1995007419A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927698A (en) * 1996-07-24 1999-07-27 Toyoda Gosei Co., Ltd. Liquid sealed-type vibration insulating device
DE19713003A1 (de) * 1997-03-27 1998-10-01 Lemfoerder Metallwaren Ag Hülsengummifeder mit hydraulischer Dämpfung
WO2002081943A2 (de) * 2001-04-03 2002-10-17 Woco Franz Josef Wolf & Co. Gmbh Modulares lagersystem
US7316389B2 (en) * 2001-04-10 2008-01-08 Lord Corporation Vibration isolation member
EP1855025A4 (en) * 2005-03-04 2009-02-25 Caterpillar Japan Ltd VIBRATION ISOLATION MOUNT DEVICE
US7063580B1 (en) * 2005-05-09 2006-06-20 Birdwell Larry D Ship employing a buoyant propulsion system
US20090014930A1 (en) * 2005-11-15 2009-01-15 Fukoku Co., Ltd Liquid sealed mount and method of assembling the same
JP4805782B2 (ja) * 2006-10-06 2011-11-02 株式会社ブリヂストン 防振装置
KR20080092838A (ko) * 2007-04-12 2008-10-16 가부시끼 가이샤 구보다 캐빈을 구비한 주행 차량
JP5124157B2 (ja) * 2007-04-12 2013-01-23 株式会社クボタ キャビン付き走行車両
DE502007004578D1 (de) 2007-08-20 2010-09-09 Ford Global Tech Llc Gummilager
CN101981341A (zh) * 2008-04-02 2011-02-23 洛德公司 施工车辆驾驶室悬置表面效应液架
US20090289472A1 (en) * 2008-04-02 2009-11-26 Catanzarite David M Construction vehicle cab suspension mount
JP5622474B2 (ja) * 2010-07-30 2014-11-12 三菱重工業株式会社 ロータリー式圧縮機
CN103422403B (zh) * 2013-07-31 2015-08-19 西南交通大学 一种跨高低频宽带板式动力吸振器
US9897158B2 (en) 2016-06-29 2018-02-20 Caterpillar Inc. Adapter for an isolation mount design
JP6751656B2 (ja) * 2016-11-15 2020-09-09 Toyo Tire株式会社 液封入式防振装置
CN108591355A (zh) * 2018-06-27 2018-09-28 佛山科学技术学院 一种竖向隔振支座

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266242A (ja) * 1987-04-23 1988-11-02 Tokai Rubber Ind Ltd 流体封入式マウント装置
JPS63275827A (ja) * 1987-04-30 1988-11-14 Tokai Rubber Ind Ltd 流体封入式マウント装置を用いた防振方法
JPH01295046A (ja) * 1988-03-17 1989-11-28 Metzeler Kautschuk Gmbh 液圧減衰二室エンジンマウント

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB492517A (en) * 1936-01-23 1938-09-21 Max Goldschmidt Improvements in and relating to springs comprising rubber and metal parts
US3698703A (en) * 1970-11-23 1972-10-17 Gen Tire & Rubber Co Dual rate fluid damped elastomeric bushing
FR2122018A5 (ja) * 1971-01-14 1972-08-25 Kleber Colombes
JPS546186Y2 (ja) * 1975-03-17 1979-03-22
IT1131678B (it) * 1980-07-04 1986-06-25 Gomma Antivibranti Applic Sopporto ammortizzante per la sospensione di un corpo oscillante ad una struttura di sopporto
DE8223116U1 (de) * 1982-08-17 1985-09-26 Fa. Carl Freudenberg, 6940 Weinheim Flüssigkeitsgedämpftes Gummilager
JPS6412946A (en) * 1987-07-03 1989-01-17 Iseki Agricult Mach Running control device for tractor
FR2650355B1 (fr) * 1989-07-28 1994-01-28 Paulstra Gmbh Perfectionnements aux dispositifs amortisseurs de vibrations
NL9000294A (nl) * 1990-02-07 1991-09-02 Willy Van Goubergen Trillingsdemper.
JPH04101835A (ja) * 1990-08-22 1992-04-03 Yokohama Rubber Co Ltd:The 空気入りタイヤの成形方法
US5216593A (en) * 1991-01-24 1993-06-01 International Business Machines Corporation Method and apparatus for discrete activity resourse allocation through cardinality constraint generation
JPH0510014U (ja) * 1991-07-19 1993-02-09 東海ゴム工業株式会社 車両サスペンシヨン用バウンドストツパ
GB2259747A (en) * 1991-09-17 1993-03-24 Ltv Energy Prod Co Elastomeric strut for riser tensioner
EP0612892A4 (en) * 1991-11-06 1995-11-22 Komatsu Mfg Co Ltd DEVICE FOR THE ELASTIC STORAGE OF CABLES.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266242A (ja) * 1987-04-23 1988-11-02 Tokai Rubber Ind Ltd 流体封入式マウント装置
JPS63275827A (ja) * 1987-04-30 1988-11-14 Tokai Rubber Ind Ltd 流体封入式マウント装置を用いた防振方法
JPH01295046A (ja) * 1988-03-17 1989-11-28 Metzeler Kautschuk Gmbh 液圧減衰二室エンジンマウント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0718524A4 *

Also Published As

Publication number Publication date
EP0718524A1 (en) 1996-06-26
JPH07133841A (ja) 1995-05-23
US5845895A (en) 1998-12-08
EP0718524A4 (en) 1996-09-25
BR9307884A (pt) 1996-08-06

Similar Documents

Publication Publication Date Title
WO1995007419A1 (fr) Support caoutchouc etanche au liquide
US6554112B2 (en) Vibration-damping device for vehicle
JP3537872B2 (ja) 流体封入式エンジンマウント及びその製造方法
JP3425429B2 (ja) エンジン−ギヤユニットのマウント
JP2007046777A (ja) 流体封入式エンジンマウント
JP2002227921A (ja) 防振装置
US4491304A (en) Fluid-filled engine mount device
JPS60249749A (ja) 防振装置
US7198257B2 (en) Fluid-filled vibration damping device
JPH06257638A (ja) 液体封入ゴムマウント
JP3084544B2 (ja) 液体封入式マウント装置
JP2006132615A (ja) 防振装置
JP2986586B2 (ja) 流体封入式マウント
JP4718137B2 (ja) 防振装置
JP4505152B2 (ja) 防振マウント装置
JP2000025658A (ja) 液体封入ゴムマウント
JP2000065120A (ja) 減衰可変型粘性流体封入式ダンパー
JP4046203B2 (ja) 液体封入式空気ばね
JP2537935Y2 (ja) 液体封入マウント構造
JP2827580B2 (ja) 液体封入防振装置
JPS6280320A (ja) 自動車用エンジンのマウント装置
JPH0628378U (ja) 液体封入ゴムマウント
JPH022498B2 (ja)
JPH0246336A (ja) 円筒形液封入防振ゴム
JP3040836B2 (ja) 防振装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08596356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994902091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994902091

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994902091

Country of ref document: EP