WO1994023647A1 - Systeme de determination de la position relative d'objets - Google Patents

Systeme de determination de la position relative d'objets Download PDF

Info

Publication number
WO1994023647A1
WO1994023647A1 PCT/US1994/004298 US9404298W WO9423647A1 WO 1994023647 A1 WO1994023647 A1 WO 1994023647A1 US 9404298 W US9404298 W US 9404298W WO 9423647 A1 WO9423647 A1 WO 9423647A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
orientation
coordinate system
present time
fixed
Prior art date
Application number
PCT/US1994/004298
Other languages
English (en)
Inventor
Waldean A. Schulz
Original Assignee
Pixsys, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixsys, Inc. filed Critical Pixsys, Inc.
Priority to JP6523546A priority Critical patent/JPH08509144A/ja
Priority to EP94915394A priority patent/EP0700269B1/fr
Priority to CA002161126A priority patent/CA2161126C/fr
Priority to DE69431875T priority patent/DE69431875T2/de
Priority to AU66668/94A priority patent/AU6666894A/en
Publication of WO1994023647A1 publication Critical patent/WO1994023647A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/501Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • A61B2090/3929Active markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/3945Active visible markers, e.g. light emitting diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/397Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave
    • A61B2090/3975Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave active
    • A61B2090/3979Markers, e.g. radio-opaque or breast lesions markers electromagnetic other than visible, e.g. microwave active infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/14Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers

Definitions

  • This invention relates to locating the position of one object relative to another object in a three- dimensional space. It more particularly refers to a system for locating and displaying the position and the orientation of a first moving object relative to a second moving object in three dimensional space.
  • Computed tomography CT
  • MRI magnetic resonance imaging
  • other methods provide important detailed images of the internals of human medical patients which are useful for diagnostic purposes.
  • these diagnostic tools which are used to determine and display images of the inside of patients' bodies, were used, and the images they create were taken at times other than during actual surgical work on the patients, that is before and/or sometimes after surgery.
  • CT or MRI scans it is usual for CT or MRI scans to be taken before the surgeon starts his work. They are diagnostic tools, not tools for following an operation in progress. These prior scans are then commonly used to plan the surgery or at least to assist the surgeon in deciding what surgical course of action should be initiated and then followed. Sometimes, they are also used after surgery to determine and evaluate the results of the surgical procedure.
  • references which disclose subject matter which describe means to accomplish objects which are similar to those of the present invention as a whole.
  • These references include publications describing the correlation of previously taken internal medical images of a patient, which are usually three-dimensional, with the corresponding actual, present time physical locations on and in the patient in the operating room during surgery.
  • U.S. Patent 4,791,934 describes a semi-automated system which makes this correlation, but note should be taken that the system described in this patent also requires additional radiographic imaging to be accomplished in the operating room at the time of surgery, and it then also requires that these present time images be correlated into the coordinate systems of the previously taken diagnostic images so that they can be related to the live patient.
  • the system of this , 934 patent uses a computer-driven robot arm to position a surgical tool in relation to these images. It does not measure and define the present time location and orientation of an input probe (a surgical tool) positioned interactively by the surgeon, and superimpose such present time data on a previously taken image.
  • the system described by Roberts et al. used the transmission of sound impulses to communicate the location and orientation of the field of the surgical microscope.
  • the use of sound is necessarily based on the determination of transmission distances as a function of the speed of sound, and the differentiation of small distance differences. It is well known that the speed of sound varies to a substantial extent as a function of the temperature in the medium through which the sound travels. With modern air conditioning and heating, there are many different thermoclines and air currents present in an operating room, which are of little concern to a patient or to the doctors, but which can materially effect the accurate measurement of precise distances as a function of the speed of sound transmission. Therefore very accurate compensation factors must be applied in order to get accurate information on the exact location and orientation of the operating microscope.
  • the Roberts et al. system relied on the position of the patient, at least so much of the patient as corresponded to the area being operated on-that is for example the head, being absolutely fixed. That system was not capable of determining changes in the location of the patient housing the operating microscope, but tracked only the location of the microscope independent of the patient. The location and orientation of the patient (the head of the patient) was determined at the start of the operation and the previously taken CT scan related to that specific position and orientation.
  • the present invention does not include the taking of suitable images of the internals of a patient before the operation. It starts from the point at which these images have already been taken and are found to be acceptable by the surgeon.
  • This invention therefore does not comprise the imaging apparatus used to generate the internal three-dimensional image or model of the internals of the patient or other object. However, this invention does use these previous imaging data and inputs this information into the instant system.
  • the system of this invention does not include the means of taking these images, but it does include the images themselves, preferably in electronic form.
  • imaging devices might be ultra-sound, computed tomography (CT) or magnetic resonance imaging (MRI) . It is also contemplated that such imaging device might be one which has as yet not been developed.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • the important limiting factor in the sense of the imager is that the data generated by that imager must be available in an electronic digital format, or is readily convertible into such format. The digital data may be derived directly from such an imager and transmitted to the instant system over a conventional communication network or through magnetic tape or disk media.
  • the internal imaging devices themselves are unsuited for tracking the spatial location and orientation of a manually held probe during an operation, even though they are unencumbered by line- of-sight restrictions. Thus, these systems are not capable of being used to previously record an image, or a set of images, of the internals of a patient, and also to image these same internals in present time during an operation.
  • the points of interest may be passive reflectors or flashing light emitters.
  • the use of light emitters tend to simplify finding, distinguishing, and calculating the location and orientation of the points.
  • Probes with a pointing tip and sonic localizing emitters on them have been publicly marketed for several years.
  • the instant invention is also concerned with determining the location and orientation of a stylus, but it is an improvement over the known devices in that it employs tiny light emitters, in place of the known sound emitters. Further, as will become apparent, the method used to sense the positions of these light emitters is different from what has been used in connection with sound. Additional prior art related to the instant invention is found in these references:
  • One objective of the present invention is to provide means for accurate three-dimensional mensuration of the relative position and orientation of a moveable member with respect to a moveable object.
  • Another object of this invention is to provide accurate visual relationship between two objects which are each moveable with respect to each other as well as with respect to the coordinate system in which these movable objects reside.
  • a further object of this invention is to provide accurate spacial relationships between a moving probe and a moving surgical patient during an operation in an operating room, wherein the probe and the patient are moving relative to each other as well as relative to a fixed location and orientation of the mensuration apparatus.
  • a still further object of this invention is to provide an electro-optical mensuration system which is inexpensive, easy to use, reliable, and portable, and which employs a manually positioned probe, or other instrument, at least part of which is not within a line of sight of the surgeon, and which further employs a means of measuring the otherwise "invisible" position and orientation of the probe tip.
  • Another object of this invention is to provide a simple, non-invasive system for establishing a correspondence between a presently existing coordinate system containing a movable object and a previously obtained coordinate system containing a three-dimensional computer model of that object, where the previously obtained computer model is also of this same system.
  • Another object of this invention is to relate a measured location on the outside, or inside, of an object to its corresponding location in a previously generated computer model of that object by establishing correspondence between the coordinate systems of the object and the model.
  • Another object of this invention is to display a cut-away view or a cross-sectional slice of a previously generated computer model of a planar cross-section of a geometric model, where the slice approximately intersects the location in the model corresponding to a location measured in present time, and to superimpose a marker on the displayed slice to indicate the location on the slice corresponding to the measured location.
  • Another object of this invention is to assist an operating surgeon locate subcutaneous diseased tissue while avoiding healthy critical structures, especially in cranial neurosurgery.
  • a two moving-object set which is a simple illustration of the system used in this invention, is defined as: at least one first movable object, which may be a hand held probe having an invasive tip, for touching or for inserting into a second object; at least one second movable object with respect to which the first object is movable, or is moving; a present time coordinate system, that is a coordinate system which exists at the time of determining the spatial interrelationship of the several moving objects, which includes the second object, and in which said second object is moving, or can be moved; a previously taken predetermined three-dimensional geometrical model, suitably a computer generated model, of the second object suitably provided in an electronically- accessible data base form; a previous time coordinate system, which includes the previously taken computer model, that
  • the method of this invention relates to the operation of the above described apparatus. This method will be described in relation to "seeing" the location of a point of a surgical probe inside the cranium of a patient, where the inside of the patient's cranium has been previously "seen” on an MRI or a CT scan. In carrying out this method, both the head of the patient, the second object according to this invention, and the surgical probe, the first object according to this invention, will be moved in illustration of the novel operation of this invention.
  • the method of this invention includes the steps of: at a previous time, taking an MRI or a CT or the like, which may hereinbelow be referred to sometimes as the previous scan, through the patient's head with a sufficient number and location of slices as to reveal the internal structures of the patient's head.
  • the number and location of the slices should be sufficient to depict that abnormality in at least one slice; establishing and storing an electronic file of the scan in the form of a model of the internals of the patient's head, including the abnormality, if there is one; relating that electronic file to a present time coordinate system; at the present time, as opposed to the previous time when the scan was originally taken, at sufficiently frequent intervals to accurately follow present time movement, detecting the positions of at least three of the radiation emitters operatively associated with the patient's head (the patient's head is the second object in the generic description of this invention) ; at the present time, at sufficiently frequent intervals to follow present time movement, computing, from the detected positions of these emitters, the moving locations and orientation of the second object relative to the predetermined fixed coordinate system; electronically adjusting the stored model to display a view of that model which corresponds to the computed present time location and orientation of the moving second object in the same present time coordination system; at the present time, at sufficiently frequent intervals to follow present time movement,
  • the radiation emitters have been located on the first and second objects, and the sensors for these radiations have been located in fixed positions within the present time coordination system. It is considered that this arrangement of these emitters and sensors could readily be reversed. That is, the emitters could occupy the fixed positions in the present time coordination system and the sensors could be located on the first and second objects.
  • the invention would operate in the same manner with either arrangement of sensors and emitters. For convenience, the description of this invention has placed the emitters on the moving objects and the sensors in fixed positions. This arrangement should not be considered to be a limitation on either the apparatus or method of this invention.
  • Figure IA is a block flow diagram of the optical mensuration and correlation system of the present invention showing the major components of this system, except for the means to automatically measure the position and orientation of the movable and second object.
  • Figure IB is similar to Fig. IA but includes the additional radiation emitters which will permit automatically measuring the position and orientation of the second object even during the movement of this second object.
  • Figure 2 is a perspective view illustrating the invention in use by a surgeon performing intracranial surgery on a patient, and showing a cursor on a display screen that marks the corresponding position of the tip of the probe (the first object) within the image of previously obtained model data corresponding to the cranium (the second object) .
  • Figure 3 is a view of a sample display showing a position of the tip of the probe superimposed on previously obtained model data of an inside slice of a cranium and the showing reference points of the second object, as depicted in figure IA, as triangles on the patient's skull.
  • Figure 4 is a schematic perspective view of a sample of one of the one-dimensional photodetectors which are useful in the practice of the present invention.
  • Figure 5 is a graph of the image intensity
  • Figures 6 and 7 are diagrams of the major steps performed by the computer to calculate the position of the probe (first object) with respect to the model of the inside of the cranium (the second object) and to display a cross-sectional image slice of the model of the inside of the cranium on a suitable display screen, such as a computer screen (CRT) .
  • a suitable display screen such as a computer screen (CRT) .
  • FIG. 8 is a schematic view of radiation beams depicting an embodiment of this invention. Detailed Description of The Preferred Embodiments of This Invention
  • the radiation mensuration and correlation apparatus 10 of the present invention as applied to a medical application, which is illustrative of one use of this invention, is shown schematically in Figure 1. It comprises a hand-held invasive probe 12 (first object) housing at least two radiation emitters 14 and 16 mounted collinear with one another and with the tip 18 of the probe 12. At ' least three remotely located, one- dimensional radiation sensors 20, 22, and 24 are mounted in fixed, spaced relationship to each other and are located at known positions with respect to a predetermined fixed coordinate system 80.
  • the radiation sensors 20, 22, and 24 sense the radiation widely projected by the individual emitters 14 and 16 and generate electrical output signals from which are derived the location of the probe emitters 14 and 16 and, consequently the position and orientation of the probe tip 18 (which may not be visible to the surgeon because it is within the cranial cavity) , with respect to the fixed coordinate system 80.
  • the three sensors 20, 22, and 24 can be programmed to sense and derive the locations of other reference emitters 70, 72, and 74 on the second object 11 ( Figure IB) in the same manner as for the probe emitters 14 and 16.
  • a control unit 30 connected to the moveable probe 12 via a data line 26 and coupled to the remotely located sensors 20, 22, and 24 via data lines 28, 32, and 34, respectively, synchronizes the sensing of the five (exemplary) emitters and the differentiation between them.
  • the control unit is adapted to control the time multiplexing of the two emitters 14 and 16 on the probe and the three emitters 70, 72 and 74 on the cranium, controls the operation of the sensors 20, 22, and 24, and receives differentiatable data from these sensors as will be more completely described below.
  • a coordinate computer 36 coupled to the control unit 30 by a data line 38, calculates the three-dimensional spatial location of the probe emitters 14 and 16 and consequently the position and orientation of the probe tip 18, and correlates those positions with data from correlation information 42 and from a model 13 of the second object 11 which has been previously stored electronically in an electronically accessible database 40.
  • the computer 36 causes an associated cathode ray tube-monitor (CRT) to display the representation of the position and the orientation of the probe tip 18 with respect to the computer image 13 of the cranium 11 on display screen 44 ( Figure 2) as will be more fully described below.
  • CRT cathode ray tube-monitor
  • the probe 12 could be used without the cable 26, in that it could be coupled to the control unit 30 by employing distinctive modulation of the light emitters 14 and 16 instead of sequentially energizing (strobing) them, or by varying the wavelength or type of the radiation emitted therefrom.
  • the wave forms, color, or frequencies of each could be different.
  • the frequencies of the sound emitted by the different emitters could be varied so as to differentiate between them.
  • the controller 30, by detecting the differences between different emitters, that is the wave form, color, frequency or other dissimilarity, of the emitted radiation, can determine to which emitter the sensors 20, 22, and 24 are reacting.
  • the fundamental mensuration and correlation apparatus 10 of the present invention has been illustrated in connection with aiding surgeons performing delicate intracranial surgery. This general use of this apparatus does not constitute this invention, nor is it a limitation thereon. This use will only serve to illustrate this invention. The remaining description continues to use such a surgical embodiment as illustrative, although many other surgical or other applications besides intra-cranial surgery are possible (for example, back or sinus surgery and breast biopsy) . Moreover, the radiation mensuration and correlation apparatus 10 of this invention may be used for other purposes in many various medical or non-medical fields.
  • the physical object 11 of interest that is the second object in the generic application of this invention, is the head or cranium of a patient, and the model of the cranium is replicated using a series of parallel internal image slices (of known mutual spatial relationship) such as those obtained by means of computed tomography (CT) or nuclear magnetic resonance imaging (MRI) . These image slices are then digitized, forming a three-dimensional computer model of the patient's cranium which is then stored in the electronically accessible database 40.
  • CT computed tomography
  • MRI nuclear magnetic resonance imaging
  • a surgeon places the tip 18 of the probe 12, that is the first object, at any point on or inside the cranium 11 of the patient.
  • the position sensors 20, 22, and 24 detect the locations of the emitters 14 and 16 attached to the portion of the probe 12 that remains outside the patient's body.
  • the radiation produced by the emitters 14 and 16 must be "visible" to the sensors 20, 22, and 24. For that reason, more than two emitters may be placed on the first object so that the radiation from at least two of them will always be visible to the sensors.
  • These emitters 14 and 16 are effectively point sources and radiate energy through a wide angle so that this radiation is visible at the sensors over a wide range of probe orientations and positions.
  • the sensors 20, 22, and 24, the control unit 30, and the computer 36 cooperate to determine the three- dimensional location of each emitter 14 and 16 within a coordinate system, and compute the coordinates of each emitter in the predetermined fixed coordinate system 80, in present time.
  • the computer 36 can then calculate the position and orientation of the tip 18 of the probe 12 with respect to the predetermined fixed coordinate system 80, according to the locations of the emitters within the fixed coordinate system 80 and the dimensions of the probe, which dimensions had been placed into the memory (not shown) of the computer 36 beforehand. It should be noticed that the computer 36 can also easily compute position and orientation information about other specific locations on the probe (such as the vector from emitter 14 to the tip 18) .
  • the computer 36 uses the relationship between the model of the cranium, which had previously been obtained and stored in the database 40, and the fixed coordinate system 80 to calculate the position and orientation of the probe tip 18 in relation to the model of the second object 11.
  • the computer 36 displays a representation of the model- relative position and the orientation of the tip 18 on a display screen 44.
  • the computer 36 accomplishes this display by accessing a previously taken CT or MRI image slice 13 stored in the database 40 that is closest to the present time position of the probe tip 18, and then superimposes a suitable representation 76 of the tip 18 on the image 13 as shown in Figures 2 and 3.
  • the surgeon knows the precise position and orientation of the tip 18 in the patient's cranium relative to the image data by merely observing the display screen 44.
  • a most preferred form of the present invention can derive and display an arbitrary oblique cross-section through the multiple image slices of the MRI, etc, where the cross- section can be, for example, perpendicular to the probe orientation.
  • the details of the optical mensuration and correlation apparatus 10 of the present invention are best understood by reference to Figures 1 and 4 collectively.
  • the probe 12 supports the two radiation emitters 14 and 16, which are rigidly attached to the probe 12 at fixed, known distances from each other as well as from the probe tip.
  • the emitters 14 and 16 should preferably be collinear with the tip 18 of the probe 12 so that the computer 36 can determine uniquely the position and orientation of the tip 18 in three dimensions. Moreover, for reasonable measurement accuracy, the emitters 14 and 16 should preferably be at least as far from each other as the nearest one is from the tip 18. In any case, the geometrical relationship of the emitters 14 and 16 to each other and to the probe tip 18 must be specified to the computer 36 beforehand so that the computer 36 can compute the exact location of the tip 18 based on the locations of the individual radiation emitters 14 and 16. The use of three or more non-coilinear emitters would not require that any two of them to be collinear with the probe tip.
  • Three or more non-collinear emitters would permit the computer to compute full position and orientation information (yaw, pitch, and roll) for the probe.
  • position and orientation information yaw, pitch, and roll
  • the invention is described as showing only a cursor locating the relative position of the probe tip 18, the invention can be modified to display a line or a shaped graphic or other icon to indicate the position and orientation of the probe 12. This would entail only the determination of additional points on the probe in the same way that the tip of the probe is located.
  • the two radiation emitters 14 and 16, as well as the additional radiation emitters 70, 72, and 74, can be, and preferably are, high intensity light emitting diodes (LEDs) , which are preferably coordinated such that the emission for any one source is distinguishable from the emissions from the other sources.
  • LEDs high intensity light emitting diodes
  • One such differentiation is to have the emitters time-multiplexed or strobed by the control unit 30 in a predetermined sequence such that only one light emitter is "on" or emitting light at any one time.
  • the light emitted from any one of these emitters is detected by each of the three light sensors 20, 22, and 24, which then determines the location of each particular emitter in relation to the known positions of the sensors 20, 22, and 24 at the time it is strobed.
  • Each of the one-dimensional sensors 20, 22, and 24 used in the preferred embodiment 10 of the present invention can be identical to the others in every respect. Therefore, for the purpose of giving a detailed description of this embodiment, only the sensor 20 is shown and described in detail in figure 4 since the remaining sensors 22 and 24 are identical.
  • the representative one-dimensional sensor 20 comprises a cylindrical lens 46 having a longitudinal axis 48 which is orthogonal to the optical axis 50 of the sensor 20.
  • a linear radiation detector 52 such as a charge coupled device (CCD) with several thousand elements (or a similar device capable of linear positional radiation detection of a suitable "image") , is positioned in such a manner that the "optical" axis 50 passes through the center of the aperture 54 of the radiation detector 52 and such that the longitudinal axis of the aperture 54 is orthogonal to the longitudinal axis 48 of the lens 46.
  • Radiation, such as light beams, 56 from the emitters 14 (and in the same manner emitters 16, 70, 72, and/or 74) are focused by the cylindrical lens 46 into a real image line 58 on the surface 60 of linear detector 52.
  • the detector illustrated by a photodetector 52, then generates an output 68 ( Figure 5) that is related to the position of a real image line 58 on the surface 60 of photodetector 52, thus characterizing the location of the image itself. That is, those elements or points of the photodetector 52 illuminated by the real image line 58 will generate a strong signal, while those not illuminated will generate none or very weak signals. Thus, a graph of image intensity (or signal strength) versus locations on the surface of the photodetector will resemble a signal peak curve 68 (see for example Figure 5) .
  • the "all- emitters-off" (or background) signal level 66 is never quite zero due to the effects of environmental radiation, such as light in the operating room, electronic noise, and imperfections in the photodetector. In any event, since the image of the illuminated emitter is focused into line 58, only the angular displacement of emitter 14 from the optical axis 50 in the plane of the longitudinal sensor axis 54 is measured by the sensor 52, hence the designation "one-dimensional sensor".
  • a single one-dimensional sensor 20 can only locate the plane on which a radiating emitter 14 lies.
  • the detector 20 cannot, by itself, determine the unique point in space on that plane at which radiating emitter 14 is located.
  • To precisely determine the location in space of the radiating emitter 14 requires at least three such sensors positioned in spaced relationship to each other, since the intersection of three planes defined by the three sensors, respectively, are required to define a single point in space.
  • the sensors 20, 22, and 24 are mounted so that the optical axes of their lenses 48 are not all parallel and no two of such axes are collinear.
  • two light sensors such as sensors 20 and 24 in Figure 2 are situated so that their respective axes 48 ( Figure 4) are in parallel, spaced relationship, and the third detector 22 is situated between and equidistant from the other two detectors, but with its axis 48 perpendicular to the axes of the other two.
  • the sensors 20, 22, and 24 should be arranged along a line or arc ( Figure 2) , such that each sensor 20, 22, and 24 is generally equidistant from the center of the volume in which the measurements are made, equally spaced from each other, and all aimed at the center of the measurement volume.
  • the sensors 20, 22, and 24 are arranged along a horizontal arc and the optical axes of all sensors are oriented horizontally.
  • the middle sensor should be oriented so as to measure the angular elevation of the radiation emitters as described above.
  • the two outer sensors measure the horizontal angle (azimuth) relative to the fixed coordinate system 50. Data from the outer sensors are used to stereographically calculate both the horizontal position and distance from the sensors as will be more fully described below.
  • the accuracy of three-dimensional measurement depends on the angle formed between the optical axes of the outer two sensors 20 and 24, where the emitter to be measured is at the vertex of the angle. Accuracy will improve as that angle approaches a right angle. At least three of the several possible sensors 20, 22, and 24 must be spaced so that the desired measurement volume is completely within their field of view which can be accomplished by making the focal length of the lens 46 short enough to provide coverage of the entire desired field of view. In another embodiment of this invention, additional sensors, which may be substantially identical to sensors 20, 22, and 24, could be used to provide more viewpoints, to broaden coverage of the field of view, or to enhance measurement accuracy.
  • the sensors 20, 22, and 24 can detect the exact location of each emitter in turn.
  • computer 36 can determine the exact position and orientation of the probe, and therefore its tip 18. Since only one of the radiation emitters 14 or 16 is on at any one time, the detectors 20, 22, and 24 locate the location of that particular illuminated emitter individually. If the strobe rate, that is, the frequency at which the emitters 14 and 16 are turned on and off in sequence, is fast enough, the detectors 20, 22, and 24 can, for all practical purposes, determine the position and orientation of the probe 12 and its tip 18 at any instant in time, and therefore can follow the movement of the probe tip in present time, that is during the time that the probe tip is actually moving.
  • this system can simulate the movement of the probe tip on the previously taken image in present time during the surgical procedure.
  • the sensors 20, 22, and 24 need only distinguish which of the radiation emitters 14, 16, 70, 72, or 74 is on at any one time. In the preferred embodiment 10 of the present invention, this function is accomplished by strobing each of the emitters in sequence, as described above.
  • other methods can be used to allow the sensors 20, 22, and 24 to distinguish the respective radiation emitters 14, 16, 70, 72, and 74 from one another. For example, different wave lengths (colors) of light, or different frequencies of sound, could be used in conjunction with detectors capable of distinguishing those particular different radiations.
  • each of the respective radiation emitters 14, 16, 70, 72, and 74 with a unique wave form or pulse train.
  • This means of differentiating between the different emitters is believed to be novel and unique to the instant invention.
  • additional information on these wave forms such as for example the temperature of the particular structure being contacted by the probe tip 18.
  • the control unit 30 or computer 36 will be designed to demodulate the wave form to determine to which particular emitter the sensed signal belongs, and to decode the additional information being transmitted.
  • the present invention should not be regarded as limited to the particular strobing method shown and described herein, but is generic to the use of any means to differentiate between the different emitters.
  • a usable measurement for each of the sensors 20, 22, or 24 to generate will be any of the following: (1) the position of the detector element with peak intensity, (2) the intensity-weighted average (centroid) of all over- threshold elements, or simply (3) the average of the minimum and maximum elements where the intensity is over some threshold.
  • the detector 52 should be placed at the focal distance for the farthest typical operating distance of the radiation emitters. Closer emitters will form slightly defocused images 58, but they require less precise angular measurement for a given distance accuracy. Furthermore, their de-focused real images are brighter, which increases the brightness gradient at the edges of the image.
  • the real image 58 of the currently activated emitter must be significantly different from (for example brighter than) the rest of the radiation falling on the sensor 52. Otherwise, other lights or reflective surfaces in the field of view of the sensors will hinder the detection of the emitter's real image. Therefore, it is desirable to include in the apparatus, circuitry to subtract the background radiation received by the sensors from other, ambient, sources.
  • This per se known circuitry enhances use of the invention where the sensors are required to detect the radiation emitters against relatively bright backgrounds. While the radiation emitters are all momentarily extinguished, the one-dimensional data from each sensor are saved in a memory. This can be done in an analog delay line or by digitally sampling the output signal and storing it in a digital memory. Then, as each emitter is "viewed" sequentially, the saved data are subtracted from the current data generated by the currently radiating emitter. If the background data are stored digitally, the current data are also digitized, and the stored background data are digitally subtracted from the current data.
  • a graphical representation of the radiation intensity of the image or, equivalently, the generated output voltage amplitude for each element in a row of detecting elements is shown in Figure 5.
  • the graph depicts typical background image intensities 66 with all emitters off, the intensities 68 with one radiation emitter on, and the element-by-element difference 64 between the intensities with the emitter off and those with it on.
  • the measurements will likely contain some random noise, electronic or otherwise, and two consecutive measurements for a given sensor element may differ slightly even where the background is unchanged. Therefore, the differential intensities 64 between two consecutive measurements also contain some random electronic noise. However, the two measurements differ substantially only at the location of the radiation emitter image, and this difference exceeds the threshold level 62.
  • control unit 30 supplies power to the radiation emitters 14, 16, 70, 72, and 74 and the radiation sensors 20, 22, and 24.
  • a control and synchronization unit 84 and radiation source sequencer 88 (where a strobed radiation sequencing is used) time-multiplexes or strobes the radiation emitters individually, as described above, so that the position and orientation of the probe tip 18 ( Figure l) can be determined from the signals received from the sensors 20, 22, and 24.
  • the angular data signals received from the sensors 20, 22, and 24 are converted by an analog-to- digital converter 92.
  • the control and synchronization unit 84 also controls three switches, of which switch 93 is typical, which store all digital data received from the sensors 20, 22, and 24 when the radiation emitters 14 and 16 are off and stores these data into a background memory 94. Then, when the radiation emitters 14, 16, 70, 72, and 74 are illuminated in sequence by radiation source sequencer 18, the synchronization and control unit 84 changes the state of switch 93 which then redirects the data from the three sensors 20, 22, and 24 to a subtraction unit 91.
  • the subtraction unit 91 subtracts the background data from the emitter radiation data, thus resulting in a signal which has been relatively freed from the background signal 66 ( Figure 5) since the fixed pattern noise has been subtracted from the signal.
  • a 1-D (one-dimensional) position calculation unit 95 determines the location of the real image line 58 on the CCD sensor 52 ( Figure 4) by measuring the locations of the edges 67 and 69 of the signal blip 68 ( Figure 5) generated by the CCD sensor based on a predetermined threshold signal level 62. The 1-D position calculation unit 95 then averages the distance between the two edges to find the center of the signal peak 68 as shown in Figure 5.
  • This method of determining the center of the signal peak is per se well known in the art and need not be described in further detail. Moreover, numerous other methods of determining the location of the signal peak or its centroid are known in the art and will be obvious to those of ordinary skill in the art. The method used depends on the signal characteristics of the radiation sensor used as well as the characteristics of the lens system used to focus the radiation onto the surface of the detector, in addition to other parameters. Those practicing this invention with the various alternatives described herein would have no trouble selecting a signal detection algorithm best suited to the particular characteristics of the sensors and the particular radiation being used.
  • control unit 30 ( Figure 1) transmits the radiation data to the computer 36. That is, when the computer 36 is ready to compute the current location of the currently radiating emitter, such as 14, the latest angular data from all sensors 20, 22, and 24 are provided for analysis. If the sensors generate data faster than the control unit 30 can process them, the surplus angular data are simply discarded.
  • the operation of the computer 36 is most advantageously set forth in Figure 7.
  • the computer 36 calculates one-dimensional positions for each radiation emitter such as 14 or 16, based on the location of the signal peak from each respective sensor 20, 22, and 24. These one-dimensional angular position measurements are then used to determine the three-dimensional spatial coordinates of the emitters 14 and 16 and thus for the position and orientation of the probe 12 relative to the predetermined fixed coordinate system 80 by coordinate transformation methods which are per se well-known in the art.
  • the output signals from the computer 36 can be in any form desired by the operator or required by the application system, such as XYZ coordinate triples based upon the predetermined fixed coordinate system 80.
  • Figure 8 and the following paragraphs describe in detail how the location of a single radiation emitter, such as 14, is computed from the data derived from the sensors 20, 22, and 24.
  • the following description applies to these three sensors 20, 22, and 24 only. If there are more than three such sensors, the calculation can be performed using any three or more of the sensors. Furthermore, if more than three sensors are used, the average of the points calculated from all combinations of three sensors could be used to increase accuracy. Another option is to use the point calculated from the three sensors closest to the radiation emitter 14 or 16.
  • the following parameters are considered to be known XYZ constants: D0[i], one endpoint of each linear photodetector i;
  • Each sensor generates T[i], a parametric value between 0 and 1 indicating where the peak or center of the line image of the emitter intersects the line segment between D0[i] and Dl[i].
  • the XYZ coordinates of point S are to be calculated, where S is the location of the radiation emitter.
  • T[i] is the index of the element on which the center or peak of the image falls divided by the number of elements on the detector array.
  • the three-dimensional coordinates of the above points are all referenced to a predetermined fixed coordinate system 80.
  • the cylindrical lens and linear photodetector do not directly measure the angle A of the radiation emitter about its lens axis; rather, they measure a value T[i] linearly related to the tangent of that angle:
  • C is a constant of proportionality that is related to, and determined empirically by, the dimensions of a particular system.
  • Function F(t) could be a polynomial in variable T, or it could be a value interpolated from an empirically determined table.
  • P[i] is the unique plane determined by the three points D[i], L0[i], and Ll[i], which are never collinear.
  • S is the point of intersection of the planes P[l], P[2], and P[3] determined respectively by sensors 1, 2, and 3.
  • S is a unique point if at least two sensor lenses longitudinal axes 48 are not parallel and if no two lens axes 48 are collinear. The intersection point is found by finding the common solution S of the three equations defining the planes P[i]. Once the location S of each of the probe's radiation emitters is computed, the location of the probe's tip 18 can be calculated. The method of making such a determination is well known using the teaching of analytic geometry and matrix manipulations.
  • M is a linear transformation describing the relationship between a point R in the image coordinate system and a point S in the fixed coordinate system
  • the imaging phase precedes the normal operation of the present invention.
  • a scan of the body of the second object of interest is used to build a three-dimensional geometrical model.
  • the second object was the head of a human intracranial surgical patient because the invention is advantageously used in stereotactic neurosurgery.
  • the three- dimensional model comprises digital data from a series of internal cross-sectional images obtained from computed tomography (CT) , magnetic resonance (MRI) , ultrasound, or some other diagnostic medical scanner.
  • CT computed tomography
  • MRI magnetic resonance
  • ultrasound or some other diagnostic medical scanner.
  • the image data are stored in a suitable, electronic memory 40 which can be accessed later by the computer 36.
  • the data are considered to be stored as a series of parallel two- dimensional rectangular arrays of picture elements (pixels) , each pixel being an integer representing relative density. If the object is relatively rigid, like a human head, this three-dimensional model may be created at some time before the correlation and operational phases of the invention and possibly at another location.
  • non-collinear reference points 71, 73, and 75 must be identified relative to the object 11. These may be represented by ink spots, tattoos, radiopaque beads, well-defined rigid anatomical landmarks, locations on a stereotactic frame, sterile pins temporarily inserted into rigid tissue or bone of a surgical patient, or some other reference means. The coordinates of these reference points are measured and recorded relative to the coordinate system of the imaging device. One way to accomplish this is to capture the reference points as part of the previously made three dimensional model itself. For example, radiopaque pins could be placed within the image planes of diagnostic CT slices; the pin locations, if not automatically detectable from their high density, can be identified interactively by the surgeon using a cursor on the computer display of the CT slices. See Figure 3.
  • the initializing of the position and the orientation of the second object, the patient's cranium, is well known in this art.
  • the instant invention departs from this well known operation to add radiation emitters which have a known and exact spacial relation to these fiducial markings. These additional radiation emitters must then be programmed or otherwise activated for use in a particular manner in order to practice the instant invention.
  • the initial correlation mode immediately precedes the normal operational phase of the present invention and must take place in the operating room.
  • the instant system accesses the data of the three-dimensional geometrical model of the patient (or other object) , including the reference point (fiducial marker) coordinates which were recorded earlier, that is previously.
  • the surgeon may place the tip of the probe 18 at each of the reference points 71, 73, and 75 on the patient, in turn.
  • This sequence of operations may be directed by the computer program.
  • the system of this invention provides these data automatically by the radiation from the emitters 70, 72, and 74 being received by the sensors directly and automatically without special intervention by the surgeon.
  • Either of these procedures establish an initial relationship between the locations of these reference points in the model coordinate system and their current physical locations in the fixed coordinate system 80.
  • the preferred determination of this initial position and orientation also carries on during the whole of the surgical procedure and therefore is capable of substantially continuously updating the position and orientation of the second object and relating it to the current position and orientation of the probe.
  • this establishes a linear mathematical relationship between all points in the model and points in the coordinate system 80.
  • the prior art must establish a new relationship by again digitizing the reference points 71, 73, and 75 within the coordinate system 80. That is, the correlation phase must be repeated.
  • the system of this invention uses the emitters 70, 72 and 74 to accomplish this automatically. For this reason, the automatic tracking of the position of the head, or the second object whatever that is, which is described below and which overcomes this problem, is an essential, significant feature of the present invention.
  • the surgeon can relate any locations of interest on the diagnostic images with the corresponding physical locations on this patient during the operation, and vice versa. These include locations accessible to the probe tip 18 but not necessarily directly visible to the surgeon.
  • the position data 21 of the probe emitters generated by the sensors and control unit are converted into three- dimensional coordinates relative to the predetermined fixed coordinate system 80 of the sensors.
  • the computer determines the coordinates of the probe tip in a step 39.
  • the probe tip may be placed at each of the reference points 71, 73, and 75 in turn.
  • the emitters 71, 73 and 75 are located by the sensors and the correct position and orientation of the second object is thereby determined.
  • the coordinates of the second object in the fixed coordinate system along with their coordinates 46 in the image coordinate system determine a unique linear transformation relating the two coordinate systems in a step 45. This is a per se known calculation in analytic geometry and matrix mathematics.
  • a more automated and direct method of determining the location of the second object is to directly read the locations of the fiducial points 71, 73 and 75 by the fixed sensors 20, 22 and 24. This can be accomplished by placing radiation emitters 70, 72, and 74 ( Figure IB) at those reference points (or in a known fixed spacial relationship to those reference points 71, 73, and 75) .
  • the emissions of these emitters can then be read directly by the sensors 20, 22, and 24, and thus the computer can then automatically determine their locations relative to the predetermined fixed coordinate system 80 of the sensors.
  • the position and orientation of the second object, the cranium in the preferred embodiment of this invention can be automatically and substantially continuously determined.
  • the position of the first object, the probe which is also determined at least frequently, if not substantially continuously, can then be updated in relation to the second object at the same frequency.
  • the position and orientation of both the first and the second objects are each at least frequently determined and updated in relation to the fixed coordinate system 80, the position and orientation of each of these first and second objects can then be determined relative to each other, by indirect, but well known, calculations which are easily carried out in short order by a computer. It has been stated herein that the position and orientation of the second object, the cranium, can, according to this invention, be determined continuously or at least frequently.
  • the frequency at which the position and orientation of the second object is determined is a function of the desires of the operator of this system and the frequency at which the radiation emitters and the sensors can be operated.
  • the emitters all emit the same wave length of radiation and the sensors all sense this same wave length of radiation
  • the differentiation of the emissions of the several emitters is followed in a sequential pattern.
  • the emitters will emit radiation in sequence, for example 14, then 16, then 70, then 72 and then 74.
  • the sensors will have been programmed to identify a signal with an emitter as a function of when the signal is received.
  • the position and orientation of the first object, the probe is determined with the same frequency as is the location and the orientation of the second object, the cranium, because all of the emitters radiate in sequence.
  • the system can be programmed so that the emitters 14 and 16 fire more or less frequently than the emitters 70, 72 and 74. Under these conditions, the position and orientation of the first object and of the second object will be determined at different individual frequencies, that is at the same frequency as the frequency of the radiation from their respective emitters.
  • each emitter will radiate a different wave length or wave form or frequency pulse of radiation. Therefore, the radiation emitted from each emitter is simultaneously distinct from the radiation emitted from the other emitters. Under these conditions, the location of each emitter can be determined continuously by a set of sensors which is tuned to the specific, different radiation of each emitter. Therefore, the location of each emitter can be determined continuously, whereby the position and orientation of either or both of the objects can be calculated by the computer from these continuous locations of the different emitters.
  • the first object is intended to be moved and the second object is intended to be stationary; and fa position and orientation of the first object is frequently determined, but the position and orientation of the second object is only determined at the start of the operation and at any time that the second object, the cranium, which is intended not to be moved at all during the operation, is known by the surgeon to be moved; whereas according to this invention: the first object is intended to be moved, and the second object is not intended to be rigidly immobilized in place, or, put another way, the second object is permitted to move and is even expected to move; and the position and the orientation of the first object is frequently determined, and the position and orientation of the second object is also frequently determined.
  • the position and orientation of these two objects may be determined at the same frequency or at different frequencies (or even continuously) as desired by the operator.
  • the position and orientation of the second object will be determined from one hundredth to ten times, most preferably from a quarter as often to four times, as often as the frequency at which the position and orientation of the first object is determined.
  • the preferred relationships set forth herein are illustrative and not limiting.
  • the frequency of each measurement is dependent on the amount of movement which is allowed and is intended to be shown on the CRT. The upper limit on this frequency is determined by the ability of the emitters to be distinguished. There is no lower limit.
  • the emitters have been described as being on the first and second objects and being movable therewith, and the sensors have been described as being in a fixed relation to the coordinate system. While this is the preferred system, it is by no means the only configuration of the system of this invention. It is also within the scope of this invention to provide the emitters in fixed relationship to the coordinate system, and the sensors on the first and second objects, respectively.
  • the wiring may be somewhat more cumbersome in this configuration, but that should not detract from the viability of such a reversal.
  • the preferred system of this invention performs the three primary tasks of this invention, preferably, but not necessarily, simultaneously: the absolute position and orientation of the second object, the cranium, in the fixed coordination system is determined at least very frequently; the relationship between the absolute position and orientation of the second object with respect to the previously taken images of that object, particularly the inside structures of that object, is determined at least very frequently; and the absolute position and orientation of the first object, the probe, is determined at least very frequently.
  • the accomplishment of these three tasks then permits the computer to accomplish the three essential secondary tasks of this invention: to calculate the position and orientation of the first object, the probe, in relation to the second object, the cranium, even though the first object, or a portion of it, is out of the line of sight of either the surgeon or the sensors; to select the appropriate slice of the previously taken model of the interior of the second object which corresponds to the present time position and orientation of the first object in relation to the present time position and orientation of the second object; and to display the appropriate slice of the previously taken image of the second object with the present time position and orientation of the first object correctly depicted thereon.
  • Both the initial and the continual correlation determinations can be automatically initiated and updated by the computer 36 in some predetermined timed sequence or continuously.
  • the correlation phase is frequently, briefly from time to time, or even continuously, repeated, interspersed in between measurements in the operational phase or conducted simultaneously with the operational phase of the practice of this invention for the purpose of recalculating the linear transformations M and M' when the second object (such as a surgical patient) moves relative to the sensors.
  • the tip coordinates are transformed in a step 44 using the transformation computed in step 45.
  • the new transformed coordinates, relative to the image coordinate system, are used to determine the plane of some two-dimensional cross-section through the three-dimensional image model 41 accessible in the accessible memory 43.
  • the simplest method is simply to choose the existing diagnostic image plane located closest to the probe tip's coordinates relative to the model coordinate system.
  • a step 47 transforms the two- dimensional cross-sectional slice to a screen image and places a cursor on it to mark the location of the probe tip superimposed in the image. Scaling and viewing parameters determine how the image is displayed. Because the surgeon may not be able to simultaneously view the patient (object) and the computer display screen, the step 47 should be controlled by the surgeon, such as for example by placing an activating button on the probe. Pressing the button can be the signal for freezing the image and the depicted position and orientation of the probe tip marker at that instant on the display screen.
  • the computer system could generate and display on the screen a cut-away view at an arbitrary angle, for example, perpendicular to the direction the probe is pointing, using the data from multiple image slices.
  • the computer simply displays any one or more convenient image slices through the location of the probe tip.
  • the displayed slice might simply be the original CT slice which includes the location of the probe tip, or is closest to that location.
  • the computer then causes the image a cursor at the current position of the probe tip to be displayed on this previously taken image of a slice through the second object.
  • the additional sensors are permanently attached directly on the imaging apparatus.
  • the additional probe measures the location of the reference points at the time of imaging, and the additional control unit and computer determines and records their locations relative to the coordinate system of the imaging apparatus.
  • the advantage of this approach is that the fiducial markers, that is the landmarks or reference pins, need not be within the limited cross- sectional slices visible to the imaging device.
  • standard x-ray radiographs from several distinct directions can be used to construct a crude model in lieu of the imaging phase described above.
  • Radiographs from two or more directions are digitally scanned, and four non-coplanar reference points on them are identified with a cursor or light pen.
  • these four points on the patient are digitized just prior to surgery. Then, during surgery, the location of the probe tip is projected onto the digitized computer images of the two-dimensional radiographs where the projection is uniquely defined by mapping and transferring the reference point coordinates from the model coordinate system to the fixed sensor coordinate system.
  • a videotape recording of the computer screen (as well as the direct view of the surgeon and patient) is used to help document the performance of the instant procedure.
  • Radiation emitters may be present on more than one standard surgical tool such as the microscope, scalpel, forceps, and cauterizer, each of which thereby becomes, in effect, a probe. These emitters should be differentiated from each other in the same manner as aforesaid.
  • toroidal lenses could be used which are longitudinally curved along an arc with a radius equal to the focal length of the lens.
  • the surfaces of the photodetectors could also be curved, thus allowing the images of distant light sources to remain in sharp focus, regardless of their positions.
  • Numerous enhancements of the digital data are possible by suitably programming the computer.
  • the most preferred aspects of this invention use electromagnetic radiation, and especially visible light, as the radiation from the emitters.
  • This use of light for this function is a major improvement over the use in the prior art of audible sound emitters and detectors.
  • prior art systems which are based on the use of sound emitters can be reprogrammed to carry out the operations to substantially continuously recorrelate the position and orientation of the second object during the surgical procedure, as they have been described herein.
  • the movement of the second object can be at least frequently, if not continuously, tracked using sound emitters and detectors and suitable temperature compensation techniques.
  • the aforementioned ability of the instant system to determine and transmit the temperature of the probe tip can be used to good advantage when using sound as the radiation of choice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

Système de détermination et de visualisation de la position d'un objet mobile (12) relativement à celle d'un second objet mobile (11) dans un espace à trois dimensions. Au moins deux points de référence (14, 16) du premier objet (12) et au moins trois points de référence (73-75) du second objet (11) peuvent être relevés à l'aide de capteurs de position (20, 22, 24) dans un système de coordonnées fixes prédéterminées (80). A partir de la position des points de référence (14, 16, 73-75), un ordinateur (36) détermine la position et l'orientation des deux objets (11, 12) dans le système de coordonnées fixes (80). A partir de la position et de l'orientation des deux objets (11, 12), l'ordinateur (36) détermine ensuite la position et l'orientation du premier objet (12) relativement à un système local prédéterminé de coordonnées en relation fixe avec le second objet (11). L'ordinateur (36) élabore une représentation graphique de la position et de l'orientation du premier objet (12) sur un modèle graphique établi à partir de données picturales du second objet (11) enregistrées au préalable.
PCT/US1994/004298 1993-04-22 1994-04-22 Systeme de determination de la position relative d'objets WO1994023647A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6523546A JPH08509144A (ja) 1993-04-22 1994-04-22 物体の相対的位置を突き止めるシステム
EP94915394A EP0700269B1 (fr) 1993-04-22 1994-04-22 Systeme de determination de la position relative d'objets
CA002161126A CA2161126C (fr) 1993-04-22 1994-04-22 Systeme pour determiner les positions relatives des objets
DE69431875T DE69431875T2 (de) 1993-04-22 1994-04-22 Anordnung zur bestimmung der gegenseitigen lage von körpern
AU66668/94A AU6666894A (en) 1993-04-22 1994-04-22 System for locating relative positions of objects

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5204293A 1993-04-22 1993-04-22
US5204593A 1993-04-22 1993-04-22
US08/052,045 1993-04-22
US08/052,042 1993-04-22

Publications (1)

Publication Number Publication Date
WO1994023647A1 true WO1994023647A1 (fr) 1994-10-27

Family

ID=26730097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/004298 WO1994023647A1 (fr) 1993-04-22 1994-04-22 Systeme de determination de la position relative d'objets

Country Status (9)

Country Link
US (4) US5622170A (fr)
EP (2) EP1219259B1 (fr)
JP (1) JPH08509144A (fr)
AU (1) AU6666894A (fr)
CA (1) CA2161126C (fr)
DE (2) DE69431875T2 (fr)
IL (1) IL109385A (fr)
WO (1) WO1994023647A1 (fr)
ZA (1) ZA942812B (fr)

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029701A1 (fr) * 1996-02-15 1997-08-21 Biosense Inc. Procede de chirurgie par catheter
WO1998008112A1 (fr) * 1996-08-22 1998-02-26 Synthes Ag Chur Dispositif d'enregistrement d'images ultrasonores tridimensionnelles
WO1998011405A1 (fr) * 1996-09-16 1998-03-19 Brewco Dispositif de mesure a utiliser principalement avec des vehicules
US5762064A (en) * 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
WO1998038919A2 (fr) * 1997-03-04 1998-09-11 Biotrack, Inc. Systeme medical de detection et d'imagerie
WO1999026549A1 (fr) * 1997-11-20 1999-06-03 Surgical Navigation Technologies, Inc. Poinçon et/ou taraud et/ou visseuse guides par imagerie
US5913820A (en) * 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US6122541A (en) * 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US6147480A (en) * 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
EP1059877A1 (fr) * 1998-03-05 2000-12-20 Wake Forest University Technique de formation d'images tridimensionnelles par tomographie par tomosynthese assistee par ordinateur et appareillage correspondant
US6177792B1 (en) 1996-03-26 2001-01-23 Bisense, Inc. Mutual induction correction for radiator coils of an objects tracking system
GB2352289A (en) * 1999-07-14 2001-01-24 Dennis Majoe Position and orientation detection system
US6203493B1 (en) 1996-02-15 2001-03-20 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
US6211666B1 (en) 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US6223066B1 (en) 1998-01-21 2001-04-24 Biosense, Inc. Optical position sensors
US6253770B1 (en) 1996-02-15 2001-07-03 Biosense, Inc. Catheter with lumen
US6266551B1 (en) 1996-02-15 2001-07-24 Biosense, Inc. Catheter calibration and usage monitoring system
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6335617B1 (en) 1996-05-06 2002-01-01 Biosense, Inc. Method and apparatus for calibrating a magnetic field generator
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6366799B1 (en) 1996-02-15 2002-04-02 Biosense, Inc. Movable transmit or receive coils for location system
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
WO2002036178A2 (fr) * 2000-10-31 2002-05-10 Northern Digital, Inc. Instrument flexible a capteurs optiques
US6453190B1 (en) 1996-02-15 2002-09-17 Biosense, Inc. Medical probes with field transducers
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US6497134B1 (en) * 2000-03-15 2002-12-24 Image Guided Technologies, Inc. Calibration of an instrument
US6498477B1 (en) 1999-03-19 2002-12-24 Biosense, Inc. Mutual crosstalk elimination in medical systems using radiator coils and magnetic fields
US6498944B1 (en) 1996-02-01 2002-12-24 Biosense, Inc. Intrabody measurement
DE10136709A1 (de) * 2001-07-27 2003-02-20 Siemens Ag Vorrichtung und Verfahren zum Durchführen von operativen Eingriffen an einem Patienten
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
US6731966B1 (en) 1997-03-04 2004-05-04 Zachary S. Spigelman Systems and methods for targeting a lesion
US6801597B2 (en) 1998-07-24 2004-10-05 Wake Forest University Health Sciences Method and system for creating task-dependent three-dimensional images
USRE39133E1 (en) * 1997-09-24 2006-06-13 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US7433728B2 (en) 2003-05-29 2008-10-07 Biosense, Inc. Dynamic metal immunity by hysteresis
DE19639615C5 (de) * 1996-09-26 2008-11-06 Brainlab Ag Reflektorenreferenzierungssystem für chirurgische und medizinische Instrumente
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
US7771436B2 (en) 2003-12-10 2010-08-10 Stryker Leibinger Gmbh & Co. Kg. Surgical navigation tracker, system and method
US7787936B2 (en) 2004-01-23 2010-08-31 Traxyz Medical, Inc. Methods and apparatus for performing procedures on target locations in the body
US7873400B2 (en) 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
KR101019189B1 (ko) 2009-04-28 2011-03-04 삼성중공업 주식회사 위치 계측 방법 및 위치 계측 장치
US7945309B2 (en) 2002-11-22 2011-05-17 Biosense, Inc. Dynamic metal immunity
US7974680B2 (en) 2003-05-29 2011-07-05 Biosense, Inc. Hysteresis assessment for metal immunity
US7996058B2 (en) 1996-02-01 2011-08-09 Biosense, Inc. Method using implantable wireless transponder using position coordinates for assessing functionality of a heart valve
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8551074B2 (en) 2008-09-08 2013-10-08 Bayer Pharma AG Connector system having a compressible sealing element and a flared fluid path element
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
DE102006022287B4 (de) * 2005-05-13 2017-03-23 General Electric Co. System und Verfahren zur Steuerung eines medizinischen Bildgebungsgerätes
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation

Families Citing this family (475)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331180B1 (en) 1988-05-03 2001-12-18 Sherwood Services Ag Target-centered stereotaxtic surgical arc system with reorientatable arc axis
US5415169A (en) * 1989-11-21 1995-05-16 Fischer Imaging Corporation Motorized mammographic biopsy apparatus
WO1992006645A1 (fr) 1990-10-19 1992-04-30 St. Louis University Systeme de determination de la position d'une sonde chirurgicale dans la tete
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6675040B1 (en) 1991-01-28 2004-01-06 Sherwood Services Ag Optical object tracking system
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US6167295A (en) 1991-01-28 2000-12-26 Radionics, Inc. Optical and computer graphic stereotactic localizer
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6757557B1 (en) 1992-08-14 2004-06-29 British Telecommunications Position location system
US5517990A (en) * 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5732703A (en) * 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
ZA942812B (en) * 1993-04-22 1995-11-22 Pixsys Inc System for locating the relative positions of objects in three dimensional space
DE9422172U1 (de) 1993-04-26 1998-08-06 St. Louis University, St. Louis, Mo. Angabe der Position einer chirurgischen Sonde
NO302055B1 (no) * 1993-05-24 1998-01-12 Metronor As Fremgangsmåte og system for geometrimåling
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
ATE252349T1 (de) * 1994-09-15 2003-11-15 Visualization Technology Inc System zur positionserfassung mittels einer an einem patientenkopf angebrachten referenzeinheit zur anwendung im medizinischen gebiet
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
EP0869745B8 (fr) * 1994-10-07 2003-04-16 St. Louis University Systemes de guidage chirurgical comprenant des cadres de reference et de localisation
US6978166B2 (en) * 1994-10-07 2005-12-20 Saint Louis University System for use in displaying images of a body part
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US6259943B1 (en) * 1995-02-16 2001-07-10 Sherwood Services Ag Frameless to frame-based registration system
US5868673A (en) * 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US6246898B1 (en) * 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
CA2226938A1 (fr) * 1995-07-16 1997-02-06 Yoav Paltieli Pointage de guide d'aiguille a mains libres
US6256529B1 (en) * 1995-07-26 2001-07-03 Burdette Medical Systems, Inc. Virtual reality 3D visualization for surgical procedures
US6714841B1 (en) * 1995-09-15 2004-03-30 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US5772594A (en) * 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
DE19609564C1 (de) * 1996-03-12 1997-06-26 Fraunhofer Ges Forschung Vorrichtung zur zeit- und ortsaufgelösten Ortung eines miniaturisierten Ultraschall-Senders
US6167145A (en) 1996-03-29 2000-12-26 Surgical Navigation Technologies, Inc. Bone navigation system
USRE40176E1 (en) * 1996-05-15 2008-03-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5795295A (en) * 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6009212A (en) 1996-07-10 1999-12-28 Washington University Method and apparatus for image registration
US6408107B1 (en) 1996-07-10 2002-06-18 Michael I. Miller Rapid convolution based large deformation image matching via landmark and volume imagery
US6611630B1 (en) 1996-07-10 2003-08-26 Washington University Method and apparatus for automatic shape characterization
US6226418B1 (en) 1997-11-07 2001-05-01 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
JP3198938B2 (ja) * 1996-09-03 2001-08-13 株式会社エフ・エフ・シー 移動カメラ用の画像処理装置
US6364888B1 (en) * 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5865744A (en) * 1996-09-16 1999-02-02 Lemelson; Jerome H. Method and system for delivering therapeutic agents
DE19637822C1 (de) * 1996-09-17 1998-03-26 Deutsch Zentr Luft & Raumfahrt Mikromechanisches Werkzeug
JP3344900B2 (ja) * 1996-09-19 2002-11-18 松下電器産業株式会社 直角座標型ロボット
US5845646A (en) * 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
GB9623911D0 (en) * 1996-11-18 1997-01-08 Armstrong Healthcare Ltd Improvements in or relating to an orientation detector arrangement
US6132441A (en) 1996-11-22 2000-10-17 Computer Motion, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US7302288B1 (en) * 1996-11-25 2007-11-27 Z-Kat, Inc. Tool position indicator
JP3814904B2 (ja) * 1996-12-25 2006-08-30 ソニー株式会社 位置検出装置及び遠隔操作装置
US6026315A (en) * 1997-03-27 2000-02-15 Siemens Aktiengesellschaft Method and apparatus for calibrating a navigation system in relation to image data of a magnetic resonance apparatus
GB9706797D0 (en) * 1997-04-03 1997-05-21 Sun Electric Uk Ltd Wireless data transmission
US6708184B2 (en) 1997-04-11 2004-03-16 Medtronic/Surgical Navigation Technologies Method and apparatus for producing and accessing composite data using a device having a distributed communication controller interface
US5970499A (en) 1997-04-11 1999-10-19 Smith; Kurt R. Method and apparatus for producing and accessing composite data
US6669653B2 (en) * 1997-05-05 2003-12-30 Trig Medical Ltd. Method and apparatus for monitoring the progress of labor
US5993463A (en) 1997-05-15 1999-11-30 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
US5907395A (en) * 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
JP4113591B2 (ja) * 1997-06-23 2008-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像誘導手術システム
WO1999000052A1 (fr) * 1997-06-27 1999-01-07 The Board Of Trustees Of The Leland Stanford Junior University Procede et dispositif permettant de generer des images tridimensionnelles a des fins de 'navigation'
US6055449A (en) * 1997-09-22 2000-04-25 Siemens Corporate Research, Inc. Method for localization of a biopsy needle or similar surgical tool in a radiographic image
US6081336A (en) * 1997-09-26 2000-06-27 Picker International, Inc. Microscope calibrator
US6157853A (en) * 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
CA2333583C (fr) * 1997-11-24 2005-11-08 Everette C. Burdette Systeme d'enregistrement et de visualisation spatial en temps reel utilise en curietherapie
US6149592A (en) * 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US6052611A (en) * 1997-11-28 2000-04-18 Picker International, Inc. Frameless stereotactic tomographic scanner for image guided interventional procedures
US6035228A (en) * 1997-11-28 2000-03-07 Picker International, Inc. Frameless stereotactic arm apparatus and method of using same
US6064904A (en) * 1997-11-28 2000-05-16 Picker International, Inc. Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures
US5967982A (en) * 1997-12-09 1999-10-19 The Cleveland Clinic Foundation Non-invasive spine and bone registration for frameless stereotaxy
US6122539A (en) * 1997-12-31 2000-09-19 General Electric Company Method for verifying accuracy during intra-operative MR imaging
AU2022799A (en) * 1997-12-31 1999-07-19 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
CA2318252A1 (fr) * 1998-01-28 1999-08-05 Eric R. Cosman Systeme de suivi d'objets optiques
US6608688B1 (en) * 1998-04-03 2003-08-19 Image Guided Technologies, Inc. Wireless optical instrument for position measurement and method of use therefor
US5947900A (en) * 1998-04-13 1999-09-07 General Electric Company Dynamic scan plane tracking using MR position monitoring
DE19817039A1 (de) * 1998-04-17 1999-10-21 Philips Patentverwaltung Anordnung für die bildgeführte Chirurgie
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
US6546277B1 (en) * 1998-04-21 2003-04-08 Neutar L.L.C. Instrument guidance system for spinal and other surgery
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
EP1341465B1 (fr) * 1998-05-14 2010-01-27 Calypso Medical, Inc Systeme de localisation et definition d'une cible interieure au corps humain
US6363940B1 (en) * 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
FR2779339B1 (fr) * 1998-06-09 2000-10-13 Integrated Surgical Systems Sa Procede et appareil de mise en correspondance pour la chirurgie robotisee, et dispositif de mise en correspondance en comportant application
US6122967A (en) * 1998-06-18 2000-09-26 The United States Of America As Represented By The United States Department Of Energy Free motion scanning system
WO1999066853A1 (fr) 1998-06-22 1999-12-29 Synthes Ag Chur Alignement de reference a l'aide de vis de repere
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6327491B1 (en) * 1998-07-06 2001-12-04 Neutar, Llc Customized surgical fixture
US6459927B1 (en) 1999-07-06 2002-10-01 Neutar, Llc Customizable fixture for patient positioning
US6145509A (en) * 1998-07-24 2000-11-14 Eva Corporation Depth sensor device for use in a surgical procedure
US6439576B1 (en) * 1998-07-30 2002-08-27 Merlin Technologies, Inc. Electronic missile location
US20050105772A1 (en) * 1998-08-10 2005-05-19 Nestor Voronka Optical body tracker
US6801637B2 (en) 1999-08-10 2004-10-05 Cybernet Systems Corporation Optical body tracker
US6351662B1 (en) 1998-08-12 2002-02-26 Neutar L.L.C. Movable arm locator for stereotactic surgery
US6282437B1 (en) 1998-08-12 2001-08-28 Neutar, Llc Body-mounted sensing system for stereotactic surgery
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6266142B1 (en) * 1998-09-21 2001-07-24 The Texas A&M University System Noncontact position and orientation measurement system and method
US6195577B1 (en) * 1998-10-08 2001-02-27 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
WO2000021442A1 (fr) 1998-10-09 2000-04-20 Surgical Navigation Technologies, Inc. Separateur vertebral guide par image
US6178358B1 (en) * 1998-10-27 2001-01-23 Hunter Engineering Company Three-dimensional virtual view wheel alignment display system
US6633686B1 (en) 1998-11-05 2003-10-14 Washington University Method and apparatus for image registration using large deformation diffeomorphisms on a sphere
JP4101951B2 (ja) * 1998-11-10 2008-06-18 オリンパス株式会社 手術用顕微鏡
US6201887B1 (en) * 1998-11-17 2001-03-13 General Electric Company System for determination of faulty circuit boards in ultrasound imaging machines
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6246896B1 (en) 1998-11-24 2001-06-12 General Electric Company MRI guided ablation system
US6289233B1 (en) 1998-11-25 2001-09-11 General Electric Company High speed tracking of interventional devices using an MRI system
US6430434B1 (en) * 1998-12-14 2002-08-06 Integrated Surgical Systems, Inc. Method for determining the location and orientation of a bone for computer-assisted orthopedic procedures using intraoperatively attached markers
JP4612194B2 (ja) * 1998-12-23 2011-01-12 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド 複数センサーによって追跡されるハイブリッド3dプローブ
EP1650576A1 (fr) 1998-12-23 2006-04-26 Peter D. Jakab Scanner à résonance magnétique avec dispositif de positionnement électromagnétique et de suivi d'orientation
EP1161691A2 (fr) * 1998-12-23 2001-12-12 Peter D. Jakab Scanner a resonance magnetique dote d'un dispositif electromagnetique de suivi de position et d'orientation
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
NZ513919A (en) 1999-03-17 2001-09-28 Synthes Ag Imaging and planning device for ligament graft placement
US6470207B1 (en) * 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
AU767060B2 (en) * 1999-04-07 2003-10-30 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
AU766981B2 (en) 1999-04-20 2003-10-30 Ao Technology Ag Device for the percutaneous obtainment of 3D-coordinates on the surface of a human or animal organ
DE60015320T2 (de) * 1999-04-22 2005-10-27 Medtronic Surgical Navigation Technologies, Louisville Vorrichtung und verfahren für bildgesteuerte chirurgie
DE59905962D1 (de) * 1999-05-03 2003-07-17 Synthes Ag Positionserfassungsvorrichtung mit hilfsmitteln zur ermittlung der richtung des schwerkraftvektors
US6393314B1 (en) 1999-05-06 2002-05-21 General Electric Company RF driven resistive ablation system for use in MRI guided therapy
DE19936904A1 (de) * 1999-07-30 2001-02-01 Biotronik Mess & Therapieg Katheter
JP3608448B2 (ja) 1999-08-31 2005-01-12 株式会社日立製作所 治療装置
DE10040498A1 (de) 1999-09-07 2001-03-15 Zeiss Carl Fa Vorrichtung zur bildgestützten Bearbeitung eines Arbeitsobjekts
US6206891B1 (en) 1999-09-14 2001-03-27 Medeye Medical Technology Ltd. Device and method for calibration of a stereotactic localization system
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6747539B1 (en) 1999-10-28 2004-06-08 Michael A. Martinelli Patient-shielding and coil system
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6288785B1 (en) * 1999-10-28 2001-09-11 Northern Digital, Inc. System for determining spatial position and/or orientation of one or more objects
US6671538B1 (en) * 1999-11-26 2003-12-30 Koninklijke Philips Electronics, N.V. Interface system for use with imaging devices to facilitate visualization of image-guided interventional procedure planning
US6290649B1 (en) * 1999-12-21 2001-09-18 General Electric Company Ultrasound position sensing probe
WO2001054579A1 (fr) * 2000-01-10 2001-08-02 Super Dimension Ltd. Procedes et systemes de mise en oeuvre de procedures medicales avec reference a des images projectives, et par rapport a des images prealablement stockees
US20010034530A1 (en) * 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
FR2807549B1 (fr) * 2000-04-06 2004-10-01 Ge Med Sys Global Tech Co Llc Procede de traitement d'une image et dispositif associe
US7660621B2 (en) * 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7366561B2 (en) * 2000-04-07 2008-04-29 Medtronic, Inc. Robotic trajectory guide
JP3780146B2 (ja) * 2000-04-12 2006-05-31 オリンパス株式会社 手術ナビゲーション装置
US20030135102A1 (en) * 2000-05-18 2003-07-17 Burdette Everette C. Method and system for registration and guidance of intravascular treatment
JP4634570B2 (ja) * 2000-06-05 2011-02-16 株式会社東芝 Mri装置
US6478802B2 (en) 2000-06-09 2002-11-12 Ge Medical Systems Global Technology Company, Llc Method and apparatus for display of an image guided drill bit
JP2001356011A (ja) * 2000-06-13 2001-12-26 National Institute Of Advanced Industrial & Technology 直動体の真直度計測装置
US7085400B1 (en) 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
WO2002013714A1 (fr) * 2000-08-17 2002-02-21 Image Guided Neurologies, Inc. Guide de trajectoire comportant un dispositif d'immobilisation d'instrument
US6823207B1 (en) * 2000-08-26 2004-11-23 Ge Medical Systems Global Technology Company, Llc Integrated fluoroscopic surgical navigation and imaging workstation with command protocol
WO2002019936A2 (fr) 2000-09-07 2002-03-14 Cbyon, Inc. Systeme et procede radioscopiques virtuels
AU2001292836A1 (en) 2000-09-23 2002-04-02 The Board Of Trustees Of The Leland Stanford Junior University Endoscopic targeting method and system
US6718194B2 (en) 2000-11-17 2004-04-06 Ge Medical Systems Global Technology Company, Llc Computer assisted intramedullary rod surgery system with enhanced features
NO315143B1 (no) * 2000-11-24 2003-07-21 Neorad As Apparat for lysstråle-ledet biopsi
WO2002043569A2 (fr) 2000-11-28 2002-06-06 Intuitive Surgical, Inc. Stabilisateur endoscopique des battements cardiaques et dispositif d'obstruction des vaisseaux
US6820614B2 (en) * 2000-12-02 2004-11-23 The Bonutti 2003 Trust -A Tracheal intubination
US6757416B2 (en) 2000-12-04 2004-06-29 Ge Medical Systems Global Technology Company, Llc Display of patient image data
US6591160B2 (en) 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
WO2002045793A2 (fr) * 2000-12-08 2002-06-13 Loma Linda University Medical Center Systeme de commande d'une therapie par faisceau de protons
EP1216651A1 (fr) 2000-12-21 2002-06-26 BrainLAB AG Système médical sans fil d'acquisition et de traitement
US20020149628A1 (en) * 2000-12-22 2002-10-17 Smith Jeffrey C. Positioning an item in three dimensions via a graphical representation
DE10103870B4 (de) * 2001-01-30 2004-02-05 Daimlerchrysler Ag Verfahren zur Bilderkennung bei Kraftfahrzeugen
DE10108139A1 (de) * 2001-02-20 2002-08-29 Boegl Max Bauunternehmung Gmbh Verfahren zur Vermessung und/oder Bearbeitung eines Werkstücks
DE10108547B4 (de) * 2001-02-22 2006-04-20 Siemens Ag Operationssystem zur Steuerung chirurgischer Instrumente auf Basis von intra-operativen Röngtenbildern
US20020131643A1 (en) * 2001-03-13 2002-09-19 Fels Sol Sidney Local positioning system
US6695786B2 (en) 2001-03-16 2004-02-24 U-Systems, Inc. Guide and position monitor for invasive medical instrument
WO2002085212A2 (fr) * 2001-04-10 2002-10-31 Koninklijke Philips Electronics N.V. Procede d'intervention par fluoroscopie utilisant un faisceau conique
US20020165524A1 (en) 2001-05-01 2002-11-07 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
US7457443B2 (en) * 2001-05-31 2008-11-25 Image Navigation Ltd. Image guided implantology methods
US20020193685A1 (en) * 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US6887245B2 (en) * 2001-06-11 2005-05-03 Ge Medical Systems Global Technology Company, Llc Surgical drill for use with a computer assisted surgery system
ITMI20011635A1 (it) * 2001-07-27 2003-01-27 G D S Giorgi Dynamic Stereotax Dispositivo e procedimento di microchirurgia assistita dall'elaboratore
US6730926B2 (en) 2001-09-05 2004-05-04 Servo-Robot Inc. Sensing head and apparatus for determining the position and orientation of a target object
DE10143561B4 (de) * 2001-09-05 2011-12-15 Eads Deutschland Gmbh Verfahren und System zur Lokalisierung von Emittern
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US7135978B2 (en) * 2001-09-14 2006-11-14 Calypso Medical Technologies, Inc. Miniature resonating marker assembly
JP4178108B2 (ja) * 2001-09-19 2008-11-12 株式会社日立メディコ 処置器具および磁気共鳴イメージング装置
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
AU2002337745A1 (en) * 2001-09-28 2003-04-14 University Of North Carolina At Chapel Hill Methods and systems for three-dimensional motion control and tracking of a mechanically unattached magnetic probe
US7438685B2 (en) 2001-11-05 2008-10-21 Computerized Medical Systems, Inc. Apparatus and method for registration, guidance and targeting of external beam radiation therapy
JP3982247B2 (ja) * 2001-12-06 2007-09-26 株式会社デンソー 車両用発電機の制御装置
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US6838990B2 (en) 2001-12-20 2005-01-04 Calypso Medical Technologies, Inc. System for excitation leadless miniature marker
US6812842B2 (en) 2001-12-20 2004-11-02 Calypso Medical Technologies, Inc. System for excitation of a leadless miniature marker
US6822570B2 (en) 2001-12-20 2004-11-23 Calypso Medical Technologies, Inc. System for spatially adjustable excitation of leadless miniature marker
US7715602B2 (en) * 2002-01-18 2010-05-11 Orthosoft Inc. Method and apparatus for reconstructing bone surfaces during surgery
EP1330992A1 (fr) * 2002-01-23 2003-07-30 Stiftung für Plastische und Aesthetische Wundheilung im Sondervermögen der DT Deutschen Stiftungstreuhend AG Outil et méthode pour déterminer la position spatiale d'un instrument relativement à un objet
DE10210645B4 (de) * 2002-03-11 2006-04-13 Siemens Ag Verfahren zur Erfassung und Darstellung eines in einen Untersuchungsbereich eines Patienten eingeführten medizinischen Katheters
US7010759B2 (en) * 2002-04-05 2006-03-07 U-Tech Enviromental Manufacturing Supply, Inc. Method for real time display of maintenance device location in an internal space
AR039475A1 (es) * 2002-05-01 2005-02-23 Wyeth Corp 6-alquiliden-penems triciclicos como inhibidores de beta-lactamasa
US20040019266A1 (en) * 2002-07-29 2004-01-29 Omnisonics Medical Technologies, Inc. Apparatus and method for radiopaque coating for an ultrasonic medical device
US7187800B2 (en) * 2002-08-02 2007-03-06 Computerized Medical Systems, Inc. Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence
EP1631191A4 (fr) * 2002-08-06 2009-04-22 Stereotaxis Inc Commande a distance de dispositif medicaux utilisant une interface virtuelle
US6741364B2 (en) * 2002-08-13 2004-05-25 Harris Corporation Apparatus for determining relative positioning of objects and related methods
US7009717B2 (en) * 2002-08-14 2006-03-07 Metris N.V. Optical probe for scanning the features of an object and methods therefor
US7428061B2 (en) * 2002-08-14 2008-09-23 Metris Ipr N.V. Optical probe for scanning the features of an object and methods thereof
US6892090B2 (en) 2002-08-19 2005-05-10 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
US7317819B2 (en) * 2002-08-28 2008-01-08 Imaging3, Inc. Apparatus and method for three-dimensional imaging
AU2003263003A1 (en) * 2002-08-29 2004-03-19 Computerized Medical Systems, Inc. Methods and systems for localizing of a medical imaging probe and of a biopsy needle
US7794230B2 (en) * 2002-09-10 2010-09-14 University Of Vermont And State Agricultural College Mathematical circulatory system model
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
WO2004046754A2 (fr) * 2002-11-14 2004-06-03 General Electric Medical Systems Global Technology Company, Llc Dispositifs de localisation interchangeables conçus pour etre utilises avec des systemes de poursuite
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7636596B2 (en) * 2002-12-20 2009-12-22 Medtronic, Inc. Organ access device and method
EP1579304A1 (fr) * 2002-12-23 2005-09-28 Universita' Degli Studi di Firenze Appareil de pointage manuel
WO2004058074A1 (fr) 2002-12-23 2004-07-15 Omnisonics Medical Technologies, Inc. Appareil et procede pour un dispositif medical a ultrasons presentant une visibilite amelioree au niveau de procedures d'imagerie
US20040176686A1 (en) * 2002-12-23 2004-09-09 Omnisonics Medical Technologies, Inc. Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures
JP2004208858A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 超音波診断装置及び超音波画像処理装置
US7289839B2 (en) * 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US6889833B2 (en) * 2002-12-30 2005-05-10 Calypso Medical Technologies, Inc. Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US6877634B2 (en) * 2002-12-31 2005-04-12 Kimberly-Clark Worldwide, Inc. High capacity dispensing carton
RU2005123989A (ru) * 2003-01-02 2006-03-20 Лома Линда Юниверсити Медикал Сентер (Us) Управление конфигурацией и система поиска данных для системы протонной дистанционной протонно-лучевой терапии
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7111401B2 (en) * 2003-02-04 2006-09-26 Eveready Battery Company, Inc. Razor head having skin controlling means
US20040171930A1 (en) * 2003-02-04 2004-09-02 Zimmer Technology, Inc. Guidance system for rotary surgical instrument
US7458977B2 (en) 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US20040152955A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Guidance system for rotary surgical instrument
US7896889B2 (en) * 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US7559935B2 (en) * 2003-02-20 2009-07-14 Medtronic, Inc. Target depth locators for trajectory guide for introducing an instrument
US7119645B2 (en) * 2003-02-25 2006-10-10 The University Of North Carolina Methods and systems for controlling motion of and tracking a mechanically unattached probe
US20060241395A1 (en) * 2003-03-07 2006-10-26 Sascha Kruger Device and method for locating an instrument within a body
US6932823B2 (en) * 2003-06-24 2005-08-23 Zimmer Technology, Inc. Detachable support arm for surgical navigation system reference array
US20050054910A1 (en) * 2003-07-14 2005-03-10 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging applications
US8403828B2 (en) * 2003-07-21 2013-03-26 Vanderbilt University Ophthalmic orbital surgery apparatus and method and image-guide navigation system
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7633633B2 (en) * 2003-08-29 2009-12-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Position determination that is responsive to a retro-reflective object
US20050054895A1 (en) * 2003-09-09 2005-03-10 Hoeg Hans David Method for using variable direction of view endoscopy in conjunction with image guided surgical systems
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
GB0324179D0 (en) * 2003-10-15 2003-11-19 Isis Innovation Device for scanning three-dimensional objects
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
CA2546023C (fr) 2003-11-14 2012-11-06 Smith & Nephew, Inc. Systemes coupants ajustables de chirurgie
US7000948B2 (en) * 2003-11-20 2006-02-21 Delphi Technologies, Inc. Internally tethered seat bladder for occupant weight estimation
US7232409B2 (en) * 2003-11-20 2007-06-19 Karl Storz Development Corp. Method and apparatus for displaying endoscopic images
US6950775B2 (en) * 2003-12-01 2005-09-27 Snap-On Incorporated Coordinate measuring system and field-of-view indicators therefor
US7376492B2 (en) * 2003-12-04 2008-05-20 Matrix Electronic Measuring, L.P. System for measuring points on a vehicle during damage repair
US7120524B2 (en) * 2003-12-04 2006-10-10 Matrix Electronic Measuring, L.P. System for measuring points on a vehicle during damage repair
US8196589B2 (en) * 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
US7015376B2 (en) * 2004-01-30 2006-03-21 Pioneer Hi-Bred International, Inc. Soybean variety 95M80
US20060036162A1 (en) * 2004-02-02 2006-02-16 Ramin Shahidi Method and apparatus for guiding a medical instrument to a subsurface target site in a patient
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US7580756B2 (en) 2004-02-13 2009-08-25 Medtronic, Inc. Methods and apparatus for securing a therapy delivery device within a burr hole
US20050215888A1 (en) * 2004-03-05 2005-09-29 Grimm James E Universal support arm and tracking array
US20060052691A1 (en) * 2004-03-05 2006-03-09 Hall Maleata Y Adjustable navigated tracking element mount
US9033871B2 (en) 2004-04-07 2015-05-19 Karl Storz Imaging, Inc. Gravity referenced endoscopic image orientation
AU2005237479B8 (en) 2004-04-21 2011-09-29 Smith & Nephew, Inc. Computer-aided methods for shoulder arthroplasty
US7567834B2 (en) 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US20050256689A1 (en) * 2004-05-13 2005-11-17 Conceptual Assets, Inc. Method and system for measuring attributes on a three-dimenslonal object
US20050288574A1 (en) * 2004-06-23 2005-12-29 Thornton Thomas M Wireless (disposable) fiducial based registration and EM distoration based surface registration
US8152305B2 (en) * 2004-07-16 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for full spectrum projection
US7776055B2 (en) * 2004-07-19 2010-08-17 General Electric Company System and method for tracking progress of insertion of a rod in a bone
US8340742B2 (en) 2004-07-23 2012-12-25 Varian Medical Systems, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
US8290570B2 (en) * 2004-09-10 2012-10-16 Stryker Leibinger Gmbh & Co., Kg System for ad hoc tracking of an object
US8007448B2 (en) * 2004-10-08 2011-08-30 Stryker Leibinger Gmbh & Co. Kg. System and method for performing arthroplasty of a joint and tracking a plumb line plane
EP1647236A1 (fr) 2004-10-15 2006-04-19 BrainLAB AG Dispositif et procédé de verification de la position des marqueurs
FR2878615B1 (fr) 2004-11-30 2009-09-25 Raquin Cyrille Systeme de simulation de tir ou de lancement de projectile a l'aide d'un objet ou lanceur specifique
US7497863B2 (en) 2004-12-04 2009-03-03 Medtronic, Inc. Instrument guiding stage apparatus and method for using same
US7744606B2 (en) * 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US7621874B2 (en) * 2004-12-14 2009-11-24 Scimed Life Systems, Inc. Systems and methods for improved three-dimensional imaging of a body lumen
CN101084528B (zh) * 2004-12-20 2011-09-14 皇家飞利浦电子股份有限公司 用于集成可移动人体的医疗诊断信息和几何模型的方法、系统
WO2006076175A2 (fr) 2005-01-10 2006-07-20 Cyberkinetics Neurotechnology Systems, Inc. Systeme d'interface biologique pour appareil de reeducation de patients
US20060161059A1 (en) * 2005-01-20 2006-07-20 Zimmer Technology, Inc. Variable geometry reference array
US7623250B2 (en) * 2005-02-04 2009-11-24 Stryker Leibinger Gmbh & Co. Kg. Enhanced shape characterization device and method
US7967742B2 (en) * 2005-02-14 2011-06-28 Karl Storz Imaging, Inc. Method for using variable direction of view endoscopy in conjunction with image guided surgical systems
EP1855601B1 (fr) 2005-02-22 2018-10-10 Smith & Nephew, Inc. Systeme de fraisage en ligne
JP4417877B2 (ja) * 2005-04-20 2010-02-17 株式会社セブンスディメンジョンデザイン 光送受信装置制御システム
US9492240B2 (en) 2009-06-16 2016-11-15 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8971597B2 (en) 2005-05-16 2015-03-03 Intuitive Surgical Operations, Inc. Efficient vision and kinematic data fusion for robotic surgical instruments and other applications
US9289267B2 (en) * 2005-06-14 2016-03-22 Siemens Medical Solutions Usa, Inc. Method and apparatus for minimally invasive surgery using endoscopes
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US20070078678A1 (en) * 2005-09-30 2007-04-05 Disilvestro Mark R System and method for performing a computer assisted orthopaedic surgical procedure
US7713471B2 (en) * 2005-10-31 2010-05-11 Codman Neuro Sciences Sarl System for protecting circuitry in high-temperature environments
US20070179626A1 (en) * 2005-11-30 2007-08-02 De La Barrera Jose L M Functional joint arthroplasty method
US20070156126A1 (en) * 2005-12-29 2007-07-05 Flaherty J C Medical device insertion system and related methods
US20100023021A1 (en) * 2005-12-27 2010-01-28 Flaherty J Christopher Biological Interface and Insertion
US7525309B2 (en) 2005-12-30 2009-04-28 Depuy Products, Inc. Magnetic sensor array
US8862200B2 (en) 2005-12-30 2014-10-14 DePuy Synthes Products, LLC Method for determining a position of a magnetic source
US20070239153A1 (en) * 2006-02-22 2007-10-11 Hodorek Robert A Computer assisted surgery system using alternative energy technology
US7353134B2 (en) * 2006-03-09 2008-04-01 Dean A. Cirielli Three-dimensional position and motion telemetry input
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
EP1854425A1 (fr) 2006-05-11 2007-11-14 BrainLAB AG Localisation spatiale pour appareils médicaux avec mesure de localisation redondante et pondération pour prioriser les mesures
US8121361B2 (en) 2006-05-19 2012-02-21 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
US8635082B2 (en) 2006-05-25 2014-01-21 DePuy Synthes Products, LLC Method and system for managing inventories of orthopaedic implants
US8560047B2 (en) * 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
WO2008017051A2 (fr) 2006-08-02 2008-02-07 Inneroptic Technology Inc. Système et procédé d'imagerie dynamique en temps réel sur un site d'intervention médicale et utilisant des modalités multiples
US8565853B2 (en) * 2006-08-11 2013-10-22 DePuy Synthes Products, LLC Simulated bone or tissue manipulation
US20080125630A1 (en) * 2006-09-11 2008-05-29 Caylor Edward J System and method for determining a location of an orthopaedic medical device
EP2068716B1 (fr) * 2006-10-02 2011-02-09 Hansen Medical, Inc. Systèmes de cartographie tridimensionnelle par ultrasons
US7256899B1 (en) 2006-10-04 2007-08-14 Ivan Faul Wireless methods and systems for three-dimensional non-contact shape sensing
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
WO2008052348A1 (fr) * 2006-11-02 2008-05-08 Northern Digital Inc. Système d'affectation intégré
US8068648B2 (en) * 2006-12-21 2011-11-29 Depuy Products, Inc. Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
WO2008103430A2 (fr) * 2007-02-22 2008-08-28 The University Of North Carolina At Chapel Hill Procédés et systèmes pour criblage haut débit multiforce
DE102007009764A1 (de) * 2007-02-27 2008-08-28 Siemens Ag Verfahren und Vorrichtung zur visuellen Unterstützung einer Katheteranwendung
WO2008109801A1 (fr) * 2007-03-07 2008-09-12 Kmt Robotic Solutions, Inc. Système et procédé de localisation des positions relatives d'objets
US8816959B2 (en) 2007-04-03 2014-08-26 General Electric Company Method and apparatus for obtaining and/or analyzing anatomical images
US20080260095A1 (en) * 2007-04-16 2008-10-23 Predrag Sukovic Method and apparatus to repeatably align a ct scanner
US20090003528A1 (en) 2007-06-19 2009-01-01 Sankaralingam Ramraj Target location by tracking of imaging device
US9883818B2 (en) * 2007-06-19 2018-02-06 Accuray Incorporated Fiducial localization
TW200907764A (en) * 2007-08-01 2009-02-16 Unique Instr Co Ltd Three-dimensional virtual input and simulation apparatus
JP2009056299A (ja) 2007-08-07 2009-03-19 Stryker Leibinger Gmbh & Co Kg 外科手術をプランニングするための方法及びシステム
US20090060372A1 (en) * 2007-08-27 2009-03-05 Riverain Medical Group, Llc Object removal from images
EP2191442B1 (fr) * 2007-09-17 2019-01-02 Koninklijke Philips N.V. Calibre destiné à mesurer des objets dans une image
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
US8425523B2 (en) * 2007-09-30 2013-04-23 DePuy Synthes Products, LLC Customized patient-specific instrumentation for use in orthopaedic surgical procedures
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
EP2173269B1 (fr) 2008-01-09 2012-11-07 Stryker Leibinger GmbH & Co. KG Chirurgie assistée par ordinateur stéréotaxtique basée sur une visualisation tridimensionnelle
WO2009094646A2 (fr) 2008-01-24 2009-07-30 The University Of North Carolina At Chapel Hill Procédés, systèmes et supports lisibles par ordinateur pour ablation guidée par imagerie
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8340379B2 (en) * 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
CA2724973C (fr) 2008-05-20 2015-08-11 University Health Network Dispositif et procede pour imagerie et surveillance par fluorescence
US8326022B2 (en) * 2008-05-22 2012-12-04 Matrix Electronic Measuring Properties, Llc Stereoscopic measurement system and method
US9449378B2 (en) 2008-05-22 2016-09-20 Matrix Electronic Measuring Properties, Llc System and method for processing stereoscopic vehicle information
US8345953B2 (en) 2008-05-22 2013-01-01 Matrix Electronic Measuring Properties, Llc Stereoscopic measurement system and method
US8249332B2 (en) * 2008-05-22 2012-08-21 Matrix Electronic Measuring Properties Llc Stereoscopic measurement system and method
EP2293720B1 (fr) 2008-06-05 2021-02-24 Varian Medical Systems, Inc. Compensation de mouvements pour imagerie médicale et systèmes et procédés associés
US8086026B2 (en) * 2008-06-27 2011-12-27 Waldean Schulz Method and system for the determination of object positions in a volume
EP2313143B1 (fr) 2008-08-22 2014-09-24 C.R. Bard, Inc. Ensemble cathéter comprenant un capteur d'électrocardiogramme et ensembles magnétiques
US20100076721A1 (en) * 2008-09-23 2010-03-25 Crucial Innovation, Inc. Dynamic Sizing Apparatus, System, and Method of Using the Same
GB2464092A (en) 2008-09-25 2010-04-07 Prosurgics Ltd Surgical mechanism control system
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US8428326B2 (en) * 2008-10-23 2013-04-23 Immersion Corporation Systems and methods for ultrasound simulation using depth peeling
US20100103432A1 (en) * 2008-10-27 2010-04-29 Mcginnis William J Positioning system and method of using same
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
DE102008064105A1 (de) * 2008-12-19 2010-07-08 Siemens Aktiengesellschaft Vorrichtung zur Positionsbestimmung von wenigstens einer an einer Patientenliege einer Magnetresonanzeinrichtung angeordneten oder anzuordnenden Lokalspule, Magnetresonanzanlage mit einer solchen Vorrichtung und zugehöriges Verfahren
US8830224B2 (en) 2008-12-31 2014-09-09 Intuitive Surgical Operations, Inc. Efficient 3-D telestration for local robotic proctoring
US8632448B1 (en) 2009-02-05 2014-01-21 Loma Linda University Medical Center Proton scattering analysis system
US10575979B2 (en) 2009-02-06 2020-03-03 Jamshid Ghajar Subject-mounted device to measure relative motion of human joints
US8834394B2 (en) * 2009-02-06 2014-09-16 Jamshid Ghajar Apparatus and methods for reducing brain and cervical spine injury
US8554307B2 (en) 2010-04-12 2013-10-08 Inneroptic Technology, Inc. Image annotation in image-guided medical procedures
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
JP5859431B2 (ja) 2009-06-08 2016-02-10 エムアールアイ・インターヴェンションズ,インコーポレイテッド 準リアルタイムで可撓性体内装置を追跡し、動的視覚化を生成することができるmri誘導介入システム
EP3542713A1 (fr) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adaptateur pour un dispositif de positionnement d'une pointe de cathéter
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US9155592B2 (en) * 2009-06-16 2015-10-13 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8586368B2 (en) 2009-06-25 2013-11-19 The University Of North Carolina At Chapel Hill Methods and systems for using actuated surface-attached posts for assessing biofluid rheology
WO2011019760A2 (fr) 2009-08-10 2011-02-17 Romedex International Srl Dispositifs et procédés pour électrographie endovasculaire
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US20110190689A1 (en) * 2009-09-28 2011-08-04 Bennett James D Intravaginal therapy device
JP6034695B2 (ja) 2009-10-01 2016-11-30 ローマ リンダ ユニヴァーシティ メディカル センター イオン誘起衝突電離検出器及びその使用
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8319687B2 (en) * 2009-12-09 2012-11-27 Trimble Navigation Limited System for determining position in a work space
US8237786B2 (en) * 2009-12-23 2012-08-07 Applied Precision, Inc. System and method for dense-stochastic-sampling imaging
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
US9207193B2 (en) * 2010-02-12 2015-12-08 Loma Linda University Medical Center Systems and methodologies for proton computed tomography
US10588647B2 (en) 2010-03-01 2020-03-17 Stryker European Holdings I, Llc Computer assisted surgery system
US8749797B1 (en) 2010-03-02 2014-06-10 Advanced Optical Systems Inc. System and method for remotely determining position and orientation of an object
US8643850B1 (en) 2010-03-02 2014-02-04 Richard L. Hartman Automated system for load acquisition and engagement
EP2912999B1 (fr) 2010-05-28 2022-06-29 C. R. Bard, Inc. Appareil destiné à être utilisé avec un système de guidage d'insertion d'aiguille
JP5980201B2 (ja) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針および医療用コンポーネントのための挿入誘導システム
EP2593023B1 (fr) 2010-07-16 2018-09-19 Stryker European Holdings I, LLC Système et procédé de ciblage chirurgical
CN103228219B (zh) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 用于超声探测器头的支撑和覆盖结构
MX338127B (es) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmacion de colocacion de una punta de cateter asistida por ecg.
US8425425B2 (en) 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
US8657809B2 (en) 2010-09-29 2014-02-25 Stryker Leibinger Gmbh & Co., Kg Surgical navigation system
WO2012058461A1 (fr) 2010-10-29 2012-05-03 C.R.Bard, Inc. Mise en place assistée par bio-impédance d'un dispositif médical
US20120127012A1 (en) * 2010-11-24 2012-05-24 Samsung Electronics Co., Ltd. Determining user intent from position and orientation information
WO2012118958A2 (fr) * 2011-03-02 2012-09-07 Diagnostic Photonics, Inc. Sonde optique portative à foyer fixe
WO2012161852A2 (fr) 2011-03-07 2012-11-29 Loma Linda University Medical Center Systèmes, dispositifs et procédés relatifs à l'étalonnage d'un scanner de tomographie par émission de protons calculée par ordinateur
US8407111B2 (en) * 2011-03-31 2013-03-26 General Electric Company Method, system and computer program product for correlating information and location
US8687172B2 (en) 2011-04-13 2014-04-01 Ivan Faul Optical digitizer with improved distance measurement capability
US10219811B2 (en) 2011-06-27 2019-03-05 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
RU2609203C2 (ru) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Определение и калибровка длины иглы для системы наведения иглы
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
EP2747641A4 (fr) 2011-08-26 2015-04-01 Kineticor Inc Procédés, systèmes et dispositifs pour correction de mouvements intra-balayage
US9167989B2 (en) * 2011-09-16 2015-10-27 Mako Surgical Corp. Systems and methods for measuring parameters in joint replacement surgery
WO2013070775A1 (fr) 2011-11-07 2013-05-16 C.R. Bard, Inc Insert à base d'hydrogel renforcé pour ultrasons
US8755925B2 (en) 2011-11-18 2014-06-17 Nike, Inc. Automated identification and assembly of shoe parts
US8958901B2 (en) 2011-11-18 2015-02-17 Nike, Inc. Automated manufacturing of shoe parts
US9451810B2 (en) 2011-11-18 2016-09-27 Nike, Inc. Automated identification of shoe parts
US10552551B2 (en) 2011-11-18 2020-02-04 Nike, Inc. Generation of tool paths for shore assembly
US8849620B2 (en) 2011-11-18 2014-09-30 Nike, Inc. Automated 3-D modeling of shoe parts
WO2013105042A2 (fr) 2012-01-10 2013-07-18 Koninklijke Philips Electronics N.V. Appareil de traitement d'images
US8670816B2 (en) 2012-01-30 2014-03-11 Inneroptic Technology, Inc. Multiple medical device guidance
US20150025548A1 (en) 2012-03-08 2015-01-22 Neutar, Llc Patient and Procedure Customized Fixation and Targeting Devices for Stereotactic Frames
US9186053B2 (en) 2012-05-03 2015-11-17 Covidien Lp Methods of using light to repair hernia defects
GB2502149B (en) * 2012-05-18 2017-01-18 Acergy France SAS Improvements relating to pipe measurement
WO2013182224A1 (fr) * 2012-06-05 2013-12-12 Brainlab Ag Amélioration de la précision de navigation d'un dispositif médical
EP2861153A4 (fr) 2012-06-15 2016-10-19 Bard Inc C R Appareil et procédés permettant la détection d'un capuchon amovible sur une sonde à ultrasons
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
EP2900156B1 (fr) * 2012-09-27 2017-07-12 Stryker European Holdings I, LLC Détermination d'une position rotationnelle
US9792836B2 (en) * 2012-10-30 2017-10-17 Truinject Corp. Injection training apparatus using 3D position sensor
WO2014070799A1 (fr) 2012-10-30 2014-05-08 Truinject Medical Corp. Système d'entraînement à l'injection
US9952149B2 (en) 2012-11-30 2018-04-24 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for determining physical properties of a specimen in a portable point of care diagnostic device
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
CN109008972A (zh) 2013-02-01 2018-12-18 凯内蒂科尔股份有限公司 生物医学成像中的实时适应性运动补偿的运动追踪系统
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9381417B2 (en) 2013-08-16 2016-07-05 Shimano Inc. Bicycle fitting system
US9922578B2 (en) 2014-01-17 2018-03-20 Truinject Corp. Injection site training system
EP3073910B1 (fr) 2014-02-06 2020-07-15 C.R. Bard, Inc. Systèmes pour le guidage et le placement d'un dispositif intravasculaire
DE102014102398A1 (de) * 2014-02-25 2015-08-27 Aesculap Ag Medizinisches Instrumentarium und Verfahren
US10290231B2 (en) 2014-03-13 2019-05-14 Truinject Corp. Automated detection of performance characteristics in an injection training system
CN106572810A (zh) 2014-03-24 2017-04-19 凯内蒂科尔股份有限公司 去除医学成像扫描的预期运动校正的系统、方法和装置
JP6321441B2 (ja) * 2014-05-07 2018-05-09 株式会社ミツトヨ 三次元測定システム、三次元測定方法、および、被測定体
EP3443925B1 (fr) 2014-05-14 2021-02-24 Stryker European Holdings I, LLC Agencement de processeur pour suivre la position d'une cible de travail
KR102258800B1 (ko) * 2014-05-15 2021-05-31 삼성메디슨 주식회사 초음파 진단장치 및 그에 따른 초음파 진단 방법
EP3188660A4 (fr) 2014-07-23 2018-05-16 Kineticor, Inc. Systèmes, dispositifs et procédés de suivi et de compensation de mouvement de patient pendant une imagerie médicale par balayage
JP6769949B2 (ja) 2014-07-24 2020-10-14 ユニバーシティー ヘルス ネットワーク 診断目的のためのデータの収集および解析
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US20180296183A1 (en) * 2014-11-04 2018-10-18 Vib Vzw Method and apparatus for ultrasound imaging of brain activity
EP3185811A4 (fr) * 2014-11-21 2018-05-23 Think Surgical, Inc. Système de communication par lumière visible permettant de transmettre des données entre systèmes de suivi visuel et marqueurs de suivi
US10235904B2 (en) 2014-12-01 2019-03-19 Truinject Corp. Injection training tool emitting omnidirectional light
US10188467B2 (en) 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
RU2709118C2 (ru) * 2014-12-16 2019-12-16 Конинклейке Филипс Н.В. Импульсное светоизлучающее маркерное устройство
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
WO2016210325A1 (fr) 2015-06-26 2016-12-29 C.R. Bard, Inc. Interface de raccord pour système de positionnement de cathéter basé sur ecg
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
US10973587B2 (en) * 2015-08-19 2021-04-13 Brainlab Ag Reference array holder
KR102532287B1 (ko) * 2015-10-08 2023-05-15 삼성메디슨 주식회사 초음파 장치 및 그 제어방법
EP3365049A2 (fr) 2015-10-20 2018-08-29 Truinject Medical Corp. Système d'injection
WO2017091479A1 (fr) 2015-11-23 2017-06-01 Kineticor, Inc. Systèmes, dispositifs, et procédés de surveillance et de compensation d'un mouvement d'un patient durant un balayage d'imagerie médicale
US10134188B2 (en) * 2015-12-21 2018-11-20 Intel Corporation Body-centric mobile point-of-view augmented and virtual reality
JP6952713B2 (ja) 2016-01-19 2021-10-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. 反射を利用する拡張現実システムおよび方法
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
WO2017151441A2 (fr) 2016-02-29 2017-09-08 Truinject Medical Corp. Dispositifs, procédés et systèmes de sécurité d'injection thérapeutique et cosmétique
US10648790B2 (en) 2016-03-02 2020-05-12 Truinject Corp. System for determining a three-dimensional position of a testing tool
WO2017151963A1 (fr) 2016-03-02 2017-09-08 Truinject Madical Corp. Environnements sensoriellement améliorés pour aide à l'injection et formation sociale
AU2017257549B2 (en) 2016-04-26 2021-09-09 Magic Leap, Inc. Electromagnetic tracking with augmented reality systems
KR101790772B1 (ko) * 2016-05-10 2017-10-26 주식회사 힐세리온 가이드용 초음파 영상을 제공하는 휴대형 초음파 진단 시스템
US10765480B2 (en) 2016-08-17 2020-09-08 Synaptive Medical (Barbados) Inc. Wireless active tracking fiducials
CA3034071A1 (fr) * 2016-08-30 2018-03-08 Mako Surgical Corp. Systemes et procedes d'alignement peroperatoire du bassin
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US10510171B2 (en) * 2016-11-29 2019-12-17 Biosense Webster (Israel) Ltd. Visualization of anatomical cavities
US10650703B2 (en) 2017-01-10 2020-05-12 Truinject Corp. Suture technique training system
US10269266B2 (en) 2017-01-23 2019-04-23 Truinject Corp. Syringe dose and position measuring apparatus
US10154885B1 (en) 2017-05-26 2018-12-18 Medline Industries, Inc. Systems, apparatus and methods for continuously tracking medical items throughout a procedure
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
DE102019004233B4 (de) 2018-06-15 2022-09-22 Mako Surgical Corp. Systeme und verfahren zum verfolgen von objekten
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument
WO2020081373A1 (fr) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Systèmes de connexion équipés de sécurité et leurs procédés d'établissement de connexions électriques
US11617625B2 (en) * 2019-03-12 2023-04-04 Medline Industries, Lp Systems, apparatus and methods for properly locating items
US12089902B2 (en) 2019-07-30 2024-09-17 Coviden Lp Cone beam and 3D fluoroscope lung navigation
CA3150788A1 (fr) 2019-08-12 2021-02-18 Bard Access Systems, Inc. Systemes et procedes de detection de forme pour dispositifs medicaux
US12059276B2 (en) 2019-08-21 2024-08-13 Medline Industries, Lp Systems, apparatus and methods for automatically counting medical objects, estimating blood loss and/or communicating between medical equipment
CN112826497A (zh) 2019-11-25 2021-05-25 巴德阿克塞斯系统股份有限公司 光学尖端追踪系统及其方法
WO2021108688A1 (fr) 2019-11-25 2021-06-03 Bard Access Systems, Inc. Systèmes de détection de forme comprenant des filtres et procédés associés
US11269407B2 (en) * 2020-01-30 2022-03-08 Dell Products L.P. System and method of determining attributes of a workspace configuration based on eye gaze or head pose
WO2021173861A1 (fr) 2020-02-28 2021-09-02 Bard Access Systems, Inc. Systèmes de connexion optique et procédés associés
WO2021202589A1 (fr) 2020-03-30 2021-10-07 Bard Access Systems, Inc. Systèmes de diagnostic optique et électrique et procédés associés
CN113842536A (zh) 2020-06-26 2021-12-28 巴德阿克塞斯系统股份有限公司 错位检测系统
CN113926050A (zh) 2020-06-29 2022-01-14 巴德阿克塞斯系统股份有限公司 用于光纤的自动尺寸参考系
WO2022011287A1 (fr) 2020-07-10 2022-01-13 Bard Access Systems, Inc. Surveillance de fonctionnalité continue de fibre optique et système de rapport d'auto-diagnostic
WO2022031613A1 (fr) 2020-08-03 2022-02-10 Bard Access Systems, Inc. Système de détection et de surveillance de fluctuation de fibre optique à réseau de bragg
EP4216819A1 (fr) 2020-09-25 2023-08-02 Bard Access Systems, Inc. Système d'oxymétrie à fibres optiques pour la détection et la confirmation
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US12089815B2 (en) 2022-03-17 2024-09-17 Bard Access Systems, Inc. Fiber optic medical systems and devices with atraumatic tip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4793355A (en) * 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4896673A (en) * 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US5273039A (en) * 1989-10-16 1993-12-28 Olympus Optical Co., Ltd. Surgical microscope apparatus having a function to display coordinates of observation point
US5309913A (en) * 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821469A (en) * 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3983474A (en) * 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4182312A (en) * 1977-05-20 1980-01-08 Mushabac David R Dental probe
FR2416480A1 (fr) * 1978-02-03 1979-08-31 Thomson Csf Dispositif de localisation de source rayonnante et systeme de reperage de direction comportant un tel dispositif
US4341220A (en) * 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4608977A (en) * 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
US4419012A (en) * 1979-09-11 1983-12-06 Elliott Brothers (London) Limited Position measuring system
US4638798A (en) * 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4805616A (en) 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4396945A (en) * 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4585350A (en) * 1983-01-28 1986-04-29 Pryor Timothy R Pulsed robotic inspection
US4651732A (en) * 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
NL8302228A (nl) * 1983-06-22 1985-01-16 Optische Ind De Oude Delft Nv Meetstelsel voor het onder gebruikmaking van een op driehoeksmeting berustend principe, contactloos meten van een door een oppervlakcontour van een objectvlak gegeven afstand tot een referentieniveau.
NL8304023A (nl) * 1983-11-23 1985-06-17 Kinetics Technology Werkwijze voor het zuiveren van afgewerkte smeerolie.
DE3342675A1 (de) * 1983-11-25 1985-06-05 Fa. Carl Zeiss, 7920 Heidenheim Verfahren und vorrichtung zur beruehrungslosen vermessung von objekten
US4753528A (en) * 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4841967A (en) 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4705395A (en) * 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4782239A (en) * 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
SE447848B (sv) * 1985-06-14 1986-12-15 Anders Bengtsson Instrument for metning av ytors topografi
US4743771A (en) * 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4705401A (en) * 1985-08-12 1987-11-10 Cyberware Laboratory Inc. Rapid three-dimensional surface digitizer
US4737032A (en) * 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
IL76517A (en) * 1985-09-27 1989-02-28 Nessim Igal Levy Distance measuring device
US4709156A (en) * 1985-11-27 1987-11-24 Ex-Cell-O Corporation Method and apparatus for inspecting a surface
SE469321B (sv) * 1986-04-14 1993-06-21 Joenkoepings Laens Landsting Saett och anordning foer att framstaella en modifierad tredimensionell avbildning av ett elastiskt deformerbart foeremaal
US4822163A (en) * 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4723544A (en) 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4733969A (en) * 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4743770A (en) * 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4761072A (en) * 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
DE3703422A1 (de) * 1987-02-05 1988-08-18 Zeiss Carl Fa Optoelektronischer abstandssensor
US4745290A (en) * 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4875478A (en) 1987-04-10 1989-10-24 Chen Harry H Portable compression grid & needle holder
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
US4836778A (en) * 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US4829373A (en) * 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4991579A (en) * 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5027818A (en) * 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US5099846A (en) * 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5197476A (en) * 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
JP3021561B2 (ja) * 1989-10-16 2000-03-15 オリンパス光学工業株式会社 観察点座標表示機能を有する手術用顕微鏡装置
ES2085885T3 (es) * 1989-11-08 1996-06-16 George S Allen Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes.
US5107139A (en) * 1990-03-30 1992-04-21 Texas Instruments Incorporated On-chip transient event detector
US5224049A (en) * 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5107839A (en) * 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5017139A (en) 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
WO1992006645A1 (fr) * 1990-10-19 1992-04-30 St. Louis University Systeme de determination de la position d'une sonde chirurgicale dans la tete
US5059789A (en) * 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
US5305091A (en) * 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
ZA942812B (en) * 1993-04-22 1995-11-22 Pixsys Inc System for locating the relative positions of objects in three dimensional space

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4793355A (en) * 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4896673A (en) * 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US5273039A (en) * 1989-10-16 1993-12-28 Olympus Optical Co., Ltd. Surgical microscope apparatus having a function to display coordinates of observation point
US5309913A (en) * 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SACDAC User's Guide, Version 2e, 1989 March 2, "3-D Coordinate Acquisition Software for the SAC GP8-3D Digitizer and the IBM Personal Computer", see the entire PixSys document. *
See also references of EP0700269A4 *

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US5913820A (en) * 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5762064A (en) * 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US6246900B1 (en) 1995-05-04 2001-06-12 Sherwood Services Ag Head band for frameless stereotactic registration
US6122541A (en) * 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
USRE43750E1 (en) 1995-06-14 2012-10-16 Medtronic Navigation, Inc. Method for navigating a catheter probe
US6859660B2 (en) 1995-09-28 2005-02-22 Brainlab Ag Neuro-navigation system
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6996431B2 (en) 1996-02-01 2006-02-07 Shlomo Ben-Haim Method for alignment of bone using position sensors
US7996058B2 (en) 1996-02-01 2011-08-09 Biosense, Inc. Method using implantable wireless transponder using position coordinates for assessing functionality of a heart valve
US6498944B1 (en) 1996-02-01 2002-12-24 Biosense, Inc. Intrabody measurement
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
US6321109B2 (en) 1996-02-15 2001-11-20 Biosense, Inc. Catheter based surgery
US6453190B1 (en) 1996-02-15 2002-09-17 Biosense, Inc. Medical probes with field transducers
US6366799B1 (en) 1996-02-15 2002-04-02 Biosense, Inc. Movable transmit or receive coils for location system
US6203493B1 (en) 1996-02-15 2001-03-20 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
EP1481635A3 (fr) * 1996-02-15 2005-05-25 Biosense Webster, Inc. Bobines mobiles de réception et d'émission pour système de localisation
EP1481635A2 (fr) * 1996-02-15 2004-12-01 Biosense Webster, Inc. Bobines mobiles de réception et d'émission pour système de localisation
WO1997029701A1 (fr) * 1996-02-15 1997-08-21 Biosense Inc. Procede de chirurgie par catheter
US6253770B1 (en) 1996-02-15 2001-07-03 Biosense, Inc. Catheter with lumen
US6266551B1 (en) 1996-02-15 2001-07-24 Biosense, Inc. Catheter calibration and usage monitoring system
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6211666B1 (en) 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US6177792B1 (en) 1996-03-26 2001-01-23 Bisense, Inc. Mutual induction correction for radiator coils of an objects tracking system
US6335617B1 (en) 1996-05-06 2002-01-01 Biosense, Inc. Method and apparatus for calibrating a magnetic field generator
WO1998008112A1 (fr) * 1996-08-22 1998-02-26 Synthes Ag Chur Dispositif d'enregistrement d'images ultrasonores tridimensionnelles
AU739822B2 (en) * 1996-09-16 2001-10-18 Snap-On Technologies, Inc. Measuring device primarily for use with vehicles
US6115927A (en) * 1996-09-16 2000-09-12 Brewco, Inc. Measuring device primarily for use with vehicles
WO1998011405A1 (fr) * 1996-09-16 1998-03-19 Brewco Dispositif de mesure a utiliser principalement avec des vehicules
DE19639615C5 (de) * 1996-09-26 2008-11-06 Brainlab Ag Reflektorenreferenzierungssystem für chirurgische und medizinische Instrumente
US6119033A (en) * 1997-03-04 2000-09-12 Biotrack, Inc. Method of monitoring a location of an area of interest within a patient during a medical procedure
WO1998038919A2 (fr) * 1997-03-04 1998-09-11 Biotrack, Inc. Systeme medical de detection et d'imagerie
WO1998038919A3 (fr) * 1997-03-04 1998-12-30 Biotrack Inc Systeme medical de detection et d'imagerie
US6731966B1 (en) 1997-03-04 2004-05-04 Zachary S. Spigelman Systems and methods for targeting a lesion
USRE39133E1 (en) * 1997-09-24 2006-06-13 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE45509E1 (en) 1997-09-24 2015-05-05 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42226E1 (en) 1997-09-24 2011-03-15 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6147480A (en) * 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
USRE45484E1 (en) 1997-11-20 2015-04-21 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
US6021343A (en) * 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
WO1999026549A1 (fr) * 1997-11-20 1999-06-03 Surgical Navigation Technologies, Inc. Poinçon et/ou taraud et/ou visseuse guides par imagerie
US6796988B2 (en) 1997-12-12 2004-09-28 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6223066B1 (en) 1998-01-21 2001-04-24 Biosense, Inc. Optical position sensors
US7110807B2 (en) 1998-03-05 2006-09-19 Wake Forest University Health Sciences Method and system for creating three-dimensional images using tomosynthetic computed tomography
EP1059877A4 (fr) * 1998-03-05 2002-09-11 Univ Wake Forest Technique de formation d'images tridimensionnelles par tomographie par tomosynthese assistee par ordinateur et appareillage correspondant
EP1059877A1 (fr) * 1998-03-05 2000-12-20 Wake Forest University Technique de formation d'images tridimensionnelles par tomographie par tomosynthese assistee par ordinateur et appareillage correspondant
US6810278B2 (en) 1998-03-05 2004-10-26 Wake Forest University Method and system for creating three-dimensional images using tomosynthetic computed tomography
US7801587B2 (en) 1998-03-05 2010-09-21 Wake Forest University Health Sciences Method and system for creating three-dimensional images using tomosynthetic computed tomography
US6801597B2 (en) 1998-07-24 2004-10-05 Wake Forest University Health Sciences Method and system for creating task-dependent three-dimensional images
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US6498477B1 (en) 1999-03-19 2002-12-24 Biosense, Inc. Mutual crosstalk elimination in medical systems using radiator coils and magnetic fields
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
GB2352289B (en) * 1999-07-14 2003-09-17 Dennis Majoe Position and orientation detection system
GB2352289A (en) * 1999-07-14 2001-01-24 Dennis Majoe Position and orientation detection system
US6587809B2 (en) 1999-07-14 2003-07-01 Hypervision Limited Position and orientation detection system
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US6497134B1 (en) * 2000-03-15 2002-12-24 Image Guided Technologies, Inc. Calibration of an instrument
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
WO2002036178A3 (fr) * 2000-10-31 2002-09-19 Northern Digital Inc Instrument flexible a capteurs optiques
WO2002036178A2 (fr) * 2000-10-31 2002-05-10 Northern Digital, Inc. Instrument flexible a capteurs optiques
US7194296B2 (en) 2000-10-31 2007-03-20 Northern Digital Inc. Flexible instrument with optical sensors
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
DE10136709B4 (de) * 2001-07-27 2004-09-02 Siemens Ag Vorrichtung zum Durchführen von operativen Eingriffen sowie Verfahren zum Darstellen von Bildinformationen während eines solchen Eingriffs an einem Patienten
US7215990B2 (en) 2001-07-27 2007-05-08 Siemens Aktiengesellschaft Device and method for carrying out surgical interventions on a patient
DE10136709A1 (de) * 2001-07-27 2003-02-20 Siemens Ag Vorrichtung und Verfahren zum Durchführen von operativen Eingriffen an einem Patienten
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US10743748B2 (en) 2002-04-17 2020-08-18 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8696548B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US9642514B2 (en) 2002-04-17 2017-05-09 Covidien Lp Endoscope structures and techniques for navigating to a target in a branched structure
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US7945309B2 (en) 2002-11-22 2011-05-17 Biosense, Inc. Dynamic metal immunity
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11684491B2 (en) 2003-01-30 2023-06-27 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11707363B2 (en) 2003-01-30 2023-07-25 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US7974680B2 (en) 2003-05-29 2011-07-05 Biosense, Inc. Hysteresis assessment for metal immunity
US7433728B2 (en) 2003-05-29 2008-10-07 Biosense, Inc. Dynamic metal immunity by hysteresis
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US10383509B2 (en) 2003-09-15 2019-08-20 Covidien Lp System of accessories for use with bronchoscopes
US9089261B2 (en) 2003-09-15 2015-07-28 Covidien Lp System of accessories for use with bronchoscopes
US7771436B2 (en) 2003-12-10 2010-08-10 Stryker Leibinger Gmbh & Co. Kg. Surgical navigation tracker, system and method
US7873400B2 (en) 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
US7787936B2 (en) 2004-01-23 2010-08-31 Traxyz Medical, Inc. Methods and apparatus for performing procedures on target locations in the body
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US10321803B2 (en) 2004-04-26 2019-06-18 Covidien Lp System and method for image-based alignment of an endoscope
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
DE102006022287B4 (de) * 2005-05-13 2017-03-23 General Electric Co. System und Verfahren zur Steuerung eines medizinischen Bildgebungsgerätes
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US9668639B2 (en) 2007-09-27 2017-06-06 Covidien Lp Bronchoscope adapter and method
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US10980400B2 (en) 2007-09-27 2021-04-20 Covidien Lp Bronchoscope adapter and method
US9986895B2 (en) 2007-09-27 2018-06-05 Covidien Lp Bronchoscope adapter and method
US10390686B2 (en) 2007-09-27 2019-08-27 Covidien Lp Bronchoscope adapter and method
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method
US10478092B2 (en) 2008-06-06 2019-11-19 Covidien Lp Hybrid registration method
US10674936B2 (en) 2008-06-06 2020-06-09 Covidien Lp Hybrid registration method
US11931141B2 (en) 2008-06-06 2024-03-19 Covidien Lp Hybrid registration method
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8467589B2 (en) 2008-06-06 2013-06-18 Covidien Lp Hybrid registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US10285623B2 (en) 2008-06-06 2019-05-14 Covidien Lp Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US10070801B2 (en) 2008-07-10 2018-09-11 Covidien Lp Integrated multi-functional endoscopic tool
US10912487B2 (en) 2008-07-10 2021-02-09 Covidien Lp Integrated multi-function endoscopic tool
US11241164B2 (en) 2008-07-10 2022-02-08 Covidien Lp Integrated multi-functional endoscopic tool
US11234611B2 (en) 2008-07-10 2022-02-01 Covidien Lp Integrated multi-functional endoscopic tool
US8551074B2 (en) 2008-09-08 2013-10-08 Bayer Pharma AG Connector system having a compressible sealing element and a flared fluid path element
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US9113813B2 (en) 2009-04-08 2015-08-25 Covidien Lp Locatable catheter
US10154798B2 (en) 2009-04-08 2018-12-18 Covidien Lp Locatable catheter
KR101019189B1 (ko) 2009-04-28 2011-03-04 삼성중공업 주식회사 위치 계측 방법 및 위치 계측 장치
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US11801024B2 (en) 2015-10-28 2023-10-31 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US11786317B2 (en) 2016-05-16 2023-10-17 Covidien Lp System and method to access lung tissue
US11160617B2 (en) 2016-05-16 2021-11-02 Covidien Lp System and method to access lung tissue
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US11672604B2 (en) 2016-10-28 2023-06-13 Covidien Lp System and method for generating a map for electromagnetic navigation
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US11786314B2 (en) 2016-10-28 2023-10-17 Covidien Lp System for calibrating an electromagnetic navigation system
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools

Also Published As

Publication number Publication date
EP1219259A1 (fr) 2002-07-03
AU6666894A (en) 1994-11-08
US5987349A (en) 1999-11-16
US5622170A (en) 1997-04-22
EP0700269A4 (fr) 1998-07-22
ZA942812B (en) 1995-11-22
US5920395A (en) 1999-07-06
DE69431875T2 (de) 2003-05-28
DE69432961D1 (de) 2003-08-21
EP0700269B1 (fr) 2002-12-11
US6442416B1 (en) 2002-08-27
EP1219259B1 (fr) 2003-07-16
CA2161126A1 (fr) 1994-10-27
IL109385A0 (en) 1994-07-31
EP0700269A1 (fr) 1996-03-13
DE69431875D1 (de) 2003-01-23
IL109385A (en) 1998-03-10
DE69432961T2 (de) 2004-02-12
JPH08509144A (ja) 1996-10-01
CA2161126C (fr) 2007-07-31

Similar Documents

Publication Publication Date Title
CA2161126C (fr) Systeme pour determiner les positions relatives des objets
JP4204109B2 (ja) 実時間位置決めシステム
US6850794B2 (en) Endoscopic targeting method and system
EP0931516B1 (fr) Système de détermination de la position d'une sonde chirurgicale par rapport à la tête
US7831096B2 (en) Medical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use
US6675040B1 (en) Optical object tracking system
US8131031B2 (en) Systems and methods for inferred patient annotation
US9320569B2 (en) Systems and methods for implant distance measurement
US6146390A (en) Apparatus and method for photogrammetric surgical localization
EP0600610B1 (fr) Système et méthode pour déterminer une position
US7885441B2 (en) Systems and methods for implant virtual review
US5389101A (en) Apparatus and method for photogrammetric surgical localization
US6405072B1 (en) Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5394875A (en) Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US6490473B1 (en) System and method of interactive positioning
US20080119712A1 (en) Systems and Methods for Automated Image Registration
Lathrop et al. Minimally invasive holographic surface scanning for soft-tissue image registration
US20080154120A1 (en) Systems and methods for intraoperative measurements on navigated placements of implants
CA2348135A1 (fr) Navigation 3d pour systeme d'imagerie a rayons x
US20230130653A1 (en) Apparatus and method for positioning a patient's body and tracking the patient's position during surgery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2161126

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994915394

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1994915394

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994915394

Country of ref document: EP