US10751126B2 - System and method for generating a map for electromagnetic navigation - Google Patents

System and method for generating a map for electromagnetic navigation Download PDF

Info

Publication number
US10751126B2
US10751126B2 US15/337,129 US201615337129A US10751126B2 US 10751126 B2 US10751126 B2 US 10751126B2 US 201615337129 A US201615337129 A US 201615337129A US 10751126 B2 US10751126 B2 US 10751126B2
Authority
US
United States
Prior art keywords
gridpoints
gridpoint
field strength
map
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/337,129
Other versions
US20180116722A1 (en
Inventor
Lev A. Koyrakh
Sean M. Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US15/337,129 priority Critical patent/US10751126B2/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOYRAKH, LEV A., MORGAN, SEAN A.
Priority to EP17863634.6A priority patent/EP3531950A4/en
Priority to CA3040718A priority patent/CA3040718A1/en
Priority to JP2019523099A priority patent/JP7035043B2/en
Priority to AU2017348161A priority patent/AU2017348161B2/en
Priority to CN201780066962.9A priority patent/CN109890312B/en
Priority to PCT/US2017/058421 priority patent/WO2018081356A1/en
Publication of US20180116722A1 publication Critical patent/US20180116722A1/en
Priority to US16/935,322 priority patent/US11672604B2/en
Publication of US10751126B2 publication Critical patent/US10751126B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • A61B2034/2053Tracking an applied voltage gradient

Definitions

  • the present disclosure generally relates to electromagnetic navigation, and more particularly to systems and methods for generating a map for electromagnetic navigation and identifying a location and/or an orientation of a sensor based on the map.
  • Electromagnetic navigation has helped expand medical imaging, diagnosis, prognosis, and treatment capabilities by enabling a location and/or an orientation of a medical device and/or of a target of interest to be accurately determined within a patient's body.
  • an antenna generates an electromagnetic (EM) field in an EM volume
  • a sensor incorporated onto a medical device senses an EM signal or strength based on the field
  • the EMN system identifies a sensor location based on the sensed EM strength.
  • the EM strength at each location in the EM volume is previously measured or mapped to enable the sensor location to be identified in the EM volume by comparing the sensed EM strength and the previously measured EM strength.
  • the senor may be a small-sized sensor, such as a single-coil sensor, because, for instance, a small sized sensor may be navigable to additional locations (e.g., narrower portions of a luminal network) within the patient, to which a larger-sized sensor may not be navigable. Additionally, in contrast to large-size sensors which sometimes must be removed from the patient during a procedure to make room in a working channel for other tools, the small-sized sensor may remain within the patient throughout the procedure without interfering with the other tools, thereby facilitating EMN functionality throughout the procedure.
  • a small-sized sensor such as a single-coil sensor
  • the present disclosure is related to systems and methods for generating a map of EM field strength, for example, a high density (HD) map, for electromagnetic navigation and identifying a sensor location and/or orientation based on the map.
  • the HD map has a greater (e.g., finer) gridpoint resolution (that is, more gridpoints) in the EM volume than that of a low density (LD) grid in the EM volume according to which EM field strength measurements are taken and stored in a LD map.
  • the HD map in some aspects, is generated based on the previously generated LD map of measured EM field strength and also based on EM field strength calculations based, for instance on geometric configurations of antennas in an antenna assembly.
  • the location and/or the orientation of the sensor navigated within the patient's body can be accurately identified without the need to take EM field strength measurements at each of the many gridpoints of the HD map within the EM volume.
  • This can enable the use of a small-sized sensor in EMN procedures while minimizing any increased burden of map generation.
  • a method for generating a high density (HD) map for identifying a location and/or an orientation of an electromagnetic (EM) sensor within an EM volume in which an EM field is generated by way of an antenna assembly.
  • the method includes receiving a measured EM field strength at each gridpoint of a first set of gridpoints of the EM volume from a measurement device.
  • An EM field strength at each gridpoint of a second set of gridpoints of the EM volume is calculated based on a geometric configuration of an antenna of the antenna assembly.
  • the HD map is generated based on the measured EM field strength at each gridpoint of the first set of gridpoints and the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • the antenna assembly generates at least six EM waveforms as components of the EM field.
  • the EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
  • the EM field strength is measured by way of a sensor having three coils corresponding to the three axes, respectively.
  • the second set of gridpoints includes each gridpoint of the first set of gridpoints.
  • the generating the HD map includes calculating an error between the measured EM field strength and the calculated EM field strength, at each gridpoint of the first set of gridpoints.
  • An error for each gridpoint of the second set of gridpoints is interpolated based on the calculated error at each gridpoint of the first set of gridpoints.
  • the interpolated error and the calculated EM field strength at each gridpoint of the second set of gridpoints are added to generate the HD map
  • the error is calculated based on a difference between the measured EM field strength and the calculated EM field strength at each gridpoint of the first set of gridpoints.
  • the error is based on at least one of an L1 or L2 norm of differences between the measured EM field strength and the calculated EM field strength along the three axes.
  • the method further includes calculating a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • the HD map further includes the pseudo-inverse of the calculated EM field strength at each gridpoint of the second plurality of gridpoints.
  • an apparatus for generating an HD map for identifying a location and/or an orientation of an EM sensor within an EM volume in which an EM field is generated by way of an antenna assembly.
  • the apparatus includes a processor and a memory storing processor-executable instructions that, when executed by the processor, cause the processor to receive, from a measurement device, a measured EM field strength at each gridpoint of a first set of gridpoints of the EM volume.
  • An EM field strength at each gridpoint of a second set of gridpoints of the EM volume is calculated based on a geometric configuration of at least one antenna of the antenna assembly.
  • the HD map is generated based on the measured EM field strength at each gridpoint of the first set of gridpoints and the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • the antenna assembly generates at least six EM waveforms as components of the EM field.
  • the EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
  • the EM field strength is measured with a sensor having three coils corresponding to the three axes, respectively.
  • the second set of gridpoints includes each gridpoint of the first set of gridpoints.
  • the generating of the HD map includes calculating an error between the measured EM field strength and the calculated EM field strength, at each gridpoint of the first set of gridpoints.
  • An error for each gridpoint of the second plurality of gridpoints is interpolated based on the calculated error at each gridpoint of the first plurality of gridpoint.
  • the interpolated error and the calculated EM field strength at each gridpoint of the second plurality of gridpoints are added to generate the HD map.
  • the error is calculated based on a difference between the measured EM field strength and the calculated EM field strength at each gridpoint of the first set of gridpoints.
  • the error is based on an L1 and/or L2 norm of differences between the measured EM field strength and the calculated EM field strength along the three axes.
  • the memory further stores instructions that, when executed by the processor, cause the processor to calculate a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • the HD map further includes the pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • a method for identifying a location and/or an orientation of an EM sensor navigated within an EM volume.
  • the method includes retrieving, from a memory, a calculated EM field strength at each gridpoint of a second set of gridpoints of the EM volume.
  • An EM field is generated by way of an antenna assembly.
  • a measured EM field strength is received from the EM sensor.
  • a first gridpoint among a first set of gridpoints of the EM volume is identified based on the measured EM field strength and a HD map.
  • the location and/or the orientation of the EM sensor are identified based on the HD map, using the first gridpoint as an initial condition.
  • the second set of gridpoints includes the first plurality of gridpoints.
  • the antenna assembly includes at least six antennas, each of the antennas including multiple loops.
  • the multiple loops have a geometric configuration.
  • the HD map includes a calculated EM field strength for each gridpoint of the second set of gridpoints in the EM volume.
  • the calculated EM field strength is based on the respective geometric configurations of the at least six antennas.
  • the HD map further includes a pseudo-inverse of the calculated EM field strength at each gridpoint of the second plurality of gridpoints.
  • the identifying the first gridpoint includes identifying an orientation vector ⁇ right arrow over (n) ⁇ (a,b,c) , where (a,b,c) is a gridpoint in the first set of gridpoints, satisfying the following condition: ⁇ right arrow over (n) ⁇ (a,b,c) ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ 1 ⁇ V, where ⁇ right arrow over (B) ⁇ (d,e,f) ⁇ 1 is a pseudo-inverse of ⁇ right arrow over (B) ⁇ (a,b,c) , which is a calculated EM field strength at gridpoint (a,b,c) in the HD map.
  • a difference between ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ right arrow over (B) ⁇ (a,b,c) and V is calculating.
  • the identifying the location and/or the orientation includes identifying an orientation vector ⁇ right arrow over (n) ⁇ (d,e,f) , where (d,e,f) is a gridpoint in the second set of gridpoints and is located nearby (e.g.
  • ⁇ right arrow over (n) ⁇ (D,E,F) is related to the orientation of the EM sensor.
  • the second gridpoint (D,E,F) is the location of the EM sensor.
  • a system for identifying a location and/or an orientation of an EM sensor navigated within an EM volume.
  • the system includes an antenna assembly, the EM sensor, a processor, and a memory.
  • the antenna assembly is configured to radiate an EM field within the EM volume.
  • the EM sensor is configured to measure an EM field strength based on the radiated EM field.
  • the memory stores a calculated EM field strength at each gridpoint of a second set of gridpoints of the EM volume.
  • the memory also stores processor-executable instructions that, when executed by the processor, cause the processor to retrieve, from the memory, the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • a first gridpoint among a first set of gridpoints of the EM volume is identified based on the measured EM field strength and the HD map.
  • the location and/or the orientation of the EM sensor are identified based on the HD map, using the first gridpoint as an initial condition.
  • the second set of gridpoints includes the first set of gridpoints.
  • the antenna assembly includes at least six antennas, each of the antennas including a plurality of loops.
  • the plurality of loops has a geometric configuration.
  • the HD map includes a calculated EM field strength at each gridpoint of the second set of gridpoints in the EM volume.
  • the calculated EM field strength is based on the respective geometric configurations of the at least six antennas.
  • the HD map further includes a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
  • the identifying the first gridpoint includes identifying an orientation vector ⁇ right arrow over (n) ⁇ (a,b,c) , where (a,b,c) is a gridpoint in the first set of gridpoints, satisfying the following condition: ⁇ right arrow over (n) ⁇ (a,b,c) ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ 1 ⁇ V, where ⁇ right arrow over (B) ⁇ (d,e,f) ⁇ 1 is a pseudo-inverse of ⁇ right arrow over (B) ⁇ (a,b,c) , which is a calculated EM field strength at gridpoint (a,b,c) in the HD map.
  • a difference between ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ right arrow over (n) ⁇ (a,b,c) and V is calculated.
  • the identifying the location and/or the orientation includes identifying an orientation vector ⁇ right arrow over (n) ⁇ (d,e,f) , where (d,e,f) is a gridpoint in the second set of gridpoints and is located nearby (e.g., within a predetermined distance from) the first gridpoint (A,B,C), satisfying the following condition: ⁇ right arrow over (n) ⁇ (d,e,f) ⁇ right arrow over (B) ⁇ (d,e,f) ⁇ 1 ⁇ V, where ⁇ right arrow over (B) ⁇ (d,e,f) ⁇ 1 is a pseudo-inverse of ⁇ right arrow over (B) ⁇ (d,e,f) , which is a calculated EM field strength at gridpoint (d,e,f) in the HD map.
  • a difference between ⁇ right arrow over (B) ⁇ (d,e,f) ⁇ right arrow over (n) ⁇ (d,e,f) and V is calculated.
  • a second gridpoint (D,E,F) from among the second plurality of gridpoints, where a difference between ⁇ right arrow over (B) ⁇ (D,E,F) ⁇ right arrow over (n) ⁇ (D,E,F) and V is the smallest is selected.
  • ⁇ right arrow over (n) ⁇ (D,E,F) is related to the orientation of the EM sensor.
  • the second gridpoint (D,E,F) is the location of the EM sensor.
  • FIG. 1 shows an example electromagnetic navigation (EMN) system, in accordance with the present disclosure
  • FIG. 2 is a block diagram of a portion of the EMN system of FIG. 1 , in accordance with the present disclosure
  • FIG. 3 is a graphical illustration of example low density measurements and related curves, in accordance with the present disclosure
  • FIG. 4 is a flowchart illustrating an example method for generating a high density map, in accordance with the present disclosure
  • FIG. 5 is a flowchart illustrating an example method for identifying a location and/or an orientation of a sensor, in accordance with the present disclosure
  • FIG. 6 is a graphical illustration of an example error function, having multiple local minima, of a discrepancy between a measurement value and a calculated value, in accordance with the present disclosure.
  • FIG. 7 is a block diagram of a computing device for use in various embodiments of the present disclosure.
  • the present disclosure is related to systems and methods for generating a high density (HD) map and identifying a location and/or an orientation of a sensor, which may include at least one coil, based on the HD map.
  • the respective geometric configurations the antennas enable automated and highly repeatable processes for reproducing such antennas and/or for mathematically calculating the expected or theoretical EM strength at every HD gridpoint within an EM volume (for instance, where the antennas have geometric configurations based on linear portions of printed circuit board (PCB) traces, which facilitate use of the superposition principle in computing the total contribution of the fields generated by way of each antenna to the total combined EM field within the volume).
  • PCB printed circuit board
  • the present disclosure is related to systems and methods for identifying a location and/or an orientation of an EM sensor by using the HD map.
  • the EM sensor senses EM strengths
  • an EMN system compares the sensed EM strengths with the expected EM strengths of the HD map and identifies the location and the orientation of the EM sensor.
  • a fine coordinate system (e.g., a HD coordinate system or set of gridpoints) is used to describe a coordinate system of the EM volume, which includes more gridpoints than those in a coarse coordinate system (e.g., a LD coordinate system or set of gridpoints) of the EM volume.
  • every gridpoint of the coarse coordinate system may be included in the fine coordinate system.
  • the coarse coordinate system is utilized for actual EM field strength measurements and the fine coordinate system is utilized for mathematical calculations of EM field strength.
  • FIG. 1 illustrates an example electromagnetic navigation (EMN) system 100 , which is configured to identify a location and/or an orientation of a medical device, or sensor thereof, navigating (e.g., to a target) within the patient's body by using an antenna assembly, which includes a plurality of antennas and generates EM fields.
  • the EMN system 100 is further configured to augment CT, MRI, or fluoroscopic images in navigation through patient's body toward a target of interest, such as a deceased portion in a luminal network of a patient's lung.
  • a target of interest such as a deceased portion in a luminal network of a patient's lung.
  • the EMN system 100 includes a catheter guide assembly 110 , a bronchoscope 115 , a computing device 120 , a monitoring device 130 , an EM board 140 , a tracking device 160 , and reference sensors 170 .
  • the bronchoscope 115 is operatively coupled to the computing device 120 and the monitoring device 130 via a wired connection (as shown in FIG. 1 ) or wireless connection (not shown).
  • the bronchoscope 115 is inserted into the mouth of a patient 150 and captures images of the luminal network of the lung.
  • a catheter guide assembly 110 for achieving access to the periphery of the luminal network of the lung of the patient 150 .
  • the catheter guide assembly 110 may include an extended working channel (EWC) 111 with an EM sensor 112 at the distal portion of the EWC 111 .
  • a locatable guide catheter (LG) may be inserted into the EWC 111 with another EM sensor at the distal portion of the LG.
  • the EM sensor 112 at the distal portion of the EWC 111 or the LG is used to identify a location and/or an orientation of the EWC 111 or the LG while navigating through the luminal network of the lung. Due to the size restriction in the EWC 111 or the LG, in some embodiments, the EM sensor 112 may include only one single coil for detecting EM strength of an EM field over the patient 150 . However, the number of coils in the EM sensor is not limited to one but may be two or more.
  • the computing device 120 such as, a laptop, desktop, tablet, or other similar computing device, includes a display 122 , one or more processors 124 , memory 126 , an AC current driver 127 for providing AC current signals to the antenna assembly 145 , a network card 128 , and an input device 129 .
  • the particular configuration of the computing device 120 illustrated in FIG. 1 is provided as an example, but other configurations of the components shown in FIG. 1 as being included in the computing device 120 are also contemplated. In particular, in some embodiments, one or more of the components ( 122 , 124 , 126 , 127 , 128 , and/or 129 ) shown in FIG.
  • the AC current driver 127 may, in some example aspects, be separate from the computing device 120 and may be coupled to the antenna assembly 145 and/or coupled to one or more components of the computing device 120 , such as the processor 124 and the memory 126 , by way of one or more corresponding paths.
  • the EMN system 100 may also include multiple computing devices, wherein the multiple computing devices are employed for planning, treatment, visualization, or helping clinicians in a manner suitable for medical operations.
  • the display 122 may be touch-sensitive and/or voice-activated, enabling the display 122 to serve as both input and output devices.
  • the display 122 may display two dimensional (2D) images or three dimensional (3D) model of a lung to locate and identify a portion of the lung that displays symptoms of lung diseases.
  • the one or more processors 124 execute computer-executable instructions.
  • the processors 124 may perform image-processing functions so that the 3D model of the lung can be displayed on the display 122 or location algorithm to identify a location and an orientation of the EM sensor 112 .
  • the computing device 120 may further include a separate graphic accelerator (not shown) that performs only the image-processing functions so that the one or more processors 124 may be available for other programs.
  • the memory 126 stores data and programs. For example, data may be mapping data for the EMN or any other related data such as a HD map, image data, patients' medical records, prescriptions and/or history of the patient's diseases.
  • the HD map may include a plurality of gridpoints in a fine coordinate system of the EM volume in which a medical device (e.g., the EWC 111 , LG, treatment probe, or other surgical devices) is to be navigated, and expected EM strengths at each of the plurality of gridpoints.
  • a medical device e.g., the EWC 111 , LG, treatment probe, or other surgical devices
  • the one or more processors 124 may compare the sensed EM strength with the expected EM strengths in the HD map and identify the location of the EM sensor 112 within the EM volume. Further, an orientation of the medical device may be also calculated based on the sensed EM strength and the expected EM strengths in the HD map.
  • the EM board 140 is configured to provide a flat surface for the patient 150 to lie upon and includes an antenna assembly 145 .
  • the antenna assembly 145 When the patient 150 lies upon on the EM board 140 , the antenna assembly 145 generates an EM field sufficient to surround a portion of the patient 150 or the EM volume.
  • the antenna assembly 145 includes a plurality of antennas, each of which may include a plurality of loops.
  • each antenna is configured to generate an EM waveform having a corresponding frequency.
  • the number of antennas may be at least six. In an aspect, the number of antennas may be nine so that nine different EM waveforms can be generated.
  • a time multiplexing method is employed in generating the EM waveforms.
  • the antennas of the antenna assembly 145 may generate EM waveforms with the same frequency at different times during a period.
  • frequency multiplexing method may be employed, where each antenna generates EM waveform having a frequency different from each other.
  • combination of the time multiplexing and frequency multiplexing methods may be employed.
  • the antennas are grouped into more than one group. Antennas in the same group generate EM waveforms having the same frequency but at different times. Antennas in different groups may generate EM waveforms having different frequencies from each other.
  • Corresponding de-multiplexing method is to be used to separate EM waveforms.
  • each antenna may have a geometric configuration (for instance, where the antennas each have geometric configurations based on linear portions of printed circuit board (PCB) traces or wires, which facilitate use of the superposition principle in computing the total contribution of the fields generated by way of each antenna to the total combined EM field within the volume) so that each portion of the plurality of loops can be expressed as mathematical relationship or equations, as described in further detail below.
  • the magnetic field can thus be computed for each trace on the antenna and the contributions from all traces can be summed. Based on this geometric configuration, expected EM strength at each gridpoint in the HD map can be theoretically or mathematically calculated. Additional aspects of such example antennas and methods of manufacturing the antennas are disclosed in U.S.
  • FIG. 2 shows a block diagram of a portion of the example electromagnetic navigation system 100 of FIG. 1 , according to the present disclosure.
  • the computing device 120 of the EMN system 100 controls the antenna assembly 145 embedded in the EM board 140 to generate an EM field, receives sensed results from the EM sensor 112 , and determines a location and an orientation of the EM sensor 112 in the EM volume.
  • the computing device 120 includes a clock 205 , which generates a clock signal used for generating the EM field and sampling the sensed results. Since the same clock signal is used for generating the EM field and sampling the sensed EM field, synchronization between the magnetic field generation circuitry (e.g., a waveform generator 210 ) and the waveform acquisition circuitry (e.g., a digitizer 215 ) may be achieved. In other words, when the clock 205 provides a clock signal to the waveform generator 210 and the digitizer 215 , the EM waveforms generated by the antenna assembly 145 are digitally sampled by digitizer 215 substantially at the same time.
  • a clock 205 which generates a clock signal used for generating the EM field and sampling the sensed results. Since the same clock signal is used for generating the EM field and sampling the sensed EM field, synchronization between the magnetic field generation circuitry (e.g., a waveform generator 210 ) and the waveform acquisition circuitry (e.g.
  • the digitizer 215 may include an analog-to-digital converter (ADC, which is not shown) to digitally sample the sensed results and an amplifier (which is not shown) to amplify the magnitude of the sensed result so that the magnitude of the sensed results is within the operable range of the ADC.
  • ADC analog-to-digital converter
  • the digitizer 215 may include a pre-amplifier and post-amplifier so that the magnitude of the sensed result is amplified to be within the operable range of the ADC by the pre-amplifier and digital samples are also amplified to the magnitude of the sensed result by the post-amplifier.
  • the demodulator 220 demodulates the digital samples to remove unwanted signals (e.g., noises) and to restore the EM waveforms, which have been generated by the antenna assembly 145 .
  • the demodulator 220 may use time de-multiplexing method, frequency de-multiplexing method, or combination of both to separate and identify the EM waveforms depending on the method used by the antennas of the antenna assembly 145 to generate the EM waveforms, and to determine EM strength affected by each of the antenna of the antenna assembly 145 .
  • the demodulator 220 is capable of identifying six EM strengths, which is sensed by the EM sensor 112 , for the six antennas, respectively.
  • the outputs of the demodulator 220 may be expressed in a form of a nine by one matrix.
  • the demodulator 220 demodulates the sensed result.
  • the demodulator 220 may use a set of finely tuned digital filters. Orthogonal frequency division multiplexing may also be utilized, in which the EM field and sampling frequencies are chosen in such a way that only the desired frequency from a specific antenna is allowed to pass while other frequencies are precisely stopped. In an aspect, the demodulator 220 may use a multiple tap orthogonal frequency matched filter, in which the digital filter for a specific frequency is tuned to the desired demodulation window.
  • the memory 126 may store data and programs related to identification of a location and an orientation.
  • the data includes a high density (HD) map 225 , which includes a plurality of gridpoints according to the fine coordinate system for the EM volume and expected EM strengths at the gridpoints.
  • the HD map 225 may be based on three-axis coordinate system, where each gridpoint has three coordinates corresponding to the three axes, respectively.
  • the expected EM strength at each gridpoint may include one EM strength value along each axis for each EM waveform.
  • the expected EM strength may include nine EM strength values along the x axis, nine EM strength values along the y axis, and nine EM strength values along the z axis, at each gridpoint.
  • Such expected EM strength at each gridpoint may be expressed in a nine by three matrix form.
  • the HD map 225 may be made with computations 230 , which includes theoretically calculated EM strengths at each axis at each gridpoint in the fine coordinate system, and measurement 235 , which includes measurements at each axis at each gridpoint in the coarse coordinate system.
  • the fine coordinate system includes all the gridpoints in the coarse coordinate system and the gridpoints of the fine coordinate system are more finely distributed than those of the coarse coordinate system.
  • measurement may not have to be made with the fine coordinate system. Rather, the measurement may be made in the coarse coordinate system and theoretical computations may be made in the fine coordinate system.
  • the HD map 225 may be generated. Generation of the HD map 225 based on the measurement 235 and calculations 230 will be described in further detail with respect to FIG. 4 below.
  • calibration data may be also stored in the memory 126 in a form of sensor calibration 240 and hardware calibration 245 .
  • the computing device 120 uses the location algorithm 250 , which is also stored in the memory 126 , with the HD map 225 to identify the location and the orientation of the EM sensor 112 in the fine coordinate system. Identification of the location and/or the orientation will be described in further detail with respect to FIG. 5 below.
  • the location algorithm 250 may utilize any error minimization algorithm in identifying the location and the orientation of the EM sensor 112 .
  • Levenberg-Marquardt algorithm may be employed to minimize errors between the expected EM strengths of the HD density map and the sensed results.
  • Other error minimization methods or algorithms which a person having ordinary skill in the art can readily appreciate, may also be utilized without departing from the scope of this disclosure.
  • the memory 126 further includes applications 255 , which can be utilized by the computing device 120 of the EMN system 100 and which uses information regarding the location and the orientation of the EM sensor 112 .
  • Such application 255 may be a displaying application, which displays a graphical representation of a medical device, on which the EM sensor 112 is mounted or installed, at the location of the EM sensor 112 and along the orientation of the EM sensor 112 in the EM volume, an application for treatment, which determines whether a medical device is near a target of interest, or any other applications, which use the location and the orientation of the EM sensor 112 .
  • FIG. 3 is a graphical illustration of multiple curves 320 , 325 , 330 , and 340 , as well as discrete EM field strength measurements 315 a - 315 i taken in the coarse coordinate system.
  • the horizontal axis may represent any axis among x, y, and z axes for the EM volume and the vertical axis represents a magnitude of EM field strengths.
  • Gridpoints of the coarse coordinate system are shown separated by 50 millimeters and measured EM strengths at the gridpoints of the coarse coordinate system are shown as black dots 315 a - 315 i.
  • measurements may be taken at a specific hospital rooms and beds, where the EMN system 100 will be used, by way of a measurement jig, which includes three coils sensing an EM field strength in each of three different directions (e.g., x, y, and z axes).
  • a measurement jig which includes three coils sensing an EM field strength in each of three different directions (e.g., x, y, and z axes). Examples of such a measurement jig are disclosed by Provisional U.S. Patent Application No. 62/237,084, entitled “Systems And Methods For Automated Mapping And Accuracy-Testing,” filed on Oct. 5, 2015, the entire contents of which are hereby incorporated herein by reference.
  • interpolation may be used to generate first and second interpolated curves, 320 and 325 .
  • the first interpolated curve 320 is generated by a linear interpolation method and the second interpolated curve 325 is generated by B-spline interpolation.
  • Calculated EM strengths at gridpoints in the HD map are also interpolated to generate a third interpolated curve 330 .
  • the first, second, and third interpolated curves 320 , 325 , 330 are substantially different from each other between two gridpoints 315 h and 315 i .
  • the first interpolated curve 320 is lower than the third interpolated curve 330
  • the second interpolated curve 325 is much higher than the second and third interpolated curves 325 and 330 . Due to these big differences, an error may be apparent if only one of the three interpolated curves is used.
  • a fourth interpolated curve 340 is used.
  • the fourth curve 340 is generated by calculating discrepancies between theoretical calculations and measurements at the LD gridpoints, such as 315 a - 315 i , and interpolating the discrepancies for the HD gridpoints.
  • expected EM strength at each gridpoints in the HD map is obtained and higher accuracy may be obtained.
  • FIG. 4 Detailed descriptions regarding how to generate the HD map is described with respect to FIG. 4 below.
  • FIG. 4 is a flowchart illustrating an example method 400 for generating an HD map based on theoretical calculations in the fine coordinate system and measurements in the coarse coordinate system. Measurements may be performed for the EM field generated by the antennas of the antenna assembly 145 of FIG. 1 , each of which having a corresponding geometric configuration.
  • EM field measurements at all gridpoints in the coarse coordinate system are received from a measurement jig.
  • the measurements may include three different measurements along three axes in the coarse coordinate system for each EM waveform.
  • the measurements at one gridpoint may include three values for the three different axes and nine of three values for the nine different waveforms, respectively.
  • these measurements may be in a form of nine by three matrix.
  • each antenna includes a plurality of loops, which have geometric configurations.
  • each loop of the antenna can be expressed in a form of mathematical equations or is made of simply linear portions.
  • EM strength at any gridpoints in the fine coordinate system may be calculated by using Biot-Savart-Laplace law as follows:
  • B(r) is the EM strength at the gridpoint r influenced by the linear portion C
  • ⁇ 0 is a magnetic constant of the vacuum permeability, 4 ⁇ 10 ⁇ 7 V ⁇ s/(A ⁇ m)
  • ⁇ C is a symbol of line integral on the linear portion C
  • I is the magnitude of the current passing through the linear portion C
  • dl is a vector whose magnitude is the length of the differential element of the linear portion C in the direction of current
  • r′ is a displacement vector from the differential element dl of the linear portion C to the gridpoint r
  • is a vector symbol representing a cross product between two vectors.
  • total EM strength at the gridpoint r can be a sum of the EM strengths influenced by all the linear portions of the antenna. Further, the EM strength at the gridpoint r by the plural antennas is calculated in the same way. In other words, the total EM strength at gridpoint r may include three calculated values for the three different axes (e.g., x, y, and z axes) for one antenna, and nine of three calculated values for the nine antennas, in a case when there are nine antennas. In an aspect, the calculated EM strength may be expressed in a nine by three matrix form.
  • a discrepancy is calculated between the measured EM field and the calculated EM field at each gridpoint in the coarse coordinate system.
  • the discrepancy may be made smaller by calibrating parameters of the three coil sensor of the measurement jig, calibrating the antennas, or calibrating parameters (e.g., frequencies or phases for the waveform generator 210 ) of the computing device of the EMN system.
  • the calculated discrepancies at gridpoints in the coarse coordinate system are interpolated for gridpoints in the fine coordinate system. Any method of interpolation including linear interpolation, b-spline interpolation, etc. may be used.
  • the interpolated discrepancies are added to the theoretical calculations of the EM field to from expected EM field strength at each gridpoint in the fine coordinate system.
  • the expected EM field strength at each gridpoint may be in a form of a nine by three matrix in a case when there are nine separate EM waveforms.
  • the HD map may further include a pseudo-inverse of the expected EM field strength at each gridpoint in the HD map. This pseudo-inverse may be used in identifying a location and an orientation of the EM sensor, which is described in further detail with respect to FIG. 5 below.
  • FIG. 5 is a flowchart illustrating an example method 500 for identifying a location and/or an orientation of an EM sensor, for example, mounted on a medical device, which is navigated within a patient's body, in accordance with the present disclosure.
  • the method 500 may be used while a medical device navigates inside the patient's body.
  • the HD map which includes expected EM field strength at each gridpoint of the HD map, is retrieved from a memory.
  • the expected EM field strengths are based on the theoretical computations in the fine coordinate system and measurements in the coarse coordinate system.
  • the EM sensor mounted on the medical device periodically transmits sensed EM field strength to an EMN computing device, which digitally samples the sensed EM field strength.
  • the EMN computing device measures the EM field strength based on the digital samples in step 520 .
  • the EMN computing device compares all gridpoints in the coarse coordinate system with the measured EM field strength, simply pickups, to find an approximate gridpoint in the coarse coordinate system near the location of the EM sensor, as an initial location, at 540 .
  • a following error function may be used at 540 :
  • E the error value
  • is a counter
  • N is the number of antennas
  • (a,b,c) is a gridpoint in the coarse coordinate system
  • B ⁇ (a,b,c) is a vector, one by three matrix, including an expected EM field strength at (a,b,c) influenced by the ⁇ -th antenna
  • “ ⁇ ” is a symbol of dot product between two vectors
  • ⁇ right arrow over (n) ⁇ (a,b,c) is an orientation of the EM sensor
  • V ⁇ is a vector, one by one matrix, including a pickup influenced by the ⁇ -th antenna
  • the parameter b is used when the gain of the EM sensor is known and fixed.
  • the value for the parameter b may be chosen so as not to dominate the error function E.
  • the parameter b when the gain of the EM sensor is not known, the parameter b may be set to zero or the gain squared, g 2 , is assumed to be equal to the squared norm of the orientation vector ⁇ right arrow over (n) ⁇ .
  • the parameter b is assumed to be zero.
  • the error function E becomes:
  • ⁇ ⁇ 1 N ⁇ ⁇ ( B ⁇ ⁇ ⁇ ( a , b , c ) ⁇ n ⁇ ⁇ ( a , b , c ) - V ⁇ ) 2 .
  • This error function is useful in identifying a location in the coarse or fine coordinate system.
  • the error function is not limited to the above equation (2) or (3) and can be any error function that a person of ordinary skill in the art would readily appreciate without departing from the scope of this disclosure.
  • the error function E may be:
  • a curve of an error function along one axis is shown to illustrate how selection of an initial location may impact the determination of a location that provides the global minimum of the error.
  • the horizontal axis represents a location along one axis (e.g., x, y, or z axis) and the vertical axis represents a magnitude of the error function. If the initial location is set to be near X 0 or X 1 , the location giving a local minimum will be between X 0 and X 1 . If the initial location is set to be X 5 or X 6 , the location giving a local minimum will be between X 5 and X 6 .
  • the method 500 evaluates the error function at every gridpoint in the coarse coordinate system to find a first gridpoint, which provides the global minimum, in step 540 .
  • ⁇ right arrow over (B) ⁇ (a,b,c) is a nine by three matrix
  • ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ 1 is a three by nine matrix
  • V is a nine by one matrix.
  • ⁇ right arrow over (B) ⁇ (a,b,c) ⁇ 1 ⁇ V results in a three by one matrix, which is a column vector representing an orientation matrix, ⁇ right arrow over (n) ⁇ (a,b,c) at gridpoint (a,b,c) in the coarse coordinate system.
  • the error function is evaluated. Errors of all gridpoints in the coarse coordinate system are compared with each other, and the gridpoint that provides the smallest error is selected as a first gridpoint and is set as the initial location at 540 . After the initial location is set at 540 , 550 follows. Also, at 530 , when it is determined that the initial location is set, the step 550 is performed.
  • a predetermined number of gridpoints around the initial location are selected to calculate the error function in the same way as in equation (2) or (3). For example, if the predetermined number of gridpoints is three, three gridpoints from the initial location in both directions along x, y, and z axes form a cube, 7 by 7 by 7 gridpoints. Thus, 343 gridpoints are selected to calculate the error function, and one among the selected gridpoints, which provides the smallest error, is selected as a second gridpoint, i.e., the location of the EM sensor. The corresponding orientation vector is also set as the orientation of the EM sensor in step 550 . The second gridpoint is set as the initial location in step 560 .
  • the error may be compared with a predetermined threshold. If the error is less than the predetermined threshold, that gridpoint is selected as the second gridpoint or the location of the EM sensor and corresponding orientation vector is selected as the orientation of the EM sensor.
  • step 570 it is determined whether the target has been reached. When it is determined that the target has not been reached, steps 520 - 570 are repeated until the target is reached. Otherwise, the method 500 ends.
  • FIG. 7 there is shown a block diagram of a computing device 700 , which can be used as the computing device 120 of the EMN system 100 , the tracking device 160 , or a computer performing the method 400 of FIG. 4 or the method 500 of FIG. 5 .
  • the computing device 700 may include a memory 702 , a processor 704 , a display 706 , network interface 708 , an input device 710 , and/or output module 712 .
  • the memory 702 includes any non-transitory computer-readable storage media for storing data and/or software that is executable by the processor 704 and which controls the operation of the computing device 700 .
  • the memory 702 may include one or more solid-state storage devices such as flash memory chips.
  • the memory 702 may include one or more mass storage devices connected to the processor 704 through a mass storage controller (not shown) and a communications bus (not shown).
  • mass storage controller not shown
  • communications bus not shown
  • computer readable storage media include non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • computer-readable storage media include RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, Blu-Ray or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device 700 .
  • the memory 702 may store application 716 and data 714 .
  • the application 716 may, when executed by the processor 704 , cause the display 706 to present user interface 718 on its screen.
  • the processor 704 may be a general purpose processor, a specialized graphic processing unit (GPU) configured to perform specific graphics processing tasks while freeing up the general purpose processor to perform other tasks, and/or any number or combination of such processors.
  • GPU graphic processing unit
  • the display 706 may be touch-sensitive and/or voice-activated, enabling the display 706 to serve as both an input and output device.
  • a keyboard not shown
  • mouse not shown
  • other data input devices may be employed.
  • the network interface 708 may be configured to connect to a network such as a local area network (LAN) consisting of a wired network and/or a wireless network, a wide area network (WAN), a wireless mobile network, a Bluetooth network, and/or the internet.
  • LAN local area network
  • WAN wide area network
  • wireless mobile network a wireless mobile network
  • Bluetooth network a wireless network
  • the computing device 700 may receive measurement data and variables, and perform the method 400 of FIG. 4 to generate a HD map.
  • the computing device 700 may receive updates to its software, for example, application 716 , via network interface 708 .
  • the computing device 700 may also display notifications on the display 706 that a software update is available.
  • the computing device 700 may receive computed tomographic (CT) image data of a patient from a server, for example, a hospital server, internet server, or other similar servers, for use during surgical ablation planning.
  • CT image data may also be provided to the computing device 700 via a removable memory.
  • Input device 710 may be any device by means of which a user may interact with the computing device 700 , such as, for example, a mouse, keyboard, foot pedal, touch screen, and/or voice interface.
  • Output module 712 may include any connectivity port or bus, such as, for example, parallel ports, serial ports, universal serial busses (USB), or any other similar connectivity port known to those skilled in the art.
  • connectivity port or bus such as, for example, parallel ports, serial ports, universal serial busses (USB), or any other similar connectivity port known to those skilled in the art.
  • the application 716 may be one or more software programs stored in the memory 702 and executed by the processor 704 of the computing device 700 .
  • one or more software programs in the application 716 may be loaded from the memory 702 and executed by the processor 704 to generate the HD map.
  • one or more programs in the application 716 may be loaded, identify the location and the orientation of an EM sensor mounted on a medical device, and display the medical device at the location along the orientation on a screen overlaid with other imaging data, such as CT data or a three dimensional model of a patient.
  • one or more programs in the application 716 may guide a clinician through a series of steps to identify a target, size the target, size a treatment zone, and/or determine an access route to the target for later use during the procedure phase.
  • one or more programs in the application 716 may be loaded on computing devices in an operating room or other facility where surgical procedures are performed, and is used as a plan or map to guide a clinician performing a surgical procedure by using the information regarding the location and the orientation.
  • the application 716 may be installed directly on the computing device 700 , or may be installed on another computer, for example a central server, and opened on the computing device 700 via the network interface 708 .
  • the application 716 may run natively on the computing device 700 , as a web-based application, or any other format known to those skilled in the art.
  • the application 716 will be a single software program having all of the features and functionality described in the present disclosure.
  • the application 716 may be two or more distinct software programs providing various parts of these features and functionality.
  • the application 716 may include one software program for generating a HD map, another one for identifying a location and an orientation, and a third program for navigation and treatment program.
  • the various software programs forming part of the application 716 may be enabled to communicate with each other and/or import and export various data including settings and parameters.
  • the application 716 may communicate with a user interface 718 which generates a user interface for presenting visual interactive features to a user, for example, on the display 706 and for receiving input, for example, via a user input device.
  • user interface 718 may generate a graphical user interface (GUI) and output the GUI to the display 706 for viewing by a user.
  • GUI graphical user interface
  • the computing device 700 may be linked to the display 130 , thus enabling the computing device 700 to control the output on the display 130 along with the output on the display 706 .
  • the computing device 700 may control the display 130 to display output which is the same as or similar to the output displayed on the display 706 .
  • the output on the display 706 may be mirrored on the display 130 .
  • the computing device 700 may control the display 130 to display different output from that displayed on the display 706 .
  • the display 130 may be controlled to display guidance images and information during the surgical procedure, while the display 706 is controlled to display other output, such as configuration or status information of an electrosurgical generator 101 as shown in FIG. 1 .
  • the application 716 may include one software program for use during the planning phase, and a second software program for use during the treatment phase.
  • the various software programs forming part of application 716 may be enabled to communicate with each other and/or import and export various settings and parameters relating to the navigation and treatment and/or the patient to share information.
  • a treatment plan and any of its components generated by one software program during the planning phase may be stored and exported to be used by a second software program during the procedure phase.

Abstract

Systems and methods are provided for generating a high density (HD) map for identifying a location and/or an orientation of an electromagnetic (EM) sensor within an EM volume in which an EM field is generated by way of an antenna assembly. A measured EM field strength at each gridpoint of a set of gridpoints of the EM volume are received from a measurement device. An EM field strength at each gridpoint of a second set of gridpoints of the EM volume is calculated based on a geometric configuration of an antenna of the antenna assembly. The HD map is generated based on the measured EM field strength at each gridpoint of the first set of gridpoints and the calculated EM field strength at each gridpoint of the second set of gridpoints.

Description

BACKGROUND Technical Field
The present disclosure generally relates to electromagnetic navigation, and more particularly to systems and methods for generating a map for electromagnetic navigation and identifying a location and/or an orientation of a sensor based on the map.
Discussion of Related Art
Electromagnetic navigation (EMN) has helped expand medical imaging, diagnosis, prognosis, and treatment capabilities by enabling a location and/or an orientation of a medical device and/or of a target of interest to be accurately determined within a patient's body. Generally, an antenna generates an electromagnetic (EM) field in an EM volume, a sensor incorporated onto a medical device senses an EM signal or strength based on the field, and the EMN system identifies a sensor location based on the sensed EM strength. The EM strength at each location in the EM volume is previously measured or mapped to enable the sensor location to be identified in the EM volume by comparing the sensed EM strength and the previously measured EM strength.
In some cases, it may be desirable for the sensor to be a small-sized sensor, such as a single-coil sensor, because, for instance, a small sized sensor may be navigable to additional locations (e.g., narrower portions of a luminal network) within the patient, to which a larger-sized sensor may not be navigable. Additionally, in contrast to large-size sensors which sometimes must be removed from the patient during a procedure to make room in a working channel for other tools, the small-sized sensor may remain within the patient throughout the procedure without interfering with the other tools, thereby facilitating EMN functionality throughout the procedure.
To enable a small-sized sensor such as a single-coil sensor to be accurately located within an EM volume, it may be necessary to generate multiple (for instance, 6 or more) geometrically diverse EM fields within the EM volume. However, because each of the EM fields would require generation of a measured mapping of the corresponding EM strength at each location in the EM volume, increasing the number of EM fields would increase the number of mappings, which can be time consuming and laborious. Additionally, to improve the accuracy with which the sensor location can be determined, precise measurements at many (for example, thousands) of gridpoints within the EM volume may be needed, which could make the generating of the mapping even more time consuming. Also, because of the potential variability during the manufacturing processes and tolerances of electrical equipment, the mapping process may need to be completed for each new antenna that is produced and for each electromagnetic navigation system installation.
Given the foregoing, a need exists for improved systems and methods for generating a map for electromagnetic navigation and identifying a location and/or an orientation of a sensor based on the map.
SUMMARY
The present disclosure is related to systems and methods for generating a map of EM field strength, for example, a high density (HD) map, for electromagnetic navigation and identifying a sensor location and/or orientation based on the map. In one example, the HD map has a greater (e.g., finer) gridpoint resolution (that is, more gridpoints) in the EM volume than that of a low density (LD) grid in the EM volume according to which EM field strength measurements are taken and stored in a LD map. The HD map, in some aspects, is generated based on the previously generated LD map of measured EM field strength and also based on EM field strength calculations based, for instance on geometric configurations of antennas in an antenna assembly. In this manner, the location and/or the orientation of the sensor navigated within the patient's body can be accurately identified without the need to take EM field strength measurements at each of the many gridpoints of the HD map within the EM volume. This can enable the use of a small-sized sensor in EMN procedures while minimizing any increased burden of map generation.
In accordance with one aspect of the present disclosure, a method is provided for generating a high density (HD) map for identifying a location and/or an orientation of an electromagnetic (EM) sensor within an EM volume in which an EM field is generated by way of an antenna assembly. The method includes receiving a measured EM field strength at each gridpoint of a first set of gridpoints of the EM volume from a measurement device. An EM field strength at each gridpoint of a second set of gridpoints of the EM volume is calculated based on a geometric configuration of an antenna of the antenna assembly. The HD map is generated based on the measured EM field strength at each gridpoint of the first set of gridpoints and the calculated EM field strength at each gridpoint of the second set of gridpoints.
In another aspect of the present disclosure, the antenna assembly generates at least six EM waveforms as components of the EM field.
In a further aspect of the present disclosure, the EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
In yet another aspect of the present disclosure, the EM field strength is measured by way of a sensor having three coils corresponding to the three axes, respectively.
In still another aspect of the present disclosure, the second set of gridpoints includes each gridpoint of the first set of gridpoints.
In another aspect of the present disclosure, the generating the HD map includes calculating an error between the measured EM field strength and the calculated EM field strength, at each gridpoint of the first set of gridpoints. An error for each gridpoint of the second set of gridpoints is interpolated based on the calculated error at each gridpoint of the first set of gridpoints. The interpolated error and the calculated EM field strength at each gridpoint of the second set of gridpoints are added to generate the HD map
In a further aspect of the present disclosure, the error is calculated based on a difference between the measured EM field strength and the calculated EM field strength at each gridpoint of the first set of gridpoints.
In yet another aspect of the present disclosure, the error is based on at least one of an L1 or L2 norm of differences between the measured EM field strength and the calculated EM field strength along the three axes.
In still another aspect of the present disclosure, the method further includes calculating a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
In another aspect of the present disclosure, the HD map further includes the pseudo-inverse of the calculated EM field strength at each gridpoint of the second plurality of gridpoints.
In accordance with another aspect of the present disclosure an apparatus is provided for generating an HD map for identifying a location and/or an orientation of an EM sensor within an EM volume in which an EM field is generated by way of an antenna assembly. The apparatus includes a processor and a memory storing processor-executable instructions that, when executed by the processor, cause the processor to receive, from a measurement device, a measured EM field strength at each gridpoint of a first set of gridpoints of the EM volume. An EM field strength at each gridpoint of a second set of gridpoints of the EM volume is calculated based on a geometric configuration of at least one antenna of the antenna assembly. The HD map is generated based on the measured EM field strength at each gridpoint of the first set of gridpoints and the calculated EM field strength at each gridpoint of the second set of gridpoints.
In another aspect of the present disclosure, the antenna assembly generates at least six EM waveforms as components of the EM field.
In still another aspect of the present disclosure, the EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
In a further aspect of the present disclosure, the EM field strength is measured with a sensor having three coils corresponding to the three axes, respectively.
In yet another aspect of the present disclosure, the second set of gridpoints includes each gridpoint of the first set of gridpoints.
In another aspect of the present disclosure, the generating of the HD map includes calculating an error between the measured EM field strength and the calculated EM field strength, at each gridpoint of the first set of gridpoints. An error for each gridpoint of the second plurality of gridpoints is interpolated based on the calculated error at each gridpoint of the first plurality of gridpoint. The interpolated error and the calculated EM field strength at each gridpoint of the second plurality of gridpoints are added to generate the HD map.
In yet another aspect of the present disclosure, the error is calculated based on a difference between the measured EM field strength and the calculated EM field strength at each gridpoint of the first set of gridpoints.
In a further aspect of the present disclosure, the error is based on an L1 and/or L2 norm of differences between the measured EM field strength and the calculated EM field strength along the three axes.
In still another aspect of the present disclosure, the memory further stores instructions that, when executed by the processor, cause the processor to calculate a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
In another aspect of the present disclosure, the HD map further includes the pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
In accordance with another aspect of the present disclosure, a method is provided for identifying a location and/or an orientation of an EM sensor navigated within an EM volume. The method includes retrieving, from a memory, a calculated EM field strength at each gridpoint of a second set of gridpoints of the EM volume. An EM field is generated by way of an antenna assembly. A measured EM field strength is received from the EM sensor. A first gridpoint among a first set of gridpoints of the EM volume is identified based on the measured EM field strength and a HD map. The location and/or the orientation of the EM sensor are identified based on the HD map, using the first gridpoint as an initial condition. The second set of gridpoints includes the first plurality of gridpoints.
In another aspect of the present disclosure, the antenna assembly includes at least six antennas, each of the antennas including multiple loops.
In yet another aspect of the present disclosure, the multiple loops have a geometric configuration.
In a further aspect of the present disclosure, the HD map includes a calculated EM field strength for each gridpoint of the second set of gridpoints in the EM volume.
In still another aspect of the present disclosure, the calculated EM field strength is based on the respective geometric configurations of the at least six antennas.
In another aspect of the present disclosure, the HD map further includes a pseudo-inverse of the calculated EM field strength at each gridpoint of the second plurality of gridpoints.
In yet another aspect of the present disclosure, the identifying the first gridpoint includes identifying an orientation vector {right arrow over (n)}(a,b,c), where (a,b,c) is a gridpoint in the first set of gridpoints, satisfying the following condition: {right arrow over (n)}(a,b,c)≈{right arrow over (B)}(a,b,c) −1·V, where {right arrow over (B)}(d,e,f) −1 is a pseudo-inverse of {right arrow over (B)}(a,b,c), which is a calculated EM field strength at gridpoint (a,b,c) in the HD map. A difference between {right arrow over (B)}(a,b,c)·{right arrow over (B)}(a,b,c) and V is calculating. A gridpoint (A,B,C), from among the first set of gridpoints, where a difference between {right arrow over (B)}(a,b,c)·{right arrow over (n)} and V is the smallest, is selected, as the first gridpoint.
In a further aspect of the present disclosure, the identifying the location and/or the orientation includes identifying an orientation vector {right arrow over (n)}(d,e,f), where (d,e,f) is a gridpoint in the second set of gridpoints and is located nearby (e.g. within a predetermined distance) from the first gridpoint (A,B,C), satisfying the following condition: {right arrow over (n)}(d,e,f)≈{right arrow over (B)}(d,e,f)·V, where {right arrow over (B)}(d,e,f) is a pseudo-inverse of {right arrow over (B)}(d,e,f) which is a calculated EM field strength at gridpoint (d,e,f) in the HD map. A difference between {right arrow over (B)}(d,e,f)·{right arrow over (n)}(d,e,f) and V is calculated. A second gridpoint (D,E,F) from among the second set of gridpoints, where a difference between {right arrow over (B)}(D,E,F)·{right arrow over (n)}(D,E,F) and V is the smallest, is selected.
In still another aspect of the present disclosure, {right arrow over (n)}(D,E,F) is related to the orientation of the EM sensor.
In another aspect of the present disclosure, the second gridpoint (D,E,F) is the location of the EM sensor.
In accordance with another aspect of the present disclosure, a system is provided for identifying a location and/or an orientation of an EM sensor navigated within an EM volume. The system includes an antenna assembly, the EM sensor, a processor, and a memory. The antenna assembly is configured to radiate an EM field within the EM volume. The EM sensor is configured to measure an EM field strength based on the radiated EM field. The memory stores a calculated EM field strength at each gridpoint of a second set of gridpoints of the EM volume. The memory also stores processor-executable instructions that, when executed by the processor, cause the processor to retrieve, from the memory, the calculated EM field strength at each gridpoint of the second set of gridpoints. A first gridpoint among a first set of gridpoints of the EM volume is identified based on the measured EM field strength and the HD map. The location and/or the orientation of the EM sensor are identified based on the HD map, using the first gridpoint as an initial condition. The second set of gridpoints includes the first set of gridpoints.
In a further aspect of the present disclosure, the antenna assembly includes at least six antennas, each of the antennas including a plurality of loops.
In still another aspect of the present disclosure, the plurality of loops has a geometric configuration.
In another aspect of the present disclosure, the HD map includes a calculated EM field strength at each gridpoint of the second set of gridpoints in the EM volume.
In yet another aspect of the present disclosure, the calculated EM field strength is based on the respective geometric configurations of the at least six antennas.
In another aspect of the present disclosure, the HD map further includes a pseudo-inverse of the calculated EM field strength at each gridpoint of the second set of gridpoints.
In another aspect of the present disclosure, the identifying the first gridpoint includes identifying an orientation vector {right arrow over (n)}(a,b,c), where (a,b,c) is a gridpoint in the first set of gridpoints, satisfying the following condition: {right arrow over (n)}(a,b,c)≈{right arrow over (B)}(a,b,c) −1·V, where {right arrow over (B)}(d,e,f) −1 is a pseudo-inverse of {right arrow over (B)}(a,b,c), which is a calculated EM field strength at gridpoint (a,b,c) in the HD map. A difference between {right arrow over (B)}(a,b,c)·{right arrow over (n)}(a,b,c) and V is calculated. A gridpoint (A,B,C) from among the first plurality of gridpoints, where a difference between {right arrow over (B)}(a,b,c)·{right arrow over (n)} and V is the smallest, is selected as the first gridpoint.
In yet another aspect of the present disclosure, the identifying the location and/or the orientation includes identifying an orientation vector {right arrow over (n)}(d,e,f), where (d,e,f) is a gridpoint in the second set of gridpoints and is located nearby (e.g., within a predetermined distance from) the first gridpoint (A,B,C), satisfying the following condition: {right arrow over (n)}(d,e,f)≈{right arrow over (B)}(d,e,f) −1·V, where {right arrow over (B)}(d,e,f) −1 is a pseudo-inverse of {right arrow over (B)}(d,e,f), which is a calculated EM field strength at gridpoint (d,e,f) in the HD map. A difference between {right arrow over (B)}(d,e,f)·{right arrow over (n)}(d,e,f) and V is calculated. A second gridpoint (D,E,F) from among the second plurality of gridpoints, where a difference between {right arrow over (B)}(D,E,F)·{right arrow over (n)}(D,E,F) and V is the smallest is selected.
In another aspect of the present disclosure, {right arrow over (n)}(D,E,F) is related to the orientation of the EM sensor.
In a further aspect of the present disclosure, the second gridpoint (D,E,F) is the location of the EM sensor.
Any of the aspects and embodiments of the present disclosure may be combined without departing from the scope of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Objects and features of the presently disclosed systems and methods will become apparent to those of ordinary skill in the art when descriptions of various embodiments are read with reference to the accompanying drawings, of which:
FIG. 1 shows an example electromagnetic navigation (EMN) system, in accordance with the present disclosure;
FIG. 2 is a block diagram of a portion of the EMN system of FIG. 1, in accordance with the present disclosure;
FIG. 3 is a graphical illustration of example low density measurements and related curves, in accordance with the present disclosure;
FIG. 4 is a flowchart illustrating an example method for generating a high density map, in accordance with the present disclosure;
FIG. 5 is a flowchart illustrating an example method for identifying a location and/or an orientation of a sensor, in accordance with the present disclosure;
FIG. 6 is a graphical illustration of an example error function, having multiple local minima, of a discrepancy between a measurement value and a calculated value, in accordance with the present disclosure; and
FIG. 7 is a block diagram of a computing device for use in various embodiments of the present disclosure.
DETAILED DESCRIPTION
The present disclosure is related to systems and methods for generating a high density (HD) map and identifying a location and/or an orientation of a sensor, which may include at least one coil, based on the HD map. In some aspects, the respective geometric configurations the antennas enable automated and highly repeatable processes for reproducing such antennas and/or for mathematically calculating the expected or theoretical EM strength at every HD gridpoint within an EM volume (for instance, where the antennas have geometric configurations based on linear portions of printed circuit board (PCB) traces, which facilitate use of the superposition principle in computing the total contribution of the fields generated by way of each antenna to the total combined EM field within the volume). These mathematical calculations may be combined with actual measurements made in a coarse coordinate system, which includes fewer gridpoints than the number of gridpoints used for the mathematically calculated EM strength. In this way, the time and/or cost related to making the measurements can be lowered and a HD map can be generated and used in a repeatable, efficient, and cost-effective manner.
Further, the present disclosure is related to systems and methods for identifying a location and/or an orientation of an EM sensor by using the HD map. In general, the EM sensor senses EM strengths, and an EMN system compares the sensed EM strengths with the expected EM strengths of the HD map and identifies the location and the orientation of the EM sensor.
In an aspect of the present disclosure, a fine coordinate system (e.g., a HD coordinate system or set of gridpoints) is used to describe a coordinate system of the EM volume, which includes more gridpoints than those in a coarse coordinate system (e.g., a LD coordinate system or set of gridpoints) of the EM volume. In some aspects, every gridpoint of the coarse coordinate system may be included in the fine coordinate system. In general, the coarse coordinate system is utilized for actual EM field strength measurements and the fine coordinate system is utilized for mathematical calculations of EM field strength.
FIG. 1 illustrates an example electromagnetic navigation (EMN) system 100, which is configured to identify a location and/or an orientation of a medical device, or sensor thereof, navigating (e.g., to a target) within the patient's body by using an antenna assembly, which includes a plurality of antennas and generates EM fields. The EMN system 100 is further configured to augment CT, MRI, or fluoroscopic images in navigation through patient's body toward a target of interest, such as a deceased portion in a luminal network of a patient's lung.
The EMN system 100 includes a catheter guide assembly 110, a bronchoscope 115, a computing device 120, a monitoring device 130, an EM board 140, a tracking device 160, and reference sensors 170. The bronchoscope 115 is operatively coupled to the computing device 120 and the monitoring device 130 via a wired connection (as shown in FIG. 1) or wireless connection (not shown).
The bronchoscope 115 is inserted into the mouth of a patient 150 and captures images of the luminal network of the lung. In the EMN system 100, inserted into the bronchoscope 115 is a catheter guide assembly 110 for achieving access to the periphery of the luminal network of the lung of the patient 150. The catheter guide assembly 110 may include an extended working channel (EWC) 111 with an EM sensor 112 at the distal portion of the EWC 111. A locatable guide catheter (LG) may be inserted into the EWC 111 with another EM sensor at the distal portion of the LG. The EM sensor 112 at the distal portion of the EWC 111 or the LG is used to identify a location and/or an orientation of the EWC 111 or the LG while navigating through the luminal network of the lung. Due to the size restriction in the EWC 111 or the LG, in some embodiments, the EM sensor 112 may include only one single coil for detecting EM strength of an EM field over the patient 150. However, the number of coils in the EM sensor is not limited to one but may be two or more.
The computing device 120, such as, a laptop, desktop, tablet, or other similar computing device, includes a display 122, one or more processors 124, memory 126, an AC current driver 127 for providing AC current signals to the antenna assembly 145, a network card 128, and an input device 129. The particular configuration of the computing device 120 illustrated in FIG. 1 is provided as an example, but other configurations of the components shown in FIG. 1 as being included in the computing device 120 are also contemplated. In particular, in some embodiments, one or more of the components (122, 124, 126, 127, 128, and/or 129) shown in FIG. 1 as being included in the computing device 120 may instead be separate from the computing device 120 and may be coupled to the computing device 120 and/or to any other component(s) of the system 100 by way of one or more respective wired or wireless path(s) to facilitate the transmission of power and/or data signals throughout the system 100. For example, although not shown in FIG. 1, the AC current driver 127 may, in some example aspects, be separate from the computing device 120 and may be coupled to the antenna assembly 145 and/or coupled to one or more components of the computing device 120, such as the processor 124 and the memory 126, by way of one or more corresponding paths.
In some aspects, the EMN system 100 may also include multiple computing devices, wherein the multiple computing devices are employed for planning, treatment, visualization, or helping clinicians in a manner suitable for medical operations. The display 122 may be touch-sensitive and/or voice-activated, enabling the display 122 to serve as both input and output devices. The display 122 may display two dimensional (2D) images or three dimensional (3D) model of a lung to locate and identify a portion of the lung that displays symptoms of lung diseases.
The one or more processors 124 execute computer-executable instructions. The processors 124 may perform image-processing functions so that the 3D model of the lung can be displayed on the display 122 or location algorithm to identify a location and an orientation of the EM sensor 112. In embodiments, the computing device 120 may further include a separate graphic accelerator (not shown) that performs only the image-processing functions so that the one or more processors 124 may be available for other programs. The memory 126 stores data and programs. For example, data may be mapping data for the EMN or any other related data such as a HD map, image data, patients' medical records, prescriptions and/or history of the patient's diseases.
The HD map may include a plurality of gridpoints in a fine coordinate system of the EM volume in which a medical device (e.g., the EWC 111, LG, treatment probe, or other surgical devices) is to be navigated, and expected EM strengths at each of the plurality of gridpoints. When the EM sensor 112 senses EM strength at a point, the one or more processors 124 may compare the sensed EM strength with the expected EM strengths in the HD map and identify the location of the EM sensor 112 within the EM volume. Further, an orientation of the medical device may be also calculated based on the sensed EM strength and the expected EM strengths in the HD map.
As shown in FIG. 1, the EM board 140 is configured to provide a flat surface for the patient 150 to lie upon and includes an antenna assembly 145. When the patient 150 lies upon on the EM board 140, the antenna assembly 145 generates an EM field sufficient to surround a portion of the patient 150 or the EM volume. The antenna assembly 145 includes a plurality of antennas, each of which may include a plurality of loops. In one aspect, each antenna is configured to generate an EM waveform having a corresponding frequency. The number of antennas may be at least six. In an aspect, the number of antennas may be nine so that nine different EM waveforms can be generated.
In another aspect, a time multiplexing method is employed in generating the EM waveforms. For example, the antennas of the antenna assembly 145 may generate EM waveforms with the same frequency at different times during a period. In another aspect, frequency multiplexing method may be employed, where each antenna generates EM waveform having a frequency different from each other. In still another aspect, combination of the time multiplexing and frequency multiplexing methods may be employed. The antennas are grouped into more than one group. Antennas in the same group generate EM waveforms having the same frequency but at different times. Antennas in different groups may generate EM waveforms having different frequencies from each other. Corresponding de-multiplexing method is to be used to separate EM waveforms.
In an aspect, each antenna may have a geometric configuration (for instance, where the antennas each have geometric configurations based on linear portions of printed circuit board (PCB) traces or wires, which facilitate use of the superposition principle in computing the total contribution of the fields generated by way of each antenna to the total combined EM field within the volume) so that each portion of the plurality of loops can be expressed as mathematical relationship or equations, as described in further detail below. The magnetic field can thus be computed for each trace on the antenna and the contributions from all traces can be summed. Based on this geometric configuration, expected EM strength at each gridpoint in the HD map can be theoretically or mathematically calculated. Additional aspects of such example antennas and methods of manufacturing the antennas are disclosed in U.S. patent application Ser. No. 15/337,056, entitled “Electromagnetic Navigation Antenna Assembly and Electromagnetic Navigation System Including the Same,” filed on Oct. 28, 2016, the entire contents of which are hereby incorporated by reference herein.
FIG. 2 shows a block diagram of a portion of the example electromagnetic navigation system 100 of FIG. 1, according to the present disclosure. In general, the computing device 120 of the EMN system 100 controls the antenna assembly 145 embedded in the EM board 140 to generate an EM field, receives sensed results from the EM sensor 112, and determines a location and an orientation of the EM sensor 112 in the EM volume.
The computing device 120 includes a clock 205, which generates a clock signal used for generating the EM field and sampling the sensed results. Since the same clock signal is used for generating the EM field and sampling the sensed EM field, synchronization between the magnetic field generation circuitry (e.g., a waveform generator 210) and the waveform acquisition circuitry (e.g., a digitizer 215) may be achieved. In other words, when the clock 205 provides a clock signal to the waveform generator 210 and the digitizer 215, the EM waveforms generated by the antenna assembly 145 are digitally sampled by digitizer 215 substantially at the same time. The digitizer 215 may include an analog-to-digital converter (ADC, which is not shown) to digitally sample the sensed results and an amplifier (which is not shown) to amplify the magnitude of the sensed result so that the magnitude of the sensed results is within the operable range of the ADC. In an aspect, the digitizer 215 may include a pre-amplifier and post-amplifier so that the magnitude of the sensed result is amplified to be within the operable range of the ADC by the pre-amplifier and digital samples are also amplified to the magnitude of the sensed result by the post-amplifier.
The demodulator 220 demodulates the digital samples to remove unwanted signals (e.g., noises) and to restore the EM waveforms, which have been generated by the antenna assembly 145. The demodulator 220 may use time de-multiplexing method, frequency de-multiplexing method, or combination of both to separate and identify the EM waveforms depending on the method used by the antennas of the antenna assembly 145 to generate the EM waveforms, and to determine EM strength affected by each of the antenna of the antenna assembly 145.
For example, when the antenna assembly 145 includes six antennas, the demodulator 220 is capable of identifying six EM strengths, which is sensed by the EM sensor 112, for the six antennas, respectively. In a case when the number of antennas is nine, the outputs of the demodulator 220 may be expressed in a form of a nine by one matrix. Based on the modulation method (e.g., time multiplexing, frequency multiplexing, or a combination thereof) utilized by the antennas, the demodulator 220 demodulates the sensed result.
For example, when the antennas of the antenna assembly 145 utilize frequency multiplexing, the demodulator 220 may use a set of finely tuned digital filters. Orthogonal frequency division multiplexing may also be utilized, in which the EM field and sampling frequencies are chosen in such a way that only the desired frequency from a specific antenna is allowed to pass while other frequencies are precisely stopped. In an aspect, the demodulator 220 may use a multiple tap orthogonal frequency matched filter, in which the digital filter for a specific frequency is tuned to the desired demodulation window.
The memory 126 may store data and programs related to identification of a location and an orientation. The data includes a high density (HD) map 225, which includes a plurality of gridpoints according to the fine coordinate system for the EM volume and expected EM strengths at the gridpoints. The HD map 225 may be based on three-axis coordinate system, where each gridpoint has three coordinates corresponding to the three axes, respectively. In this case, the expected EM strength at each gridpoint may include one EM strength value along each axis for each EM waveform. For example, if there are nine antennas generating nine different EM waveforms, each of which having a separate frequency, and three axes are x, y, and z axes, the expected EM strength may include nine EM strength values along the x axis, nine EM strength values along the y axis, and nine EM strength values along the z axis, at each gridpoint. Such expected EM strength at each gridpoint may be expressed in a nine by three matrix form.
The HD map 225 may be made with computations 230, which includes theoretically calculated EM strengths at each axis at each gridpoint in the fine coordinate system, and measurement 235, which includes measurements at each axis at each gridpoint in the coarse coordinate system. The fine coordinate system includes all the gridpoints in the coarse coordinate system and the gridpoints of the fine coordinate system are more finely distributed than those of the coarse coordinate system. By using the geometric configuration of the antennas of the antenna assembly 145, measurement may not have to be made with the fine coordinate system. Rather, the measurement may be made in the coarse coordinate system and theoretical computations may be made in the fine coordinate system. By combining the measurements 235 in the coarse coordinate system with the theoretical computations 230 in the fine coordinate system, the HD map 225 may be generated. Generation of the HD map 225 based on the measurement 235 and calculations 230 will be described in further detail with respect to FIG. 4 below.
After passage of time or due to foreign objects near the EMN system 100, measurements by the EM sensor 112 or other hardware may need to be calibrated. Such calibration data may be also stored in the memory 126 in a form of sensor calibration 240 and hardware calibration 245.
When the computing device 120 receives measurement data from the EM sensor 112 via the demodulator 220, the computing device 120 uses the location algorithm 250, which is also stored in the memory 126, with the HD map 225 to identify the location and the orientation of the EM sensor 112 in the fine coordinate system. Identification of the location and/or the orientation will be described in further detail with respect to FIG. 5 below.
The location algorithm 250 may utilize any error minimization algorithm in identifying the location and the orientation of the EM sensor 112. For example, Levenberg-Marquardt algorithm may be employed to minimize errors between the expected EM strengths of the HD density map and the sensed results. Other error minimization methods or algorithms, which a person having ordinary skill in the art can readily appreciate, may also be utilized without departing from the scope of this disclosure.
The memory 126 further includes applications 255, which can be utilized by the computing device 120 of the EMN system 100 and which uses information regarding the location and the orientation of the EM sensor 112. Such application 255 may be a displaying application, which displays a graphical representation of a medical device, on which the EM sensor 112 is mounted or installed, at the location of the EM sensor 112 and along the orientation of the EM sensor 112 in the EM volume, an application for treatment, which determines whether a medical device is near a target of interest, or any other applications, which use the location and the orientation of the EM sensor 112.
FIG. 3 is a graphical illustration of multiple curves 320, 325, 330, and 340, as well as discrete EM field strength measurements 315 a-315 i taken in the coarse coordinate system. The horizontal axis may represent any axis among x, y, and z axes for the EM volume and the vertical axis represents a magnitude of EM field strengths. Gridpoints of the coarse coordinate system are shown separated by 50 millimeters and measured EM strengths at the gridpoints of the coarse coordinate system are shown as black dots 315 a-315 i.
In some aspects, measurements may be taken at a specific hospital rooms and beds, where the EMN system 100 will be used, by way of a measurement jig, which includes three coils sensing an EM field strength in each of three different directions (e.g., x, y, and z axes). Examples of such a measurement jig are disclosed by Provisional U.S. Patent Application No. 62/237,084, entitled “Systems And Methods For Automated Mapping And Accuracy-Testing,” filed on Oct. 5, 2015, the entire contents of which are hereby incorporated herein by reference.
Based on the measurement values at LD gridpoints 315 a-315 i, interpolation may be used to generate first and second interpolated curves, 320 and 325. In one example, the first interpolated curve 320 is generated by a linear interpolation method and the second interpolated curve 325 is generated by B-spline interpolation. Calculated EM strengths at gridpoints in the HD map are also interpolated to generate a third interpolated curve 330.
As shown in box 335, the first, second, and third interpolated curves 320, 325, 330 are substantially different from each other between two gridpoints 315 h and 315 i. The first interpolated curve 320 is lower than the third interpolated curve 330, and the second interpolated curve 325 is much higher than the second and third interpolated curves 325 and 330. Due to these big differences, an error may be apparent if only one of the three interpolated curves is used.
In order to minimize such differences, a fourth interpolated curve 340 is used. The fourth curve 340 is generated by calculating discrepancies between theoretical calculations and measurements at the LD gridpoints, such as 315 a-315 i, and interpolating the discrepancies for the HD gridpoints. By adding the fourth interpolated curve 340 to the third interpolated curve 330 at the HD gridpoints, expected EM strength at each gridpoints in the HD map is obtained and higher accuracy may be obtained. Detailed descriptions regarding how to generate the HD map is described with respect to FIG. 4 below.
FIG. 4 is a flowchart illustrating an example method 400 for generating an HD map based on theoretical calculations in the fine coordinate system and measurements in the coarse coordinate system. Measurements may be performed for the EM field generated by the antennas of the antenna assembly 145 of FIG. 1, each of which having a corresponding geometric configuration. At 410, EM field measurements at all gridpoints in the coarse coordinate system are received from a measurement jig. The measurements may include three different measurements along three axes in the coarse coordinate system for each EM waveform. Thus, when there are nine antennas, the measurements at one gridpoint may include three values for the three different axes and nine of three values for the nine different waveforms, respectively. In an aspect, these measurements may be in a form of nine by three matrix.
At 420, based on the geometric configuration of each antenna of the antenna assembly 145, EM field strength is theoretically or mathematically calculated. As described above, each antenna includes a plurality of loops, which have geometric configurations. In other words, each loop of the antenna can be expressed in a form of mathematical equations or is made of simply linear portions. Thus, EM strength at any gridpoints in the fine coordinate system may be calculated by using Biot-Savart-Laplace law as follows:
B ( r ) = µ 0 4 π Idl × r r 3 , ( 1 )
where B(r) is the EM strength at the gridpoint r influenced by the linear portion C, μ0 is a magnetic constant of the vacuum permeability, 4π×10−7 V·s/(A·m), ∫C is a symbol of line integral on the linear portion C, I is the magnitude of the current passing through the linear portion C, dl is a vector whose magnitude is the length of the differential element of the linear portion C in the direction of current, r′ is a displacement vector from the differential element dl of the linear portion C to the gridpoint r, and × is a vector symbol representing a cross product between two vectors. Since the linear portion C is a simple line and each loop of the antenna includes multiple linear portions, total EM strength at the gridpoint r can be a sum of the EM strengths influenced by all the linear portions of the antenna. Further, the EM strength at the gridpoint r by the plural antennas is calculated in the same way. In other words, the total EM strength at gridpoint r may include three calculated values for the three different axes (e.g., x, y, and z axes) for one antenna, and nine of three calculated values for the nine antennas, in a case when there are nine antennas. In an aspect, the calculated EM strength may be expressed in a nine by three matrix form.
At 430, a discrepancy is calculated between the measured EM field and the calculated EM field at each gridpoint in the coarse coordinate system. In an aspect, the discrepancy may be made smaller by calibrating parameters of the three coil sensor of the measurement jig, calibrating the antennas, or calibrating parameters (e.g., frequencies or phases for the waveform generator 210) of the computing device of the EMN system.
At 440, the calculated discrepancies at gridpoints in the coarse coordinate system are interpolated for gridpoints in the fine coordinate system. Any method of interpolation including linear interpolation, b-spline interpolation, etc. may be used.
At 450, the interpolated discrepancies are added to the theoretical calculations of the EM field to from expected EM field strength at each gridpoint in the fine coordinate system. The expected EM field strength at each gridpoint may be in a form of a nine by three matrix in a case when there are nine separate EM waveforms. The HD map may further include a pseudo-inverse of the expected EM field strength at each gridpoint in the HD map. This pseudo-inverse may be used in identifying a location and an orientation of the EM sensor, which is described in further detail with respect to FIG. 5 below.
FIG. 5 is a flowchart illustrating an example method 500 for identifying a location and/or an orientation of an EM sensor, for example, mounted on a medical device, which is navigated within a patient's body, in accordance with the present disclosure. The method 500 may be used while a medical device navigates inside the patient's body. At 510, the HD map, which includes expected EM field strength at each gridpoint of the HD map, is retrieved from a memory. As described above, the expected EM field strengths are based on the theoretical computations in the fine coordinate system and measurements in the coarse coordinate system.
The EM sensor mounted on the medical device periodically transmits sensed EM field strength to an EMN computing device, which digitally samples the sensed EM field strength. The EMN computing device measures the EM field strength based on the digital samples in step 520.
At 530, it is determined whether an initial location is set as an initial condition. If it is determined that the initial location is not set, the EMN computing device compares all gridpoints in the coarse coordinate system with the measured EM field strength, simply pickups, to find an approximate gridpoint in the coarse coordinate system near the location of the EM sensor, as an initial location, at 540.
In an embodiment, a following error function may be used at 540:
E = α = 1 N ( B α ( a , b , c ) · n ( a , b , c ) - V α ) 2 + b ( n 2 - g 2 ) 2 , ( 2 )
where E is the error value, α is a counter, N is the number of antennas, (a,b,c) is a gridpoint in the coarse coordinate system, Bα (a,b,c) is a vector, one by three matrix, including an expected EM field strength at (a,b,c) influenced by the α-th antenna, “·” is a symbol of dot product between two vectors, {right arrow over (n)}(a,b,c) is an orientation of the EM sensor, and Vα is a vector, one by one matrix, including a pickup influenced by the α-th antenna, b is a parameter to control a gain weight, and g is a gain of the EM sensor. In an aspect, the parameter b is used when the gain of the EM sensor is known and fixed. The value for the parameter b may be chosen so as not to dominate the error function E. In another aspect, when the gain of the EM sensor is not known, the parameter b may be set to zero or the gain squared, g2, is assumed to be equal to the squared norm of the orientation vector {right arrow over (n)}.
In some examples, for convenience, the parameter b is assumed to be zero. In this case, the error function E becomes:
α = 1 N ( B α ( a , b , c ) · n ( a , b , c ) - V α ) 2 . ( 3 )
This error function is useful in identifying a location in the coarse or fine coordinate system. In an aspect, the error function is not limited to the above equation (2) or (3) and can be any error function that a person of ordinary skill in the art would readily appreciate without departing from the scope of this disclosure. For example, the error function E may be:
|{right arrow over (B)}(a,b,c)−V| 1 or |{right arrow over (B)}(a,b,c)−V| 2,
where ∥1 or ∥2 represents an L1 or L2 norm of the vector inside of the symbol, respectively.
Referring briefly to FIG. 6, a curve of an error function along one axis is shown to illustrate how selection of an initial location may impact the determination of a location that provides the global minimum of the error. The horizontal axis represents a location along one axis (e.g., x, y, or z axis) and the vertical axis represents a magnitude of the error function. If the initial location is set to be near X0 or X1, the location giving a local minimum will be between X0 and X1. If the initial location is set to be X5 or X6, the location giving a local minimum will be between X5 and X6. In contrast, if the initial location is set to be one of X2, X3, or X4, the location giving a local minimum will be between X3 and X4, which gives the accurate global minimum. Thus, referring back to FIG. 5, in a case when there is no set initial location, the method 500 evaluates the error function at every gridpoint in the coarse coordinate system to find a first gridpoint, which provides the global minimum, in step 540.
The error function E includes a term, the orientation vector {right arrow over (n)}, which, at 540, may also be identified as follows:
{right arrow over (n)}(a,b,c)={right arrow over (B)}(a,b,c)−1 ·V  (4),
where {right arrow over (B)}(a,b,c)−1 is a pseudo-inverse of {right arrow over (B)}(a,b,c), and V includes pickups. In one example, if the total number of antennas in the antenna assembly is nine, {right arrow over (B)}(a,b,c) is a nine by three matrix, {right arrow over (B)}(a,b,c)−1 is a three by nine matrix, and V is a nine by one matrix. Thus, {right arrow over (B)}(a,b,c)−1·V results in a three by one matrix, which is a column vector representing an orientation matrix, {right arrow over (n)}(a,b,c) at gridpoint (a,b,c) in the coarse coordinate system.
Based on equation (3), the error function is evaluated. Errors of all gridpoints in the coarse coordinate system are compared with each other, and the gridpoint that provides the smallest error is selected as a first gridpoint and is set as the initial location at 540. After the initial location is set at 540, 550 follows. Also, at 530, when it is determined that the initial location is set, the step 550 is performed.
At 550, a predetermined number of gridpoints around the initial location are selected to calculate the error function in the same way as in equation (2) or (3). For example, if the predetermined number of gridpoints is three, three gridpoints from the initial location in both directions along x, y, and z axes form a cube, 7 by 7 by 7 gridpoints. Thus, 343 gridpoints are selected to calculate the error function, and one among the selected gridpoints, which provides the smallest error, is selected as a second gridpoint, i.e., the location of the EM sensor. The corresponding orientation vector is also set as the orientation of the EM sensor in step 550. The second gridpoint is set as the initial location in step 560.
According to one aspect, in step 540, the error may be compared with a predetermined threshold. If the error is less than the predetermined threshold, that gridpoint is selected as the second gridpoint or the location of the EM sensor and corresponding orientation vector is selected as the orientation of the EM sensor.
In step 570, it is determined whether the target has been reached. When it is determined that the target has not been reached, steps 520-570 are repeated until the target is reached. Otherwise, the method 500 ends.
Turning now to FIG. 7, there is shown a block diagram of a computing device 700, which can be used as the computing device 120 of the EMN system 100, the tracking device 160, or a computer performing the method 400 of FIG. 4 or the method 500 of FIG. 5. The computing device 700 may include a memory 702, a processor 704, a display 706, network interface 708, an input device 710, and/or output module 712.
The memory 702 includes any non-transitory computer-readable storage media for storing data and/or software that is executable by the processor 704 and which controls the operation of the computing device 700. In an embodiment, the memory 702 may include one or more solid-state storage devices such as flash memory chips. Alternatively or in addition to the one or more solid-state storage devices, the memory 702 may include one or more mass storage devices connected to the processor 704 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 704. That is, computer readable storage media include non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media include RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, Blu-Ray or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device 700.
The memory 702 may store application 716 and data 714. The application 716 may, when executed by the processor 704, cause the display 706 to present user interface 718 on its screen.
The processor 704 may be a general purpose processor, a specialized graphic processing unit (GPU) configured to perform specific graphics processing tasks while freeing up the general purpose processor to perform other tasks, and/or any number or combination of such processors.
The display 706 may be touch-sensitive and/or voice-activated, enabling the display 706 to serve as both an input and output device. Alternatively, a keyboard (not shown), mouse (not shown), or other data input devices may be employed.
The network interface 708 may be configured to connect to a network such as a local area network (LAN) consisting of a wired network and/or a wireless network, a wide area network (WAN), a wireless mobile network, a Bluetooth network, and/or the internet. For example, the computing device 700 may receive measurement data and variables, and perform the method 400 of FIG. 4 to generate a HD map. The computing device 700 may receive updates to its software, for example, application 716, via network interface 708. The computing device 700 may also display notifications on the display 706 that a software update is available.
In another aspect, the computing device 700 may receive computed tomographic (CT) image data of a patient from a server, for example, a hospital server, internet server, or other similar servers, for use during surgical ablation planning. Patient CT image data may also be provided to the computing device 700 via a removable memory.
Input device 710 may be any device by means of which a user may interact with the computing device 700, such as, for example, a mouse, keyboard, foot pedal, touch screen, and/or voice interface.
Output module 712 may include any connectivity port or bus, such as, for example, parallel ports, serial ports, universal serial busses (USB), or any other similar connectivity port known to those skilled in the art.
The application 716 may be one or more software programs stored in the memory 702 and executed by the processor 704 of the computing device 700. During generation of the HD map, one or more software programs in the application 716 may be loaded from the memory 702 and executed by the processor 704 to generate the HD map. In an embodiment, during a navigation phase, one or more programs in the application 716 may be loaded, identify the location and the orientation of an EM sensor mounted on a medical device, and display the medical device at the location along the orientation on a screen overlaid with other imaging data, such as CT data or a three dimensional model of a patient. In another embodiment, during a treatment phase, one or more programs in the application 716 may guide a clinician through a series of steps to identify a target, size the target, size a treatment zone, and/or determine an access route to the target for later use during the procedure phase. In some other embodiments, one or more programs in the application 716 may be loaded on computing devices in an operating room or other facility where surgical procedures are performed, and is used as a plan or map to guide a clinician performing a surgical procedure by using the information regarding the location and the orientation.
The application 716 may be installed directly on the computing device 700, or may be installed on another computer, for example a central server, and opened on the computing device 700 via the network interface 708. The application 716 may run natively on the computing device 700, as a web-based application, or any other format known to those skilled in the art. In some embodiments, the application 716 will be a single software program having all of the features and functionality described in the present disclosure. In other embodiments, the application 716 may be two or more distinct software programs providing various parts of these features and functionality. For example, the application 716 may include one software program for generating a HD map, another one for identifying a location and an orientation, and a third program for navigation and treatment program. In such instances, the various software programs forming part of the application 716 may be enabled to communicate with each other and/or import and export various data including settings and parameters.
The application 716 may communicate with a user interface 718 which generates a user interface for presenting visual interactive features to a user, for example, on the display 706 and for receiving input, for example, via a user input device. For example, user interface 718 may generate a graphical user interface (GUI) and output the GUI to the display 706 for viewing by a user.
In a case that the computing device 700 may be used as the EMN system 100, the control workstation 102, or the tracking device 160, the computing device 700 may be linked to the display 130, thus enabling the computing device 700 to control the output on the display 130 along with the output on the display 706. The computing device 700 may control the display 130 to display output which is the same as or similar to the output displayed on the display 706. For example, the output on the display 706 may be mirrored on the display 130. Alternatively, the computing device 700 may control the display 130 to display different output from that displayed on the display 706. For example, the display 130 may be controlled to display guidance images and information during the surgical procedure, while the display 706 is controlled to display other output, such as configuration or status information of an electrosurgical generator 101 as shown in FIG. 1.
The application 716 may include one software program for use during the planning phase, and a second software program for use during the treatment phase. In such instances, the various software programs forming part of application 716 may be enabled to communicate with each other and/or import and export various settings and parameters relating to the navigation and treatment and/or the patient to share information. For example, a treatment plan and any of its components generated by one software program during the planning phase may be stored and exported to be used by a second software program during the procedure phase.
Although embodiments have been described in detail with reference to the accompanying drawings for the purpose of illustration and description, it is to be understood that the inventive processes and apparatus are not to be construed as limited. It will be apparent to those of ordinary skill in the art that various modifications to the foregoing embodiments may be made without departing from the scope of the disclosure. For example, various steps of the methods described herein may be implemented concurrently and/or in an order different from the example order(s) described herein.

Claims (20)

What is claimed is:
1. A method for generating a high density (HD) map for identifying at least one of a location or an orientation of an electromagnetic (EM) sensor within an EM volume in which an EM field is generated by way of an antenna assembly, the method comprising:
receiving a measured EM field strength at each gridpoint of a first plurality of gridpoints of the EM volume from a measurement device;
calculating a theoretical EM field strength at each gridpoint of a second plurality of gridpoints of the EM volume based on a sum of theoretical EM field strength calculations from a plurality of linear portions of an antenna of the antenna assembly, the second plurality of gridpoints including each gridpoint of the first plurality of gridpoints and at least one additional gridpoint not included in the first plurality of gridpoints; and
combining the measured EM field strength at each gridpoint of the first plurality of gridpoints with the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints to generate the HD map.
2. The method according to claim 1, wherein the antenna assembly generates at least six EM waveforms as components of the EM field.
3. The method according to claim 2, wherein the theoretical EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
4. The method according to claim 3, wherein the EM field strength is measured by way of a sensor having three coils corresponding to the three axes, respectively.
5. The method according to claim 1, wherein the generating the HD map includes:
calculating, at each gridpoint of the first plurality of gridpoints, an error between the measured EM field strength and the theoretical EM field strength calculation;
interpolating an error for each gridpoint of the second plurality of gridpoints based on the calculated error at each gridpoint of the first plurality of gridpoints; and
adding the interpolated error to the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints to generate the HD map.
6. The method according to claim 5, wherein the error is calculated based on a difference between the measured EM field strength and the theoretical EM field strength calculation at each gridpoint of the first plurality of gridpoints.
7. The method according to claim 5, wherein the error is based on at least one of an L1 or L2 norm of differences between the measured EM field strength and the theoretical EM field strength calculation along the three axes.
8. The method according to claim 1, further comprising calculating a pseudo-inverse of the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints.
9. The method according to claim 8, wherein the HD map further includes the pseudo-inverse of the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints.
10. An apparatus for generating a high density (HD) map for identifying at least one of a location or an orientation of an electromagnetic (EM) sensor within an EM volume in which an EM field is generated by way of an antenna assembly, the apparatus comprising:
a processor; and
a memory storing processor-executable instructions that, when executed by the processor, cause the processor to:
receive a measured EM field strength at each gridpoint of a first plurality of gridpoints of the EM volume from a measurement device;
calculate a theoretical EM field strength at each gridpoint of a second plurality of gridpoints of the EM volume based on a sum of theoretical EM field strength calculations from a plurality of linear portions of an antenna of the antenna assembly, the second plurality of gridpoints including each gridpoint of the first plurality of gridpoints and at least one additional gridpoint not included in the first plurality of gridpoints; and
combine the measured EM field strength at each gridpoint of the first plurality of gridpoints with the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints to generate the HD map.
11. The apparatus according to claim 10, wherein the antenna assembly generates at least six EM waveforms as components of the EM field.
12. The apparatus according to claim 11, wherein the theoretical EM field strength is calculated along a three axes coordinate system for each of the at least six EM waveforms.
13. The apparatus according to claim 12, wherein the EM field strength is measured with a sensor having three coils corresponding to the three axes, respectively.
14. The apparatus according to claim 10, wherein generating the HD map includes:
calculating, at each gridpoint of the first plurality of gridpoints, an error between the measured EM field strength and the theoretical EM field strength calculation;
interpolating an error for each gridpoint of the second plurality of gridpoints based on the calculated error at each gridpoint of the first plurality of gridpoints; and
adding the interpolated error to the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints to generate the HD map.
15. The apparatus according to claim 14, wherein the error is calculated based on a difference between the measured EM field strength and the theoretical EM field strength calculation at each gridpoint of the first plurality of gridpoints.
16. The apparatus according to claim 14, wherein the error is at least one of an L1 or L2 norm of differences between the measured EM field strength and the theoretical EM field strength calculation along the three axes.
17. The apparatus according to claim 10, wherein the memory further stores instructions that, when executed by the processor, cause the processor to calculate a pseudo-inverse of the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints.
18. The apparatus according to claim 17, wherein the HD map further includes the pseudo-inverse of the theoretical EM field strength calculation at each gridpoint of the second plurality of gridpoints.
19. The method according to claim 1, wherein the first plurality of gridpoints is defined in a first coordinate system of the EM volume and the second plurality of gridpoints is defined in a second coordinate system of the EM volume different than the first coordinate system.
20. The apparatus according to claim 10, wherein the first plurality of gridpoints is defined in a first coordinate system of the EM volume and the second plurality of gridpoints is defined in a second coordinate system of the EM volume different than the first coordinate system.
US15/337,129 2016-10-28 2016-10-28 System and method for generating a map for electromagnetic navigation Active 2039-03-27 US10751126B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/337,129 US10751126B2 (en) 2016-10-28 2016-10-28 System and method for generating a map for electromagnetic navigation
AU2017348161A AU2017348161B2 (en) 2016-10-28 2017-10-26 System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
CA3040718A CA3040718A1 (en) 2016-10-28 2017-10-26 System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
JP2019523099A JP7035043B2 (en) 2016-10-28 2017-10-26 Systems and methods for identifying the location and / or orientation of electromagnetic sensors based on maps
EP17863634.6A EP3531950A4 (en) 2016-10-28 2017-10-26 System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
CN201780066962.9A CN109890312B (en) 2016-10-28 2017-10-26 System and method for identifying position and/or orientation of electromagnetic sensor based on map
PCT/US2017/058421 WO2018081356A1 (en) 2016-10-28 2017-10-26 System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US16/935,322 US11672604B2 (en) 2016-10-28 2020-07-22 System and method for generating a map for electromagnetic navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/337,129 US10751126B2 (en) 2016-10-28 2016-10-28 System and method for generating a map for electromagnetic navigation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/935,322 Continuation US11672604B2 (en) 2016-10-28 2020-07-22 System and method for generating a map for electromagnetic navigation

Publications (2)

Publication Number Publication Date
US20180116722A1 US20180116722A1 (en) 2018-05-03
US10751126B2 true US10751126B2 (en) 2020-08-25

Family

ID=62020761

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/337,129 Active 2039-03-27 US10751126B2 (en) 2016-10-28 2016-10-28 System and method for generating a map for electromagnetic navigation
US16/935,322 Active 2037-10-15 US11672604B2 (en) 2016-10-28 2020-07-22 System and method for generating a map for electromagnetic navigation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/935,322 Active 2037-10-15 US11672604B2 (en) 2016-10-28 2020-07-22 System and method for generating a map for electromagnetic navigation

Country Status (1)

Country Link
US (2) US10751126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200330165A1 (en) * 2016-10-28 2020-10-22 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US20200345422A1 (en) * 2016-10-28 2020-11-05 Covidien Lp System and method for generating a map for electromagnetic navigation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11373330B2 (en) * 2018-03-27 2022-06-28 Siemens Healthcare Gmbh Image-based guidance for device path planning based on penalty function values and distances between ROI centerline and backprojected instrument centerline
US11944388B2 (en) * 2018-09-28 2024-04-02 Covidien Lp Systems and methods for magnetic interference correction
US20200100843A1 (en) * 2018-09-28 2020-04-02 Covidien Lp Smart extended working channel localization
JP2020153728A (en) * 2019-03-19 2020-09-24 Tdk株式会社 Angle sensor and detection device
CN113965270B (en) * 2020-07-20 2023-08-22 华为技术有限公司 EMF intensity control method and communication device

Citations (894)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1576781A (en) 1924-04-22 1926-03-16 Herman B Philips Fluoroscopic fracture apparatus
US1735726A (en) 1929-11-12 bornhardt
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US2697433A (en) 1951-12-04 1954-12-21 Max A Zehnder Device for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US3016899A (en) 1958-11-03 1962-01-16 Carl B Stenvall Surgical instrument
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3061936A (en) 1959-03-07 1962-11-06 Univ Catholique Louvain Stereotaxical methods and apparatus
US3073310A (en) 1957-08-05 1963-01-15 Zenon R Mocarski Surgical instrument positioning device
US3109588A (en) 1962-01-26 1963-11-05 William L Polhemus Celestial computers
US3121228A (en) 1961-05-01 1964-02-11 Henry P Kalmus Direction indicator
US3294083A (en) 1963-08-26 1966-12-27 Alderson Res Lab Inc Dosimetry system for penetrating radiation
US3367326A (en) 1965-06-15 1968-02-06 Calvin H. Frazier Intra spinal fixation rod
US3439256A (en) 1966-02-23 1969-04-15 Merckle Flugzeugwerke Gmbh Inductive angular position transmitter
US3519436A (en) 1969-05-09 1970-07-07 Grace W R & Co Method for making plastic low fat emulsion spread
US3577160A (en) 1968-01-10 1971-05-04 James E White X-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
US3600625A (en) 1968-08-31 1971-08-17 Tokyo Shibaura Electric Co Projection picture tube with rotating fluorescent screen
US3605725A (en) 1968-08-07 1971-09-20 Medi Tech Inc Controlled motion devices
US3614950A (en) 1968-03-25 1971-10-26 Graham Peter Rabey Apparatus for location relatively to a subject's cephalic axis
US3644825A (en) 1969-12-31 1972-02-22 Texas Instruments Inc Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US3674014A (en) 1969-10-28 1972-07-04 Astra Meditec Ab Magnetically guidable catheter-tip and method
US3702935A (en) 1971-10-13 1972-11-14 Litton Medical Products Mobile fluoroscopic unit for bedside catheter placement
US3704707A (en) 1971-04-06 1972-12-05 William X Halloran Orthopedic drill guide apparatus
US3821469A (en) 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3822697A (en) 1973-03-20 1974-07-09 Olympus Optical Co Envelope of an endoscope
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US3941127A (en) 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
US3983474A (en) 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4017858A (en) 1973-07-30 1977-04-12 Polhemus Navigation Sciences, Inc. Apparatus for generating a nutating electromagnetic field
US4037592A (en) 1976-05-04 1977-07-26 Kronner Richard F Guide pin locating tool and method
US4052620A (en) 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4054881A (en) 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4117337A (en) 1977-11-03 1978-09-26 General Electric Company Patient positioning indication arrangement for a computed tomography system
US4135184A (en) 1977-08-31 1979-01-16 Knogo Corporation Electronic theft detection system for monitoring wide passageways
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4182312A (en) 1977-05-20 1980-01-08 Mushabac David R Dental probe
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
US4228799A (en) 1977-09-28 1980-10-21 Anichkov Andrei D Method of guiding a stereotaxic instrument at an intracerebral space target point
US4249167A (en) 1979-06-05 1981-02-03 Magnavox Government And Industrial Electronics Company Apparatus and method for theft detection system having different frequencies
US4256112A (en) 1979-02-12 1981-03-17 David Kopf Instruments Head positioner
US4262306A (en) 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4287809A (en) 1979-08-20 1981-09-08 Honeywell Inc. Helmet-mounted sighting system
US4298874A (en) 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
US4308530A (en) 1977-07-19 1981-12-29 N.V. Nederlandsche Apparatenfabriek Nedap Detection system forming wide gates with superior spatial selectivity
US4314251A (en) 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4319136A (en) 1979-11-09 1982-03-09 Jinkins J Randolph Computerized tomography radiograph data transfer cap
US4328548A (en) 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4328813A (en) 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
US4341220A (en) 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4341385A (en) 1980-01-24 1982-07-27 Doyle Holly Thomis Electronic board game apparatus
US4346384A (en) 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
GB2094590A (en) 1981-02-12 1982-09-15 Univ New York Apparatus for stereotactic surgery
EP0062941A1 (en) 1981-04-08 1982-10-20 Koninklijke Philips Electronics N.V. Contour recording device
US4358856A (en) 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
US4368536A (en) 1979-12-17 1983-01-11 Siemens Aktiengesellschaft Diagnostic radiology apparatus for producing layer images
US4394831A (en) 1981-02-12 1983-07-26 Honeywell Inc. Helmet metal mass compensation for helmet-mounted sighting system
US4396945A (en) 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4396885A (en) 1979-06-06 1983-08-02 Thomson-Csf Device applicable to direction finding for measuring the relative orientation of two bodies
US4403321A (en) 1980-06-14 1983-09-06 U.S. Philips Corporation Switching network
US4418422A (en) 1978-02-22 1983-11-29 Howmedica International, Inc. Aiming device for setting nails in bones
US4419012A (en) 1979-09-11 1983-12-06 Elliott Brothers (London) Limited Position measuring system
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4425511A (en) 1981-02-09 1984-01-10 Amnon Brosh Planar coil apparatus employing a stationary and a movable board
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4447462A (en) 1981-11-04 1984-05-08 The Procter & Gamble Company Structural fat and method for making same
EP0119660A1 (en) 1983-03-17 1984-09-26 Nicolaas Roelof Snijder System of examining skeleton parts of a living body, more particularly the vertebral column of the human body
US4485815A (en) 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4506676A (en) 1982-09-10 1985-03-26 Duska Alois A Radiographic localization technique
EP0155857A2 (en) 1984-02-17 1985-09-25 Faro Medical Technologies Inc. Knee laxity evaluator and motion module/digitizer arrangement
US4543959A (en) 1981-06-04 1985-10-01 Instrumentarium Oy Diagnosis apparatus and the determination of tissue structure and quality
US4548208A (en) 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4571834A (en) 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
GB2164856A (en) 1984-10-01 1986-04-03 Lauri Laitinen Adapter for definition of the position of brain structures
US4583538A (en) 1984-05-04 1986-04-22 Onik Gary M Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US4584577A (en) 1982-10-20 1986-04-22 Brookes & Gatehouse Limited Angular position sensor
US4586491A (en) 1984-12-14 1986-05-06 Warner-Lambert Technologies, Inc. Bronchoscope with small gauge viewing attachment
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
DE3508730A1 (en) 1985-03-12 1986-09-18 Siemens AG, 1000 Berlin und 8000 München Measuring device for medical purposes
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4621628A (en) 1983-09-09 1986-11-11 Ortopedia Gmbh Apparatus for locating transverse holes of intramedullary implantates
US4625718A (en) 1984-06-08 1986-12-02 Howmedica International, Inc. Aiming apparatus
DE3520782A1 (en) 1985-06-10 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Medicament metering device with reservoir and metering store
US4638798A (en) 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4642786A (en) 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4645343A (en) 1981-11-11 1987-02-24 U.S. Philips Corporation Atomic resonance line source lamps and spectrophotometers for use with such lamps
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4651732A (en) 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4659971A (en) 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4660970A (en) 1983-11-25 1987-04-28 Carl-Zeiss-Stiftung Method and apparatus for the contact-less measuring of objects
US4673352A (en) 1985-01-10 1987-06-16 Markus Hansen Device for measuring relative jaw positions and movements
US4686695A (en) 1979-02-05 1987-08-11 Board Of Trustees Of The Leland Stanford Junior University Scanned x-ray selective imaging system
US4688037A (en) 1980-08-18 1987-08-18 Mcdonnell Douglas Corporation Electromagnetic communications and switching system
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
US4701049A (en) 1983-06-22 1987-10-20 B.V. Optische Industrie "De Oude Delft" Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _
US4704602A (en) 1984-02-15 1987-11-03 Intermodulation And Safety System Ab Method and system for detecting an indicating device
US4705401A (en) 1985-08-12 1987-11-10 Cyberware Laboratory Inc. Rapid three-dimensional surface digitizer
US4705395A (en) 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4709156A (en) 1985-11-27 1987-11-24 Ex-Cell-O Corporation Method and apparatus for inspecting a surface
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4719419A (en) 1985-07-15 1988-01-12 Harris Graphics Corporation Apparatus for detecting a rotary position of a shaft
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4722336A (en) 1985-01-25 1988-02-02 Michael Kim Placement guide
US4723544A (en) 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4726355A (en) 1986-02-17 1988-02-23 Olympus Optical Co., Ltd. Curvable part device for endoscope devices
US4727565A (en) 1983-11-14 1988-02-23 Ericson Bjoern E Method of localization
USRE32619E (en) 1978-11-20 1988-03-08 Apparatus and method for nuclear magnetic resonance scanning and mapping
US4733969A (en) 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4737032A (en) 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
US4737921A (en) 1985-06-03 1988-04-12 Dynamic Digital Displays, Inc. Three dimensional medical image display system
US4742356A (en) 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4743771A (en) 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4742815A (en) 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4743770A (en) 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
GB2197078A (en) 1986-10-23 1988-05-11 Radiodetection Ltd Improvements relating to positional information systems
US4745290A (en) 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4750487A (en) 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4753528A (en) 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4761072A (en) 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
US4764016A (en) 1985-06-14 1988-08-16 Anders Bengtsson Instrument for measuring the topography of a surface
US4771787A (en) 1985-12-12 1988-09-20 Richard Wolf Gmbh Ultrasonic scanner and shock wave generator
US4779212A (en) 1985-09-27 1988-10-18 Levy Nessim I Distance measuring device
US4782239A (en) 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
US4784117A (en) 1986-02-14 1988-11-15 Olympus Optical Co., Ltd. Endoscope insertion assisting device
US4788481A (en) 1986-03-10 1988-11-29 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4794262A (en) 1985-12-03 1988-12-27 Yukio Sato Method and apparatus for measuring profile of three-dimensional object
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4797907A (en) 1987-08-07 1989-01-10 Diasonics Inc. Battery enhanced power generation for mobile X-ray machine
FR2618211A1 (en) 1987-07-15 1989-01-20 Chardon Bernard Frontal illumination device making it possible to observe narrow and deep cavities
US4804261A (en) 1987-03-27 1989-02-14 Kirschen David G Anti-claustrophobic glasses
US4803976A (en) 1985-10-03 1989-02-14 Synthes Sighting instrument
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
US4821206A (en) 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4821200A (en) 1986-04-14 1989-04-11 Jonkopings Lans Landsting Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4822163A (en) 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4825091A (en) 1987-02-05 1989-04-25 Carl-Zeiss-Stiftung Optoelectronic distance sensor with visible pilot beam
US4829250A (en) 1988-02-10 1989-05-09 Honeywell, Inc. Magnetic direction finding device with improved accuracy
US4829373A (en) 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
US4836778A (en) 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US4838265A (en) 1985-05-24 1989-06-13 Cosman Eric R Localization device for probe placement under CT scanner imaging
EP0319844A1 (en) 1987-12-04 1989-06-14 Ad-Tech Medical Instrument Corporation Electrical connectors for brain-contact devices
US4841967A (en) 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4845771A (en) 1987-06-29 1989-07-04 Picker International, Inc. Exposure monitoring in radiation imaging
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
DE3838011A1 (en) 1987-11-10 1989-07-20 George S Allen METHOD AND DEVICE FOR GENERATING IMAGES OF THE ANATOMY
EP0326768A2 (en) 1988-02-01 1989-08-09 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4860331A (en) 1988-09-12 1989-08-22 Williams John F Image marker device
US4862893A (en) 1987-12-08 1989-09-05 Intra-Sonix, Inc. Ultrasonic transducer
US4869247A (en) 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US4875478A (en) 1987-04-10 1989-10-24 Chen Harry H Portable compression grid & needle holder
US4884566A (en) 1988-04-15 1989-12-05 The University Of Michigan System and method for determining orientation of planes of imaging
US4889526A (en) 1984-08-27 1989-12-26 Magtech Laboratories, Inc. Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
EP0350996A1 (en) 1988-07-11 1990-01-17 Koninklijke Philips Electronics N.V. X-ray Examination apparatus comprising a balanced supporting arm
US4896673A (en) 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US4923459A (en) 1987-09-14 1990-05-08 Kabushiki Kaisha Toshiba Stereotactics apparatus
WO1990005494A1 (en) 1988-11-18 1990-05-31 Istituto Neurologico 'carlo Besta' Process and apparatus particularly for guiding neurosurgical operations
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4977655A (en) 1986-04-25 1990-12-18 Intra-Sonix, Inc. Method of making a transducer
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5002058A (en) 1986-04-25 1991-03-26 Intra-Sonix, Inc. Ultrasonic transducer
WO1991003982A1 (en) 1989-09-13 1991-04-04 Isis Innovation Limited Apparatus and method for aligning drilling apparatus in surgical procedures
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
WO1991004711A1 (en) 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5013317A (en) 1990-02-07 1991-05-07 Smith & Nephew Richards Inc. Medical drill assembly transparent to X-rays and targeting drill bit
US5013047A (en) 1986-03-12 1991-05-07 Dr. Schwab Gesellschaft fur Technologieberatung mbH Apparatus for determining the identity and position of game objects
EP0427358A1 (en) 1989-11-08 1991-05-15 George S. Allen Mechanical arm for and interactive image-guided surgical system
US5017139A (en) 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
WO1991007726A1 (en) 1989-11-21 1991-05-30 I.S.G. Technologies Inc. Probe-correlated viewing of anatomical image data
US5023102A (en) 1988-12-30 1991-06-11 Nabisco Brands, Inc. Method and composition for inhibiting fat bloom in fat based compositions and hard butter
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
US5030196A (en) 1980-04-23 1991-07-09 Inoue-Japax Research Incorporated Magnetic treatment device
US5030222A (en) 1990-05-09 1991-07-09 James Calandruccio Radiolucent orthopedic chuck
USRE33662E (en) 1983-08-25 1991-08-13 TV animation interactively controlled by the viewer
US5042486A (en) 1989-09-29 1991-08-27 Siemens Aktiengesellschaft Catheter locatable with non-ionizing field and method for locating same
US5047036A (en) 1989-11-17 1991-09-10 Koutrouvelis Panos G Stereotactic device
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
EP0456103A2 (en) 1990-05-11 1991-11-13 International Business Machines Corporation Image-directed robotic system for precise surgery
JPH03267054A (en) 1990-03-16 1991-11-27 Amayoshi Katou Stationary lobotomy aid
US5070462A (en) 1989-09-12 1991-12-03 Flowmole Corporation Device for locating a boring machine
US5079699A (en) 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5082286A (en) 1989-09-07 1992-01-21 Saitek Limited Sensory games
US5088928A (en) 1988-11-15 1992-02-18 Chan James K Educational/board game apparatus
WO1992003090A1 (en) 1990-08-24 1992-03-05 Imperial College Of Science, Technology & Medicine Probe system
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5099845A (en) 1989-05-24 1992-03-31 Micronix Pty Ltd. Medical instrument location means
US5099846A (en) 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5104393A (en) 1989-08-30 1992-04-14 Angelase, Inc. Catheter
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5107862A (en) 1991-05-06 1992-04-28 Fabian Carl E Surgical implement detector utilizing a powered marker
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5107843A (en) 1990-04-06 1992-04-28 Orion-Yhtyma Oy Method and apparatus for thin needle biopsy in connection with mammography
US5109194A (en) 1989-12-01 1992-04-28 Sextant Avionique Electromagnetic position and orientation detector for a pilot's helmet
WO1992006645A1 (en) 1990-10-19 1992-04-30 St. Louis University Surgical probe locating system for head use
US5127408A (en) 1990-09-14 1992-07-07 Duke University Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US5129654A (en) 1991-01-03 1992-07-14 Brehn Corporation Electronic game apparatus
US5143076A (en) 1988-12-23 1992-09-01 Tyrone L. Hardy Three-dimensional beam localization microscope apparatus for stereotactic diagnoses or surgery
US5152288A (en) 1988-09-23 1992-10-06 Siemens Aktiengesellschaft Apparatus and method for measuring weak, location-dependent and time-dependent magnetic fields
US5152277A (en) 1987-07-23 1992-10-06 Terumo Kabushiki Kaisha Catheter tube
DE4213426A1 (en) 1991-04-23 1992-10-29 Olympus Optical Co Surgical appts. monitoring treatment implement contact condition - enables surgeon to track progress to operation from reproduction of feel of contact with treated tissue
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5178621A (en) 1991-12-10 1993-01-12 Zimmer, Inc. Two-piece radio-transparent proximal targeting device for a locking intramedullary nail
US5178130A (en) 1990-04-04 1993-01-12 Olympus Optical Co., Ltd. Parent-and-son type endoscope system for making a synchronized field sequential system illumination
US5187475A (en) 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
US5188368A (en) 1989-10-25 1993-02-23 Saitek Limited Electronic game apparatus
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5190059A (en) 1989-11-16 1993-03-02 Fabian Carl E Surgical implement detector utilizing a powered marker
US5190285A (en) 1991-09-30 1993-03-02 At&T Bell Laboratories Electronic game having intelligent game pieces
US5193106A (en) 1990-08-28 1993-03-09 Desena Danforth X-ray identification marker
US5196928A (en) 1991-04-02 1993-03-23 Olympus Optical Co., Ltd. Endoscope system for simultaneously displaying two endoscopic images on a shared monitor
US5198768A (en) 1989-09-27 1993-03-30 Elscint, Ltd. Quadrature surface coil array
US5197965A (en) 1992-07-29 1993-03-30 Codman & Shurtleff, Inc. Skull clamp pin assembly
US5197476A (en) 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
US5203337A (en) 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
US5207688A (en) 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5211176A (en) 1990-11-30 1993-05-18 Fuji Photo Optical Co., Ltd. Ultrasound examination system
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5212720A (en) 1992-01-29 1993-05-18 Research Foundation-State University Of N.Y. Dual radiation targeting system
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5219351A (en) 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5224049A (en) 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5233990A (en) 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5261404A (en) 1991-07-08 1993-11-16 Mick Peter R Three-dimensional mammal anatomy imaging system and method
US5262722A (en) 1992-04-03 1993-11-16 General Electric Company Apparatus for near surface nondestructive eddy current scanning of a conductive part using a multi-layer eddy current probe array
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
DE4225112C1 (en) 1992-07-30 1993-12-09 Bodenseewerk Geraetetech Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5273025A (en) 1990-04-13 1993-12-28 Olympus Optical Co., Ltd. Apparatus for detecting insertion condition of endoscope
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
EP0581704A1 (en) 1992-07-31 1994-02-02 Universite Joseph Fourier Method for determining the position of an organ
US5285787A (en) 1989-09-12 1994-02-15 Kabushiki Kaisha Toshiba Apparatus for calculating coordinate data of desired point in subject to be examined
US5291199A (en) 1977-01-06 1994-03-01 Westinghouse Electric Corp. Threat signal detection system
WO1994004938A1 (en) 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5291889A (en) 1991-05-23 1994-03-08 Vanguard Imaging Ltd. Apparatus and method for spatially positioning images
US5295483A (en) 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
US5299254A (en) 1989-11-24 1994-03-29 Technomed International Method and apparatus for determining the position of a target relative to a reference of known co-ordinates and without a priori knowledge of the position of a source of radiation
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5299253A (en) 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5301061A (en) 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5300080A (en) 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5305091A (en) 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5306271A (en) 1992-03-09 1994-04-26 Izi Corporation Radiation therapy skin markers
US5307072A (en) 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5307816A (en) 1991-08-21 1994-05-03 Kabushiki Kaisha Toshiba Thrombus resolving treatment apparatus
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5315630A (en) 1992-03-11 1994-05-24 Bodenseewerk Geratetechnik Gmbh Positioning device in medical apparatus
US5316024A (en) 1992-07-23 1994-05-31 Abbott Laboratories Tube placement verifier system
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5325728A (en) 1993-06-22 1994-07-05 Medtronic, Inc. Electromagnetic flow meter
US5327889A (en) 1992-12-01 1994-07-12 Cardiac Pathways Corporation Mapping and ablation catheter with individually deployable arms and method
JPH06194639A (en) 1992-12-25 1994-07-15 Matsushita Electric Ind Co Ltd Liquid crystal display panel
US5330485A (en) 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5329944A (en) 1989-11-16 1994-07-19 Fabian Carl E Surgical implement detector utilizing an acoustic marker
US5333168A (en) 1993-01-29 1994-07-26 Oec Medical Systems, Inc. Time-based attenuation compensation
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5347289A (en) 1993-06-29 1994-09-13 Honeywell, Inc. Method and device for measuring the position and orientation of objects in the presence of interfering metals
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
US5353800A (en) 1992-12-11 1994-10-11 Medtronic, Inc. Implantable pressure sensor lead
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5357253A (en) 1993-04-02 1994-10-18 Earth Sounding International System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals
US5359417A (en) 1991-10-18 1994-10-25 Carl-Zeiss-Stiftung Surgical microscope for conducting computer-supported stereotactic microsurgery and a method for operating the same
WO1994023647A1 (en) 1993-04-22 1994-10-27 Pixsys, Inc. System for locating relative positions of objects
WO1994024933A1 (en) 1993-04-26 1994-11-10 St. Louis University Indicating the position of a surgical probe
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
US5376795A (en) 1990-07-09 1994-12-27 Regents Of The University Of California Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5377678A (en) 1991-09-03 1995-01-03 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5383852A (en) 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5389073A (en) 1992-12-01 1995-02-14 Cardiac Pathways Corporation Steerable catheter with adjustable bend location
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5394875A (en) 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5397321A (en) 1993-07-30 1995-03-14 Ep Technologies, Inc. Variable curve electrophysiology catheter
WO1995007055A1 (en) 1993-09-07 1995-03-16 Deemed International S.A. Computer-assisted microsurgery equipment and methods for use with said equipment
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5398691A (en) 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
US5405346A (en) 1993-05-14 1995-04-11 Fidus Medical Technology Corporation Tunable microwave ablation catheter
WO1995009562A1 (en) 1993-10-06 1995-04-13 Biosense, Inc. Magnetic determination of position and orientation
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5412414A (en) 1988-04-08 1995-05-02 Martin Marietta Corporation Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly
US5413573A (en) 1991-05-24 1995-05-09 Onesys Oy Device for surgical procedures
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5426687A (en) 1992-07-07 1995-06-20 Innovative Care Ltd. Laser targeting device for use with image intensifiers in surgery
US5426683A (en) 1994-03-14 1995-06-20 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5435573A (en) 1993-04-13 1995-07-25 Visioneering International, Inc. Wireless remote control and position detecting system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5443066A (en) 1991-11-18 1995-08-22 General Electric Company Invasive system employing a radiofrequency tracking system
US5444756A (en) 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5445144A (en) 1993-12-16 1995-08-29 Purdue Research Foundation Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body
US5448610A (en) 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
US5447156A (en) 1994-04-04 1995-09-05 General Electric Company Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
US5457641A (en) 1990-06-29 1995-10-10 Sextant Avionique Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor
US5456254A (en) 1991-02-15 1995-10-10 Cardiac Pathways Corp Flexible strip assembly having insulating layer with conductive pads exposed through insulating layer and device utilizing the same
US5456664A (en) 1992-11-13 1995-10-10 Ep Technologies, Inc. Catheter steering mechanism
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
US5458718A (en) 1993-03-19 1995-10-17 Vip Industries Limited Heat sealing method for making a luggage case
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
US5469847A (en) 1992-09-09 1995-11-28 Izi Corporation Radiographic multi-modality skin markers
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5476100A (en) 1994-07-07 1995-12-19 Guided Medical Systems, Inc. Catheter steerable by directional jets with remotely controlled closures
US5476495A (en) 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5478343A (en) 1991-06-13 1995-12-26 Howmedica International, Inc. Targeting device for bone nails
US5478341A (en) 1991-12-23 1995-12-26 Zimmer, Inc. Ratchet lock for an intramedullary nail locking bolt
US5480439A (en) 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5489256A (en) 1992-09-01 1996-02-06 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5492713A (en) 1991-05-16 1996-02-20 Sommermeyer; Klaus Nutriment preparation
US5492131A (en) 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5493517A (en) 1991-06-03 1996-02-20 Hughes Missile Systems Company Cargo container mapping system
US5494034A (en) 1987-05-27 1996-02-27 Georg Schlondorff Process and device for the reproducible optical representation of a surgical operation
WO1996005768A1 (en) 1994-08-19 1996-02-29 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5503416A (en) 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
WO1996011624A2 (en) 1994-10-07 1996-04-25 St. Louis University Surgical navigation systems including reference and localization frames
US5514146A (en) 1993-09-17 1996-05-07 Dwl Electronische Systeme Gmbh Device for accomodating at least one sonographic probe
US5515160A (en) 1992-03-12 1996-05-07 Aesculap Ag Method and apparatus for representing a work area in a three-dimensional structure
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5522815A (en) 1993-03-29 1996-06-04 Durgin, Jr.; Russell F. Integrated catheter for diverse in situ tissue therapy
US5522814A (en) 1991-09-05 1996-06-04 Bernaz; Gabriel Method of high frequency depilation
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5531686A (en) 1990-02-02 1996-07-02 Ep Technologies, Inc. Catheter steering mechanism
US5543951A (en) 1994-03-15 1996-08-06 Siemens Aktiengesellschaft Method for receive-side clock supply for video signals digitally transmitted with ATM in fiber/coaxial subscriber line networks
US5545200A (en) 1993-07-20 1996-08-13 Medtronic Cardiorhythm Steerable electrophysiology catheter
US5546940A (en) 1994-01-28 1996-08-20 Ep Technologies, Inc. System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
US5551429A (en) 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US5555883A (en) 1992-02-24 1996-09-17 Avitall; Boaz Loop electrode array mapping and ablation catheter for cardiac chambers
WO1996032059A1 (en) 1995-04-10 1996-10-17 Compass International Incorporated Magnetic field digitizer for stereotactic surgery
US5568384A (en) 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5566681A (en) 1995-05-02 1996-10-22 Manwaring; Kim H. Apparatus and method for stabilizing a body part
US5571083A (en) 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5575798A (en) 1989-11-17 1996-11-19 Koutrouvelis; Panos G. Stereotactic device
US5577991A (en) 1992-06-09 1996-11-26 Olympus Optical Co., Ltd. Three-dimensional vision endoscope with position adjustment means for imaging device and visual field mask
US5583909A (en) 1994-12-20 1996-12-10 Oec Medical Systems, Inc. C-arm mounting structure for mobile X-ray imaging system
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
US5588033A (en) 1995-06-06 1996-12-24 St. Jude Children's Research Hospital Method and apparatus for three dimensional image reconstruction from multiple stereotactic or isocentric backprojections
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US5590215A (en) 1993-10-15 1996-12-31 Allen; George S. Method for providing medical images
WO1997000059A1 (en) 1995-06-19 1997-01-03 The Procter & Gamble Company Sanitary articles with dual layer topsheets
WO1997000054A1 (en) 1995-06-19 1997-01-03 Sven Olerud An adjustable spacing device and a method of adjusting the distance between two vertebrae with the aid of said spacing device in spinal surgical operations
WO1997000011A1 (en) 1995-06-16 1997-01-03 Novartis Ag Microbicidal compositions
WO1997000308A1 (en) 1995-06-16 1997-01-03 Tonen Corporation Heat-resistant lubricating oil composition
WO1997000058A1 (en) 1995-06-19 1997-01-03 The Procter & Gamble Company Sanitary articles with dual layer topsheet having a selected distribution of large apertures
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
WO1997002650A1 (en) 1995-07-05 1997-01-23 Reel S.R.L. Method and unit for controlling the synchronization of complex machines in case of electric power failure
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5606975A (en) 1994-09-19 1997-03-04 The Board Of Trustees Of The Leland Stanford Junior University Forward viewing ultrasonic imaging catheter
US5611025A (en) 1994-11-23 1997-03-11 General Electric Company Virtual internal cavity inspection system
US5617462A (en) 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
US5619261A (en) 1994-07-25 1997-04-08 Oec Medical Systems, Inc. Pixel artifact/blemish filter for use in CCD video camera
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5620734A (en) 1992-03-05 1997-04-15 Van Den Bergh Foods Co., Division Of Conopco, Inc. Spreads and other products including mesomorphic phases
US5627873A (en) 1995-08-04 1997-05-06 Oec Medical Systems, Inc. Mini C-arm assembly for mobile X-ray imaging system
US5628315A (en) 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5636634A (en) 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5640170A (en) 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5642395A (en) 1995-08-07 1997-06-24 Oec Medical Systems, Inc. Imaging chain with miniaturized C-arm assembly for mobile X-ray imaging system
US5643268A (en) 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5643175A (en) 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5646524A (en) 1992-06-16 1997-07-08 Elbit Ltd. Three dimensional tracking system employing a rotating field
US5646525A (en) 1992-06-16 1997-07-08 Elbit Ltd. Three dimensional tracking system employing a rotating field
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
WO1997025101A2 (en) 1996-01-08 1997-07-17 Biosense Inc. Methods and apparatus for myocardial revascularization
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
WO1997029684A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Catheter with lumen
WO1997029682A1 (en) 1996-02-15 1997-08-21 Biosense Inc. Locatable biopsy needle
WO1997029685A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Independently positionable transducers for location system
WO1997029701A1 (en) 1996-02-15 1997-08-21 Biosense Inc. Catheter based surgery
WO1997029709A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5660865A (en) 1992-09-25 1997-08-26 Aarhus Oliefabrik A/S Surface treatment composition
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5664001A (en) 1995-03-24 1997-09-02 J. Morita Manufacturing Corporation Medical X-ray imaging apparatus
EP0796633A1 (en) 1996-03-18 1997-09-24 Hiroaki Ashiya Catheter assembly
WO1997036192A1 (en) 1996-03-27 1997-10-02 Paul Scherrer Institut Device and process for determining position
WO1997036143A1 (en) 1996-03-26 1997-10-02 Biosense Inc. Mutual induction correction
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5676673A (en) 1994-09-15 1997-10-14 Visualization Technology, Inc. Position tracking and imaging system with error detection for use in medical applications
US5682165A (en) 1996-05-02 1997-10-28 Hughes Electronics Active array self calibration
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
WO1997042517A1 (en) 1996-05-06 1997-11-13 Biosense Inc. Radiator calibration
US5690108A (en) 1994-11-28 1997-11-25 Chakeres; Donald W. Interventional medicine apparatus
WO1997044089A1 (en) 1996-05-17 1997-11-27 Biosense Inc. Self-aligning catheter
US5696500A (en) 1995-08-18 1997-12-09 Motorola, Inc. Multi-media receiver and system therefor
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5702406A (en) 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US5701898A (en) 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
WO1997049453A1 (en) 1996-06-27 1997-12-31 Sluijter Menno E Method and system for neural tissue modification
WO1998000034A2 (en) 1996-07-01 1998-01-08 Wabfi Holdings Ltd. Process for producing chip food product and system therefor
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5713853A (en) 1995-06-07 1998-02-03 Interventional Innovations Corporation Methods for treating thrombosis
US5713369A (en) 1995-09-13 1998-02-03 Vance Products Inc. Uterine endometrial tissue sample brush
US5715836A (en) 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US5715822A (en) 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
WO1998008554A1 (en) 1996-08-29 1998-03-05 Medtronic, Inc. Brain stimulation system having an improved anchor for a lead or catheter
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
EP0829229A1 (en) 1996-09-12 1998-03-18 Siemens-Elema AB Method and device for determining the position of a catheter inside the body of a patient
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
WO1998011840A1 (en) 1996-09-17 1998-03-26 Biosense Inc. Position confirmation with learn and test functions
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5735278A (en) 1996-03-15 1998-04-07 National Research Council Of Canada Surgical procedure with magnetic resonance imaging
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5741320A (en) 1995-05-02 1998-04-21 Heart Rhythm Technologies, Inc. Catheter control system having a pulley
US5740802A (en) 1993-04-20 1998-04-21 General Electric Company Computer graphic and live video system for enhancing visualization of body structures during surgery
US5741214A (en) 1993-12-20 1998-04-21 Terumo Kabushiki Kaisha Accessory pathway detecting/cauterizing apparatus
US5744802A (en) 1995-10-25 1998-04-28 Adac Laboratories Image generation from limited projections in positron emission tomography using multi-slice rebinning
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
US5749835A (en) 1994-09-06 1998-05-12 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5760335A (en) 1993-08-02 1998-06-02 Elbit Systems Ltd. Compensation of electromagnetic distortion caused by metal mass
US5758667A (en) 1995-01-26 1998-06-02 Siemens Elema Ab Device for locating a port on a medical implant
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US5767699A (en) 1996-05-28 1998-06-16 Sun Microsystems, Inc. Fully complementary differential output driver for high speed digital communications
US5769789A (en) 1993-02-12 1998-06-23 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US5776050A (en) 1995-07-24 1998-07-07 Medical Media Systems Anatomical visualization system
WO1998029032A1 (en) 1997-01-03 1998-07-09 Biosense Inc. Conformal catheter
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
US5782828A (en) 1996-12-11 1998-07-21 Irvine Biomedical, Inc. Ablation catheter with multiple flexible curves
US5792055A (en) 1994-03-18 1998-08-11 Schneider (Usa) Inc. Guidewire antenna
US5795294A (en) 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
WO1998035720A2 (en) 1997-02-14 1998-08-20 Biosense Inc. X-ray guided surgical location system with extended mapping volume
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
US5803084A (en) 1996-12-05 1998-09-08 Olson; Charles Three dimensional vector cardiographic display and method for displaying same
WO1998038908A1 (en) 1997-03-03 1998-09-11 Schneider Medical Technologies, Inc. Imaging device and method
US5807252A (en) 1995-02-23 1998-09-15 Aesculap Ag Method and apparatus for determining the position of a body part
US5810728A (en) 1993-04-03 1998-09-22 U.S. Philips Corporation MR imaging method and apparatus for guiding a catheter
US5810735A (en) 1995-02-27 1998-09-22 Medtronic, Inc. External patient reference sensors
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
US5820591A (en) 1990-02-02 1998-10-13 E. P. Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5820553A (en) 1996-08-16 1998-10-13 Siemens Medical Systems, Inc. Identification system and method for radiation therapy
DE19751761A1 (en) 1997-04-11 1998-10-15 Brainlab Med Computersyst Gmbh System for continuous display of target location in medical treatments
DE19715202A1 (en) 1997-04-11 1998-10-15 Brainlab Med Computersyst Gmbh Position referencing system for medical examinations or treatment
US5823192A (en) 1996-07-31 1998-10-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for automatically positioning a patient for treatment/diagnoses
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5828725A (en) 1996-07-03 1998-10-27 Eliav Medical Imaging Systems Ltd Processing images for removal of artifacts
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
WO1998048722A1 (en) 1997-04-28 1998-11-05 American Cardiac Ablation Co., Inc. Catheter positioning system
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5843076A (en) 1995-06-12 1998-12-01 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
US5842984A (en) 1993-12-03 1998-12-01 Avitall; Boaz Mapping and ablation catheter system with locking mechanism
US5843051A (en) 1990-10-29 1998-12-01 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5846183A (en) 1995-06-07 1998-12-08 Chilcoat; Robert T. Articulated endoscope with specific advantages for laryngoscopy
US5853327A (en) 1994-07-28 1998-12-29 Super Dimension, Inc. Computerized game board
US5857997A (en) 1994-11-14 1999-01-12 Heart Rhythm Technologies, Inc. Catheter for electrophysiological procedures
US5865726A (en) 1996-03-27 1999-02-02 Asahi Kogaku Kogyo Kabushiki Kaisha Front end structure of side-view type endoscope
DE19832296A1 (en) 1997-07-18 1999-02-04 Image Guided Technologies Inc Optical tracking system for position and orientation of body in three=dimensional space
US5868674A (en) 1995-11-24 1999-02-09 U.S. Philips Corporation MRI-system and catheter for interventional procedures
US5868673A (en) 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US5871455A (en) 1996-04-30 1999-02-16 Nikon Corporation Ophthalmic apparatus
US5871523A (en) 1993-10-15 1999-02-16 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5871487A (en) 1994-06-24 1999-02-16 Cytotherpeutics, Inc. Microdrive for use in stereotactic surgery
US5882304A (en) 1997-10-27 1999-03-16 Picker Nordstar Corporation Method and apparatus for determining probe location
US5884410A (en) 1995-12-21 1999-03-23 Carl-Zeiss-Stiftung Sensing system for coordinate measuring equipment
US5889834A (en) 1995-09-28 1999-03-30 Brainlab Med. Computersysteme Gmbh Blade collimator for radiation therapy
WO1999015097A2 (en) 1997-09-24 1999-04-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
WO1999016350A1 (en) 1997-09-26 1999-04-08 Ep Technologies, Inc. Systems for recording the use of cardiac devices
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
EP0908146A2 (en) 1997-10-06 1999-04-14 General Electric Company Real-time image-guided placement of anchor devices
DE19747427A1 (en) 1997-10-28 1999-05-06 Zeiss Carl Fa Bone segment navigation system
US5902324A (en) 1998-04-28 1999-05-11 Medtronic, Inc. Bi-atrial and/or bi-ventricular sequential cardiac pacing systems
US5902239A (en) 1996-10-30 1999-05-11 U.S. Philips Corporation Image guided surgery system including a unit for transforming patient positions to image positions
US5904691A (en) 1996-09-30 1999-05-18 Picker International, Inc. Trackable guide block
WO1999023956A1 (en) 1997-11-05 1999-05-20 Synthes Ag, Chur Virtual representation of a bone or a bone joint
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
US5909476A (en) 1997-09-22 1999-06-01 University Of Iowa Research Foundation Iterative process for reconstructing cone-beam tomographic images
WO1999026826A2 (en) 1997-11-14 1999-06-03 Continental Teves Ag & Co. Ohg Brake-power transmission device, especially for motor vehicles
WO1999026549A1 (en) 1997-11-20 1999-06-03 Surgical Navigation Technologies, Inc. An image guided awl/tap/screwdriver
WO1999027839A2 (en) 1997-12-01 1999-06-10 Cosman Eric R Surgical positioning system
EP0922966A2 (en) 1997-12-12 1999-06-16 Super Dimension Ltd. Wireless six-degree-of-freedom locator
WO1999029253A1 (en) 1997-12-12 1999-06-17 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
WO1999030777A1 (en) 1997-12-15 1999-06-24 Medtronic, Inc. Four-chamber pacing system for optimizing cardiac output
US5916210A (en) 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
WO1999032033A1 (en) 1997-12-22 1999-07-01 Cormedica Corporation Measuring position and orientation using magnetic fields
US5919147A (en) 1996-11-01 1999-07-06 Jain; Krishna M. Method and apparatus for measuring the vascular diameter of a vessel
US5919188A (en) 1997-02-04 1999-07-06 Medtronic, Inc. Linear ablation catheter
WO1999033406A1 (en) 1997-12-31 1999-07-08 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
US5923727A (en) 1997-09-30 1999-07-13 Siemens Corporate Research, Inc. Method and apparatus for calibrating an intra-operative X-ray system
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
EP0930046A2 (en) 1997-11-26 1999-07-21 Picker International, Inc. Method of, and apparatus for, imaging
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US5930329A (en) 1997-09-22 1999-07-27 Siemens Corporate Research, Inc. Apparatus and method for detection and localization of a biopsy needle or similar surgical tool in a radiographic image
WO1999037208A1 (en) 1996-02-01 1999-07-29 Biosense Inc. Intrabody measurement
WO1999038449A1 (en) 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system
US5935160A (en) 1997-01-24 1999-08-10 Cardiac Pacemakers, Inc. Left ventricular access lead for heart failure pacing
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US5938694A (en) 1993-11-10 1999-08-17 Medtronic Cardiorhythm Electrode array catheter
US5938585A (en) 1998-03-20 1999-08-17 Boston Scientific Corporation Anchoring and positioning device and method for an endoscope
US5938602A (en) 1996-06-11 1999-08-17 Roke Manor Research Limited Catheter tracking system and method
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
US5947980A (en) 1993-09-30 1999-09-07 Price Invena Aps Device for squeezing and cutting an umbilical cord
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5951571A (en) 1996-09-19 1999-09-14 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5951461A (en) 1996-12-20 1999-09-14 Nyo; Tin Image-guided laryngoscope for tracheal intubation
US5951475A (en) 1997-09-25 1999-09-14 International Business Machines Corporation Methods and apparatus for registering CT-scan data to multiple fluoroscopic images
US5954649A (en) 1997-10-20 1999-09-21 Irvine Biomedical, Inc. Catheter system having ultrasound locating capabilities
US5954796A (en) 1997-02-11 1999-09-21 Compaq Computer Corporation System and method for automatically and dynamically changing an address associated with a device disposed in a fire channel environment
US5966090A (en) 1998-03-16 1999-10-12 Mcewan; Thomas E. Differential pulse radar motion sensor
WO1999052094A1 (en) 1998-04-03 1999-10-14 Image Guided Technologies, Inc. Wireless optical instrument for position measurement and method of use therefor
US5967982A (en) 1997-12-09 1999-10-19 The Cleveland Clinic Foundation Non-invasive spine and bone registration for frameless stereotaxy
US5968047A (en) 1996-04-05 1999-10-19 Reed; Thomas Mills Fixation devices
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5976127A (en) 1998-01-14 1999-11-02 Lax; Ronald Soft tissue fixation devices
WO1999055415A1 (en) 1998-04-28 1999-11-04 Medtronic, Inc. Multiple channel, sequential, cardiac pacing systems
US5980504A (en) 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
WO1999060939A1 (en) 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US5999840A (en) 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6006127A (en) 1997-02-28 1999-12-21 U.S. Philips Corporation Image-guided surgery system
US6004269A (en) 1993-07-01 1999-12-21 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US6013087A (en) 1996-05-29 2000-01-11 U.S. Philips Corporation Image-guided surgery system
US6014580A (en) 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US6019728A (en) 1996-05-08 2000-02-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Catheter and sensor having pressure detecting function
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US6022578A (en) 1994-04-22 2000-02-08 Kraft Foods, Inc. Tablespread product containing liquid fat and process for preparing same
WO2000006701A1 (en) 1998-07-31 2000-02-10 Genzyme Corporation Improvement of cardiac function by mesenchymal stem cell transplantation
US6024739A (en) 1997-09-05 2000-02-15 Cordis Webster, Inc. Method for detecting and revascularizing ischemic myocardial tissue
WO2000010456A1 (en) 1998-08-02 2000-03-02 Super Dimension Ltd. Intrabody navigation system for medical applications
US6032675A (en) 1997-03-17 2000-03-07 Rubinsky; Boris Freezing method for controlled removal of fatty tissue by liposuction
US6035229A (en) 1994-07-14 2000-03-07 Washington Research Foundation Method and apparatus for detecting Barrett's metaplasia of the esophagus
JP3025752B2 (en) 1995-12-14 2000-03-27 キヤノン株式会社 Print control device and print control method of print control device
WO2000016684A1 (en) 1998-09-24 2000-03-30 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US6050724A (en) 1997-01-31 2000-04-18 U. S. Philips Corporation Method of and device for position detection in X-ray imaging
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6061588A (en) 1998-09-29 2000-05-09 Advanced Cardiovascular Systems, Inc. Catheter apparatus for positioning a wire
US6064390A (en) 1996-07-26 2000-05-16 Lifef/X Networks, Inc. Apparatus and method for representation of expression in a tissue-like system
US6077257A (en) 1996-05-06 2000-06-20 Vidacare, Inc. Ablation of rectal and other internal body structures
WO2000035531A1 (en) 1998-12-14 2000-06-22 Tre Esse Progettazione Biomedica S.R.L. Catheter system for performing intramyocardiac therapeutic treatment
US6096050A (en) 1997-09-19 2000-08-01 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US6096036A (en) 1998-05-05 2000-08-01 Cardiac Pacemakers, Inc. Steerable catheter with preformed distal shape and method for use
US6104294A (en) 1995-12-29 2000-08-15 Alfa Laval Agri Ab Activity measurement
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
US6106517A (en) 1994-06-23 2000-08-22 Situs Corporation Surgical instrument with ultrasound pulse generator
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
US6117476A (en) 1999-01-04 2000-09-12 Shaul Eger Healthy food spreads
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US6123979A (en) 1997-10-24 2000-09-26 Unilever Patent Holdings Bv Wax ester compositions
US6131396A (en) 1996-09-27 2000-10-17 Siemens Aktiengesellschaft Heat radiation shield, and dewar employing same
US6139183A (en) 1997-10-17 2000-10-31 Siemens Aktiengesellschaft X-ray exposure system for 3D imaging
US6147480A (en) 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
US6161032A (en) 1998-03-30 2000-12-12 Biosense, Inc. Three-axis coil sensor
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6172499B1 (en) 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
US6178345B1 (en) 1998-06-30 2001-01-23 Brainlab Med. Computersysteme Gmbh Method for detecting the exact contour of targeted treatment areas, in particular, the external contour
US6179809B1 (en) 1997-09-24 2001-01-30 Eclipse Surgical Technologies, Inc. Drug delivery catheter with tip alignment
WO2001006917A1 (en) 1999-07-26 2001-02-01 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6183444B1 (en) 1998-05-16 2001-02-06 Microheart, Inc. Drug delivery module
US6192280B1 (en) 1999-06-02 2001-02-20 Medtronic, Inc. Guidewire placed implantable lead with tip seal
WO2001012057A1 (en) 1999-08-16 2001-02-22 Super Dimension Ltd. Method and system for displaying cross-sectional images of a body
US6194639B1 (en) 1996-05-01 2001-02-27 The University Of Queensland ACC synthase genes from pineapple
EP1078644A1 (en) 1999-08-24 2001-02-28 Biosense, Inc. Apparatus for intracardiac cell delivery and cell transplantation
US6201387B1 (en) 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US6203493B1 (en) 1996-02-15 2001-03-20 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
US6208884B1 (en) 1996-06-25 2001-03-27 Quantum Magnetics, Inc. Noninvasive room temperature instrument to measure magnetic susceptibility variations in body tissue
US6210362B1 (en) 1997-09-05 2001-04-03 Cordis Webster, Inc. Steerable catheter for detecting and revascularing ischemic myocardial tissue
US6211666B1 (en) 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US6213998B1 (en) 1998-04-02 2001-04-10 Vanderbilt University Laser surgical cutting probe and system
US6216027B1 (en) 1997-08-01 2001-04-10 Cardiac Pathways Corporation System for electrode localization using ultrasound
US6213995B1 (en) 1999-08-31 2001-04-10 Phelps Dodge High Performance Conductors Of Sc And Ga, Inc. Flexible tubing with braided signal transmission elements
US6216029B1 (en) 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US6226543B1 (en) 1998-09-24 2001-05-01 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
WO2001030437A1 (en) 1999-10-28 2001-05-03 Winchester Development Associates Patient-shielding and coil system
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6246231B1 (en) 1999-07-29 2001-06-12 Ascension Technology Corporation Magnetic field permeable barrier for magnetic position measurement system
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6245020B1 (en) 1998-01-26 2001-06-12 Scimed Life System, Inc. Catheter assembly with distal end inductive coupler and embedded transmission line
US6246784B1 (en) 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US6246899B1 (en) 1997-10-20 2001-06-12 Irvine Biomedical, Inc. Ultrasound locating system having ablation capabilities
US6248074B1 (en) 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
US6259942B1 (en) 1997-09-27 2001-07-10 Surgical Navigation Specialist Inc. Method and apparatus for recording a three-dimensional image of a body part
US20010007918A1 (en) 2000-01-12 2001-07-12 Brainlab Ag Intraoperative navigation updating
US6264654B1 (en) 1997-07-21 2001-07-24 Daig Corporation Ablation catheter
US6272371B1 (en) 1997-01-03 2001-08-07 Biosense Inc. Bend-responsive catheter
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
WO2001067035A1 (en) 2000-03-09 2001-09-13 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6304769B1 (en) 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
US20010031919A1 (en) 1999-05-18 2001-10-18 Mediguide Ltd Medical imaging and navigation system
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US20010038705A1 (en) 1999-03-08 2001-11-08 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
WO2001087136A2 (en) 2000-04-28 2001-11-22 Visualization Technology Fluoroscopic tracking and visualization system
WO2001091842A1 (en) 2000-05-30 2001-12-06 Olympus Optical Co., Ltd. Medical guide wire
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US6331156B1 (en) 1999-06-21 2001-12-18 Richard Wolf Gmbh Electronic endoscope
EP1174082A1 (en) 2000-07-20 2002-01-23 Biosense, Inc. Electromagnetic position single axis system
US6346940B1 (en) 1997-02-27 2002-02-12 Kabushiki Kaisha Toshiba Virtualized endoscope system
US20020022837A1 (en) 2000-06-19 2002-02-21 Mazzocchi Rudy A. System and method of minimally-invasive exovascular aneurysm treatment
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6366799B1 (en) 1996-02-15 2002-04-02 Biosense, Inc. Movable transmit or receive coils for location system
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US20020045916A1 (en) 1999-12-06 2002-04-18 C.R. Bard, Inc. Temporary vascular filter guide wire
US20020045919A1 (en) 1996-06-05 2002-04-18 Gunilla Johansson-Ruden Biocompatible glue
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6380732B1 (en) 1997-02-13 2002-04-30 Super Dimension Ltd. Six-degree of freedom tracking system having a passive transponder on the object being tracked
US6383144B1 (en) 2000-01-18 2002-05-07 Edwards Lifesciences Corporation Devices and methods for measuring temperature of a patient
US20020082498A1 (en) 2000-10-05 2002-06-27 Siemens Corporate Research, Inc. Intra-operative image-guided neurosurgery with augmented reality visualization
US6423009B1 (en) 1996-11-29 2002-07-23 Life Imaging Systems, Inc. System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
US6424856B1 (en) 1998-06-30 2002-07-23 Brainlab Ag Method for the localization of targeted treatment areas in soft body parts
US6428547B1 (en) 1999-11-25 2002-08-06 Brainlab Ag Detection of the shape of treatment devices
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US6437567B1 (en) 1999-12-06 2002-08-20 General Electric Company Radio frequency coil for open magnetic resonance imaging system
WO2002064011A2 (en) 2001-02-13 2002-08-22 Mediguide Ltd. Medical imaging and navigation system
US6443894B1 (en) 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US6447504B1 (en) 1998-07-02 2002-09-10 Biosense, Inc. System for treatment of heart tissue using viability map
WO2002070047A1 (en) 2001-03-01 2002-09-12 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US20020128565A1 (en) 1997-07-31 2002-09-12 Case Western Reserve University System and method for non-invasive electrocardiographic imaging
US6453190B1 (en) 1996-02-15 2002-09-17 Biosense, Inc. Medical probes with field transducers
US20020137014A1 (en) 2001-03-06 2002-09-26 Anderson James H. Simulation method for designing customized medical devices
US20020143324A1 (en) 1998-02-19 2002-10-03 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6473635B1 (en) 1999-09-30 2002-10-29 Koninkiljke Phillip Electronics N.V. Method of and device for determining the position of a medical instrument
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
DE10085137T1 (en) 1999-10-28 2002-11-07 Winchester Dev Associates Winc Surgical sensor
US20020165448A1 (en) 1997-05-14 2002-11-07 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US6478802B2 (en) 2000-06-09 2002-11-12 Ge Medical Systems Global Technology Company, Llc Method and apparatus for display of an image guided drill bit
US20020173689A1 (en) 2001-04-24 2002-11-21 Microspherix Llc Deflectable implantation device and method of use
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US20020193686A1 (en) 2000-01-10 2002-12-19 Pinhas Gilboa Methods and systems for performing medical procedures with reference to projective image and with respect to pre-stored images
US6498477B1 (en) 1999-03-19 2002-12-24 Biosense, Inc. Mutual crosstalk elimination in medical systems using radiator coils and magnetic fields
US20030018251A1 (en) 2001-04-06 2003-01-23 Stephen Solomon Cardiological mapping and navigation system
US6516046B1 (en) 1999-11-04 2003-02-04 Brainlab Ag Exact patient positioning by compairing reconstructed x-ray images and linac x-ray images
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US6527443B1 (en) 1999-04-20 2003-03-04 Brainlab Ag Process and apparatus for image guided treatment with an integration of X-ray detection and navigation system
US20030074011A1 (en) 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6551325B2 (en) 2000-09-26 2003-04-22 Brainlab Ag Device, system and method for determining the position of an incision block
US20030086599A1 (en) 2001-06-15 2003-05-08 University Of Chicago Automated method and system for the delineation of the chest wall in computed tomography scans for the assessment of pleural disease
US20030099390A1 (en) 2001-11-23 2003-05-29 Xiaolan Zeng Lung field segmentation from CT thoracic images
US6574492B1 (en) 1996-01-08 2003-06-03 Biosense, Inc. Catheter having multiple arms with electrode and position sensor
US6580938B1 (en) 1997-02-25 2003-06-17 Biosense, Inc. Image-guided thoracic therapy and apparatus therefor
US6584174B2 (en) 2001-05-22 2003-06-24 Brainlab Ag Registering image information
US6585763B1 (en) 1997-10-14 2003-07-01 Vascusense, Inc. Implantable therapeutic device and method
US20030142753A1 (en) 1997-01-31 2003-07-31 Acmi Corporation Correction of image signals characteristic of non-uniform images in an endoscopic imaging system
US20030144658A1 (en) 2002-01-31 2003-07-31 Yitzhack Schwartz Radio frequency pulmonary vein isolation
US6611700B1 (en) 1999-12-30 2003-08-26 Brainlab Ag Method and apparatus for positioning a body for radiation using a position sensor
US6615155B2 (en) 2000-03-09 2003-09-02 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6628980B2 (en) 2000-03-24 2003-09-30 Surgi-Vision, Inc. Apparatus, systems, and methods for in vivo magnetic resonance imaging
WO2003086498A2 (en) 2002-04-17 2003-10-23 Super Dimension Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US6640128B2 (en) 2000-12-19 2003-10-28 Brainlab Ag Method and device for the navigation-assisted dental treatment
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6666864B2 (en) 2001-06-29 2003-12-23 Scimed Life Systems, Inc. Electrophysiological probes having selective element actuation and variable lesion length capability
US20040006268A1 (en) 1998-09-24 2004-01-08 Super Dimension Ltd Was Filed In Parent Case System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6676659B2 (en) 2000-08-14 2004-01-13 Scimed Life Systems, Inc. Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy
US20040015049A1 (en) 2002-02-05 2004-01-22 Kersten Zaar Endoscope with sideview optics
US20040019350A1 (en) 2000-03-06 2004-01-29 O'brien Scott D. Fluid-assisted medical devices, systems and methods
US6690816B2 (en) 2000-04-07 2004-02-10 The University Of North Carolina At Chapel Hill Systems and methods for tubular object processing
US6694162B2 (en) 2001-10-24 2004-02-17 Brainlab Ag Navigated microprobe
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
US6702780B1 (en) 1999-09-08 2004-03-09 Super Dimension Ltd. Steering configuration for catheter with rigid distal device
US6706041B1 (en) 2001-08-15 2004-03-16 Peter Costantino Holders for ablation devices, surgical devices employing such holders, and methods of employing such surgical devices
WO2004023986A1 (en) 2002-08-30 2004-03-25 Olympus Corporation Medical treatment system, endoscope system, endoscope insert operation program, and endoscope device
US20040086161A1 (en) 2002-11-05 2004-05-06 Radhika Sivaramakrishna Automated detection of lung nodules from multi-slice CT image data
US6735465B2 (en) 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
US20040097804A1 (en) 2002-11-18 2004-05-20 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US20040102696A1 (en) 2002-11-22 2004-05-27 Assaf Govari Dynamic metal immunity
US6751492B2 (en) 1993-07-20 2004-06-15 Biosense, Inc. System for mapping a heart using catheters having ultrasonic position sensors
US20040122310A1 (en) 2002-12-18 2004-06-24 Lim Richard Y. Three-dimensional pictograms for use with medical images
US20040138548A1 (en) 2003-01-13 2004-07-15 Mediguide Ltd. Method and system for registering a medical situation associated with a first coordinate system, in second coordinate system using an MPS system
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US20040169509A1 (en) 2003-01-17 2004-09-02 Mednovus, Inc. Screening method and apparatus
US6796963B2 (en) 2001-07-10 2004-09-28 Myocardial Therapeutics, Inc. Flexible tissue injection catheters with controlled depth penetration
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
US20040215181A1 (en) 2003-04-25 2004-10-28 Medtronic, Inc. Delivery of fluid during transurethral prostate treatment
US20040254454A1 (en) 2001-06-13 2004-12-16 Kockro Ralf Alfons Guide system and a probe therefor
US20050018885A1 (en) 2001-05-31 2005-01-27 Xuesong Chen System and method of anatomical modeling
US20050027193A1 (en) 2003-05-21 2005-02-03 Matthias Mitschke Method for automatically merging a 2D fluoroscopic C-arm image with a preoperative 3D image with one-time use of navigation markers
US20050059890A1 (en) 2003-07-31 2005-03-17 Wislon-Cook Medical Inc. System and method for introducing multiple medical devices
US20050085715A1 (en) 2003-10-17 2005-04-21 Dukesherer John H. Method and apparatus for surgical navigation
US20050090818A1 (en) 2003-10-27 2005-04-28 Pike Robert W.Jr. Method for ablating with needle electrode
US6887236B2 (en) 2002-05-03 2005-05-03 Pinhas Gilboa Multiple-electrode catheter assembly and method of operating such a catheter assembly
US20050107687A1 (en) 2003-11-14 2005-05-19 Anderson Peter T. System and method for distortion reduction in an electromagnetic tracker
US20050107688A1 (en) 1999-05-18 2005-05-19 Mediguide Ltd. System and method for delivering a stent to a selected position within a lumen
US20050119527A1 (en) 2003-04-01 2005-06-02 Scimed Life Systems, Inc. Force feedback control system for video endoscope
US20050182295A1 (en) 2003-12-12 2005-08-18 University Of Washington Catheterscope 3D guidance and interface system
US20050197566A1 (en) 2004-03-08 2005-09-08 Mediguide Ltd. Automatic guidewire maneuvering system and method
US20050222793A1 (en) 2004-04-02 2005-10-06 Lloyd Charles F Method and system for calibrating deformed instruments
US6976013B1 (en) 2000-08-28 2005-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Body sensing system
US20060015126A1 (en) 2002-10-18 2006-01-19 Arieh Sher Atherectomy system with imaging guidewire
US20060025677A1 (en) 2003-10-17 2006-02-02 Verard Laurent G Method and apparatus for surgical navigation
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
US20060058647A1 (en) 1999-05-18 2006-03-16 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7015859B2 (en) 2003-11-14 2006-03-21 General Electric Company Electromagnetic tracking system and method using a three-coil wireless transmitter
US20060064006A1 (en) 1999-05-18 2006-03-23 Mediguide Ltd. Method and system for determining a three dimensional representation of a tubular organ
US20060079759A1 (en) 2004-10-13 2006-04-13 Regis Vaillant Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system
US20060084867A1 (en) 2003-10-17 2006-04-20 Tremblay Brian M Method and apparatus for surgical navigation
US7033325B1 (en) 1989-12-19 2006-04-25 Scimed Life Systems, Inc. Guidewire with multiple radiopaque marker sections
US20060116575A1 (en) 2004-12-01 2006-06-01 Scimed Life Systems, Inc. Method and system for registering an image with a navigation reference catheter
US20060181271A1 (en) 2002-12-20 2006-08-17 Thales Method and device for magnetic measurement of the position and orientation of a mobile object relative to a fixed structure
US20060208725A1 (en) 2003-08-20 2006-09-21 Tapson Jonathan C Position sensors
US20060241399A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multiplex system for the detection of surgical implements within the wound cavity
US20060241396A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multi-modal detection of surgical sponges and implements
WO2006116597A2 (en) 2005-04-26 2006-11-02 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US7158754B2 (en) 2003-07-01 2007-01-02 Ge Medical Systems Global Technology Company, Llc Electromagnetic tracking system and method using a single-coil transmitter
US7176936B2 (en) 2001-03-27 2007-02-13 Siemens Corporate Research, Inc. Augmented reality guided instrument positioning with modulated guiding graphics
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US7236567B2 (en) 2005-03-24 2007-06-26 Siemens Aktiengesellschaft Method and apparatus for synchronizing operation of an x-ray system and a magnetic system
US20070167804A1 (en) 2002-09-18 2007-07-19 Byong-Ho Park Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
US20070163597A1 (en) 2006-01-13 2007-07-19 Olympus Medical Systems Corp. Overtube
US20070167806A1 (en) 2005-11-28 2007-07-19 Koninklijke Philips Electronics N.V. Multi-modality imaging and treatment
US20070167738A1 (en) 2004-01-20 2007-07-19 Koninklijke Philips Electronics N.V. Device and method for navigating a catheter
US20070167714A1 (en) 2005-12-07 2007-07-19 Siemens Corporate Research, Inc. System and Method For Bronchoscopic Navigational Assistance
US20070167743A1 (en) 2004-03-29 2007-07-19 Olympus Corporation Intra-subject position detection system
US20070225553A1 (en) 2003-10-21 2007-09-27 The Board Of Trustees Of The Leland Stanford Junio Systems and Methods for Intraoperative Targeting
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US7286868B2 (en) 2001-06-15 2007-10-23 Biosense Inc. Medical device with position sensor having accuracy at high temperatures
US20070265639A1 (en) 2005-04-21 2007-11-15 Asthmatx, Inc. Devices and methods for tracking an energy delivery device which treats asthma
US7301332B2 (en) 2005-10-06 2007-11-27 Biosense Webster, Inc. Magnetic sensor assembly
US20080008368A1 (en) 2005-11-15 2008-01-10 Ziosoft, Inc. Image processing method and computer readable medium for image processing
US7321228B2 (en) 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
US20080018468A1 (en) 2003-03-03 2008-01-24 Volpi John P Interrogator and Interrogation System Employing the Same
US7324915B2 (en) 2005-07-14 2008-01-29 Biosense Webster, Inc. Data transmission to a position sensor
US20080033452A1 (en) 2004-03-03 2008-02-07 Deutsches Krebsforschungszentrum Incremental Real-Time Recording Of Tracked Instruments In Tubular Organ Structures Inside The Human Body
US7353125B2 (en) 2003-04-17 2008-04-01 Northern Digital Inc. Eddy current detection and compensation
US20080086051A1 (en) 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US7357795B2 (en) 2001-07-19 2008-04-15 Olympus Corporation Medical device and method of embolizing bronchus or bronchiole
US20080097187A1 (en) 2006-09-08 2008-04-24 Medtronic, Inc. System for navigating a planned procedure within a body
US20080097156A1 (en) 2006-10-23 2008-04-24 Pentax Corporation Camera calibration for endoscope navigation system
US20080097154A1 (en) 2004-04-21 2008-04-24 Acclarent, Inc. Methods and Apparatus for Treating Disorders of the Ear Nose and Throat
US7370656B2 (en) 2003-04-15 2008-05-13 Koninklijke Philips Electronics N.V. Method and arrangement for influencing magnetic particles and detecting interfering material
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
US20080118135A1 (en) 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity
US20080132911A1 (en) 2006-11-27 2008-06-05 Mediguide Ltd. System and method for navigating a surgical needle toward an organ of the body of a patient
US20080132909A1 (en) 2006-12-01 2008-06-05 Medtronic Navigation, Inc. Portable electromagnetic navigation system
US20080139915A1 (en) 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating and/or Mapping Apparatus and Methods
US20080139886A1 (en) 2006-12-07 2008-06-12 Olympus Corporation Endoscope and bending operation device for endoscope
US20080144909A1 (en) 2005-02-11 2008-06-19 Koninklijke Philips Electronics N.V. Analysis of Pulmonary Nodules from Ct Scans Using the Contrast Agent Enhancement as a Function of Distance to the Boundary of the Nodule
US20080147000A1 (en) 2006-12-13 2008-06-19 University Of Washington Catheter tip displacement mechanism
US20080154172A1 (en) 2006-12-20 2008-06-26 Medtronic Vascular, Inc. Low Profile Catheters and Methods for Treatment of Chronic Total Occlusions and Other Disorders
US20080161682A1 (en) 2007-01-02 2008-07-03 Medtronic Navigation, Inc. System and method for tracking positions of uniform marker geometries
US20080157755A1 (en) 2004-02-18 2008-07-03 Koninklijke Philips Electronics N.V. Correction of Measured Values for a Magnetic Localization Device
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
US7399296B2 (en) 2003-02-26 2008-07-15 Medtronic Vascular, Inc. Catheter having highly radiopaque embedded segment
US20080183071A1 (en) 2007-01-10 2008-07-31 Mediguide Lit. System and method for superimposing a representation of the tip of a catheter on an image acquired by a moving imager
US20080188749A1 (en) 2005-04-11 2008-08-07 Koninklijke Philips Electronics N.V. Three Dimensional Imaging for Guiding Interventional Medical Devices in a Body Volume
US7420468B2 (en) 2005-02-10 2008-09-02 Fabian Carl E Surgical implement detector
US20080247622A1 (en) 2004-09-24 2008-10-09 Stephen Aylward Methods, Systems, and Computer Program Products For Hierarchical Registration Between a Blood Vessel and Tissue Surface Model For a Subject and a Blood Vessel and Tissue Surface Image For the Subject
US20080249395A1 (en) 2007-04-06 2008-10-09 Yehoshua Shachar Method and apparatus for controlling catheter positioning and orientation
US20080284554A1 (en) 2007-05-14 2008-11-20 Thaddeus Schroeder Compact robust linear position sensor
US20080294034A1 (en) 2004-02-18 2008-11-27 Koninklijke Philips Electronic, N.V. Device and Method for the Determination of the Position of a Catheter in a Vascular System
US20090027258A1 (en) 2007-07-23 2009-01-29 Stayton Gregory T Systems and methods for antenna calibration
US7497029B2 (en) 2004-02-03 2009-03-03 Brainlab Ag Device for determining the position of an incision block
US20090082665A1 (en) 2007-09-26 2009-03-26 General Electric Company System and method for tracking medical device
US7517318B2 (en) 2005-04-26 2009-04-14 Biosense Webster, Inc. Registration of electro-anatomical map with pre-acquired image using ultrasound
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US20090182224A1 (en) 1999-05-18 2009-07-16 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US20090189820A1 (en) 2008-01-25 2009-07-30 Masashi Saito Wireless UWB Connection for Rotating RF Antenna Array
US7570987B2 (en) 2003-04-04 2009-08-04 Brainlab Ag Perspective registration and visualization of internal areas of the body
US7577474B2 (en) 2000-04-05 2009-08-18 Brainlab Ag Referencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US7579837B2 (en) 2007-05-29 2009-08-25 Siemens Aktiengesellschaft Arrangement for magnetic field measurement
EP2096523A1 (en) 2008-02-29 2009-09-02 Biosense Webster, Inc. Location system with virtual touch screen
US7587235B2 (en) 2002-01-18 2009-09-08 Brainlab Ag Method for assigning digital image information to the navigational data of a medical navigation system
US7599810B2 (en) 2007-01-24 2009-10-06 Olympus Corporation Position detecting circuit and apparatus using the same
US7599535B2 (en) 2004-08-02 2009-10-06 Siemens Medical Solutions Usa, Inc. System and method for tree-model visualization for pulmonary embolism detection
US20090287443A1 (en) 2001-06-04 2009-11-19 Surgical Navigation Technologies, Inc. Method for Calibrating a Navigation System
US7630753B2 (en) 2002-02-28 2009-12-08 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US7634122B2 (en) 2004-08-25 2009-12-15 Brainlab Ag Registering intraoperative scans
US7636595B2 (en) 2004-10-28 2009-12-22 Medtronic Navigation, Inc. Method and apparatus for calibrating non-linear instruments
US20090318797A1 (en) 2008-06-19 2009-12-24 Vision-Sciences Inc. System and method for deflecting endoscopic tools
US7641609B2 (en) 2002-07-31 2010-01-05 Olympus Corporation Endoscope device and navigation method for endoscope device
US7648458B2 (en) 2004-04-09 2010-01-19 Olympus Corporation Insertion shape detecting probe
US7652578B2 (en) 2007-10-29 2010-01-26 Motorola, Inc. Detection apparatus and method for near field communication devices
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7659912B2 (en) 2003-10-29 2010-02-09 Olympus Corporation Insertion support system for producing imaginary endoscopic image and supporting insertion of bronchoscope
US7680528B2 (en) 2005-09-16 2010-03-16 Siemens Aktiengesellschaft Method for the graphical representation of a medical instrument inserted at least partially into an object under examination
US7684849B2 (en) 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US7686767B2 (en) 2002-01-29 2010-03-30 Siemens Aktiengesellschaft Catheter with variable magnetic field generator for catheter guidance in a subject
US7688064B2 (en) 2006-07-11 2010-03-30 Biosense Webster Inc. Probe for assessment of metal distortion
US7697974B2 (en) 2003-10-10 2010-04-13 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for analysis of angiographic and other cyclical images
US7696899B2 (en) 2006-10-20 2010-04-13 Brainlab Ag Marker navigation device
US7720517B2 (en) 2003-03-12 2010-05-18 Biosense Webster, Inc. Multifunctional catheter handle
US7725164B2 (en) 2002-07-25 2010-05-25 Koninklijke Philips Electronics N.V. Optimal view map v.0.01
US7722565B2 (en) 2004-11-05 2010-05-25 Traxtal, Inc. Access system
US7725154B2 (en) 2005-06-22 2010-05-25 Siemens Aktiengesellschaft Method and medical imaging apparatus for planning an image acquisition based on a previously-generated reference image
US7727269B2 (en) 2004-02-26 2010-06-01 Siemens Aktiengesellschaft Device for introducing a stent into a hollow organ
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
US7747307B2 (en) 2003-03-04 2010-06-29 Calypso Medical Technologies, Inc. Method and system for marker localization
US7744605B2 (en) 2001-10-10 2010-06-29 Brainlab Ag Medical instrument with a touch-sensitive tip
US7782046B2 (en) 2007-02-05 2010-08-24 General Electric Company Electromagnetic tracking method and system
US7782189B2 (en) 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
US7784468B2 (en) 2001-10-10 2010-08-31 Fabian Carl E Surgical implement detection system
US7831076B2 (en) 2006-12-08 2010-11-09 Biosense Webster, Inc. Coloring electroanatomical maps to indicate ultrasound data acquisition
US7905827B2 (en) 2002-04-08 2011-03-15 Olympus Corporation Encapsulated endoscope system in which endoscope moves in lumen by itself and rotation of image of region to be observed is ceased
US7912662B2 (en) 2007-09-24 2011-03-22 General Electric Company System and method for improving the distortion tolerance of an electromagnetic tracking system
US20110085720A1 (en) 2009-05-14 2011-04-14 Superdimension, Ltd. Automatic Registration Technique
US20120323111A1 (en) 2010-03-11 2012-12-20 Koninklijke Philips Electronics N.V. Method and system for characterizing and visualizing electromagnetic tracking errors
US8683707B1 (en) * 2012-03-28 2014-04-01 Mike Alexander Horton Magnetically modulated location system
US8692707B2 (en) 2011-10-06 2014-04-08 Toyota Motor Engineering & Manufacturing North America, Inc. Calibration method for automotive radar using phased array
US20150035697A1 (en) 2013-07-31 2015-02-05 Mando Corporation Radar calibration system for vehicles
WO2015164171A1 (en) 2014-04-25 2015-10-29 General Electric Company System and method for processing navigational sensor data
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194639A (en) 1984-10-15 1986-05-13 ラウリ ライテイネン Adaptor
US10722311B2 (en) * 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) * 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation

Patent Citations (1051)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1735726A (en) 1929-11-12 bornhardt
US1576781A (en) 1924-04-22 1926-03-16 Herman B Philips Fluoroscopic fracture apparatus
US2407845A (en) 1943-01-16 1946-09-17 California Inst Res Found Aligning device for tools
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US2697433A (en) 1951-12-04 1954-12-21 Max A Zehnder Device for accurately positioning and guiding guide wires used in the nailing of thefemoral neck
US3073310A (en) 1957-08-05 1963-01-15 Zenon R Mocarski Surgical instrument positioning device
US3016899A (en) 1958-11-03 1962-01-16 Carl B Stenvall Surgical instrument
US3061936A (en) 1959-03-07 1962-11-06 Univ Catholique Louvain Stereotaxical methods and apparatus
US3017887A (en) 1960-01-19 1962-01-23 William T Heyer Stereotaxy device
US3121228A (en) 1961-05-01 1964-02-11 Henry P Kalmus Direction indicator
US3109588A (en) 1962-01-26 1963-11-05 William L Polhemus Celestial computers
US3294083A (en) 1963-08-26 1966-12-27 Alderson Res Lab Inc Dosimetry system for penetrating radiation
US3367326A (en) 1965-06-15 1968-02-06 Calvin H. Frazier Intra spinal fixation rod
US3439256A (en) 1966-02-23 1969-04-15 Merckle Flugzeugwerke Gmbh Inductive angular position transmitter
US3577160A (en) 1968-01-10 1971-05-04 James E White X-ray gauging apparatus with x-ray opaque markers in the x-ray path to indicate alignment of x-ray tube, subject and film
US3614950A (en) 1968-03-25 1971-10-26 Graham Peter Rabey Apparatus for location relatively to a subject's cephalic axis
US3605725A (en) 1968-08-07 1971-09-20 Medi Tech Inc Controlled motion devices
US3600625A (en) 1968-08-31 1971-08-17 Tokyo Shibaura Electric Co Projection picture tube with rotating fluorescent screen
US3519436A (en) 1969-05-09 1970-07-07 Grace W R & Co Method for making plastic low fat emulsion spread
US3674014A (en) 1969-10-28 1972-07-04 Astra Meditec Ab Magnetically guidable catheter-tip and method
US3644825A (en) 1969-12-31 1972-02-22 Texas Instruments Inc Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US3704707A (en) 1971-04-06 1972-12-05 William X Halloran Orthopedic drill guide apparatus
CA964149A (en) 1971-04-06 1975-03-11 William X. Halloran Orthopedic drill guide apparatus
US3702935A (en) 1971-10-13 1972-11-14 Litton Medical Products Mobile fluoroscopic unit for bedside catheter placement
US3821469A (en) 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3822697A (en) 1973-03-20 1974-07-09 Olympus Optical Co Envelope of an endoscope
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US4017858A (en) 1973-07-30 1977-04-12 Polhemus Navigation Sciences, Inc. Apparatus for generating a nutating electromagnetic field
US3941127A (en) 1974-10-03 1976-03-02 Froning Edward C Apparatus and method for stereotaxic lateral extradural disc puncture
US3983474A (en) 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4052620A (en) 1975-11-28 1977-10-04 Picker Corporation Method and apparatus for improved radiation detection in radiation scanning systems
US4054881A (en) 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4037592A (en) 1976-05-04 1977-07-26 Kronner Richard F Guide pin locating tool and method
US5291199A (en) 1977-01-06 1994-03-01 Westinghouse Electric Corp. Threat signal detection system
US4298874A (en) 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
US4262306A (en) 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4182312A (en) 1977-05-20 1980-01-08 Mushabac David R Dental probe
US4308530A (en) 1977-07-19 1981-12-29 N.V. Nederlandsche Apparatenfabriek Nedap Detection system forming wide gates with superior spatial selectivity
US4135184A (en) 1977-08-31 1979-01-16 Knogo Corporation Electronic theft detection system for monitoring wide passageways
US4228799A (en) 1977-09-28 1980-10-21 Anichkov Andrei D Method of guiding a stereotaxic instrument at an intracerebral space target point
US4117337A (en) 1977-11-03 1978-09-26 General Electric Company Patient positioning indication arrangement for a computed tomography system
US4418422A (en) 1978-02-22 1983-11-29 Howmedica International, Inc. Aiming device for setting nails in bones
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
USRE32619E (en) 1978-11-20 1988-03-08 Apparatus and method for nuclear magnetic resonance scanning and mapping
US4686695A (en) 1979-02-05 1987-08-11 Board Of Trustees Of The Leland Stanford Junior University Scanned x-ray selective imaging system
US4256112A (en) 1979-02-12 1981-03-17 David Kopf Instruments Head positioner
US4341220A (en) 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4249167A (en) 1979-06-05 1981-02-03 Magnavox Government And Industrial Electronics Company Apparatus and method for theft detection system having different frequencies
US4396885A (en) 1979-06-06 1983-08-02 Thomson-Csf Device applicable to direction finding for measuring the relative orientation of two bodies
US4314251A (en) 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4287809A (en) 1979-08-20 1981-09-08 Honeywell Inc. Helmet-mounted sighting system
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
US4419012A (en) 1979-09-11 1983-12-06 Elliott Brothers (London) Limited Position measuring system
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4319136A (en) 1979-11-09 1982-03-09 Jinkins J Randolph Computerized tomography radiograph data transfer cap
US4368536A (en) 1979-12-17 1983-01-11 Siemens Aktiengesellschaft Diagnostic radiology apparatus for producing layer images
US4341385A (en) 1980-01-24 1982-07-27 Doyle Holly Thomis Electronic board game apparatus
US4328548A (en) 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US5030196A (en) 1980-04-23 1991-07-09 Inoue-Japax Research Incorporated Magnetic treatment device
US4403321A (en) 1980-06-14 1983-09-06 U.S. Philips Corporation Switching network
US4346384A (en) 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
US4688037A (en) 1980-08-18 1987-08-18 Mcdonnell Douglas Corporation Electromagnetic communications and switching system
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
US4638798A (en) 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4328813A (en) 1980-10-20 1982-05-11 Medtronic, Inc. Brain lead anchoring system
US4358856A (en) 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
US4425511A (en) 1981-02-09 1984-01-10 Amnon Brosh Planar coil apparatus employing a stationary and a movable board
US4394831A (en) 1981-02-12 1983-07-26 Honeywell Inc. Helmet metal mass compensation for helmet-mounted sighting system
GB2094590A (en) 1981-02-12 1982-09-15 Univ New York Apparatus for stereotactic surgery
EP0062941A1 (en) 1981-04-08 1982-10-20 Koninklijke Philips Electronics N.V. Contour recording device
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4543959A (en) 1981-06-04 1985-10-01 Instrumentarium Oy Diagnosis apparatus and the determination of tissue structure and quality
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4396945A (en) 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4447462A (en) 1981-11-04 1984-05-08 The Procter & Gamble Company Structural fat and method for making same
US4645343A (en) 1981-11-11 1987-02-24 U.S. Philips Corporation Atomic resonance line source lamps and spectrophotometers for use with such lamps
US4485815A (en) 1982-08-30 1984-12-04 Kurt Amplatz Device and method for fluoroscope-monitored percutaneous puncture treatment
US4506676A (en) 1982-09-10 1985-03-26 Duska Alois A Radiographic localization technique
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4584577A (en) 1982-10-20 1986-04-22 Brookes & Gatehouse Limited Angular position sensor
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4651732A (en) 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
EP0119660A1 (en) 1983-03-17 1984-09-26 Nicolaas Roelof Snijder System of examining skeleton parts of a living body, more particularly the vertebral column of the human body
US4613866A (en) 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
US4701049A (en) 1983-06-22 1987-10-20 B.V. Optische Industrie "De Oude Delft" Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _
USRE33662E (en) 1983-08-25 1991-08-13 TV animation interactively controlled by the viewer
US4621628A (en) 1983-09-09 1986-11-11 Ortopedia Gmbh Apparatus for locating transverse holes of intramedullary implantates
US4618978A (en) 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4727565A (en) 1983-11-14 1988-02-23 Ericson Bjoern E Method of localization
US4660970A (en) 1983-11-25 1987-04-28 Carl-Zeiss-Stiftung Method and apparatus for the contact-less measuring of objects
US4753528A (en) 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4841967A (en) 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4704602A (en) 1984-02-15 1987-11-03 Intermodulation And Safety System Ab Method and system for detecting an indicating device
US4571834A (en) 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
EP0155857A2 (en) 1984-02-17 1985-09-25 Faro Medical Technologies Inc. Knee laxity evaluator and motion module/digitizer arrangement
US4583538A (en) 1984-05-04 1986-04-22 Onik Gary M Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4642786A (en) 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4625718A (en) 1984-06-08 1986-12-02 Howmedica International, Inc. Aiming apparatus
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4548208A (en) 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
US4659971A (en) 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4889526A (en) 1984-08-27 1989-12-26 Magtech Laboratories, Inc. Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain
US4617925A (en) 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
GB2164856A (en) 1984-10-01 1986-04-03 Lauri Laitinen Adapter for definition of the position of brain structures
US4705395A (en) 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
US4821206A (en) 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4586491A (en) 1984-12-14 1986-05-06 Warner-Lambert Technologies, Inc. Bronchoscope with small gauge viewing attachment
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4673352A (en) 1985-01-10 1987-06-16 Markus Hansen Device for measuring relative jaw positions and movements
US4722336A (en) 1985-01-25 1988-02-02 Michael Kim Placement guide
DE3508730A1 (en) 1985-03-12 1986-09-18 Siemens AG, 1000 Berlin und 8000 München Measuring device for medical purposes
US4782239A (en) 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
US4838265A (en) 1985-05-24 1989-06-13 Cosman Eric R Localization device for probe placement under CT scanner imaging
US4737921A (en) 1985-06-03 1988-04-12 Dynamic Digital Displays, Inc. Three dimensional medical image display system
DE3520782A1 (en) 1985-06-10 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Medicament metering device with reservoir and metering store
US4764016A (en) 1985-06-14 1988-08-16 Anders Bengtsson Instrument for measuring the topography of a surface
US4743771A (en) 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4955891A (en) 1985-07-02 1990-09-11 Ohio Medical Instrument Company, Inc. Method and apparatus for performing stereotactic surgery
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4719419A (en) 1985-07-15 1988-01-12 Harris Graphics Corporation Apparatus for detecting a rotary position of a shaft
US4705401A (en) 1985-08-12 1987-11-10 Cyberware Laboratory Inc. Rapid three-dimensional surface digitizer
US4737032A (en) 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
US4779212A (en) 1985-09-27 1988-10-18 Levy Nessim I Distance measuring device
US4803976A (en) 1985-10-03 1989-02-14 Synthes Sighting instrument
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4709156A (en) 1985-11-27 1987-11-24 Ex-Cell-O Corporation Method and apparatus for inspecting a surface
US4794262A (en) 1985-12-03 1988-12-27 Yukio Sato Method and apparatus for measuring profile of three-dimensional object
US4742356A (en) 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4771787A (en) 1985-12-12 1988-09-20 Richard Wolf Gmbh Ultrasonic scanner and shock wave generator
US4742815A (en) 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4784117A (en) 1986-02-14 1988-11-15 Olympus Optical Co., Ltd. Endoscope insertion assisting device
US4726355A (en) 1986-02-17 1988-02-23 Olympus Optical Co., Ltd. Curvable part device for endoscope devices
US4722056A (en) 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4788481A (en) 1986-03-10 1988-11-29 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
US5013047A (en) 1986-03-12 1991-05-07 Dr. Schwab Gesellschaft fur Technologieberatung mbH Apparatus for determining the identity and position of game objects
US4821200A (en) 1986-04-14 1989-04-11 Jonkopings Lans Landsting Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4977655A (en) 1986-04-25 1990-12-18 Intra-Sonix, Inc. Method of making a transducer
US5002058A (en) 1986-04-25 1991-03-26 Intra-Sonix, Inc. Ultrasonic transducer
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4822163A (en) 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4723544A (en) 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4733969A (en) 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4743770A (en) 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4761072A (en) 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
GB2197078A (en) 1986-10-23 1988-05-11 Radiodetection Ltd Improvements relating to positional information systems
US4750487A (en) 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4825091A (en) 1987-02-05 1989-04-25 Carl-Zeiss-Stiftung Optoelectronic distance sensor with visible pilot beam
US4745290A (en) 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4804261A (en) 1987-03-27 1989-02-14 Kirschen David G Anti-claustrophobic glasses
US4875478A (en) 1987-04-10 1989-10-24 Chen Harry H Portable compression grid & needle holder
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
US5186174A (en) 1987-05-21 1993-02-16 G. M. Piaff Process and device for the reproducible optical representation of a surgical operation
US4836778A (en) 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US5494034A (en) 1987-05-27 1996-02-27 Georg Schlondorff Process and device for the reproducible optical representation of a surgical operation
DE3717871A1 (en) 1987-05-27 1988-12-22 Georg Prof Dr Schloendorff METHOD AND DEVICE FOR OPTICALLY DISPLAYING A SURGICAL OPERATION
US4845771A (en) 1987-06-29 1989-07-04 Picker International, Inc. Exposure monitoring in radiation imaging
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
FR2618211A1 (en) 1987-07-15 1989-01-20 Chardon Bernard Frontal illumination device making it possible to observe narrow and deep cavities
US5152277A (en) 1987-07-23 1992-10-06 Terumo Kabushiki Kaisha Catheter tube
US4829373A (en) 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
USRE35025E (en) 1987-08-07 1995-08-22 Oec Medical Systems Battery enhanced power generation for mobile X-ray machine
US4797907A (en) 1987-08-07 1989-01-10 Diasonics Inc. Battery enhanced power generation for mobile X-ray machine
US4931056A (en) 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4923459A (en) 1987-09-14 1990-05-08 Kabushiki Kaisha Toshiba Stereotactics apparatus
US5142930A (en) 1987-11-10 1992-09-01 Allen George S Interactive image-guided surgical system
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
DE3838011A1 (en) 1987-11-10 1989-07-20 George S Allen METHOD AND DEVICE FOR GENERATING IMAGES OF THE ANATOMY
US4945914A (en) 1987-11-10 1990-08-07 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using at least four fiducial implants
US5178164A (en) 1987-11-10 1993-01-12 Allen George S Method for implanting a fiducial implant into a patient
US5119817A (en) 1987-11-10 1992-06-09 Allen George S Apparatus for imaging the anatomy
US5230338A (en) 1987-11-10 1993-07-27 Allen George S Interactive image-guided surgical system for displaying images corresponding to the placement of a surgical tool or the like
US5016639A (en) 1987-11-10 1991-05-21 Allen George S Method and apparatus for imaging the anatomy
US5094241A (en) 1987-11-10 1992-03-10 Allen George S Apparatus for imaging the anatomy
US5211164A (en) 1987-11-10 1993-05-18 Allen George S Method of locating a target on a portion of anatomy
US5397329A (en) 1987-11-10 1995-03-14 Allen; George S. Fiducial implant and system of such implants
US5097839A (en) 1987-11-10 1992-03-24 Allen George S Apparatus for imaging the anatomy
US4875165A (en) 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US5079699A (en) 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
US5027818A (en) 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
EP0319844A1 (en) 1987-12-04 1989-06-14 Ad-Tech Medical Instrument Corporation Electrical connectors for brain-contact devices
WO1989005123A1 (en) 1987-12-08 1989-06-15 Intra-Sonix, Inc. Acoustic image system and method
US4862893A (en) 1987-12-08 1989-09-05 Intra-Sonix, Inc. Ultrasonic transducer
US5748767A (en) 1988-02-01 1998-05-05 Faro Technology, Inc. Computer-aided surgery apparatus
EP0326768A2 (en) 1988-02-01 1989-08-09 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5305203A (en) 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4829250A (en) 1988-02-10 1989-05-09 Honeywell, Inc. Magnetic direction finding device with improved accuracy
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4869247A (en) 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US5412414A (en) 1988-04-08 1995-05-02 Martin Marietta Corporation Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly
US4884566A (en) 1988-04-15 1989-12-05 The University Of Michigan System and method for determining orientation of planes of imaging
EP0350996A1 (en) 1988-07-11 1990-01-17 Koninklijke Philips Electronics N.V. X-ray Examination apparatus comprising a balanced supporting arm
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US4896673A (en) 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US4860331A (en) 1988-09-12 1989-08-22 Williams John F Image marker device
US4905698B1 (en) 1988-09-13 1991-10-01 Pharmacia Deltec Inc
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
US5152288A (en) 1988-09-23 1992-10-06 Siemens Aktiengesellschaft Apparatus and method for measuring weak, location-dependent and time-dependent magnetic fields
US5088928A (en) 1988-11-15 1992-02-18 Chan James K Educational/board game apparatus
WO1990005494A1 (en) 1988-11-18 1990-05-31 Istituto Neurologico 'carlo Besta' Process and apparatus particularly for guiding neurosurgical operations
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US5099846A (en) 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5143076A (en) 1988-12-23 1992-09-01 Tyrone L. Hardy Three-dimensional beam localization microscope apparatus for stereotactic diagnoses or surgery
US5398684A (en) 1988-12-23 1995-03-21 Hardy; Tyrone L. Method and apparatus for video presentation from scanner imaging sources
US5023102A (en) 1988-12-30 1991-06-11 Nabisco Brands, Inc. Method and composition for inhibiting fat bloom in fat based compositions and hard butter
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5197476A (en) 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5099845A (en) 1989-05-24 1992-03-31 Micronix Pty Ltd. Medical instrument location means
US5301061A (en) 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5104393A (en) 1989-08-30 1992-04-14 Angelase, Inc. Catheter
US5082286A (en) 1989-09-07 1992-01-21 Saitek Limited Sensory games
US5070462A (en) 1989-09-12 1991-12-03 Flowmole Corporation Device for locating a boring machine
US5285787A (en) 1989-09-12 1994-02-15 Kabushiki Kaisha Toshiba Apparatus for calculating coordinate data of desired point in subject to be examined
WO1991003982A1 (en) 1989-09-13 1991-04-04 Isis Innovation Limited Apparatus and method for aligning drilling apparatus in surgical procedures
US5257998A (en) 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5198768A (en) 1989-09-27 1993-03-30 Elscint, Ltd. Quadrature surface coil array
US5042486A (en) 1989-09-29 1991-08-27 Siemens Aktiengesellschaft Catheter locatable with non-ionizing field and method for locating same
WO1991004711A1 (en) 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5868675A (en) 1989-10-05 1999-02-09 Elekta Igs S.A. Interactive system for local intervention inside a nonhumogeneous structure
US5188368A (en) 1989-10-25 1993-02-23 Saitek Limited Electronic game apparatus
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
EP0427358A1 (en) 1989-11-08 1991-05-15 George S. Allen Mechanical arm for and interactive image-guided surgical system
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5329944A (en) 1989-11-16 1994-07-19 Fabian Carl E Surgical implement detector utilizing an acoustic marker
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5190059A (en) 1989-11-16 1993-03-02 Fabian Carl E Surgical implement detector utilizing a powered marker
US5188126A (en) 1989-11-16 1993-02-23 Fabian Carl E Surgical implement detector utilizing capacitive coupling
US5047036A (en) 1989-11-17 1991-09-10 Koutrouvelis Panos G Stereotactic device
US5575798A (en) 1989-11-17 1996-11-19 Koutrouvelis; Panos G. Stereotactic device
WO1991007726A1 (en) 1989-11-21 1991-05-30 I.S.G. Technologies Inc. Probe-correlated viewing of anatomical image data
US5299254A (en) 1989-11-24 1994-03-29 Technomed International Method and apparatus for determining the position of a target relative to a reference of known co-ordinates and without a priori knowledge of the position of a source of radiation
US5109194A (en) 1989-12-01 1992-04-28 Sextant Avionique Electromagnetic position and orientation detector for a pilot's helmet
US7033325B1 (en) 1989-12-19 2006-04-25 Scimed Life Systems, Inc. Guidewire with multiple radiopaque marker sections
US5916210A (en) 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5531686A (en) 1990-02-02 1996-07-02 Ep Technologies, Inc. Catheter steering mechanism
US5820591A (en) 1990-02-02 1998-10-13 E. P. Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5013317A (en) 1990-02-07 1991-05-07 Smith & Nephew Richards Inc. Medical drill assembly transparent to X-rays and targeting drill bit
US5031203A (en) 1990-02-09 1991-07-09 Trecha Randal R Coaxial laser targeting device for use with x-ray equipment and surgical drill equipment during surgical procedures
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
JPH03267054A (en) 1990-03-16 1991-11-27 Amayoshi Katou Stationary lobotomy aid
US5178130A (en) 1990-04-04 1993-01-12 Olympus Optical Co., Ltd. Parent-and-son type endoscope system for making a synchronized field sequential system illumination
US5107843A (en) 1990-04-06 1992-04-28 Orion-Yhtyma Oy Method and apparatus for thin needle biopsy in connection with mammography
US5224049A (en) 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
US5273025A (en) 1990-04-13 1993-12-28 Olympus Optical Co., Ltd. Apparatus for detecting insertion condition of endoscope
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5030222A (en) 1990-05-09 1991-07-09 James Calandruccio Radiolucent orthopedic chuck
US5295483A (en) 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5299288A (en) 1990-05-11 1994-03-29 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5408409A (en) 1990-05-11 1995-04-18 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
EP0456103A2 (en) 1990-05-11 1991-11-13 International Business Machines Corporation Image-directed robotic system for precise surgery
US5457641A (en) 1990-06-29 1995-10-10 Sextant Avionique Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor
US5017139A (en) 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
US5376795A (en) 1990-07-09 1994-12-27 Regents Of The University Of California Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data
WO1992003090A1 (en) 1990-08-24 1992-03-05 Imperial College Of Science, Technology & Medicine Probe system
US5429132A (en) 1990-08-24 1995-07-04 Imperial College Of Science Technology And Medicine Probe system
US5193106A (en) 1990-08-28 1993-03-09 Desena Danforth X-ray identification marker
US5127408A (en) 1990-09-14 1992-07-07 Duke University Apparatus for intravascularly measuring oxidative metabolism in body organs and tissues
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
USRE35816E (en) 1990-10-15 1998-06-02 Image Guided Technologies Inc. Method and apparatus for three-dimensional non-contact shape sensing
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US5891034A (en) 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6076008A (en) 1990-10-19 2000-06-13 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5622170A (en) 1990-10-19 1997-04-22 Image Guided Technologies, Inc. Apparatus for determining the position and orientation of an invasive portion of a probe inside a three-dimensional body
US5383454A (en) 1990-10-19 1995-01-24 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
WO1992006645A1 (en) 1990-10-19 1992-04-30 St. Louis University Surgical probe locating system for head use
US5383454B1 (en) 1990-10-19 1996-12-31 Univ St Louis System for indicating the position of a surgical probe within a head on an image of the head
US5987349A (en) 1990-10-19 1999-11-16 Image Guided Technologies, Inc. Method for determining the position and orientation of two moveable objects in three-dimensional space
US5851183A (en) 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
US5219351A (en) 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5843051A (en) 1990-10-29 1998-12-01 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5211176A (en) 1990-11-30 1993-05-18 Fuji Photo Optical Co., Ltd. Ultrasound examination system
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US5129654A (en) 1991-01-03 1992-07-14 Brehn Corporation Electronic game apparatus
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US20020065461A1 (en) 1991-01-28 2002-05-30 Cosman Eric R. Surgical positioning system
US5848967A (en) 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5480439A (en) 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5228442A (en) 1991-02-15 1993-07-20 Cardiac Pathways Corporation Method for mapping, ablation, and stimulation using an endocardial catheter
US5456254A (en) 1991-02-15 1995-10-10 Cardiac Pathways Corp Flexible strip assembly having insulating layer with conductive pads exposed through insulating layer and device utilizing the same
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US5196928A (en) 1991-04-02 1993-03-23 Olympus Optical Co., Ltd. Endoscope system for simultaneously displaying two endoscopic images on a shared monitor
DE4213426A1 (en) 1991-04-23 1992-10-29 Olympus Optical Co Surgical appts. monitoring treatment implement contact condition - enables surgeon to track progress to operation from reproduction of feel of contact with treated tissue
US5107862A (en) 1991-05-06 1992-04-28 Fabian Carl E Surgical implement detector utilizing a powered marker
US5203337A (en) 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
US5492713A (en) 1991-05-16 1996-02-20 Sommermeyer; Klaus Nutriment preparation
US5291889A (en) 1991-05-23 1994-03-08 Vanguard Imaging Ltd. Apparatus and method for spatially positioning images
US5413573A (en) 1991-05-24 1995-05-09 Onesys Oy Device for surgical procedures
US5493517A (en) 1991-06-03 1996-02-20 Hughes Missile Systems Company Cargo container mapping system
US5187475A (en) 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5445166A (en) 1991-06-13 1995-08-29 International Business Machines Corporation System for advising a surgeon
US5478343A (en) 1991-06-13 1995-12-26 Howmedica International, Inc. Targeting device for bone nails
US5630431A (en) 1991-06-13 1997-05-20 International Business Machines Corporation System and method for augmentation of surgery
US6024695A (en) 1991-06-13 2000-02-15 International Business Machines Corporation System and method for augmentation of surgery
US5402801A (en) 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US5695500A (en) 1991-06-13 1997-12-09 International Business Machines Corporation System for manipulating movement of a surgical instrument with computer controlled brake
US5976156A (en) 1991-06-13 1999-11-02 International Business Machines Corporation Stereotaxic apparatus and method for moving an end effector
US5950629A (en) 1991-06-13 1999-09-14 International Business Machines Corporation System for assisting a surgeon during surgery
US5261404A (en) 1991-07-08 1993-11-16 Mick Peter R Three-dimensional mammal anatomy imaging system and method
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5307816A (en) 1991-08-21 1994-05-03 Kabushiki Kaisha Toshiba Thrombus resolving treatment apparatus
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5377678A (en) 1991-09-03 1995-01-03 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5522814A (en) 1991-09-05 1996-06-04 Bernaz; Gabriel Method of high frequency depilation
US5190285A (en) 1991-09-30 1993-03-02 At&T Bell Laboratories Electronic game having intelligent game pieces
US5359417A (en) 1991-10-18 1994-10-25 Carl-Zeiss-Stiftung Surgical microscope for conducting computer-supported stereotactic microsurgery and a method for operating the same
US5207688A (en) 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5300080A (en) 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5330485A (en) 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5443066A (en) 1991-11-18 1995-08-22 General Electric Company Invasive system employing a radiofrequency tracking system
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5178621A (en) 1991-12-10 1993-01-12 Zimmer, Inc. Two-piece radio-transparent proximal targeting device for a locking intramedullary nail
US5386828A (en) 1991-12-23 1995-02-07 Sims Deltec, Inc. Guide wire apparatus with location sensing member
US5478341A (en) 1991-12-23 1995-12-26 Zimmer, Inc. Ratchet lock for an intramedullary nail locking bolt
US5233990A (en) 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5212720A (en) 1992-01-29 1993-05-18 Research Foundation-State University Of N.Y. Dual radiation targeting system
US5320111A (en) 1992-02-07 1994-06-14 Livingston Products, Inc. Light beam locator and guide for a biopsy needle
US5237996A (en) 1992-02-11 1993-08-24 Waldman Lewis K Endocardial electrical mapping catheter
US5555883A (en) 1992-02-24 1996-09-17 Avitall; Boaz Loop electrode array mapping and ablation catheter for cardiac chambers
US5620734A (en) 1992-03-05 1997-04-15 Van Den Bergh Foods Co., Division Of Conopco, Inc. Spreads and other products including mesomorphic phases
US5306271A (en) 1992-03-09 1994-04-26 Izi Corporation Radiation therapy skin markers
US5315630A (en) 1992-03-11 1994-05-24 Bodenseewerk Geratetechnik Gmbh Positioning device in medical apparatus
US5515160A (en) 1992-03-12 1996-05-07 Aesculap Ag Method and apparatus for representing a work area in a three-dimensional structure
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5262722A (en) 1992-04-03 1993-11-16 General Electric Company Apparatus for near surface nondestructive eddy current scanning of a conductive part using a multi-layer eddy current probe array
US5299253A (en) 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5389101A (en) 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US6165181A (en) 1992-04-21 2000-12-26 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US5836954A (en) 1992-04-21 1998-11-17 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5749362A (en) 1992-05-27 1998-05-12 International Business Machines Corporation Method of creating an image of an anatomical feature where the feature is within a patient's body
US5572999A (en) 1992-05-27 1996-11-12 International Business Machines Corporation Robotic system for positioning a surgical instrument relative to a patient's body
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5577991A (en) 1992-06-09 1996-11-26 Olympus Optical Co., Ltd. Three-dimensional vision endoscope with position adjustment means for imaging device and visual field mask
US5646525A (en) 1992-06-16 1997-07-08 Elbit Ltd. Three dimensional tracking system employing a rotating field
US5646524A (en) 1992-06-16 1997-07-08 Elbit Ltd. Three dimensional tracking system employing a rotating field
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5426687A (en) 1992-07-07 1995-06-20 Innovative Care Ltd. Laser targeting device for use with image intensifiers in surgery
US5307072A (en) 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
US5316024A (en) 1992-07-23 1994-05-31 Abbott Laboratories Tube placement verifier system
US5542938A (en) 1992-07-28 1996-08-06 Cordis Corporation Magnetic guidewire coupling for catheter exchange
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
US5487729A (en) 1992-07-28 1996-01-30 Cordis Corporation Magnetic guidewire coupling for catheter exchange
US5197965A (en) 1992-07-29 1993-03-30 Codman & Shurtleff, Inc. Skull clamp pin assembly
DE4225112C1 (en) 1992-07-30 1993-12-09 Bodenseewerk Geraetetech Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
US5447154A (en) 1992-07-31 1995-09-05 Universite Joseph Fourier Method for determining the position of an organ
EP0581704A1 (en) 1992-07-31 1994-02-02 Universite Joseph Fourier Method for determining the position of an organ
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
WO1994004938A1 (en) 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5489256A (en) 1992-09-01 1996-02-06 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5643175A (en) 1992-09-01 1997-07-01 Adair; Edwin L. Sterilizable endoscope with separable disposable tube assembly
US5368030A (en) 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5469847A (en) 1992-09-09 1995-11-28 Izi Corporation Radiographic multi-modality skin markers
US5297549A (en) 1992-09-23 1994-03-29 Endocardial Therapeutics, Inc. Endocardial mapping system
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5660865A (en) 1992-09-25 1997-08-26 Aarhus Oliefabrik A/S Surface treatment composition
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
US5513637A (en) 1992-09-29 1996-05-07 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5394457A (en) 1992-10-08 1995-02-28 Leibinger Gmbh Device for marking body sites for medical examinations
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5568384A (en) 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5456664A (en) 1992-11-13 1995-10-10 Ep Technologies, Inc. Catheter steering mechanism
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5776064A (en) 1992-11-30 1998-07-07 The Cleveland Clinic Foundation Frameless stereotaxy system for indicating the position and axis of a surgical probe
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
EP0600610A2 (en) 1992-11-30 1994-06-08 The Cleveland Clinic Foundation A position determining system and method
US5309913A (en) 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5389073A (en) 1992-12-01 1995-02-14 Cardiac Pathways Corporation Steerable catheter with adjustable bend location
US5327889A (en) 1992-12-01 1994-07-12 Cardiac Pathways Corporation Mapping and ablation catheter with individually deployable arms and method
US5383852A (en) 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5305091A (en) 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
US5353800A (en) 1992-12-11 1994-10-11 Medtronic, Inc. Implantable pressure sensor lead
JPH06194639A (en) 1992-12-25 1994-07-15 Matsushita Electric Ind Co Ltd Liquid crystal display panel
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5400384A (en) 1993-01-29 1995-03-21 Oec Medical Systems, Inc. Time-based attenuation compensation
US5333168A (en) 1993-01-29 1994-07-26 Oec Medical Systems, Inc. Time-based attenuation compensation
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5448610A (en) 1993-02-09 1995-09-05 Hitachi Medical Corporation Digital X-ray photography device
US5799099A (en) 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5730130A (en) 1993-02-12 1998-03-24 Johnson & Johnson Professional, Inc. Localization cap for fiducial markers
US5769789A (en) 1993-02-12 1998-06-23 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5595193A (en) 1993-02-12 1997-01-21 Walus; Richard L. Tool for implanting a fiducial marker
US5551429A (en) 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US5715836A (en) 1993-02-16 1998-02-10 Kliegis; Ulrich Method and apparatus for planning and monitoring a surgical operation
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5476495A (en) 1993-03-16 1995-12-19 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5636634A (en) 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
US5787886A (en) 1993-03-19 1998-08-04 Compass International Incorporated Magnetic field digitizer for stereotatic surgery
US5458718A (en) 1993-03-19 1995-10-17 Vip Industries Limited Heat sealing method for making a luggage case
US5483961A (en) 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5522815A (en) 1993-03-29 1996-06-04 Durgin, Jr.; Russell F. Integrated catheter for diverse in situ tissue therapy
US5357253A (en) 1993-04-02 1994-10-18 Earth Sounding International System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals
US5810728A (en) 1993-04-03 1998-09-22 U.S. Philips Corporation MR imaging method and apparatus for guiding a catheter
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
US5435573A (en) 1993-04-13 1995-07-25 Visioneering International, Inc. Wireless remote control and position detecting system
US5740802A (en) 1993-04-20 1998-04-21 General Electric Company Computer graphic and live video system for enhancing visualization of body structures during surgery
WO1994023647A1 (en) 1993-04-22 1994-10-27 Pixsys, Inc. System for locating relative positions of objects
US5920395A (en) 1993-04-22 1999-07-06 Image Guided Technologies, Inc. System for locating relative positions of objects in three dimensional space
WO1994024933A1 (en) 1993-04-26 1994-11-10 St. Louis University Indicating the position of a surgical probe
US5871445A (en) 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5405346A (en) 1993-05-14 1995-04-11 Fidus Medical Technology Corporation Tunable microwave ablation catheter
US5325728A (en) 1993-06-22 1994-07-05 Medtronic, Inc. Electromagnetic flow meter
US5347289A (en) 1993-06-29 1994-09-13 Honeywell, Inc. Method and device for measuring the position and orientation of objects in the presence of interfering metals
US6004269A (en) 1993-07-01 1999-12-21 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5480422A (en) 1993-07-20 1996-01-02 Biosense, Inc. Apparatus for treating cardiac arrhythmias
US5545200A (en) 1993-07-20 1996-08-13 Medtronic Cardiorhythm Steerable electrophysiology catheter
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5840025A (en) 1993-07-20 1998-11-24 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5546951A (en) 1993-07-20 1996-08-20 Biosense, Inc. Method and apparatus for studying cardiac arrhythmias
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5443489A (en) 1993-07-20 1995-08-22 Biosense, Inc. Apparatus and method for ablation
US5713946A (en) 1993-07-20 1998-02-03 Biosense, Inc. Apparatus and method for intrabody mapping
US6751492B2 (en) 1993-07-20 2004-06-15 Biosense, Inc. System for mapping a heart using catheters having ultrasonic position sensors
US5694945A (en) 1993-07-20 1997-12-09 Biosense, Inc. Apparatus and method for intrabody mapping
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5568809A (en) 1993-07-20 1996-10-29 Biosense, Inc. Apparatus and method for intrabody mapping
US5397321A (en) 1993-07-30 1995-03-14 Ep Technologies, Inc. Variable curve electrophysiology catheter
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5760335A (en) 1993-08-02 1998-06-02 Elbit Systems Ltd. Compensation of electromagnetic distortion caused by metal mass
US5398691A (en) 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
US5755725A (en) 1993-09-07 1998-05-26 Deemed International, S.A. Computer-assisted microsurgery methods and equipment
WO1995007055A1 (en) 1993-09-07 1995-03-16 Deemed International S.A. Computer-assisted microsurgery equipment and methods for use with said equipment
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5622169A (en) 1993-09-14 1997-04-22 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5514146A (en) 1993-09-17 1996-05-07 Dwl Electronische Systeme Gmbh Device for accomodating at least one sonographic probe
US5947980A (en) 1993-09-30 1999-09-07 Price Invena Aps Device for squeezing and cutting an umbilical cord
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
WO1995009562A1 (en) 1993-10-06 1995-04-13 Biosense, Inc. Magnetic determination of position and orientation
US6427314B1 (en) 1993-10-06 2002-08-06 Biosense, Inc. Magnetic determination of position and orientation
US5833608A (en) 1993-10-06 1998-11-10 Biosense, Inc. Magnetic determination of position and orientation
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
US5590215A (en) 1993-10-15 1996-12-31 Allen; George S. Method for providing medical images
US5871523A (en) 1993-10-15 1999-02-16 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5394875A (en) 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5938694A (en) 1993-11-10 1999-08-17 Medtronic Cardiorhythm Electrode array catheter
US5842984A (en) 1993-12-03 1998-12-01 Avitall; Boaz Mapping and ablation catheter system with locking mechanism
US5399146A (en) 1993-12-13 1995-03-21 Nowacki; Christopher Isocentric lithotripter
US5445144A (en) 1993-12-16 1995-08-29 Purdue Research Foundation Apparatus and method for acoustically guiding, positioning, and monitoring a tube within a body
US5741214A (en) 1993-12-20 1998-04-21 Terumo Kabushiki Kaisha Accessory pathway detecting/cauterizing apparatus
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
US5546940A (en) 1994-01-28 1996-08-20 Ep Technologies, Inc. System and method for matching electrical characteristics and propagation velocities in cardiac tissue to locate potential ablation sites
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5444756A (en) 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
US5571083A (en) 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
US5503416A (en) 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
US5802719A (en) 1994-03-14 1998-09-08 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5426683A (en) 1994-03-14 1995-06-20 Oec Medical Systems, Inc. One piece C-arm for X-ray diagnostic equipment
US5543951A (en) 1994-03-15 1996-08-06 Siemens Aktiengesellschaft Method for receive-side clock supply for video signals digitally transmitted with ATM in fiber/coaxial subscriber line networks
US5490196A (en) 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
US5792055A (en) 1994-03-18 1998-08-11 Schneider (Usa) Inc. Guidewire antenna
US5447156A (en) 1994-04-04 1995-09-05 General Electric Company Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms
US6022578A (en) 1994-04-22 2000-02-08 Kraft Foods, Inc. Tablespread product containing liquid fat and process for preparing same
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
US5795294A (en) 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
US6106517A (en) 1994-06-23 2000-08-22 Situs Corporation Surgical instrument with ultrasound pulse generator
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5871487A (en) 1994-06-24 1999-02-16 Cytotherpeutics, Inc. Microdrive for use in stereotactic surgery
US5476100A (en) 1994-07-07 1995-12-19 Guided Medical Systems, Inc. Catheter steerable by directional jets with remotely controlled closures
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US6035229A (en) 1994-07-14 2000-03-07 Washington Research Foundation Method and apparatus for detecting Barrett's metaplasia of the esophagus
US5619261A (en) 1994-07-25 1997-04-08 Oec Medical Systems, Inc. Pixel artifact/blemish filter for use in CCD video camera
US5853327A (en) 1994-07-28 1998-12-29 Super Dimension, Inc. Computerized game board
EP0894473A2 (en) 1994-08-19 1999-02-03 Biosense, Inc. Medical diagnosis, treatment and imaging systems
WO1996005768A1 (en) 1994-08-19 1996-02-29 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5999840A (en) 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5701898A (en) 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
US5749835A (en) 1994-09-06 1998-05-12 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US6112111A (en) 1994-09-06 2000-08-29 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5492131A (en) 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5702406A (en) 1994-09-15 1997-12-30 Brainlab Med. Computersysteme Gmbb Device for noninvasive stereotactic immobilization in reproducible position
US6445943B1 (en) 1994-09-15 2002-09-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5873822A (en) 1994-09-15 1999-02-23 Visualization Technology, Inc. Automatic registration system for use with position tracking and imaging system for use in medical applications
US6175756B1 (en) 1994-09-15 2001-01-16 Visualization Technology Inc. Position tracking and imaging system for use in medical applications
US5628315A (en) 1994-09-15 1997-05-13 Brainlab Med. Computersysteme Gmbh Device for detecting the position of radiation target points
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5967980A (en) 1994-09-15 1999-10-19 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5800352A (en) 1994-09-15 1998-09-01 Visualization Technology, Inc. Registration system for use with position tracking and imaging system for use in medical applications
US6341231B1 (en) 1994-09-15 2002-01-22 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US20060036151A1 (en) 1994-09-15 2006-02-16 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument
US20040024309A1 (en) 1994-09-15 2004-02-05 Ferre Maurice R. System for monitoring the position of a medical instrument with respect to a patient's body
US5676673A (en) 1994-09-15 1997-10-14 Visualization Technology, Inc. Position tracking and imaging system with error detection for use in medical applications
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5606975A (en) 1994-09-19 1997-03-04 The Board Of Trustees Of The Leland Stanford Junior University Forward viewing ultrasonic imaging catheter
US5643268A (en) 1994-09-27 1997-07-01 Brainlab Med. Computersysteme Gmbh Fixation pin for fixing a reference system to bony structures
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US6071288A (en) 1994-09-30 2000-06-06 Ohio Medical Instrument Company, Inc. Apparatus and method for surgical stereotactic procedures
US6236875B1 (en) 1994-10-07 2001-05-22 Surgical Navigation Technologies Surgical navigation systems including reference and localization frames
WO1996011624A2 (en) 1994-10-07 1996-04-25 St. Louis University Surgical navigation systems including reference and localization frames
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US6156067A (en) 1994-11-14 2000-12-05 Spinal Dynamics Corporation Human spinal disc prosthesis
US5857997A (en) 1994-11-14 1999-01-12 Heart Rhythm Technologies, Inc. Catheter for electrophysiological procedures
US6001130A (en) 1994-11-14 1999-12-14 Bryan; Vincent Human spinal disc prosthesis with hinges
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5865846A (en) 1994-11-14 1999-02-02 Bryan; Vincent Human spinal disc prosthesis
US5611025A (en) 1994-11-23 1997-03-11 General Electric Company Virtual internal cavity inspection system
US5690108A (en) 1994-11-28 1997-11-25 Chakeres; Donald W. Interventional medicine apparatus
US5583909A (en) 1994-12-20 1996-12-10 Oec Medical Systems, Inc. C-arm mounting structure for mobile X-ray imaging system
US5583909C1 (en) 1994-12-20 2001-03-27 Oec Medical Systems Inc C-arm mounting structure for mobile x-ray imaging system
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
US5758667A (en) 1995-01-26 1998-06-02 Siemens Elema Ab Device for locating a port on a medical implant
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5954647A (en) 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US5807252A (en) 1995-02-23 1998-09-15 Aesculap Ag Method and apparatus for determining the position of a body part
US5810735A (en) 1995-02-27 1998-09-22 Medtronic, Inc. External patient reference sensors
US5636644A (en) 1995-03-17 1997-06-10 Applied Medical Resources Corporation Method and apparatus for endoconduit targeting
US5664001A (en) 1995-03-24 1997-09-02 J. Morita Manufacturing Corporation Medical X-ray imaging apparatus
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5868673A (en) 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
WO1996032059A1 (en) 1995-04-10 1996-10-17 Compass International Incorporated Magnetic field digitizer for stereotactic surgery
US5741320A (en) 1995-05-02 1998-04-21 Heart Rhythm Technologies, Inc. Catheter control system having a pulley
US5566681A (en) 1995-05-02 1996-10-22 Manwaring; Kim H. Apparatus and method for stabilizing a body part
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5640170A (en) 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5617857A (en) 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5588033A (en) 1995-06-06 1996-12-24 St. Jude Children's Research Hospital Method and apparatus for three dimensional image reconstruction from multiple stereotactic or isocentric backprojections
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
WO1996041119A1 (en) 1995-06-07 1996-12-19 Biosense, Inc. Magnetic location system with adaptive feedback control
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5846183A (en) 1995-06-07 1998-12-08 Chilcoat; Robert T. Articulated endoscope with specific advantages for laryngoscopy
US5713853A (en) 1995-06-07 1998-02-03 Interventional Innovations Corporation Methods for treating thrombosis
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5843076A (en) 1995-06-12 1998-12-01 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
WO1997000308A1 (en) 1995-06-16 1997-01-03 Tonen Corporation Heat-resistant lubricating oil composition
WO1997000011A1 (en) 1995-06-16 1997-01-03 Novartis Ag Microbicidal compositions
WO1997000058A1 (en) 1995-06-19 1997-01-03 The Procter & Gamble Company Sanitary articles with dual layer topsheet having a selected distribution of large apertures
WO1997000054A1 (en) 1995-06-19 1997-01-03 Sven Olerud An adjustable spacing device and a method of adjusting the distance between two vertebrae with the aid of said spacing device in spinal surgical operations
WO1997000059A1 (en) 1995-06-19 1997-01-03 The Procter & Gamble Company Sanitary articles with dual layer topsheets
WO1997002650A1 (en) 1995-07-05 1997-01-23 Reel S.R.L. Method and unit for controlling the synchronization of complex machines in case of electric power failure
US6216029B1 (en) 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US5776050A (en) 1995-07-24 1998-07-07 Medical Media Systems Anatomical visualization system
US5627873A (en) 1995-08-04 1997-05-06 Oec Medical Systems, Inc. Mini C-arm assembly for mobile X-ray imaging system
US5627873B1 (en) 1995-08-04 2000-03-14 Oec Medical Systems Mini c-arm assembly for mobile x-ray imaging system
US5617462A (en) 1995-08-07 1997-04-01 Oec Medical Systems, Inc. Automatic X-ray exposure control system and method of use
US5642395A (en) 1995-08-07 1997-06-24 Oec Medical Systems, Inc. Imaging chain with miniaturized C-arm assembly for mobile X-ray imaging system
US5696500A (en) 1995-08-18 1997-12-09 Motorola, Inc. Multi-media receiver and system therefor
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5713369A (en) 1995-09-13 1998-02-03 Vance Products Inc. Uterine endometrial tissue sample brush
US5715822A (en) 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US5889834A (en) 1995-09-28 1999-03-30 Brainlab Med. Computersysteme Gmbh Blade collimator for radiation therapy
US20020095081A1 (en) 1995-09-28 2002-07-18 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5744802A (en) 1995-10-25 1998-04-28 Adac Laboratories Image generation from limited projections in positron emission tomography using multi-slice rebinning
US5983126A (en) 1995-11-22 1999-11-09 Medtronic, Inc. Catheter location system and method
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5868674A (en) 1995-11-24 1999-02-09 U.S. Philips Corporation MRI-system and catheter for interventional procedures
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
JP3025752B2 (en) 1995-12-14 2000-03-27 キヤノン株式会社 Print control device and print control method of print control device
US5884410A (en) 1995-12-21 1999-03-23 Carl-Zeiss-Stiftung Sensing system for coordinate measuring equipment
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US6104294A (en) 1995-12-29 2000-08-15 Alfa Laval Agri Ab Activity measurement
US6574492B1 (en) 1996-01-08 2003-06-03 Biosense, Inc. Catheter having multiple arms with electrode and position sensor
WO1997025101A2 (en) 1996-01-08 1997-07-17 Biosense Inc. Methods and apparatus for myocardial revascularization
US6171303B1 (en) 1996-01-08 2001-01-09 Biosense, Inc. Methods and apparatus for myocardial revascularization
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
WO1999037208A1 (en) 1996-02-01 1999-07-29 Biosense Inc. Intrabody measurement
US6498944B1 (en) 1996-02-01 2002-12-24 Biosense, Inc. Intrabody measurement
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
WO1997029682A1 (en) 1996-02-15 1997-08-21 Biosense Inc. Locatable biopsy needle
WO1997029684A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Catheter with lumen
US6366799B1 (en) 1996-02-15 2002-04-02 Biosense, Inc. Movable transmit or receive coils for location system
US6591129B1 (en) 1996-02-15 2003-07-08 Biosense, Inc. Method for treating tissue through injection of a therapeutic agent
US6618612B1 (en) 1996-02-15 2003-09-09 Biosense, Inc. Independently positionable transducers for location system
WO1997029685A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Independently positionable transducers for location system
US6203493B1 (en) 1996-02-15 2001-03-20 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
WO1997029701A1 (en) 1996-02-15 1997-08-21 Biosense Inc. Catheter based surgery
US6253770B1 (en) 1996-02-15 2001-07-03 Biosense, Inc. Catheter with lumen
US6453190B1 (en) 1996-02-15 2002-09-17 Biosense, Inc. Medical probes with field transducers
WO1997029709A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
US6211666B1 (en) 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US5735278A (en) 1996-03-15 1998-04-07 National Research Council Of Canada Surgical procedure with magnetic resonance imaging
US5947925A (en) 1996-03-18 1999-09-07 Hiroaki Ashiya Catheter assembly
EP0796633A1 (en) 1996-03-18 1997-09-24 Hiroaki Ashiya Catheter assembly
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
WO1997036143A1 (en) 1996-03-26 1997-10-02 Biosense Inc. Mutual induction correction
US5865726A (en) 1996-03-27 1999-02-02 Asahi Kogaku Kogyo Kabushiki Kaisha Front end structure of side-view type endoscope
WO1997036192A1 (en) 1996-03-27 1997-10-02 Paul Scherrer Institut Device and process for determining position
US5968047A (en) 1996-04-05 1999-10-19 Reed; Thomas Mills Fixation devices
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
US5871455A (en) 1996-04-30 1999-02-16 Nikon Corporation Ophthalmic apparatus
US6194639B1 (en) 1996-05-01 2001-02-27 The University Of Queensland ACC synthase genes from pineapple
US5682165A (en) 1996-05-02 1997-10-28 Hughes Electronics Active array self calibration
US6335617B1 (en) 1996-05-06 2002-01-01 Biosense, Inc. Method and apparatus for calibrating a magnetic field generator
WO1997042517A1 (en) 1996-05-06 1997-11-13 Biosense Inc. Radiator calibration
US6077257A (en) 1996-05-06 2000-06-20 Vidacare, Inc. Ablation of rectal and other internal body structures
US6019728A (en) 1996-05-08 2000-02-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Catheter and sensor having pressure detecting function
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
WO1997044089A1 (en) 1996-05-17 1997-11-27 Biosense Inc. Self-aligning catheter
US5767699A (en) 1996-05-28 1998-06-16 Sun Microsystems, Inc. Fully complementary differential output driver for high speed digital communications
US6013087A (en) 1996-05-29 2000-01-11 U.S. Philips Corporation Image-guided surgery system
US20020045919A1 (en) 1996-06-05 2002-04-18 Gunilla Johansson-Ruden Biocompatible glue
US5938602A (en) 1996-06-11 1999-08-17 Roke Manor Research Limited Catheter tracking system and method
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US6208884B1 (en) 1996-06-25 2001-03-27 Quantum Magnetics, Inc. Noninvasive room temperature instrument to measure magnetic susceptibility variations in body tissue
US5775322A (en) 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
WO1997049453A1 (en) 1996-06-27 1997-12-31 Sluijter Menno E Method and system for neural tissue modification
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
WO1998000034A2 (en) 1996-07-01 1998-01-08 Wabfi Holdings Ltd. Process for producing chip food product and system therefor
US5828725A (en) 1996-07-03 1998-10-27 Eliav Medical Imaging Systems Ltd Processing images for removal of artifacts
US6064390A (en) 1996-07-26 2000-05-16 Lifef/X Networks, Inc. Apparatus and method for representation of expression in a tissue-like system
US5823192A (en) 1996-07-31 1998-10-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for automatically positioning a patient for treatment/diagnoses
US5980504A (en) 1996-08-13 1999-11-09 Oratec Interventions, Inc. Method for manipulating tissue of an intervertebral disc
US5820553A (en) 1996-08-16 1998-10-13 Siemens Medical Systems, Inc. Identification system and method for radiation therapy
WO1998008554A1 (en) 1996-08-29 1998-03-05 Medtronic, Inc. Brain stimulation system having an improved anchor for a lead or catheter
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
EP0829229A1 (en) 1996-09-12 1998-03-18 Siemens-Elema AB Method and device for determining the position of a catheter inside the body of a patient
US5899860A (en) 1996-09-12 1999-05-04 Siemens Elema Ab Method and device for determining the position of a catheter inside the body of a patient
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
WO1998011840A1 (en) 1996-09-17 1998-03-26 Biosense Inc. Position confirmation with learn and test functions
US5951571A (en) 1996-09-19 1999-09-14 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
US6131396A (en) 1996-09-27 2000-10-17 Siemens Aktiengesellschaft Heat radiation shield, and dewar employing same
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US5904691A (en) 1996-09-30 1999-05-18 Picker International, Inc. Trackable guide block
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5902239A (en) 1996-10-30 1999-05-11 U.S. Philips Corporation Image guided surgery system including a unit for transforming patient positions to image positions
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
US5919147A (en) 1996-11-01 1999-07-06 Jain; Krishna M. Method and apparatus for measuring the vascular diameter of a vessel
US6423009B1 (en) 1996-11-29 2002-07-23 Life Imaging Systems, Inc. System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
US5957844A (en) 1996-12-03 1999-09-28 Surgical Navigation Specialist Inc. Apparatus and method for visualizing ultrasonic images
US6203497B1 (en) 1996-12-03 2001-03-20 Surgical Navigation Specialist Apparatus and method for visualizing ultrasonic images
US5803084A (en) 1996-12-05 1998-09-08 Olson; Charles Three dimensional vector cardiographic display and method for displaying same
US5782828A (en) 1996-12-11 1998-07-21 Irvine Biomedical, Inc. Ablation catheter with multiple flexible curves
US5951461A (en) 1996-12-20 1999-09-14 Nyo; Tin Image-guided laryngoscope for tracheal intubation
US6272371B1 (en) 1997-01-03 2001-08-07 Biosense Inc. Bend-responsive catheter
WO1998029032A1 (en) 1997-01-03 1998-07-09 Biosense Inc. Conformal catheter
US6063022A (en) 1997-01-03 2000-05-16 Biosense, Inc. Conformal catheter
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US5935160A (en) 1997-01-24 1999-08-10 Cardiac Pacemakers, Inc. Left ventricular access lead for heart failure pacing
US6050724A (en) 1997-01-31 2000-04-18 U. S. Philips Corporation Method of and device for position detection in X-ray imaging
US20030142753A1 (en) 1997-01-31 2003-07-31 Acmi Corporation Correction of image signals characteristic of non-uniform images in an endoscopic imaging system
US5919188A (en) 1997-02-04 1999-07-06 Medtronic, Inc. Linear ablation catheter
US5954796A (en) 1997-02-11 1999-09-21 Compaq Computer Corporation System and method for automatically and dynamically changing an address associated with a device disposed in a fire channel environment
US6380732B1 (en) 1997-02-13 2002-04-30 Super Dimension Ltd. Six-degree of freedom tracking system having a passive transponder on the object being tracked
US7969143B2 (en) 1997-02-13 2011-06-28 Superdimension, Ltd. Method of tracking an object having a passive transponder attached thereto
WO1998035720A2 (en) 1997-02-14 1998-08-20 Biosense Inc. X-ray guided surgical location system with extended mapping volume
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US6580938B1 (en) 1997-02-25 2003-06-17 Biosense, Inc. Image-guided thoracic therapy and apparatus therefor
US6346940B1 (en) 1997-02-27 2002-02-12 Kabushiki Kaisha Toshiba Virtualized endoscope system
US6006127A (en) 1997-02-28 1999-12-21 U.S. Philips Corporation Image-guided surgery system
WO1998038908A1 (en) 1997-03-03 1998-09-11 Schneider Medical Technologies, Inc. Imaging device and method
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US6032675A (en) 1997-03-17 2000-03-07 Rubinsky; Boris Freezing method for controlled removal of fatty tissue by liposuction
DE19715202A1 (en) 1997-04-11 1998-10-15 Brainlab Med Computersyst Gmbh Position referencing system for medical examinations or treatment
DE19751761A1 (en) 1997-04-11 1998-10-15 Brainlab Med Computersyst Gmbh System for continuous display of target location in medical treatments
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
US6223067B1 (en) 1997-04-11 2001-04-24 Brainlab Med. Computersysteme Gmbh Referencing device including mouthpiece
WO1998048722A1 (en) 1997-04-28 1998-11-05 American Cardiac Ablation Co., Inc. Catheter positioning system
US20020165448A1 (en) 1997-05-14 2002-11-07 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US6788967B2 (en) 1997-05-14 2004-09-07 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
DE19832296A1 (en) 1997-07-18 1999-02-04 Image Guided Technologies Inc Optical tracking system for position and orientation of body in three=dimensional space
US6264654B1 (en) 1997-07-21 2001-07-24 Daig Corporation Ablation catheter
US20020128565A1 (en) 1997-07-31 2002-09-12 Case Western Reserve University System and method for non-invasive electrocardiographic imaging
US6216027B1 (en) 1997-08-01 2001-04-10 Cardiac Pathways Corporation System for electrode localization using ultrasound
US6345112B1 (en) 1997-08-19 2002-02-05 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US6246784B1 (en) 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US6024739A (en) 1997-09-05 2000-02-15 Cordis Webster, Inc. Method for detecting and revascularizing ischemic myocardial tissue
US6210362B1 (en) 1997-09-05 2001-04-03 Cordis Webster, Inc. Steerable catheter for detecting and revascularing ischemic myocardial tissue
US6096050A (en) 1997-09-19 2000-08-01 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5930329A (en) 1997-09-22 1999-07-27 Siemens Corporate Research, Inc. Apparatus and method for detection and localization of a biopsy needle or similar surgical tool in a radiographic image
US5909476A (en) 1997-09-22 1999-06-01 University Of Iowa Research Foundation Iterative process for reconstructing cone-beam tomographic images
US6179809B1 (en) 1997-09-24 2001-01-30 Eclipse Surgical Technologies, Inc. Drug delivery catheter with tip alignment
WO1999015097A2 (en) 1997-09-24 1999-04-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US5951475A (en) 1997-09-25 1999-09-14 International Business Machines Corporation Methods and apparatus for registering CT-scan data to multiple fluoroscopic images
WO1999016350A1 (en) 1997-09-26 1999-04-08 Ep Technologies, Inc. Systems for recording the use of cardiac devices
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US6259942B1 (en) 1997-09-27 2001-07-10 Surgical Navigation Specialist Inc. Method and apparatus for recording a three-dimensional image of a body part
US6248074B1 (en) 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
US5923727A (en) 1997-09-30 1999-07-13 Siemens Corporate Research, Inc. Method and apparatus for calibrating an intra-operative X-ray system
EP0908146A2 (en) 1997-10-06 1999-04-14 General Electric Company Real-time image-guided placement of anchor devices
US6201387B1 (en) 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US6585763B1 (en) 1997-10-14 2003-07-01 Vascusense, Inc. Implantable therapeutic device and method
US6304769B1 (en) 1997-10-16 2001-10-16 The Regents Of The University Of California Magnetically directable remote guidance systems, and methods of use thereof
US6139183A (en) 1997-10-17 2000-10-31 Siemens Aktiengesellschaft X-ray exposure system for 3D imaging
US6246899B1 (en) 1997-10-20 2001-06-12 Irvine Biomedical, Inc. Ultrasound locating system having ablation capabilities
US5954649A (en) 1997-10-20 1999-09-21 Irvine Biomedical, Inc. Catheter system having ultrasound locating capabilities
US6147480A (en) 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
US6123979A (en) 1997-10-24 2000-09-26 Unilever Patent Holdings Bv Wax ester compositions
US5882304A (en) 1997-10-27 1999-03-16 Picker Nordstar Corporation Method and apparatus for determining probe location
DE19747427A1 (en) 1997-10-28 1999-05-06 Zeiss Carl Fa Bone segment navigation system
WO1999021498A1 (en) 1997-10-28 1999-05-06 Carl Zeiss Bone segment navigation system
WO1999023956A1 (en) 1997-11-05 1999-05-20 Synthes Ag, Chur Virtual representation of a bone or a bone joint
US6014580A (en) 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
WO1999026826A2 (en) 1997-11-14 1999-06-03 Continental Teves Ag & Co. Ohg Brake-power transmission device, especially for motor vehicles
US6104944A (en) 1997-11-17 2000-08-15 Martinelli; Michael A. System and method for navigating a multiple electrode catheter
WO1999026549A1 (en) 1997-11-20 1999-06-03 Surgical Navigation Technologies, Inc. An image guided awl/tap/screwdriver
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
EP0930046A2 (en) 1997-11-26 1999-07-21 Picker International, Inc. Method of, and apparatus for, imaging
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
WO1999027839A2 (en) 1997-12-01 1999-06-10 Cosman Eric R Surgical positioning system
US5967982A (en) 1997-12-09 1999-10-19 The Cleveland Clinic Foundation Non-invasive spine and bone registration for frameless stereotaxy
EP0922966A2 (en) 1997-12-12 1999-06-16 Super Dimension Ltd. Wireless six-degree-of-freedom locator
WO1999029253A1 (en) 1997-12-12 1999-06-17 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6188355B1 (en) 1997-12-12 2001-02-13 Super Dimension Ltd. Wireless six-degree-of-freedom locator
WO1999030777A1 (en) 1997-12-15 1999-06-24 Medtronic, Inc. Four-chamber pacing system for optimizing cardiac output
WO1999032033A1 (en) 1997-12-22 1999-07-01 Cormedica Corporation Measuring position and orientation using magnetic fields
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
WO1999033406A1 (en) 1997-12-31 1999-07-08 Surgical Navigation Technologies, Inc. Wireless probe system for use with a stereotactic surgical device
US5976127A (en) 1998-01-14 1999-11-02 Lax; Ronald Soft tissue fixation devices
US6245020B1 (en) 1998-01-26 2001-06-12 Scimed Life System, Inc. Catheter assembly with distal end inductive coupler and embedded transmission line
WO1999038449A1 (en) 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US20020143324A1 (en) 1998-02-19 2002-10-03 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US5966090A (en) 1998-03-16 1999-10-12 Mcewan; Thomas E. Differential pulse radar motion sensor
US5938585A (en) 1998-03-20 1999-08-17 Boston Scientific Corporation Anchoring and positioning device and method for an endoscope
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
US6161032A (en) 1998-03-30 2000-12-12 Biosense, Inc. Three-axis coil sensor
US6213998B1 (en) 1998-04-02 2001-04-10 Vanderbilt University Laser surgical cutting probe and system
WO1999052094A1 (en) 1998-04-03 1999-10-14 Image Guided Technologies, Inc. Wireless optical instrument for position measurement and method of use therefor
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6273896B1 (en) 1998-04-21 2001-08-14 Neutar, Llc Removable frames for stereotactic localization
US5902324A (en) 1998-04-28 1999-05-11 Medtronic, Inc. Bi-atrial and/or bi-ventricular sequential cardiac pacing systems
WO1999055415A1 (en) 1998-04-28 1999-11-04 Medtronic, Inc. Multiple channel, sequential, cardiac pacing systems
US6096036A (en) 1998-05-05 2000-08-01 Cardiac Pacemakers, Inc. Steerable catheter with preformed distal shape and method for use
US6183444B1 (en) 1998-05-16 2001-02-06 Microheart, Inc. Drug delivery module
WO1999060939A1 (en) 1998-05-28 1999-12-02 Orthosoft, Inc. Interactive computer-assisted surgical system and method thereof
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6178345B1 (en) 1998-06-30 2001-01-23 Brainlab Med. Computersysteme Gmbh Method for detecting the exact contour of targeted treatment areas, in particular, the external contour
US6424856B1 (en) 1998-06-30 2002-07-23 Brainlab Ag Method for the localization of targeted treatment areas in soft body parts
US6447504B1 (en) 1998-07-02 2002-09-10 Biosense, Inc. System for treatment of heart tissue using viability map
WO2000006701A1 (en) 1998-07-31 2000-02-10 Genzyme Corporation Improvement of cardiac function by mesenchymal stem cell transplantation
US20030160721A1 (en) 1998-08-02 2003-08-28 Pinhas Gilboa Intrabody navigation system for medical applications
US6947788B2 (en) 1998-08-02 2005-09-20 Super Dimension Ltd. Navigable catheter
WO2000010456A1 (en) 1998-08-02 2000-03-02 Super Dimension Ltd. Intrabody navigation system for medical applications
US6593884B1 (en) 1998-08-02 2003-07-15 Super Dimension Ltd. Intrabody navigation system for medical applications
US7555330B2 (en) 1998-08-02 2009-06-30 Superdimension, Ltd. Intrabody navigation system for medical applications
US20030216639A1 (en) 1998-08-02 2003-11-20 Pinhas Gilboa Intrabody navigation system for medical applications
US6833814B2 (en) 1998-08-02 2004-12-21 Super Dimension Ltd. Intrabody navigation system for medical applications
US6711429B1 (en) 1998-09-24 2004-03-23 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US6226543B1 (en) 1998-09-24 2001-05-01 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
WO2000016684A1 (en) 1998-09-24 2000-03-30 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US20040006268A1 (en) 1998-09-24 2004-01-08 Super Dimension Ltd Was Filed In Parent Case System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US20030074011A1 (en) 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6558333B2 (en) 1998-09-24 2003-05-06 Super Dimension Ltd System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6061588A (en) 1998-09-29 2000-05-09 Advanced Cardiovascular Systems, Inc. Catheter apparatus for positioning a wire
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
WO2000035531A1 (en) 1998-12-14 2000-06-22 Tre Esse Progettazione Biomedica S.R.L. Catheter system for performing intramyocardiac therapeutic treatment
US6117476A (en) 1999-01-04 2000-09-12 Shaul Eger Healthy food spreads
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US20010036245A1 (en) 1999-02-10 2001-11-01 Kienzle Thomas C. Computer assisted targeting device for use in orthopaedic surgery
US20010038705A1 (en) 1999-03-08 2001-11-08 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
US6498477B1 (en) 1999-03-19 2002-12-24 Biosense, Inc. Mutual crosstalk elimination in medical systems using radiator coils and magnetic fields
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6527443B1 (en) 1999-04-20 2003-03-04 Brainlab Ag Process and apparatus for image guided treatment with an integration of X-ray detection and navigation system
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7386339B2 (en) 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US20050107688A1 (en) 1999-05-18 2005-05-19 Mediguide Ltd. System and method for delivering a stent to a selected position within a lumen
US20060058647A1 (en) 1999-05-18 2006-03-16 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7697973B2 (en) 1999-05-18 2010-04-13 MediGuide, Ltd. Medical imaging and navigation system
US20060064006A1 (en) 1999-05-18 2006-03-23 Mediguide Ltd. Method and system for determining a three dimensional representation of a tubular organ
US20010031919A1 (en) 1999-05-18 2001-10-18 Mediguide Ltd Medical imaging and navigation system
US20070287901A1 (en) 1999-05-18 2007-12-13 Mediguide Ltd. Medical imaging and navigation system
US20090182224A1 (en) 1999-05-18 2009-07-16 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US7343195B2 (en) 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6192280B1 (en) 1999-06-02 2001-02-20 Medtronic, Inc. Guidewire placed implantable lead with tip seal
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
US6331156B1 (en) 1999-06-21 2001-12-18 Richard Wolf Gmbh Electronic endoscope
WO2001006917A1 (en) 1999-07-26 2001-02-01 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6246231B1 (en) 1999-07-29 2001-06-12 Ascension Technology Corporation Magnetic field permeable barrier for magnetic position measurement system
US6996430B1 (en) 1999-08-16 2006-02-07 Super Dimension Ltd Method and system for displaying cross-sectional images of a body
WO2001012057A1 (en) 1999-08-16 2001-02-22 Super Dimension Ltd. Method and system for displaying cross-sectional images of a body
EP1078644A1 (en) 1999-08-24 2001-02-28 Biosense, Inc. Apparatus for intracardiac cell delivery and cell transplantation
US6213995B1 (en) 1999-08-31 2001-04-10 Phelps Dodge High Performance Conductors Of Sc And Ga, Inc. Flexible tubing with braided signal transmission elements
US6702780B1 (en) 1999-09-08 2004-03-09 Super Dimension Ltd. Steering configuration for catheter with rigid distal device
US6574498B1 (en) 1999-09-16 2003-06-03 Super Dimension Ltd. Linking of an intra-body tracking system to external reference coordinates
US6443894B1 (en) 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US6473635B1 (en) 1999-09-30 2002-10-29 Koninkiljke Phillip Electronics N.V. Method of and device for determining the position of a medical instrument
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
WO2001030437A1 (en) 1999-10-28 2001-05-03 Winchester Development Associates Patient-shielding and coil system
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
DE10085137T1 (en) 1999-10-28 2002-11-07 Winchester Dev Associates Winc Surgical sensor
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6172499B1 (en) 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
US6516046B1 (en) 1999-11-04 2003-02-04 Brainlab Ag Exact patient positioning by compairing reconstructed x-ray images and linac x-ray images
US6428547B1 (en) 1999-11-25 2002-08-06 Brainlab Ag Detection of the shape of treatment devices
US20020045916A1 (en) 1999-12-06 2002-04-18 C.R. Bard, Inc. Temporary vascular filter guide wire
US6437567B1 (en) 1999-12-06 2002-08-20 General Electric Company Radio frequency coil for open magnetic resonance imaging system
US6611700B1 (en) 1999-12-30 2003-08-26 Brainlab Ag Method and apparatus for positioning a body for radiation using a position sensor
US20020193686A1 (en) 2000-01-10 2002-12-19 Pinhas Gilboa Methods and systems for performing medical procedures with reference to projective image and with respect to pre-stored images
US20010007918A1 (en) 2000-01-12 2001-07-12 Brainlab Ag Intraoperative navigation updating
US6609022B2 (en) 2000-01-12 2003-08-19 Brainlab Ag Intraoperative navigation updating
US6383144B1 (en) 2000-01-18 2002-05-07 Edwards Lifesciences Corporation Devices and methods for measuring temperature of a patient
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US20040019350A1 (en) 2000-03-06 2004-01-29 O'brien Scott D. Fluid-assisted medical devices, systems and methods
WO2001067035A1 (en) 2000-03-09 2001-09-13 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6615155B2 (en) 2000-03-09 2003-09-02 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US6628980B2 (en) 2000-03-24 2003-09-30 Surgi-Vision, Inc. Apparatus, systems, and methods for in vivo magnetic resonance imaging
US7577474B2 (en) 2000-04-05 2009-08-18 Brainlab Ag Referencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points
US6690816B2 (en) 2000-04-07 2004-02-10 The University Of North Carolina At Chapel Hill Systems and methods for tubular object processing
US6490475B1 (en) 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6484049B1 (en) 2000-04-28 2002-11-19 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
WO2001087136A2 (en) 2000-04-28 2001-11-22 Visualization Technology Fluoroscopic tracking and visualization system
WO2001091842A1 (en) 2000-05-30 2001-12-06 Olympus Optical Co., Ltd. Medical guide wire
US6478802B2 (en) 2000-06-09 2002-11-12 Ge Medical Systems Global Technology Company, Llc Method and apparatus for display of an image guided drill bit
US20020022837A1 (en) 2000-06-19 2002-02-21 Mazzocchi Rudy A. System and method of minimally-invasive exovascular aneurysm treatment
US6351513B1 (en) 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
EP1174082A1 (en) 2000-07-20 2002-01-23 Biosense, Inc. Electromagnetic position single axis system
US6676659B2 (en) 2000-08-14 2004-01-13 Scimed Life Systems, Inc. Steerable sphincterotome and methods for cannulation, papillotomy and sphincterotomy
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6976013B1 (en) 2000-08-28 2005-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Body sensing system
US6551325B2 (en) 2000-09-26 2003-04-22 Brainlab Ag Device, system and method for determining the position of an incision block
US20020082498A1 (en) 2000-10-05 2002-06-27 Siemens Corporate Research, Inc. Intra-operative image-guided neurosurgery with augmented reality visualization
US6640128B2 (en) 2000-12-19 2003-10-28 Brainlab Ag Method and device for the navigation-assisted dental treatment
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
WO2002064011A2 (en) 2001-02-13 2002-08-22 Mediguide Ltd. Medical imaging and navigation system
WO2002070047A1 (en) 2001-03-01 2002-09-12 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US20020137014A1 (en) 2001-03-06 2002-09-26 Anderson James H. Simulation method for designing customized medical devices
US7176936B2 (en) 2001-03-27 2007-02-13 Siemens Corporate Research, Inc. Augmented reality guided instrument positioning with modulated guiding graphics
US20030018251A1 (en) 2001-04-06 2003-01-23 Stephen Solomon Cardiological mapping and navigation system
US20020173689A1 (en) 2001-04-24 2002-11-21 Microspherix Llc Deflectable implantation device and method of use
US6584174B2 (en) 2001-05-22 2003-06-24 Brainlab Ag Registering image information
US20050018885A1 (en) 2001-05-31 2005-01-27 Xuesong Chen System and method of anatomical modeling
US20090287443A1 (en) 2001-06-04 2009-11-19 Surgical Navigation Technologies, Inc. Method for Calibrating a Navigation System
US9675424B2 (en) * 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US20040254454A1 (en) 2001-06-13 2004-12-16 Kockro Ralf Alfons Guide system and a probe therefor
US7286868B2 (en) 2001-06-15 2007-10-23 Biosense Inc. Medical device with position sensor having accuracy at high temperatures
US20030086599A1 (en) 2001-06-15 2003-05-08 University Of Chicago Automated method and system for the delineation of the chest wall in computed tomography scans for the assessment of pleural disease
US6666864B2 (en) 2001-06-29 2003-12-23 Scimed Life Systems, Inc. Electrophysiological probes having selective element actuation and variable lesion length capability
US6796963B2 (en) 2001-07-10 2004-09-28 Myocardial Therapeutics, Inc. Flexible tissue injection catheters with controlled depth penetration
US7357795B2 (en) 2001-07-19 2008-04-15 Olympus Corporation Medical device and method of embolizing bronchus or bronchiole
US6706041B1 (en) 2001-08-15 2004-03-16 Peter Costantino Holders for ablation devices, surgical devices employing such holders, and methods of employing such surgical devices
US7784468B2 (en) 2001-10-10 2010-08-31 Fabian Carl E Surgical implement detection system
US7744605B2 (en) 2001-10-10 2010-06-29 Brainlab Ag Medical instrument with a touch-sensitive tip
US6694162B2 (en) 2001-10-24 2004-02-17 Brainlab Ag Navigated microprobe
US6735465B2 (en) 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
US20030099390A1 (en) 2001-11-23 2003-05-29 Xiaolan Zeng Lung field segmentation from CT thoracic images
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
US7587235B2 (en) 2002-01-18 2009-09-08 Brainlab Ag Method for assigning digital image information to the navigational data of a medical navigation system
US7686767B2 (en) 2002-01-29 2010-03-30 Siemens Aktiengesellschaft Catheter with variable magnetic field generator for catheter guidance in a subject
US20030144658A1 (en) 2002-01-31 2003-07-31 Yitzhack Schwartz Radio frequency pulmonary vein isolation
US20040015049A1 (en) 2002-02-05 2004-01-22 Kersten Zaar Endoscope with sideview optics
US7630753B2 (en) 2002-02-28 2009-12-08 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US7905827B2 (en) 2002-04-08 2011-03-15 Olympus Corporation Encapsulated endoscope system in which endoscope moves in lumen by itself and rotation of image of region to be observed is ceased
US20040249267A1 (en) 2002-04-17 2004-12-09 Pinhas Gilboa Endoscope structures and techniques for navigating to a target in branched structure
WO2003086498A2 (en) 2002-04-17 2003-10-23 Super Dimension Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US7233820B2 (en) 2002-04-17 2007-06-19 Superdimension Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US6887236B2 (en) 2002-05-03 2005-05-03 Pinhas Gilboa Multiple-electrode catheter assembly and method of operating such a catheter assembly
US7725164B2 (en) 2002-07-25 2010-05-25 Koninklijke Philips Electronics N.V. Optimal view map v.0.01
US7641609B2 (en) 2002-07-31 2010-01-05 Olympus Corporation Endoscope device and navigation method for endoscope device
US20050272971A1 (en) 2002-08-30 2005-12-08 Olympus Corporation Medical treatment system, endoscope system, endoscope insert operation program, and endoscope device
WO2004023986A1 (en) 2002-08-30 2004-03-25 Olympus Corporation Medical treatment system, endoscope system, endoscope insert operation program, and endoscope device
US20070167804A1 (en) 2002-09-18 2007-07-19 Byong-Ho Park Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
US20060015126A1 (en) 2002-10-18 2006-01-19 Arieh Sher Atherectomy system with imaging guidewire
US20040086161A1 (en) 2002-11-05 2004-05-06 Radhika Sivaramakrishna Automated detection of lung nodules from multi-slice CT image data
US20040097804A1 (en) 2002-11-18 2004-05-20 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US20040102696A1 (en) 2002-11-22 2004-05-27 Assaf Govari Dynamic metal immunity
US20040122310A1 (en) 2002-12-18 2004-06-24 Lim Richard Y. Three-dimensional pictograms for use with medical images
US20060181271A1 (en) 2002-12-20 2006-08-17 Thales Method and device for magnetic measurement of the position and orientation of a mobile object relative to a fixed structure
US7505809B2 (en) 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
US20050033149A1 (en) 2003-01-13 2005-02-10 Mediguide Ltd. Method and system for registering a medical situation associated with a first coordinate system, in a second coordinate system using an MPS system
US20040138548A1 (en) 2003-01-13 2004-07-15 Mediguide Ltd. Method and system for registering a medical situation associated with a first coordinate system, in second coordinate system using an MPS system
US20040169509A1 (en) 2003-01-17 2004-09-02 Mednovus, Inc. Screening method and apparatus
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7399296B2 (en) 2003-02-26 2008-07-15 Medtronic Vascular, Inc. Catheter having highly radiopaque embedded segment
US20080018468A1 (en) 2003-03-03 2008-01-24 Volpi John P Interrogator and Interrogation System Employing the Same
US7747307B2 (en) 2003-03-04 2010-06-29 Calypso Medical Technologies, Inc. Method and system for marker localization
US7720517B2 (en) 2003-03-12 2010-05-18 Biosense Webster, Inc. Multifunctional catheter handle
US20050119527A1 (en) 2003-04-01 2005-06-02 Scimed Life Systems, Inc. Force feedback control system for video endoscope
US7570987B2 (en) 2003-04-04 2009-08-04 Brainlab Ag Perspective registration and visualization of internal areas of the body
US7370656B2 (en) 2003-04-15 2008-05-13 Koninklijke Philips Electronics N.V. Method and arrangement for influencing magnetic particles and detecting interfering material
US7353125B2 (en) 2003-04-17 2008-04-01 Northern Digital Inc. Eddy current detection and compensation
US20040215181A1 (en) 2003-04-25 2004-10-28 Medtronic, Inc. Delivery of fluid during transurethral prostate treatment
US20050027193A1 (en) 2003-05-21 2005-02-03 Matthias Mitschke Method for automatically merging a 2D fluoroscopic C-arm image with a preoperative 3D image with one-time use of navigation markers
US7158754B2 (en) 2003-07-01 2007-01-02 Ge Medical Systems Global Technology Company, Llc Electromagnetic tracking system and method using a single-coil transmitter
US7321228B2 (en) 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
US20050059890A1 (en) 2003-07-31 2005-03-17 Wislon-Cook Medical Inc. System and method for introducing multiple medical devices
US20060208725A1 (en) 2003-08-20 2006-09-21 Tapson Jonathan C Position sensors
US7697974B2 (en) 2003-10-10 2010-04-13 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for analysis of angiographic and other cyclical images
US20060084867A1 (en) 2003-10-17 2006-04-20 Tremblay Brian M Method and apparatus for surgical navigation
US20060025677A1 (en) 2003-10-17 2006-02-02 Verard Laurent G Method and apparatus for surgical navigation
US20050085715A1 (en) 2003-10-17 2005-04-21 Dukesherer John H. Method and apparatus for surgical navigation
US20050085720A1 (en) 2003-10-17 2005-04-21 Jascob Bradley A. Method and apparatus for surgical navigation
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US20070225553A1 (en) 2003-10-21 2007-09-27 The Board Of Trustees Of The Leland Stanford Junio Systems and Methods for Intraoperative Targeting
US20050090818A1 (en) 2003-10-27 2005-04-28 Pike Robert W.Jr. Method for ablating with needle electrode
US7659912B2 (en) 2003-10-29 2010-02-09 Olympus Corporation Insertion support system for producing imaginary endoscopic image and supporting insertion of bronchoscope
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
US7015859B2 (en) 2003-11-14 2006-03-21 General Electric Company Electromagnetic tracking system and method using a three-coil wireless transmitter
US20050107687A1 (en) 2003-11-14 2005-05-19 Anderson Peter T. System and method for distortion reduction in an electromagnetic tracker
US20060149134A1 (en) 2003-12-12 2006-07-06 University Of Washington Catheterscope 3D guidance and interface system
US20050182295A1 (en) 2003-12-12 2005-08-18 University Of Washington Catheterscope 3D guidance and interface system
US7684849B2 (en) 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
US20070167738A1 (en) 2004-01-20 2007-07-19 Koninklijke Philips Electronics N.V. Device and method for navigating a catheter
US7497029B2 (en) 2004-02-03 2009-03-03 Brainlab Ag Device for determining the position of an incision block
US20080157755A1 (en) 2004-02-18 2008-07-03 Koninklijke Philips Electronics N.V. Correction of Measured Values for a Magnetic Localization Device
US7652468B2 (en) 2004-02-18 2010-01-26 Koninklijke Philips Electronics N.V. Correction of measured values for a magnetic localization device
US20080294034A1 (en) 2004-02-18 2008-11-27 Koninklijke Philips Electronic, N.V. Device and Method for the Determination of the Position of a Catheter in a Vascular System
US7727269B2 (en) 2004-02-26 2010-06-01 Siemens Aktiengesellschaft Device for introducing a stent into a hollow organ
US20080033452A1 (en) 2004-03-03 2008-02-07 Deutsches Krebsforschungszentrum Incremental Real-Time Recording Of Tracked Instruments In Tubular Organ Structures Inside The Human Body
US20050197566A1 (en) 2004-03-08 2005-09-08 Mediguide Ltd. Automatic guidewire maneuvering system and method
US20070167743A1 (en) 2004-03-29 2007-07-19 Olympus Corporation Intra-subject position detection system
US20050222793A1 (en) 2004-04-02 2005-10-06 Lloyd Charles F Method and system for calibrating deformed instruments
US7648458B2 (en) 2004-04-09 2010-01-19 Olympus Corporation Insertion shape detecting probe
US20080097154A1 (en) 2004-04-21 2008-04-24 Acclarent, Inc. Methods and Apparatus for Treating Disorders of the Ear Nose and Throat
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US7599535B2 (en) 2004-08-02 2009-10-06 Siemens Medical Solutions Usa, Inc. System and method for tree-model visualization for pulmonary embolism detection
US7634122B2 (en) 2004-08-25 2009-12-15 Brainlab Ag Registering intraoperative scans
US20080162074A1 (en) 2004-09-20 2008-07-03 Ascension Technology Corp. System and Method for Measuring Position and Orientation Using Distortion-Compensated Magnetic Fields
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
US20080247622A1 (en) 2004-09-24 2008-10-09 Stephen Aylward Methods, Systems, and Computer Program Products For Hierarchical Registration Between a Blood Vessel and Tissue Surface Model For a Subject and a Blood Vessel and Tissue Surface Image For the Subject
US20060079759A1 (en) 2004-10-13 2006-04-13 Regis Vaillant Method and apparatus for registering 3D models of anatomical regions of a heart and a tracking system with projection images of an interventional fluoroscopic system
US7636595B2 (en) 2004-10-28 2009-12-22 Medtronic Navigation, Inc. Method and apparatus for calibrating non-linear instruments
US7722565B2 (en) 2004-11-05 2010-05-25 Traxtal, Inc. Access system
US20060116575A1 (en) 2004-12-01 2006-06-01 Scimed Life Systems, Inc. Method and system for registering an image with a navigation reference catheter
US7420468B2 (en) 2005-02-10 2008-09-02 Fabian Carl E Surgical implement detector
US20060241399A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multiplex system for the detection of surgical implements within the wound cavity
US20060241396A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multi-modal detection of surgical sponges and implements
US20080144909A1 (en) 2005-02-11 2008-06-19 Koninklijke Philips Electronics N.V. Analysis of Pulmonary Nodules from Ct Scans Using the Contrast Agent Enhancement as a Function of Distance to the Boundary of the Nodule
US7236567B2 (en) 2005-03-24 2007-06-26 Siemens Aktiengesellschaft Method and apparatus for synchronizing operation of an x-ray system and a magnetic system
US20080188749A1 (en) 2005-04-11 2008-08-07 Koninklijke Philips Electronics N.V. Three Dimensional Imaging for Guiding Interventional Medical Devices in a Body Volume
US20070265639A1 (en) 2005-04-21 2007-11-15 Asthmatx, Inc. Devices and methods for tracking an energy delivery device which treats asthma
US7517318B2 (en) 2005-04-26 2009-04-14 Biosense Webster, Inc. Registration of electro-anatomical map with pre-acquired image using ultrasound
WO2006116597A2 (en) 2005-04-26 2006-11-02 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US7782189B2 (en) 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
US7725154B2 (en) 2005-06-22 2010-05-25 Siemens Aktiengesellschaft Method and medical imaging apparatus for planning an image acquisition based on a previously-generated reference image
US7324915B2 (en) 2005-07-14 2008-01-29 Biosense Webster, Inc. Data transmission to a position sensor
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US7680528B2 (en) 2005-09-16 2010-03-16 Siemens Aktiengesellschaft Method for the graphical representation of a medical instrument inserted at least partially into an object under examination
US7301332B2 (en) 2005-10-06 2007-11-27 Biosense Webster, Inc. Magnetic sensor assembly
US20080008368A1 (en) 2005-11-15 2008-01-10 Ziosoft, Inc. Image processing method and computer readable medium for image processing
US20070167806A1 (en) 2005-11-28 2007-07-19 Koninklijke Philips Electronics N.V. Multi-modality imaging and treatment
US20070167714A1 (en) 2005-12-07 2007-07-19 Siemens Corporate Research, Inc. System and Method For Bronchoscopic Navigational Assistance
US20070163597A1 (en) 2006-01-13 2007-07-19 Olympus Medical Systems Corp. Overtube
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US7688064B2 (en) 2006-07-11 2010-03-30 Biosense Webster Inc. Probe for assessment of metal distortion
US20080097187A1 (en) 2006-09-08 2008-04-24 Medtronic, Inc. System for navigating a planned procedure within a body
US20080086051A1 (en) 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US7696899B2 (en) 2006-10-20 2010-04-13 Brainlab Ag Marker navigation device
US20080097156A1 (en) 2006-10-23 2008-04-24 Pentax Corporation Camera calibration for endoscope navigation system
US20080118135A1 (en) 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity
US20080132911A1 (en) 2006-11-27 2008-06-05 Mediguide Ltd. System and method for navigating a surgical needle toward an organ of the body of a patient
US20080132909A1 (en) 2006-12-01 2008-06-05 Medtronic Navigation, Inc. Portable electromagnetic navigation system
US20080139886A1 (en) 2006-12-07 2008-06-12 Olympus Corporation Endoscope and bending operation device for endoscope
US20080139915A1 (en) 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating and/or Mapping Apparatus and Methods
US7831076B2 (en) 2006-12-08 2010-11-09 Biosense Webster, Inc. Coloring electroanatomical maps to indicate ultrasound data acquisition
US20080147000A1 (en) 2006-12-13 2008-06-19 University Of Washington Catheter tip displacement mechanism
US20080154172A1 (en) 2006-12-20 2008-06-26 Medtronic Vascular, Inc. Low Profile Catheters and Methods for Treatment of Chronic Total Occlusions and Other Disorders
US20080161682A1 (en) 2007-01-02 2008-07-03 Medtronic Navigation, Inc. System and method for tracking positions of uniform marker geometries
US20080183071A1 (en) 2007-01-10 2008-07-31 Mediguide Lit. System and method for superimposing a representation of the tip of a catheter on an image acquired by a moving imager
US7599810B2 (en) 2007-01-24 2009-10-06 Olympus Corporation Position detecting circuit and apparatus using the same
US7782046B2 (en) 2007-02-05 2010-08-24 General Electric Company Electromagnetic tracking method and system
US20080249395A1 (en) 2007-04-06 2008-10-09 Yehoshua Shachar Method and apparatus for controlling catheter positioning and orientation
US20080284554A1 (en) 2007-05-14 2008-11-20 Thaddeus Schroeder Compact robust linear position sensor
US7579837B2 (en) 2007-05-29 2009-08-25 Siemens Aktiengesellschaft Arrangement for magnetic field measurement
US20090027258A1 (en) 2007-07-23 2009-01-29 Stayton Gregory T Systems and methods for antenna calibration
US7912662B2 (en) 2007-09-24 2011-03-22 General Electric Company System and method for improving the distortion tolerance of an electromagnetic tracking system
US20090082665A1 (en) 2007-09-26 2009-03-26 General Electric Company System and method for tracking medical device
US7652578B2 (en) 2007-10-29 2010-01-26 Motorola, Inc. Detection apparatus and method for near field communication devices
US20090189820A1 (en) 2008-01-25 2009-07-30 Masashi Saito Wireless UWB Connection for Rotating RF Antenna Array
EP2096523A1 (en) 2008-02-29 2009-09-02 Biosense Webster, Inc. Location system with virtual touch screen
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US20090318797A1 (en) 2008-06-19 2009-12-24 Vision-Sciences Inc. System and method for deflecting endoscopic tools
US20110085720A1 (en) 2009-05-14 2011-04-14 Superdimension, Ltd. Automatic Registration Technique
US20120323111A1 (en) 2010-03-11 2012-12-20 Koninklijke Philips Electronics N.V. Method and system for characterizing and visualizing electromagnetic tracking errors
US8692707B2 (en) 2011-10-06 2014-04-08 Toyota Motor Engineering & Manufacturing North America, Inc. Calibration method for automotive radar using phased array
US8683707B1 (en) * 2012-03-28 2014-04-01 Mike Alexander Horton Magnetically modulated location system
US20150035697A1 (en) 2013-07-31 2015-02-05 Mando Corporation Radar calibration system for vehicles
WO2015164171A1 (en) 2014-04-25 2015-10-29 General Electric Company System and method for processing navigational sensor data

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report issued in corresponding Appl. No. EP 17863634.6 dated Apr. 23, 2020 (8 pages).
International Search Report and Written Opinion dated Feb. 8, 2018 and issued in corresponding International Application No. PCT/US2017/058421.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200330165A1 (en) * 2016-10-28 2020-10-22 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US20200345422A1 (en) * 2016-10-28 2020-11-05 Covidien Lp System and method for generating a map for electromagnetic navigation
US11672604B2 (en) * 2016-10-28 2023-06-13 Covidien Lp System and method for generating a map for electromagnetic navigation
US11759264B2 (en) * 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map

Also Published As

Publication number Publication date
US20180116722A1 (en) 2018-05-03
US11672604B2 (en) 2023-06-13
US20200345422A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US11672604B2 (en) System and method for generating a map for electromagnetic navigation
US11819285B2 (en) Magnetic interference detection systems and methods
US11759264B2 (en) System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US11712171B2 (en) Electromagnetic dynamic registration for device navigation
US11944389B2 (en) Impedance shift and drift detection and correction
US10588541B2 (en) Magnetic tracker system and method for use for surgical navigation
EP2888997A1 (en) Adaptive fluoroscope location for the application of field compensation
US11786314B2 (en) System for calibrating an electromagnetic navigation system
AU2017348161B2 (en) System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10638952B2 (en) Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US20200100843A1 (en) Smart extended working channel localization
US11944388B2 (en) Systems and methods for magnetic interference correction

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYRAKH, LEV A.;MORGAN, SEAN A.;REEL/FRAME:040345/0192

Effective date: 20161021

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4