WO1993023144A1 - Particulate trap for purifying diesel engine exhaust gas - Google Patents

Particulate trap for purifying diesel engine exhaust gas Download PDF

Info

Publication number
WO1993023144A1
WO1993023144A1 PCT/JP1992/000634 JP9200634W WO9323144A1 WO 1993023144 A1 WO1993023144 A1 WO 1993023144A1 JP 9200634 W JP9200634 W JP 9200634W WO 9323144 A1 WO9323144 A1 WO 9323144A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
exhaust gas
trap
container
filter
Prior art date
Application number
PCT/JP1992/000634
Other languages
English (en)
French (fr)
Inventor
Masayuki Ishii
Masaaki Honda
Tetsuya Nishi
Satoru Okamoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP92910207A priority Critical patent/EP0603392B1/en
Priority to DE69216101T priority patent/DE69216101T2/de
Priority to PCT/JP1992/000634 priority patent/WO1993023144A1/ja
Priority to US08/185,983 priority patent/US5458664A/en
Publication of WO1993023144A1 publication Critical patent/WO1993023144A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2051Metallic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4263Means for active heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/58Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel
    • B01D46/60Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel arranged concentrically or coaxially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0217Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of hollow cylindrical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0218Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements being made from spirally-wound filtering material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/206Special forms, e.g. adapted to a certain housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/30Porosity of filtering material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/12Metallic wire mesh fabric or knitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to the power technology in exhaust gas of diesel engines.
  • Surgical field Vehicle exhaust gas is one of the major causes of air pollution, and technology to remove harmful components contained in exhaust gas is extremely important, especially in Dieselen.
  • Dieselen In the case of gin cars, mainly
  • the regulated value of the regulated emissions differs in each country.
  • New paper / mi 1 e is set as the target value, and each is a stricter regulation value. No ,.
  • the amount of discharge of the tequilet varies depending on the displacement and load of the diesel engine, but in order to satisfy the above regulations, It is said that it is necessary to satisfy an average collection efficiency of 60% or more with respect to the amount of exhaust gas and other emissions.
  • the pressure loss to exhaust gas is small.
  • the engine exhaust has a greater resistance to airflow as the trapped technician collects the force that is exhausted through the trap. The back pressure after collection to prevent the engine from adversely affecting the engine.
  • the heat is heated above the temperature at which the heat is ignited (typically 600 ° C). Regeneration is performed before engine performance is degraded due to an increase in back pressure or operation is hindered, and the paticle is incinerated. After that, the paticle is collected again, and the regeneration and collection of the pectate are repeated, so that the pressure loss is always maintained at a certain level or more. . For this reason, it is necessary to select a heat-resistant material that can withstand repeated regeneration for the filter element material, and also requires corrosion resistance due to the atmospheric gas contained in the exhaust gas. is there.
  • a filter element material that satisfies the above-mentioned requirements, a cordy-light ceramic mix, a two-cell-like porous material, has been most practically used. It was considered a material and continued to be studied.
  • new paper In the conventional method of burning the fine particles trapped in the dielite ceramics, the filter is repeatedly heated to a high temperature, and the heat generated by the combustion heat is reduced. In some cases, the filter was damaged by heat, and cracks were generated due to thermal shock due to temperature rise and cooling during regeneration.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object a low pressure loss, high collection efficiency, and a temperature increase and cooling during regeneration. Diesel exhaust gas that can withstand thermal shocks, for cleaning exhaust gas, tech traps and filter elements that make up the traps It is an attempt to provide a comment.
  • the filter element that collects the tecturate must have an appropriate pore size, and the filter element must be configured. It is necessary that a collection site such as a fiber or a skeleton is sufficient in the thickness direction, and a filter structure that facilitates collection is used. In addition, the size and surface condition of the trapping site are also affected. New paper The above requirements for trapping performance and the requirement to suppress back pressure rise are contradictory, and in order to satisfy both requirements, a filter that is installed within a certain trap volume is required. It is necessary to increase the gas inflow surface area as viewed from the exhaust gas inflow side of the filter element and to have a compact structural design.
  • a conductive film having a three-dimensional network structure having communicating holes is subjected to a conductive treatment, and is subjected to an electric plating method.
  • a porous metal body Silicone “Cement”.
  • the three-dimensional network porous body is a porous body composed of a skeleton 3 having communication holes 2 and a pocket-like hole 2 surrounded by the skeleton. Due to its high porosity, gas flow resistance is extremely small, but once the packet is trapped in the pocket-shaped holes, Since it is difficult to separate from the space, the space collecting performance of the paticle is excellent.
  • the present inventors have determined that the pore diameter of the three-dimensional mesh-like porous body having communicating pores and the filter dimensions are different from each other. : The number of holes in the vertical direction, the volume filling ratio occupied by the metal skeleton in the filtration part consisting of the three-dimensional network porous material that constitutes the filter element, In addition, the exhaust gas inflow area and filter trap per filter liter per 1 L of engine displacement to which the trap is attached We pursued the relationship between collection efficiency and pressure loss.
  • the pore force of the three-dimensional network porous material to be used is determined by the balance force of the object and the balance force.
  • the “pores” are the diameters of the holes existing in the skeletal space, and correspond to the diameters of the bubbles when foamed to form a three-dimensional network structure. From the viewpoint of the collection efficiency, it was found that the pore diameter of the three-dimensionally structured porous body was desirably from 0.1 to L in m.
  • the average pore size is less than 0.1 mm, the trapping efficiency is excellent, but the ventilation resistance increases in a short time, and the back pressure on the engine is short. Exceeding the above 30 KPa, the burden on the engine increases, which is not desirable. If the average pore diameter is 1 mm or more, the rate of passing through the filter element increases, and the collection efficiency at the beginning or immediately after the regeneration treatment becomes insufficient, and the collection efficiency is 60% or more. Efficiency cannot be achieved.
  • Filter element thickness direction Existence 0.1 to: Lmm average number of holes (In a straight line crossing in the thickness direction, if the number of holes is small, it is counted as one. ) Is less than 10%, the collection efficiency is low and it is not preferable. This was found.
  • the volume filling ratio occupied by the metal skeleton in the filtration part of the filter element formed by the three-dimensionally structured porous body is as small as 10% or less. This is not preferable because the probability of colliding with the exhaust gas force skeleton and adhering thereto is reduced, and the probability of being trapped is also reduced. On the other hand, if it is 40% or more, the volume occupied by the skeletal filtration part is large, which is good for improving the collection efficiency. It was found that 40% or less is preferable.
  • the exhaust gas inflow area of the filter element per 1 L of the engine to which the trap is to be mounted is less than 400 cm 2 . If there is, no. The entrance through which the filter element permeates the filter element is small, and if the same displacement is considered, the exhaust permeates through the filtration section. It is not preferable because the gas permeation speed increases and the pressure loss increases.
  • the present inventors have proposed a method of forming a three-dimensional mesh-structured porous body having a cross-sectional projection width (projection length of a side in a cut surface of the metal skeleton).
  • ⁇ Paper As a result of pursuing the performance of the orchid, it was found that if the cross-sectional projection width of the skeleton is 20 inches or more, even better performance is exhibited. At a distance of 20 m or less, the number of cases in which the patrate penetrates the metal skeleton without colliding with the metal skeleton increases, and the trapping efficiency is reduced.
  • the present inventors have pursued the relationship between the surface roughness R max of the metal skeleton constituting the three-dimensional network porous structure, the collection performance, and the pressure loss. It was found that excellent filter performance could be obtained by using a three-dimensional network porous material having a skeleton surface with a surface roughness of R max 0.2 m or more. If the surface roughness of the metal skeleton is less than R max 0.2 ⁇ , the particulate that has been trapped once will be blown away by the exhaust gas that continues, and will eventually be blown off. The rate at which it is trapped is small, which is not desirable. No ,.
  • Fig. 1 is an enlarged view of a porous body with a three-dimensional network structure having communicating holes.
  • FIG. 2 is a perspective view of a filter element formed by concentrically stacking three-dimensional mesh porous sheets.
  • FIG. 3 is a perspective view of a filter element formed by concentrically stacking a three-dimensional network porous sheet.
  • Figs. 4 (A) and (B) are a longitudinal front view and a longitudinal central side view showing an example of a putty trap.
  • Figs. 5 (A) and (B) are a vertical cross-sectional front view and a vertical cross-sectional side view of a central portion of a putty trap.
  • Figs. 6 (A) and (B) are a vertical front view and a vertical side view of the central portion of the putrate trap.
  • Figs. 7 (A) and (B) are a vertical front view and a vertical side view of the central part of the putty trap.
  • Fig. 8 (A) and (B) show the new paper for the pasty tray.
  • Figures 9 (A) and (B) are a vertical front view and a vertical longitudinal side view of the putty trap.
  • Fig. 10 shows an integrated paticle with a heater that is effective for burning and removing the collected paticles in which a seeds heater is embedded in a three-dimensional mesh porous filter.
  • G is a perspective view showing an example.
  • Fig. 11 is a schematic diagram showing an example of installing a trap and a regeneration gas supply device in the exhaust system of a diesel engine.
  • the diesel exhaust gas purifying paste trap of the present invention uses a three-dimensional network structure porous body as described below from the above viewpoint. Specifically, the present invention employs the following configuration. An example is described with a diagram.
  • FIGS. 2 and 3 are examples of filter elements, respectively.
  • FIG. 2 shows a three-dimensional network porous sheet 10 made of a heat-resistant metal wound spirally.
  • FIG. 1 shows a perspective view of a filter element 5 formed by concentrically stacking a porous sheet 10 having a reticular structure.
  • Fig. 7 (A) and (B) show examples of one finlet element, one of which is attached to the trap 12 and one of the traps.
  • a longitudinal front view and a longitudinal longitudinal side view at the center in the longitudinal direction of the trap are shown.
  • Figs. 8 (A) and (B) show examples in which a plurality of filter elements 1 17 are mounted in a container 1 12, respectively.
  • FIG. 4 is a vertical front view of the trap and a vertical side view of a central portion in the trap longitudinal direction.
  • the particulate curling trap for purifying the diesel engine exhaust gas of the present invention is a particulate curable trap discharged from the diesel fuel engine. Traps in the exhaust system to trap and remove exhaust gas from the diesel engine exhaust gas inlet 1 3 or 1 13 and gas outlet 1 4 or 1 1 4 Container 1 2 or 1 "is filled with a file element 17 or 1 17 in 12 Filter element 17 or 1 17 3D mesh-structured porous body 1 or 1 1 made of heat-resistant metal skeleton with continuous ventilation holes 1 or 1 1 New paper For example, the spiral-shaped body 4 shown in FIG. 2 or the concentric cylindrical body 5 shown in FIG. 3 formed from FIG. 1, and as shown in FIG.
  • a plurality of tubes are mounted in the container 12 or 112 and a space formed between the outer peripheral surface at one end of each cylindrical body and the inner peripheral surface of the container.
  • the other end surface opening of each cylindrical body is closed and closed by closing portions 18, 118, respectively.
  • the specific gist of the diesel exhaust gas purifying trap of the present invention is as follows: a container installed in the exhaust system and a filter mounted on the container.
  • the filter element is formed from a three-dimensional reticulated porous body composed of a heat-resistant metal skeleton having communicating holes.
  • the average pore diameter of the pores is 0.1 to 1 mm, the average number of pores in the thickness direction of the porous body is 10 sqm, and the filtration of the filter element is performed.
  • Volume filling ratio occupied by the metal skeleton in the part is 10 to 4
  • the displacement of the engine to be installed is characterized by being configured to be 0 cm 2 or more.
  • the pat- tern trap is made of a three-dimensional net-like porous body 211 made of a heat-resistant metal having communication holes 2.
  • the resulting filter element 2 17 and the container 2 1 2 force consist of a plurality of cylinders of different diameters formed by a three-dimensional network porous structure.
  • the filter elements 2 17 a, 2 17 b, and 2 17 c are mounted concentrically in the container 2 12 with a predetermined gap between the cylinders.
  • the specific gist of the diesel engine stove gas purifying trap of the present invention is as follows: the container installed in the exhaust system and the inside of the container.
  • the filter element is formed from a three-dimensional network porous body composed of a heat-resistant metal skeleton having communicating holes.
  • the average pore diameter of the pores of the porous body is 1 to 1 mm, the average number of pores in the thickness direction of the porous body is 10 or more.
  • the volumetric filling capacity occupied by the metal skeleton in the filtration section of the filter element is 10 to 40%, and the displacement of the engine to which the trap is attached is 1 L / L.
  • Figures 4 (A) and 4 (B) show specific examples for increasing the exhaust gas inflow surface area of the filter element. They are a longitudinal front view of the trap and a longitudinal side view at the center in the longitudinal direction of the trap, respectively.
  • the particulate collector 3 25 shown in FIGS. 4 (A) and (B) is a three-dimensional network structure porous body 31 made of a heat-resistant metal having a communication hole 2.
  • a filter element 3 17 of a cylindrical body formed into a waveform in the circumferential direction using 1 is mounted in the container 3 12, and an end face opening at one end of the cylindrical body is mounted. And a space formed between the outer peripheral surface of the other end and the inner peripheral surface of the container is closed by using a closing member 318.
  • the specific gist of the diesel engine trap for purifying diesel engine exhaust gas according to the present invention is a container installed in the middle of an exhaust system, and a container installed in the exhaust system.
  • the filter element is formed from a three-dimensional network porous body made of a heat-resistant metal skeleton having communicating holes.
  • the average diameter of the pores is 0.1 to 1 mm, and the average number of pores in the thickness direction of the porous body is 10 or more, and the filter element constitutes the filter element.
  • the volume fill ratio occupied by the metal skeleton in the filter section of the filter element is 10 to 40%, and the engine exhaust to which the trap is to be installed Gas to filter element per 1 L.
  • Die-zeelzyne exhaust gas clean-up pouch characterized by an inflow surface area of at least 400 cm 2
  • a cylindrical body that is formed into a circumferentially corrugated shape is mounted in a container, and an end face opening at one end of the cylindrical body And a filter element formed by closing the space formed between the outer peripheral surface at the other end and the inner peripheral surface of the container. This is the feature.
  • a three-dimensional network porous body 411 made of a heat-resistant metal having communication pores 2 ,
  • a ration 4 25 or 5 25 is mounted in the container 4 1 2 or 5 1 2, and an opening at one end of the cylindrical body and an outer circumferential surface at the other end.
  • the space formed between the inner peripheral surface of the vessel and the inner peripheral surface is closed by seal members 18 and 518.
  • the specific gist of the diesel exhaust gas purifying particulate trap of the present invention is that a container is provided in the middle of the exhaust system, and a fuel tank is provided in the container.
  • the filter element has a three-dimensional mesh-like porous structure consisting of a heat-resistant metal skeleton with communicating pores.
  • the average diameter of the pores of the porous body is 0.1 to 1 mm.
  • the average number of pores in the thickness direction of the porous body is 10 or more
  • the volume crushing ratio occupied by the metal skeleton in the filtration section of the filter element is 10 or more.
  • the gas inflow surface area of the filter element per 1 L of engine displacement to which the trap is to be mounted is 400
  • a diesel engine exhaust gas purification paticle trap characterized by having a diameter of at least 2 cm2. And a space between the outer peripheral surface of the other end and the inner peripheral surface of the container. It is characterized in that a filter is mounted.
  • the filter element is preferably formed of a three-dimensional network-structured porous body composed of a Ni-based heat-resistant alloy skeleton having communicating pores.
  • 60 to 85% by weight
  • Cr 1
  • the filter element is composed of a three-dimensional network porous body composed of a Ni-based heat-resistant alloy skeleton having communicating pores, preferably N 585 wt%. , C
  • A1 50% by weight
  • A1 50% by weight
  • A1 1%. It was found that when the composition was out of the above range, the heat resistance was deteriorated, and the durability for sealing after repeated long-term collection and regeneration was reduced.
  • the addition of A 1 is an effective element that contributes to the improvement of the heat resistance compared to the case where only Cr is added. Addition of 1% or more of A1 forms a stable oxide film against oxidation and contributes to heat resistance.However, addition of 6% or more of A1 is an intermetallic compound in which Ni and A1 elements are brittle. As a result, the workability is deteriorated, and in particular, the sheet cannot be bent and is broken.
  • the addition was within the range of 16% A, it was sufficiently workable and, for example, forming a filter element in a cylindrical shape was completely indispensable.
  • sulfuric acid mist is present in the exhaust gas, and the oxide film of A1 is also resistant to sulfuric acid, so long-term reliability for traps is required.
  • an electric heater can be provided on the above-mentioned pat- tern trap. After a certain amount of the notch rate has been collected, the electric heater is filtered so that it can be burned off by the electric heater. Front or back, or cylinder file New paper
  • the electric heater may be installed on the outer periphery or the inner periphery of the filter, or the electric heater may be buried inside the cylindrical filter made of porous metal. It is possible to take into account the balance between power consumption and combustion efficiency.
  • Test Example 1 Test Example 1
  • FIG. 8 shows examples of schematic diagrams of diesel circulating gas purifying traps.
  • Fig. 8 (A) is a vertical cross-sectional front view of a technic trap
  • Fig. 8 (B) is a vertical cross-sectional side view of a central portion of the trap in the longitudinal direction. is there .
  • FIG. 8 it is composed of a filter element 1 17 and a storage container 1 1 2.
  • the gas supply unit for regeneration can generate 600-900 hot air from the gas oil burner, and can be replaced with exhaust gas and a strong trap, and the vino, 'When it is pressed, hot gas for regeneration can be supplied to the trap. No.
  • the elements 1 17 are evenly housed in the filter element storage container 1 1 2 so that they are along the gas flow direction, and the gas outlet 1 1 4 side of each cylinder 17
  • the space formed simply between the outer peripheral surface of the end of the cylinder and the inner peripheral surface of the storage container 1 12 and the end surface opening on the gas inlet 13 side of each cylinder 17 are formed by a sealing member 118.
  • the exhaust gas passes from the inner surface of the cylindrical body 117 to the outer surface of the cylindrical body 117 as shown by the arrow in FIG. 8 (A).
  • the flow path is formed so as to perform.
  • a new paper -2 ⁇ -ureate is collected and filtered, and the clean gas is trapped. It is configured to be discharged outside.
  • the filter element is composed of a three-dimensional reticulated porous body made of a heat-resistant metal (for example, Sumitomo Electric's metal porous body: Cellmet). .
  • a heat-resistant metal for example, Sumitomo Electric's metal porous body: Cellmet.
  • the resin component is heat treated to remove the resin component.
  • the Ni material formed by combustion removal is used as the basic material, and further alloyed by the chroming process.
  • a 3D network porous body made of a Ni-Cr alloy by weight was used.
  • a filter sheet formed by spirally winding a metal sheet of a three-dimensional network structure porous body into a cylindrical shape is placed in a trap container.
  • the thickness of the filter element shall be LO mm, and the volume filling ratio of the porous metal body in the thickness direction of the filter element shall be changed by changing the number of turns and the degree of compression processing. And 5 to 45%. As a result, the number of vacancies in the thickness direction was also changed.
  • Tables 1 to 3 show the configurations of the filter elements used in the experiments, and Tables 4 to 6 show the configurations of comparative examples.
  • Table 7 shows the characteristics obtained in the examples.
  • Table 8 shows the characteristics obtained in the comparative example.
  • a three-dimensional mesh-structured porous body made of a Ni—Cr alloy having a surface roughness R max of 0.2 or more was used.
  • the engine exhaust gas is bypassed from the trap device, and the trap is supplied with 2 m of heated air at an average temperature of 700 from the hot gas supply device for regeneration. It was fed for about 15 minutes at a flow rate of 3 / m ⁇ , and the collected patrates were regenerated by burning.
  • the pressure loss of the filter after regeneration dropped sharply-new paper It was observed that the pressure decreased to a value around 1-2 KPa of the initial pressure. This is because the particulates trapped in the exhaust filter are burnt and extinguished, and the regeneration of the exhaust gas filter is performed well. It is shown that .
  • the technol- ogy filter did not dissolve, cracking or extreme oxidation or corrosion was observed.
  • the exhaust circuit was switched again and the exhaust test was performed. After 20 repetitions of the cycle, the exhaust circuit was switched to the hot gas supply circuit for regeneration again, and the regeneration described above was performed.
  • the maximum temperature was 8 ⁇ 0 t, but the temperature dropped within 3 minutes at maximum. Indicates that combustion was completed.
  • Example 1 the result of mounting the cylindrical filter element in the filter element storage container with t to 7 pieces; t is shown. 9 Figure
  • the filter element 2 17 is made of a heat-resistant metal having continuous ventilation holes 3
  • New paper A plurality of cylinders 2 17 a, 2 17 b, and 2 17 c having different diameters formed by using the porous sheet 10 having a three-dimensional network structure are formed between the cylinders.
  • the gap at one end and the end face opening of the innermost cylindrical body are different between the gas inlet side 2 13 and the gas outlet side 2 14 respectively.
  • a closed trap 2-25 may be used as well. That's it!
  • the displacement per 1-liter engine where a trap can be attached in a limited container is considered. Since the gas inflow surface area can be made large, there is an advantage that the space can be used effectively.
  • the exhaust gas inlet side 21 1 is set so that the exhaust gas inlet side and the outlet side of the trap are reversed. 3 and the exhaust gas outlet side 2 1 4 are reversed, so that the exhaust gas flow is allowed to pass to the outer surface inside the cylinder, but the same size field In the case of the element, trapping efficiency is reduced by only about 10%, and no significant difference is observed. A trap with sufficient performance can be obtained. Was.
  • the relationship between the cross-sectional projection width of the metal skeleton constituting the three-dimensional network porous structure and the filter characteristics was investigated.
  • the test was conducted using a trap with the filter element shown in the 8th week (A) and (B) in the exhaust system of a 2.8 L displacement swirl type diesel engine. I used a kiln.
  • the cross-sectional projection width of the skeleton was changed, and the test was performed at 180 rpm at 5 kgf 'm for 3 hours, and the technic trap was collected. Then, the collection amount and the pressure loss were reduced.
  • the projected width of the skeleton cross section varies depending on the average diameter and the number of holes, a three-dimensional network porous material having a width of 17 to 250 / m was used.
  • Table 9 shows the configurations of Examples and Comparative Examples of the various putty traps used in the experiments.
  • Table 10 shows the evaluation results of Test Example 2 for the Examples and Comparative Examples. Also shown.
  • the pore size of the porous body is 0.1 to 1.0 m, and the thickness of the film element consisting of the three-dimensional network structure porous structure is described.
  • the average number of pores in each direction is 1 or more, and the volume filling ratio of the porous material in the filter section of the filter is 10 to 40%, and new paper As long as the filter exhaust gas inflow surface area satisfies 400 cm or more, and the cross-sectional width of the metal skeleton to be formed is 20 m or more, anyway. It was also confirmed that a sufficient amount of trapping and an excessive pressure loss did not occur. In the range outside the above-mentioned conditions, it was not possible to obtain a sufficient trapping amount and low pressure drop
  • Fig. 9 (A) shows a vertical front view of the trap.
  • Fig. 9 (B) is a side view of the longitudinal center of the trap. No ,.
  • the three-dimensional network porous body 211 made of a heat-resistant metal having at least oil 21 and a communication hole 2 with a strong trapping force.
  • the filter element 2 17 and the container 2 1 2 become the same, and the filter element 2 17 a of a plurality of cylindrical bodies with different diameters
  • 2 17 b and 2 17 c are concentrically mounted in the container 2 12 with a predetermined gap between each cylinder, and the gap at one end of the cylinder located at the outermost position And the end face openings of the innermost cylindrical body, respectively, on the gas inlet side 2 1
  • the filter element used in the experiment was made of a three-dimensional network porous metal sheet with a constant curvature. As shown in Example 1, the size of the filter element was designed in consideration of the inflow area into the filter element. A continuous sheet with a three-dimensional network structure with an average pore diameter of 0.5 mm, outer diameter of 140 mm, thickness of 1
  • the heat-resistant body used for the fixation experiment was a Ni-Cr metal porous body obtained by alloying a Ni-based three-dimensional mesh-structured porous body manufactured by Sumitomo Electric Co., Ltd. by chroming. I used my body.
  • the chromium chloride gas is generated from the powder, and the amount of generated chromium gas is changed to the rate at which the gas is released into the mouth or skeleton. Because of this, it is possible to arbitrarily change the surface state of the skeleton of the Ni—Cr alloyed metal porous body, as is often experienced in a normal CVD process. Ni-Cr-A1 Powder alloying is also performed when producing an alloyed metal porous body. At this time, if a single source gas is generated little by little and then deposited on the surface of the base porous skeleton, a smooth surface can be obtained,
  • New paper It is often experienced that when the raw material gas is generated, a rough surface state of the skeleton surface is easily obtained. If the surface is roughened and subjected to a high-temperature treatment in a reducing atmosphere of 1000 or more, the elements precipitated on the skeleton will begin to diffuse into the skeleton, so they will be extracted. Immediately afterwards, even a rough surface state can be gradually smoothed.
  • Table 11 shows the time and change between the filter element and the amount of the collected particulates, which were produced with various surface roughness. As shown in Table 11, the higher the skeleton surface roughness, the higher the efficiency in the early period when the particulate curl is collected than the smooth surface, especially the surface. The condition was found to have an effect at the beginning of the collection. It has been found that a trapping effect is obtained when the surface roughness Rmax is 0.2 m or more, but in particular, in the present invention, the shape is not limited if the surface roughness Rmax is 0.2 m or more. Similar to Ni—Cr alloyed metal porous body, it can be applied to Ni—Cr—A1 alloyed metal porous body made by using powder and alloying method. It is not something that can be done.
  • Fig. 4 (A) and ( ⁇ ) show the vertical front view of the trap and the longitudinal direction of the trap in this experimental example, respectively.
  • New paper It is a longitudinal sectional view at the center.
  • the filter trap is made of a heat-resistant metal in which the filter element has a continuous ventilation hole.
  • This cylindrical body is a filter element storage container 3 1 2 And a space formed between the outer peripheral surface at the other end of the end surface opening at one end of the cylindrical body 3 17 ′ and the inner peripheral surface of the container 3 12 ′. Curate collectors 3 25 are formed.
  • a ruta element was produced.
  • the thickness of the element is assumed to be 1 Omm-a new sheet of corrugated sheet manufactured by changing the size in advance so that it has the specified thickness After being superimposed and integrated, the finish molding was performed again.
  • the size of the container was 160 mm in inner diameter, and the length of the filter element was 35 O mm.
  • the pores of the three-dimensional network structure porous body shown in Table 12 were set to 0.5 lim, 0.5 m, and 1 m, and the volume filling ratio was 10 to 40%.
  • the thickness of the overlapping sheets was adjusted so that it could be changed within the range.
  • the number of holes in the skeleton was determined by measuring the number of holes crossing in the thickness direction at three points.
  • the cylindrical body 31 1 ⁇ of the corrugated filter element formed in this way is housed in the filter element storage container 3 1 2, and this cylindrical body A space formed between one end opening of one end of 3 17 and the outer peripheral surface of the other end and the inner peripheral surface of the container 3 1 2 is closed to form a pasty collector 3 2 5 did.
  • the number of paticle collectors and the number of pitches in which the number of waveform filter elements in the example was reduced to four in the same container as the example was Paper with a filter cylinder element of 0 cylindrical cylinder ⁇ It was prepared, mounted in a container, and the end face was closed to prepare a particulate curd.
  • the specific configuration of the comparative example is shown in Table 12 together with the example. The test was performed by installing the exhaust system with a displacement of 2.8 L diesel engine, operating at a speed of 160 rpm and a torque of 6 kgf ⁇ in for up to 6 hours. No ,. The technics were collected. The amounts collected and the pressure loss of the above-described examples and comparative examples were measured and evaluated. As shown in Table 13, the trapezoid trap of the present example showed almost the same amount of trapping for the comparative example at the same trapping time at the same trapping time. If you have power, 15 ⁇
  • FIGS. 5 (A) and 5 (B), which will be described below, together with a comparative example, show an example of a putrate trap according to the present invention.
  • Fig. 4 shows a longitudinal front view of the trap and a longitudinal sectional view of the trap in the center in the longitudinal direction, respectively, in the experimental example.
  • the filter tray has a filter element with a Ni-Cr structure in which the filter element has a continuous ventilation hole.
  • a three-dimensional mesh-structured porous body 411 made of gold is composed of a filter element cylinder 417 with regularity in the axial direction with the cylinder axis as the center.
  • a new paper formed in a corrugated The cylindrical body is housed in the filter element storage container 412, and the end surface opening at one end of the cylindrical body 417, the outer peripheral surface at the other end, and the container. A space formed between the inner surface and the inner peripheral surface is closed to form a particulate curd collector 4 25.
  • a cylindrical filter element was fabricated. The thickness of the element is assumed to be 10 mm, and the sheets that have been formed in advance by changing the size so as to obtain the specified thickness are overlapped and integrated. Then, the finish molding was performed again.
  • the filter element storage container has the same internal diameter as that of Test Example 4 and an inner diameter of 160.
  • the length of the paticle collector consisting of the filter element is 3 It was 50 mm.
  • the waveform is in the axial direction
  • Table 14 shows the specific configuration of the filter element, combining this example and the comparative example.
  • the test was performed by installing the diesel engine with a displacement of 2.8 L on the exhaust system and rotating at a speed of 160 rpm and a torque of 6 kgfm for up to 6 hours. We drove and collected the notice curates. The amount of trapped water and the pressure loss in the above-described examples and comparative examples were measured and evaluated.
  • Table 15 shows the performance evaluation results of the comparative examples.
  • the filter elements with the same outer diameter are formed in a waveform in the axial direction, so that the trapped amount is almost the same, but the rise in pressure loss is suppressed. This was found. This is because the filter element that forms the tecturate collector is corrugated, and the gas inflow area of the filter element This is because the effect of increasing the value was obtained.
  • Test Example 1 the results of a study on a filter using a metal three-dimensional network porous body made of a Ni-Cr alloy were shown, but this was not the case.
  • the filter is not limited to the composition, and the filter made by Ni-Cr alloy with the following composition was also examined. Further, with respect to the three-dimensional network-structured porous body made of the NCr-A1 alloy, a filter-structured porous body having the same structure as in Example 1 was formed.
  • Test Example 1 as an example of the present invention for removing the particulate matter collected in the filter element, a burner without strict control was used. It shows that the particulates trapped in a three-dimensional network porous material made of a heat-resistant metal can be removed by a regeneration method using the heat of combustion by did. In this case, the paste collected on the heat-resistant three-dimensional mesh-like porous material was added to new paper. Provides a method for removing heat by electric heater. In this case, one point is how to arrange the heater elements.
  • a filter element cylinder in which a sheet heater is formed from a three-dimensional network porous material is used. . The seeds heater penetrates the exhaust gas power and is embedded inside the wall where the particulates are collected.
  • the cylinder 6 1 the cylinder 6 1
  • 6 22 A, 62 2 B ⁇ 62 2 C, 62 2 D As far as possible, it is embedded in the side near the gas inlet side.
  • the 62 A sheath heater is integral with the 62 A sheath heater and is bent near the end face B. The bent portion is embedded in the end face B. 6 2 2
  • 62 2 A to 62 2 D are arranged at approximately 90 degrees.
  • the heater-equipped fins obtained in this manner are sealed in a trap as shown in Figs. 8 (A) and (B) so that the end face is closed. Then, four were attached.
  • the filter obtained in this way When installing the trap on the trap, the exhaust gas was passed from inside to outside.
  • the dimensions of the filter element are 150 mm in outer diameter, 10 mm in thickness, and 35 O mm in length.
  • the finoleta element is composed of a Ni—Cr alloy force, which uses a three-dimensional network porous body with an average pore diameter of 0.5 mm and the number of pores in the thickness direction. Were molded into 35 pieces and the volume filling ratio was 20%.
  • This trap is attached to the exhaust system of a diesel engine with a displacement of 2.0 L, and exhaust operation is performed with a torque of 200 rpm and a torque of 5 kgfm. Was performed.
  • the initial pressure loss was 1 KPa, as the operation progressed, the pressure loss due to the collected patrate increased to 6 KPa in 5 hours.
  • the electric heater was energized and heated at this point. In this experiment, it was assumed that 62 A and 62 B (ten) poles were used, and that
  • the heat exchanger which is guaranteed by a heater provided on the exhaust gas inflow side, heats up the temperature together with the metallic three-dimensional network structure porous body, forming a heat exchanger. As soon as the cargo arrived, flinting began, and the combustion swiftly ignited, and the regeneration of the filter was completed.
  • the three-dimensional network porous material used in the present invention is metal and porous, it has a lower heat capacity and thermal conductivity than a cordier filter, and therefore, The heat generated in the soot combustion area is easily removed by a large amount of exhaust gas, and local abnormal overheating of the filter material can be prevented. Meanwhile, new paper It is maintained only in close proximity to the burning part, and therefore does not generate rapid thermal or cooling thermal shocks, but at a gentle, very desirable rate. Combustion takes place.
  • the heater is embedded near the inside of the cylinder on the gas inlet side, but when the gas flows from the outside to the inside, the heater is located near the outside of the cylinder.
  • the method of embedding is desirable from the viewpoint of thermal efficiency.
  • the collection efficiency is high and the pressure is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Description

明 デ ィ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用 パ テ ィ キ レ 卜 卜 フ ッ フ
本発明 はデ ィ 一 ゼ ルヱ ン ジ ン の排気ガ ス 中 の 力 技
— ボ ン等の微粒子 ( パテ ィ キ ュ レ ー ト ) を捕集 景
除ます る た め のノ、。テ ィ キ細ュ レ ー ト ト ラ ッ フ'を Ψ '冉成 分
る フ ィ ノレタ エ レ メ ン ト に関す る
術野 動車の排気ガ ス は、 大気汚染の大 き な 原因の 一つで、 排気ガス に 舍ま れ る 有害成分を除ます る 技術 は極め て重要で あ る 特に デ ィ 一ゼ ル ェ ン ジ ン車に お い て は、 主に
N O X と カ ー ボ ン を主体 と す る カ ー ボ ン等 の微粒 子 (パテ ィ キ ュ レ ー ト ) の除 ¾が重要な課題で あ る れ ら の有害成分を除ます る た め に、 E G R を かけ た り 、 燃料噴射系の改善や燃焼室形状 の改善 を行 っ た り 、 エ ン ジ ン側で の努力 も 行われて い る が、 抜本的な決め手がな く 、 排気通路 に排気 ト ラ 薪た な用紙 1
- 2 - ッ プを設置 し、 ノ テ ィ キ ユ レ一 ト を ト ラ ッ プによ
つ て捕集 し、 後処理によ り 除去をする こ とが提案 されてい る (特開昭 5 8 - 5 1 2 3 5 号公報) 。
現在まで、 こ の後処理法が最も実用的であ る と考
え られ、 検討が鐃け られてい る。
と こ ろで、 デ ィ ーゼルエ ン ジ ン排気に舍ま れる
ノ、 テ ィ キ ュ レー ト を捕集する ためのパテ ィ キ ュ レ ー ト ト ラ ッ プ と しては使用 さ れる条件か ら、 次の
よ う な性能を満足する必要があ る。 - 第 1 に は、 必要と される 排気ガス の清浄度を潢
足させう る だけの、 ノ テ ィ キ ュ レー ト に対する 捕
集効率を も っ ている こ とが必要であ る 。 パテ ィ キ
ュ レー ト排出量は各国で規制値が異な り 、 例えば、
2 0 0 0 年までに達成すべき とする 日本の長期規
制で ば、 乗用車および軽量 ト ラ ッ ク · バスにおい
て、 1 0 モー ド の試験モー ドで 0 , 0 8 g Z K m
と規制目標値が定め られてい る。 米国 1 9 9 4 年 e
E P A規制ではへビー · デュ 一テ ィ カ 一で、 ト ラ
ン ジ ヱ ン ト モー ドで 0 . 1 gノ H P · H r 、 ラ イ
ト デュ ーテ ィ カ 一で L A — 4 モー ドで 0 . 0 8 g
新たな用紙 / m i 1 e が 目 標値 と さ れて お り 、 そ れぞ れかな り 厳 し い規制値 と な っ て い る 。 ノ、。 テ ィ キ ユ レ 一 ト 排出量 は、 デ ィ ーゼ ルエ ン ジ ン の排気量や負荷等 に よ り 変化す る が、 上記 の規制を満足す る た め に は デ ィ 一ゼルェ ン ジ ン 力、 ら の排出量に対 し て 平均 6 0 %以上の捕集効率を満足す る 必要があ る と 言われて い る 第 2 に は、 排気ガス に対す る 圧力損失が小 さ い と で あ る 。 エ ン ジ ン排気 は、 ト ラ ッ プを通 し て 排出 さ れ る わ け だ力、 ら 、 ノ、' テ ィ キ ュ レ ー ト が捕集 さ れる に従 っ て、 通気抵抗が大 き く な つ て、 ェ ン ジ ン に悪影響を も た ら す た め、 捕集後の背圧を 3
O K P a 以下に 抑え る 必要があ る 。 エ ン ジ ン に 過 度な背圧を かけな い た め に は、 初期圧力損失が小 さ い こ と は も ち ろん、 排気ガ ス 流動時の通気抵抗 が小さ い こ と 、 即 ちパテ ィ キ ユ レ 一 ト が捕集 さ れ て も 圧力損失が上が り に く い こ と が要求 さ れ る さ ら に、 フ ィ ルタ エ レ メ ン ト に一定量のノヽ。 テ キ ュ レ ー ト が捕集さ れる と 、 捕集 さ れたパ テ ィ キ レ ー ト を定期的に除ま再生 して初期の捕集能に 新た な用紙 回復 してや る必要があ る。 こ の観点か ら、 第 3 の 要求性能と して、 繰 り 返 し行われる再生処理に対 する耐久性が必要となる 。 再生法 と して、 電熱ま たはパーナ一加熱によ るパテ ィ キ ュ レー ト の燃焼 除去法が最も有力な方法と して検討がな されてい る が、 いずれの方式で もパテ ィ キ ュ レー ト が着火 する 温度 (通常 6 0 0 'C ) 以上に加熱さ れる 。 再 生は、 背圧の上昇によ る エ ン ジ ン性能の低下や運 転の支障をき たす前に実行さ れ、 パテ ィ キ ュ レ ー ト は焼却処理される。 それ以降は、 再び、 パテ ィ キ ュ レー ト が捕集され、 ノ、'テ ィ キ ュ レ ー ト の再生、 捕集が操り 返し行われる ので、 圧力損失は常に一 定以上に維持される。 こ のため、 フ ィ ルタ ヱ レ メ ン ト材料に は操り 返し再生に耐え得る だけの耐熱 性材料の選択が必要であ り 、 排気ガス中に含ま れ る雰囲気ガス によ る耐食性も必要であ る。 従来、 上記の要件を満足す る フ ィ ルタ エ レ メ ン ト材料と して、 コ 一デイ エ ラ イ ト セ ラ ミ ク ス の ノ、 二カ ム状多孔体が最も実用化に近ぃ材料と考え ら れ、 検討が続け られて .き た。 しかじながら、 コ 一 新たな用紙 デ ィ エ ラ ィ ト セ ラ ミ ク ス に捕集 さ れた 微粒子を 燃 焼さ せ る 従来方式で は、 フ ィ ルタ が反復 し て 高温 に加熱 さ れ る た め、 燃焼熱に よ っ て フ ィ ルタ が溶 損 し た り 、 再生時 の温度上昇 · 冷却に よ る 熱衝撃 に よ っ て ク ラ ッ ク を生 じ た り す る こ と があ っ た。
そ の た め、 再生 コ ン ト ロ ー ルが極 め て難 し く 、 未だ実用化に 至 っ て い な い のが実状で あ る 。
本発明 は、 上記従来技術の問題点に鑑みて な さ れた も の で あ り 、 そ の 目 的 は、 低圧力損失で捕集 効率 も 高 く 、 再生時の温度上昇 · 冷却に よ る 熱衝 撃に も 耐え得 る デ ィ 一ゼルェ ン ジ ン排気ガ ス 浄化 用ノ、' テ ィ キ ュ レ ー ト ト ラ ッ プお よ び ト ラ ッ プを 構 成す る フ ィ ルタ エ レ メ ン ト を提供 し ょ う と す る も の で あ る 。
こ の た め は、 ノ、' テ ィ キ ュ レー ト を捕集す る フ ィ ルタ エ レ メ ン ト の孔径が適度で あ る こ と 、 フ ィ ル タ エ レ メ ン ト を構成す る 繊維あ る い は、 骨格等の 捕集部位が厚 さ 方向に十分あ る こ と、 捕集 し やす い フ ィ ルタ 構造が必要で あ る 。 さ ら に は、 捕集部 位の サ イ ズゃ表面状態に も 影響さ れる 。 新たな用紙 上記の捕集性能の要求およ び背圧上昇抑制の要 求は、 相反する 内容であ り 、 両方の要求を満足さ せる ために、 一定の ト ラ ッ プ容量内で、 装着され る フ ィ ルタ エ レメ ン ト の排気ガス流入側か ら見た ガス流入表面積を大き く し、 かつコ ンパク ト な形 状の構造設計が必要であ る 。
〔発 明 の 開 示〕 ' 本発明者 ら は上述の 目的を達成するため に、 多 く の実験を試みた結果、 連通空孔を有す る耐熱性 金属骨格か ら な る 3 次元網状構造多孔体を フ ィ ル タ エ レ メ ン ト に使用 した ト ラ ッ プ構成とす る こ と で、 優れた捕集性能を持ち、 圧力損失上昇も少な く 、 さ ら に、 パテ ィ キ ュ レー ト捕集後の再生時の 温度上昇によ る溶損ゃク ラ ッ ク 発生を防止でき る 優れた性能があ るこ とを見いだ した。
金属製の 3 次元網状構造多孔体と して は、 例え ば連通空孔を有する 3 次元網状構造を した ゥ レ タ ン フ ォ ー ム に導電性処理を施し、 電気メ ツ キ法に よ り 作製した金属多孔体 (住友電ェ製 「 セ ルメ ン ト ) があ る。
新たな用紙 3 次元網状構造多孔体 は第 1 図に示す よ う に 、 連通空孔 2 を有す る 骨格 3 と 骨格に囲ま れた ボ ケ ッ ト 状 の空孔 2 か ら な る 多孔体で あ り 、 多孔率が 高い た め、 ガ ス 流動抵抗が き わ め て小 さ い割に 、 一旦ポ ケ ッ ト 状 の孔部に捕集 さ れた パ テ ィ キ ユ レ ー ト は、 孔部か ら 離脱 し に く い の で パ テ ィ キ ユ レ 一 卜 の空間捕集性能が優れて い る 。
さ ら に 、 本発明者 ら は、 連通空孔を有す る 3 次 元網状構造多孔体の空孔径 と 、 フ ィ ル タ ヱ レ メ ン ト の)!: さ 方向で の空孔数、 フ ィ ル タ エ レ メ ン ト を 構成す る 3 次元網状構造多孔体か ら な る 濾過部に お い て金属骨格 の 占 め る 体積充塡率、 さ ら に は ト ラ ッ プを取 り 付 け る エ ン ジ ン の排気量 1 L あ た り の フ ィ ルタ ヱ レ メ ン ト の排気ガス 流入表面積 と パ テ ィ キ ュ レ ー ト の捕集効率お よ び圧力損失 と の関 一係に つ い て追求 し た。
ま ず、 用 い る 3 次元網状構造多孔体を構成す る 連通空孔 の孔柽 と フ ィ ル タ 性能 と の関係に つ いて 述べ る 。 捕集特性を高 く す る と い う こ と と 、 フ ィ ルタ エ レ メ ン ト にお け る 圧力損失を小 さ く す る と 新たな泪紙 レ、 う こ と のバ ラ ン ス力、 ら、 用い る 3 次元網状構造 多孔体の孔径が決ま る。 こ こ でい ぅ 孔柽は、 骨格 空間に存在する孔部の直径で、 3 次元網状構造を 形成する の に発泡させた際の泡の直径に相当する 。 3 次元纏状構造多孔体の空孔径は、 捕集効率の面 か ら、 平均孔径力く 0 . 1 〜 ; L in mが望ま しい こ と が判っ た。 平均孔径が 0 . 1 m m以下の場合に は、 捕集効率と して ば優れてい る が、 短時間に通気抵 抗が大き く な り 、 エ ン ジ ンへの背圧が短時間に前 記の 3 0 K P a を超え、 エ ン ジ ンへの負担が大き く な り 、 好ま レく ない。 平均孔径が 1 m m以上で は、 フ ィ ルタ エ レメ ン ト を素通り する率が増え、 初期も し く は、 再生処理直後の捕集効率が不十分 と な り 、 6 0 %以上の捕集効率は達成でき ない。
さ ら に、 前記多孔体を フ ィ ルタ に使用する場合 の厚み方向での空孔数について調べた。 フ ィ ルタ · エ レ メ ン ト厚み方向 存在する 0 . 1 〜 : L m m の •空孔の平均数 (厚み方向で横切る 直線において、 空孔が少 しで もかかれば、 1 個と数え る ) が 1 0 倔 ¾下では、 捕集効率が低 く な り 、 好ま し く ない こ と が判 つ た。
ま た 、 3 次元構造多孔体 に よ り 形成 さ れた フ ィ ルタ エ レ メ ン ト の濾過部に お け る 金属骨格 の 占 め る 体積充塡率が 1 0 %以下 と 小 さ い と 排気ガ ス 力 骨格に衝突 し、 付着す る 確率が少な く な り 、 ま た 、 捕集 さ れ る 確率 も 小さ く な る た め好ま し く な い。 反対に 4 0 %以上な ら ば、 骨格 の濾過部に 占 め る 体積量が大 き い こ と か ら 、 捕集効率向上に は よ い が、 圧力損失が大 き く な る た め、 4 0 %以下が好 ま し い こ と が判 つ た。
さ ら に、 ト ラ ッ プを取 り 付 け る エ ン ジ ン の排気 量 1 L あ た り の フ ィ ルタ エ レ メ ン 卜 の排気ガ ス 流 入表面積が 4 0 0 c m 2 以下で あ る な ら ば、 ノ、。 テ ィ キ ユ レ一 ト が フ ィ ルタ ヱ レ メ ン ト を透過す る 入 り 口が小 さ い こ と に な り 、 同 じ排気量で考え た場 合、 濾過部を透過す る排気ガ ス の透過速度が速 く な り 、 圧力損失が増加す る た め、 好ま し く ない。
さ ら に、 前記の構成に加え て本発明者 ら は、 3 次元網状構造多孔体を構成す る 金属骨格の 断面投 影幅 (金属骨格の切断面に お け る辺 の投影長 さ ) 新^な用紙 と フ ィ ル タ.性能の蘭係について追求 した結果、 骨 格の断面投影幅が 2 0 in以上な ら ば、 さ ら に良 好な性能を示す こ とを見いだ した。 2 0 m以下 では、 パテ ィ キ ュ レー ト が金属骨格 と衝突せずに 透過す る場合が増え、 捕集効率が小さ く な る た め、 骨格の断面投影幅は 2 0 m以上が好ま しい。
さ ら に、 前記の構成に加えて、 本発明者 ら は、 3 次元網状構造多孔体を構成す る 金属骨格の表面 粗さ R m a x と捕集性能および圧力損失と の関係 について追求 した結果、 骨格表面の表面粗さが R m a X 0 . 2 m以上の 3 次元網状構造多孔体を 使用する こ と によ り 優れた フ ィ ルタ 性能が得 られ る こ とが剁つ た。 金属骨格の表面粗さが R m a x 0 . 2 πι以下では一旦捕集さ れかかっ たパテ ィ' キ ュ レ ー ト が続いて く る排気ガス に よ り 、 吹き飛 ばされて しま い、 最終的に捕集さ れる割合が小さ く な っ て しま い、 好ま し く ない。 ノ、。テ ィ キ ュ レー ト は R m a x が大き い程、 初期の捕集性能は良好 であ る か ら、 裙集 ' 堆積される に従い、 次第に骨 格表面の影響は受けな く な る傾向が見 ら れた。 骨 新たな用紙 格表面の粗さ コ ン ト ロ ールは、 捕集開始初期か ら 捕集率を向上さ せ る の に有効な手段に な る こ と 力く 判 つ た。
〔図面の簡単な説明 〕
第 1 図は連通空孔を持つ 3 次元網状構造多孔体 の拡大図。
第 2 図は 3 次元網状構造多孔体 シー ト を同心円 状を重ねて形成 し た フ ィ ルタ エ レ メ ン ト の斜視図。
第 3 図は 3 次元網状構造多孔体 シー ト を同心円 状を重ねて形成 し た フ ィ ルタ エ レ メ ン 卜 の斜視図。
第 4 図 ( A ) ( B ) はパテ ィ キ ュ レー ト ト ラ ッ プの 1 例を示す縦断正面図 と長手方向中央部縦断 側面図。
第 5 図 ( A ) ( B ) はパテ ィ キ ュ レ ー ト ト ラ ッ プの縦断正面図 と長手方向中央部縦断側面図。
第 6 図 ( A ) ( B ) はパ テ ィ キ ュ レー ト ト ラ ッ プの縦断正面図 と長手方向中央部縦断側面図。
第 7 図 ( A ) ( B ) はパテ ィ キ ユ レ 一 ト ト ラ ッ プの縦断正面図と長手方向中央部縦断側面図。
第 8 図 ( A ) ( B ) はパテ ィ キ ュ レー ト ト ラ ッ 新たな用紙 プの縦断正面図と長手方向中央部縦断側面図。
第 9 図 ( A ) ( B ) はパテ ィ キ ュ レー ト ト ラ ッ プ の縦断正面図と長手方向中央部縦断側面図。
第 1 0 図は捕集されたパテ ィ キ ュ レ ー ト を燃焼 除去する の に有効な ヒータ を 3 次元網状構造多孔 体の フ ィ ルタ に シーズヒ ータ を埋め込んだ一体型 パティ キ ュ レ ー ト の ; I 例を示す斜視図。
第 1 1 図はデ ィ ーゼルエ ン ジ ンの排気系に ト ラ ッ プと再生ガス供耠装置を設けた 1 例を示す概略 図。
〔発明を実施する ため の'最良の形態〕
本発明のデ ィ 一ゼ ルェ ン ジ ン排気ガス浄化用パ テ ィ キ ュ レー ト ト ラ ッ プは、 上記のよ う な観点か ら以下に示すよう な 3 次元網扰構造多孔体を用い た ト ラ ッ プ構造と し、 具体的に は、 本発明 は次の よ う な構成を採る。 一例を図を も っ て、 説明する。
第 2 図および第 3 図ばそれぞれ、 フ ィ ルタ エ レ メ ン ト の 1 例で、 第 2 図は耐熱性金属から な る 3 ― 次元網状構造多孔体シー ト 1 0 を渦卷状に捲画 し た フ ィ ルタ エ レ メ ン ト 4 の斜視!!、 第 3 図は 3 次
新たな用紙 元網状構造多孔体 シ ー ト 1 0 を 同心状 に重ね て形 成 し た フ ィ ル タ エ レ メ ン ト 5 の斜視図を示す。 第 7 図 ( A ) ( B ) は フ イ ノレ タ エ レ メ ン ト 1 7 力く 1 本、 ト ラ ッ プ 1 2 内 に装着 さ れた例で、 そ れぞれ ト ラ ッ プの縦断正面図、 ト ラ ッ プ長手方向 の 中央 部縦断側面図を示す。 ま た、 第 8 図 ( A ) ( B ) は フ ィ ル タ エ レ メ ン ト 1 1 7 が複数本、 容器 1 1 2 内 に装着 さ れた例で あ り 、 そ れぞれ ト ラ ッ プの 縦断正面図お よ び ト ラ ッ プ長手方向中央部の縦断 側面図で あ る 。
本発明 の デ ィ ー ゼ ル エ ン ジ ン排気ガ ス 浄化用パ テ ィ キ ュ レ ー ト ト ラ ッ プ は、 デ ィ ー ゼノレ エ ン ジ ン か ら排出 さ れ る パテ ィ キ ュ レ ー ト を排気系 中で捕 集 し 、 除ます る ト ラ ッ プで 、 デ ィ ー ゼ ル エ ン ジ ン 排気ガ ス 流入入口 1 3 あ る い は 1 1 3 と ガ ス 流出 出 口 1 4 あ る い は 1 1 4 を有す る 容器 1 2 あ る い " は 】 1 2 内 に フ ィ ル エ レ メ ン ト 1 7 あ る い は 1 1 7 が装着さ れてお り 、 フ ィ ル タ エ レ メ ン ト 1 7 あ る い は 1 1 7 が連通気孔を有す る 耐熱性金属骨 格か ら な る 3 次元網状構造多孔体 1 あ る い は 1 1 新たな用紙 1 から形成さ れた例えば、 第 2 図の渦巻状同体 4 あ る い は第 3 図の同心円状筒体 5 であ り 、 第 7 図 のよ う に 1 本あ る い は第 8 図の よ う に複数本が前 記容器 1 2 あ る い は 1 1 2 内に装着さ れ、 各筒体 の一方の端部外周面と前記容器の内周面と の間に 形成さ れる空間 と各筒体の他方の端面開口 とを閉 塞部 1 8 、 1 1 8 にそれぞれ閉塞 して形成さ れた 構成にさ れてい る。 上記本発明のデ ィ 一ゼルェ ン ジ ン排気ガス浄化 用パテ ィ キ ュ レー ト ト ラ ッ プの具体的要旨は、 排 気系の途中に設置された容器と こ の容器內に フ ィ ルタ エ レ メ ン ト が装着さ れた ト ラ ッ プにお いて、 前記フ ィ ルタ エ レメ ン ト が連通空孔を有する 耐熱 性金属骨格か ら なる 3 次元網伏構造多孔体か ら形 成され、 前記空孔の平均孔径が 0 . 1 〜 1 m mで、 かつ前記多孔体の厚み方向の空孔の平均数が 1 0 倔 ¾上で あ り 、 前記フ ィ ルタ エ レメ ン ト の濾過部 における金属骨格の占め る体積充塡率が 1 0 〜 4
0 %であ り 、 取り 付けよ う とす る エ ン ジ ンの排気 量 ; I L あた り の フ イ ルク のガス流入表面積力 4 0 新た ¾用紙 0 c m 2 以上で あ る よ う に構成 さ れて い る こ と を 特徴 と す る 。
さ ら に、 捕集時の背圧を抑制 し、 捕集効率を上 げる た め、 フ ィ ル タ エ レ メ ン ト の ガ ス流入表面積 を大き く す る た めの具体例の一 つを第 9 図 ( A ) ( B ) に示す。
それぞれ、 ト ラ ッ プの縦断正面図、 および ト ラ ッ プの長手方向中央部縦断側面図で あ る。 - 第 9 図 ( A ) ( B ) で は、 パテ ィ キ ユ レ一 ト ト ラ ッ プが、 連通空孔 2 を有す る耐熱性金属か ら な る 3 次元網状構造多孔体 2 1 1 か ら な る フ ィ ル タ エ レ メ ン ト 2 1 7 と容器 2 1 2 力、 ら な り 、 3 次元 網状構造多孔体に よ っ て形成 し た径の異な る 複数 本の筒体の フ ィ ルタ エ レ メ ン ト 2 1 7 a 、 2 1 7 b 、 2 1 7 c が各筒体間に所定の隙間をあ けて同 心状に容器 2 1 2 内に装着され、 最 も外側に位置 す る筒体の一端の外周面 と容器の内周面 と の間に 形成さ れる空簡と、 各筒体間に形成 さ れる一端の 隙間 と、 最 も内側に位置す る 筒体の端面開口をそ れぞれ、 ガ ス流入口側 2 i 3 とガス流出口側 2 1 新たな用紙 4 において閉塞部材 2 1 8 にて互い違い にな る よ う に閉塞さ れて構成されて い る 。
上記の本発明のデ ィ ーゼルエ ン ジ ン徘気ガス浄 化用パテ ィ キ ユ レ一 ト ト ラ ッ プの具体的要旨 は、 排気系の途中に設置された容器と こ の容器内に フ ィ ルタ エ レ メ ン ト が装着された ト ラ ッ プにおい て、 前記フ ィ ルタ エ レ ン ト が連通空孔を有する耐熱 性金属骨格か ら なる 3 次元網状構造多孔体か ら形 成さ れ、 前記多孔体の空孔の平均孔径が ひ . 1 〜 1 m mで、 かつ前記多孔体の厚み方向の空孔の平 均数が 1 0 個以上であ り 、 前記多孔体から な る フ ィ ルタ エ レメ ン ト の濾過部における 金属骨格の占 め る 体積充 率カ 1 0 〜 4 0 %でぁ り 、 ト ラ ッ プ を取り 付ける エ ン ジ ンの排気量 1 L あ た り の フ ィ ルタ エ レメ ン ト の排気ガス流入表面積が 4 0 0 c m 2 ¾上であ り 、 前記の構成で作製 した 1 本あ る いは複数本の フ ィ ルタ エ レメ ン ト の筒体が、 各筒 体簡に所定の隙閩をあ けて同心上に ト ラ ッ プ内に 装着され、 最も外側に位置する筒体の一端の外周 面と容器の内周面と の間に形成さ れる空間と、 各 新たな ¾紙 筒体間に 形成 さ れ る 一端の隙間 と 、 最 も 内側 に位 置す る 筒体の端面開口を そ れぞれガ ス 流入口側 と ガ ス 流出口側に お い て互 い違 い に な る よ う に 閉塞 して形成 さ れた ト ラ ッ プが容器内 に装着 さ れた構 成 と さ れて い る こ と を特徴 と す る 。
さ ら に 、 フ ィ ル タ エ レ メ ン ト の排気ガ ス 流入表 面積を大 き く す る た め の 具体例を第 4 図 ( A ) ( B ) に示す。 そ れぞれ ト ラ ッ プの縦断正面図お よ び ト ラ ッ プ長手方向中央部縦断側面図で あ る 。
第 4 図 ( A ) ( B ) に示すパ テ ィ キ ュ レ ー ト 捕 集体 3 2 5 が、 連通空孔 2 を '有す る 耐熱性金属か ら な る 3 次元網状構造多孔体 3 1 1 を用 い て周方 向 に 波形に形成 さ れた 筒体の フ ィ ルタ エ レ メ ン ト 3 1 7 が容器 3 1 2 内 に装着 さ れ、 そ の筒体 の一 端の端面開口 と 、 他端の外周面 と 容器内周面 と の -間に形成 さ れる 空間 と を閉塞部材 3 1 8 を用 いて 閉塞 して形成 さ れて構成 さ れて い る 。
本発明 のデ ィ ー ゼ ルエ ン ジ ン排気ガ ス 浄化用 パ - テ ィ キ ユ レ 一 ト ト ラ ッ プの具体的要旨 は、 排気系 の途中 に 設置さ れた容器 と 、 こ の容器内 に フ ィ ル
新たな用紙 タ エ レ メ ン ト を装着された ト ラ ッ プにおいて、 前 記フ ィ ルタ エ レメ ン ト 'が連通空孔を有する耐熱性 金属骨格から な る 3 次元網状構造多孔体か ら形成 され、 前記空孔の平均径が 0 . 1 〜 1 m mで、 か つ前記多孔体の厚み方向の空孔の平均数が 1 0 個 以上であ り 、 前記フ ィ ルタ エ レメ ン ト を構成する 前記フ ィ ル タ エ レメ ン ト の濾過部における 金属骨 格の占め る 体積充塡率が 1 0 〜 4 0 %であ り 、 ト ラ ッ プを取 り 付けよ う とする ェ ン ジ ン排気量 1 L あた り のフ ィ ルタ エ レメ ン ト へのガス.流入表面積 が 4 0 0 c m 2 以上である こ とを特徴とする デ ィ ―ゼルェ ン ジ ン排気ガス淨化用パテ ィ キ ュ レ ー ト ト ラ ッ プで、 周方向に波形に成形さ れた筒体が容 器内に装着さ れ、 こ の筒体の一端の端面開口 と、 他端の外周面と容器内周面と の間に形成さ れる空 間 と を閉塞して形成された フ ィ ルタ エ レメ ン ト 力、' ' 装着さ れた構成と な っ てい る こ とを特徴とする。
' さ ら に、 フ ィ ルタ エ レメ ン ト の排気ガス流入面 積を大き く する ための別の具体的構成例を第 5 図 ( A ) ( B ) 、 第 6 図 ( A ) ( B ) に示す。 第 5 新たな用紙 図 ( A ) ( B ) と第 6 図 ( A ) ( B ) は そ れぞれ ト ラ ッ プの縦断正面図 と ト ラ ッ プの長手方向 中央 部縦断側面図で あ る 。 具体例で は、 ノ、' テ ィ キ ユ レ ー ト ト ラ ッ プが、 連通空孔 2 を有す る 耐熱性金属 か ら な る 3 次元網状構造多孔体 4 1 1 、 5 1 1 力、 ら な る フ ィ ルタ エ レ メ ン ト 4 2 5 、 5 2 5 と 容器 4 1 2 、 5 1 2 力、 ら な り 、 軸方向 に波形 に成形 さ れた筒体の フ ィ ノレタ エ レ メ ン ト 4 2 5 あ る い は 5 2 5 が容器 4 1 2 も し く は 5 1 2 内 に装着さ れ、 こ の筒体の一端の端面開口 と 、 他端 の外周面 と 容 器内周面 と の間に形成 さ れ る 空間 と を シ ー ル部材 1 8 、 5 1 8 で閉塞 し て形成 さ れて構成 さ れて い る 。
本発明のデ ィ ーゼルェ ン ジ ン排気ガス 浄化用パ テ ィ キ ュ レ ー ト ト ラ ッ プの具体的要旨 は、 排気系 の途中 に設置 さ れた容器 と 、 こ の容器内 に フ ィ ノレ タ エ レ メ ン ト を装着 さ れた ト ラ ッ プにお いて 、 フ ィ ルタ エ レ メ ン ト が連通空孔を有す る 耐熱性金属 骨格か ら な る 3 次元網状構造多孔体か ら形成 さ れ、 前記多孔体の空孔の平均径が 0 . 1 〜 1 m m で、 新たな用紙 かつ前記多孔体の厚み方向の空孔の平均数が 1 0 假以上であ り 、 前記フ ィ ルタ エ レメ ン ト の濾過部 における 前記金属骨格の 占め る体積充壞率が 1 0
〜 4 0 %であ り 、 ト ラ ッ プを取り 付けよ う とする エ ン ジ ン の排気量 1 L あた り の フ ィ ル タ エ レ メ ン ト のガ ス流入表面積が 4 0 0 c m 2 以上であ る こ とを特徴とする デ ィ ー ゼ ルエ ン ジ ン排気ガス浄化 用パテ ィ キ ユ レ 一 ト ト ラ ッ プで、 軸方向に波形に 成形された筒体を容器内に装着され、 こ の筒体の 一端の端面開口 と、 他端の外周面と容器内周面と の間に形成される空間とを閉塞して形成されたパ テ ィ キ ユ レ 一 ト フ ィ ルタ が装着された構成 とな つ てい る こ と を特徴とする。
さ らに、 上記の本発明の搆成において、 フ ィ ル タ エ レ メ ン ト が、 連通空孔を有する N i 基耐熱性 合金骨格か ら なる 3 次元網状構造多孔体から な り 、 好ま し く は、 Ν ί : 6 0 〜 8 5 重量%、 C r : 1
5 〜 5 0 重量%である こ とを特徴とする。 フ ィ ル タ エ レ メ ン ト に N i 基耐熱性 N i 一 C r 合金か ら な る 3 次元網祆構造多孔体を使用する こ と に よ り 、 新た 用紙 捕集 し たパ テ ィ キ ュ レ ー ト を燃焼除去す る 再生時 に問題 と な っ て い た溶損や ク ラ ッ ク の心配 も な く 十分繰 り 返 し捕集 · 再生の繰 り 返 し に耐え る こ と が判 っ た 。 再生時に は、 ノ、。テ ィ キ ュ レ ー ト の燃焼 熱に よ り 8 0 0 て 以上に温度上昇す る た め 、 C r 元素の添加に よ り C r の安定酸化被膜を形成す る か ら で あ る 。 C r 量が 1 5 重量%以下で は、 酸化 に対 して安定な酸化被膜の形成 は、 見 ら れず効果 がな い。 C r 5 0 %以上添加 し て も 、 そ の効果 は 見 ら れな い た め、 上記範囲が望ま し い範囲で あ る さ ら に、 上記の本発明 の構成 に お い て、 フ ィ ル タ エ レ メ ン ト が連通空孔を有す る N i 基耐熱性合 金骨格か ら な る 3 次元網状構造多孔体か ら な り 、 好ま し く は、 N 5 0 8 5 重量%、 C
5 0 重量%、 A 1 : 1 %で あ る こ と を特徴 と す る 。 上記範囲か ら 外れた組成 の場合、 耐熱性が悪 く な り 、 長期の捕集 · 再生の繰 り 返 し に封す る 耐久性にか け る こ と が判 つ た。 A 1 の添 加 は、 C r だ け添加 し た場合 よ り 耐熱性 の 向上に 役立つ有効な元素で あ る が、 C r の添加に 加え て 斩たな S紙 1 %以上の A 1 添加で、 酸化に対 して安定な酸化 被膜を形成 し、 耐熱性に寄与する が、 6 %以上の A 1 添加は N i 元素と A 1 元素が脆い金属間化合 物を形成する ため、 加工性が悪 く な り 、 特に曲 げ 加工がで き ずに折れる 。 A 1 6 %以内の添加な ら、 十分に加工性があ り 、 例えば円筒状の フ ィ ルタ エ レメ ン ト を形成する のには、 全 く さ しつかえがな かっ た。 さ ら に、 排気ガス 中に は硫酸 ミ ス ト が存 在 してお り 、 A 1 の酸化被膜は耐硫酸性にも抵抗 力があ り 、 特に、 ト ラ ッ プに対する長期信頼性が 必要な場合に は、 フ ィ ルタ エ 'レ メ ン ト と して、 上 記の組成の N i 基耐熱性 N i 一 C r 一 A 1 合金か ら なる 3 次元網犹搆造多孔体を用いた フ ィ ノレタ エ レ メ ン ト を使用する こ とが望ま しい。
さ ら に、 本発明では、 例えば第 1 0 図に示すよ う に上記パテ ィ ヰ ュ レ一 ト ト ラ ッ プに電気 ヒ ータ を設ける こ とができ る。 ノ テ ィ キ ュ レー ト が一定 量捕集された後、 電気ヒ ータ によ り 、 パテ ィ キ ュ レ ー ト を懲焼除去で き る よ う に電気 ヒ ータ を フ ィ ルタ の前面ある い は後ろ面、 あ る いは筒扰フ ィ ル 新たな用紙 タ の外周 に、 も し く は内周 に 設置 し て よ く 、 さ ら に電気 ヒ ー タ を 金属多孔体力、 ら な る 筒状 フ ィ ルタ の 内部に埋設 して も よ い。 消費電力 と 燃焼効率 と の ノ ' ラ ン ス を考え て と り つ け る こ と がで き る 。 以下、 こ の発明 の試験例に つ い て説明 す る 。 (試験例 1 )
6 , 4 L 、 6 気筒の 直噴射式の デ ィ ー ゼルェ ン ジ ン の排気系 に第 1 1 図に 示す よ う に ト ラ ッ プ と 再生ガ ス 供給装置を取 り 付 け た 。 第 8 図 ( A ) ( B ) に デ ィ ーゼルェ ン ジ ン排気ガ ス浄化用 パ テ ィ キ ュ レー ト ト ラ ッ プの概要図例を 示す。 第 8 図 ( A ) は、 ノ、' テ ィ キ ュ レ ー ト ト ラ ッ プの縦断面正面図で、 第 8 図 ( B ) は ト ラ ッ プの長手方向中央部縦断面 側面図で あ る 。 第 8 図に示す よ う に フ ィ ルタ エ レ メ ン ト 1 1 7 と 収納容器 1 1 2 か ら な る 。 再生用 ガ ス 供給装置は軽油バー ナ ー に よ り 6 0 0 - 9 0 0 の熱風が発生で き 、 排気ガ ス 力く ト ラ 'ン プか ら き り かえ ら れ、 バ イ ノ、' ス さ れ る と 再生用 ホ ッ ト ガ ス が ト ラ ッ プに供給で き る よ う に な っ て い る 。 第
1 1 図に おい て、 符号 Γ 0 1 は エ ン ジ ン、 1 2 5 新た な用紙 は ト ラ ッ プ、 1 0 2 は再生ガス供給装置、 1 0 3 は排気管、 1 0 7 はバイ ノ、' ス をそれぞれ示 してい る。 デ ィ ーゼルエ ン ジ ン排気の入口 1 1 3 と 出口 1 1 4 を有する フ ィ ルタ 収納容器 1 1 6 と そ の容 器内に フ ィ ルタ エ レメ ン ト 1 1 7 が装着さ れてい る 、 デ ィ ーゼルェ ン ジ ン排気ガス浄化用パテ ィ キ ュ レー ト ト ラ ッ プ 1 2 5 の構成 と した。 ' 本実施例の第 8 図 ( A ) ( B ) につ いて さ ら に 詳 し く 逑ベる な ら、 3 次元網状構造多孔体 1 によ つ て形成 した筒体の フ ィ ルタ エ レ メ ン ト 1 1 7 が ガス の流れ方向に沿 う よ う に フ ィ ルタ エ レメ ン ト 収納容器 1 1 2 内に均等に収容し、 各筒体 1 7 のガ ス流出口 1 1 4 側の端部外周面と収納容器 1 1 2 内周面との簡に形成さ れる空間と、 各筒体 1 7 のガス流入口 1 1 3 側の端面開口 とをそれぞれ シール部材 1 1 8 によ っ て閉塞された も の であ り 、 排気ガス は、 第 8 図 ( A ) の矢印で示すよ う に、 筒体 1 1 7 の内面側か ら筒体 1 1 7 の外面側に通 過する よ う に流路が形成さ れて い る 。 フ ィ ルタ エ レメ ン ト の壁を排気ガスが通過する 際にパテ ィ キ 新たな用紙 - 2 δ - ュ レ ー ト が捕集 ' 濾過 さ れ清浄ガ ス が、 ト ラ ッ フ。 外に排出 さ れ る 構成に し て い る 。 フ ィ ル タ エ レ メ ン ト は耐熱性金属か ら な る 3 次 元網状構造多孔体 ( 例え ば、 住友電工製の 金属多 孔体 : セ ル メ ッ ト ) 力、 ら 構成 さ れ る 。 セ ル メ ッ ト は、 導電性処理 し た 3 次元連通空孔を持つ ウ レ タ ン樹脂 フ ォ ー ム に 、 N i 電気 メ ツ キ し た 後 .、 熱処 理によ り 樹脂成分を燃焼除去 さ せて形成 さ れた N i 材質を基本材質 と し、 さ ら に ク ロ マ イ ジ ン グ処 理に よ り 合金化 し、 N i : 6 5 重量%、 C r : 3 5 重量%の N i - C r 合金 と し た 3 次元網状構造 多孔体を使用 し た。 3 次元網状構造多孔体 の金属 シ ー ト を第 3 図に示すよ う に、 渦巻状 に 捲回 し て 円筒状に成形 し た フ ィ ル タ ヱ レ メ ン ト を ト ラ ッ プ 容器内 に 1 本〜 7 本装着 し た。 排気ガス は筒体の 内側の空間に導入 し、 フ ィ ル タ エ レ メ ン ト の壁を 通過 してパ イ プ外側へ流れ る よ う に ガス 流入 と反 対側の端面 は ガ ス ケ ッ ト お よ び鉄板で シ 一 ル さ れ て い る 。 さ ら に、 デ ィ ー ゼ ル排気ガ ス の清浄化へ の影響を調べ る た め に 、 フ ィ ルタ の構成を変え た。
新たな用紙 フ ィ ルタ エ レ メ ン ト の厚みは ; L O m m と し、 フ ィ ルタ エ レ メ ン 卜 の厚さ方向の金属多孔体の体積充 ¾率を巻数や圧縮加工度を変える こ と に よ り 、 5 〜 4 5 % と した。 こ う す る こ と に よ り 、 さ ら に、 厚さ方向で の空孔数も変えた。 表 1 〜 3 に実験に 使用 した フ ィ ルタ エ レメ ン ト の搆成を表 4 〜 6 に 比較例の構成を示す。 表 7 に実施例で得 られた特 性を示 した。 さ ら に、 表 8 に比較例で得 られた特 性を示した。 なお、 本実施例および比較例で は、 表面粗さ R m a X 力 0 . 2 以上の N i — C r 合金か ら な る住友電工製 3 次元網状構造多孔体を 使用 した。
新 な腿 【表 1 】
試験例 1 で使用した各種パティ キュ レー ト ト ラ ップの実施例の構成
Figure imgf000029_0001
【表 2】
試験例 1 で使用した各種パティ キュ レー ト ト ラ ッ プの実施例の構成 施 例
Figure imgf000029_0002
新たな用紙 - 2 δ
[表 3】
試験例 1で使用した各種パティキュレー ト トラップの実施例の構成
Figure imgf000030_0001
【表 4】
試験例 1で使用した各種パティキュレート トラップの実施例の構成
Figure imgf000030_0002
新たな用紙 【表 5】
試験例 1 で使用した各種パティ キュ レー ト ト ラ ップの比較例の構成
Figure imgf000031_0001
【表 6】
試験例 1で使用した各種パティキュ レー ト ト ラ ップの比較例の構成 比 例
Figure imgf000031_0002
新たな甩紙 [表 7】
試験例 1 の実施例における評価結果
'ί例
Figure imgf000032_0001
新たな用紙 【表 8】
試験例 1 の比較例における評価結果
Figure imgf000033_0001
新たな 紙 ト ラ ッ プな しでパテ ィ キ ュ レー ト排出量は 0 . 5 4 g / H P · H r だ っ たの に対 し、 実験例 1 か ら実験例 1 4 では、 2 0 サ イ ク ル後、 0 . 1 g / H P · Η ι· 以下であっ た。 さ ら に、 2 0 サイ ク ル 平均の捕集効率ば 6 0 %以上と十分米国 Ε Ρ Α の 1 9 9 4 年規制値を満足する こ とがわかっ た。 比 較例 2 9 、 3 4 . 3 6 、 4' 1 ば、 平均空孔柽の大 き さ が 0 . 0 8 m m と小さ いため、 捕集効率は高 い性能を示 し、 排出ガス規制値を満足する も の の、 背圧が高 く 、 エ ン ジ ンに と っ て好ま し く な い。 比 較例 2 2 、 2 7 、 2 9 、 3 4 、 3 6 、 4 1 で は 2 0 サ イ ク ル後、 排出量ば低減でき てい る が、 圧力 損失が高 く なつて しま い、 好ま しい構造で はない こ とがわかっ た。 さ ら に、 繰り 返 しサイ ク ル数 2
0 回終了後、 ェ ンジ ン排気を ト ラ ッ プ装置か らバ ィ パス させ、 ト ラ ッ プに は再生用ホ ッ ト ガス供給 装置か ら平均温度 7 0 0 て の加熱空気を 2 m 3 / m Ώ の流量で約 1 5 分送り 込み、 捕集さ れたパ テ ィ キ ュ レー ト を燃焼させる こ とによ つて再生 し た。 再生後の フ ィ ルタ の圧力損失は急激に低下 し -、 新たな用紙 ほ ぼ、 初期圧の 1 〜 2 K P a 前後 の 値に低下す る こ と が観察 さ れた 。 こ れ は、 排気 フ ィ ル タ 内 に捕 集 さ れて い たパ テ ィ キ ュ レ 一 ト が燃焼消滅 し て排 気ガ ス フ ィ ル タ の再生が良好 に お こ な わ れた こ と を示 し て い る 。 さ ら に、 再生後のノ、' テ ィ キ ュ レ ー ト フ ィ ルタ は溶解、 亀裂や極端な酸化や腐食 は観 察 さ れな か っ た 。 こ の後、 再度排気回路を 切 り 替 え て 、 排気テ ス ト を行 っ た。 繰 り 返 し サ イ ク ル数 2 0 回行 っ た後、 再度排気回路を再生用 ホ ッ ト ガ ス 供給回路 に切 り 替え、 上述の再生を実施 し た。
以上の捕集 · 再生テ ス ト を繰 り 返 し、 合計 3 0 0 回 の再生を行 っ た。 3 0 ひ 回 の再生繰 り 返 し に 対 し て、 本発明 の ト ラ ッ プ構造で は圧力損失の増 加変化 も な く 、 ま た厳密な コ ン ト ロ ー ルを し な い 再生方法で も ダ メ ー ジ を受け る こ と も な く 、 極め て優れて い る こ と が判 っ た 。 繰 り 返 し数 3 0 0 回 再生 して も、 再生直後の圧力損失 は ほ ぼ捕集前の 初期値 1 〜 2 K P a 前後を保持 して い た。 さ ら に、 1 0 0 回再生後の フ ィ ル タ ヱ レ メ ン ト を観察調査 し た結果、 溶解、 亀裂な ど外的損傷 は見 ら れず又、 新たな 紙 機狨的劣化も見ら れなかっ た。 '
ま た、 再生時の フ ィ ル タ エ レ メ ン ドの各部の温 度を測定モ ニタ して いたが、 最高温度は 8 δ 0 t であ つ たが、 最大 3 分以内に降温 し、 燃焼が完了 . した こ と を示した。
本実験例で は、 排気ガス の流れを フ ィ ルタ エ レ メ ン ト の外周か ら内周にな る構造での例を示 した ' が、 実験例と同 じ構造で、 逆に内面側から外周側 に向 けて排気ガス の流れを作つ た ト ラ ッ プで も捕 集効率 6 0 %以上、 排気中パテ ィ キ ュ レ ー ト濃度 は 0 . 0 8 g ノ H P · H r 以下であ り 、 十分規制 を満足する結果が得 られた。 さ ら に、 3 0 0 回の 再生後で も フ ィ ルタ エ レ メ ン ト に は損傷は見 ら れ なかっ た。 E P A基準を満足する排出量に抑え ら れていた。
さ ら に、 実施例 1 では、 筒状フ ィ ルタ エ レ メ ン ト を ; t 〜 7 本、 フ ィ ルタ エ レメ ン ト 収納容器に装 着 した結果について示したが、 さ ら に、 第 9 図
( A ) ( B ) に示すよ う に フ ィ ルタ エ レ メ ン ト 2 1 7 と して連通気孔を持つ耐熱性金属か ら な る 3
新たな用紙 次元網状構造多孔体 シ ー ト 1 0 を 用 い て形成 し た 径 の異な る 複数本の筒体 2 1 7 a 、 2 1 7 b 、 2 1 7 c を各筒体間に形成 さ れ る 一端の隙間 と 最 も 内側に位置す る 筒体の端面開口を そ れぞれガ ス 流 入口側 2 1 3 と ガ ス 流出口側 2 1 4 に お い て互 い 違 い に な る よ う に閉塞 し た パ テ ィ キ ュ レ ー ト ト ラ ッ プ 2 2 5 で も よ い。 こ う す ;! こ と に よ り 、 実施 例 1 と 同一容器サ イ ズで考え た場合、 限 ら れた容 器内で ト ラ ッ プを取 り 付 け る 排気量 1 L エ ン ジ ン あ た り の ガス 流入表面積を大 き く 取れ る た て め、 空間を有効に利用 で き る 利点 あ る 。
さ ら に 、 第 9 図 ( A ) ( B ) の例に お い て、 ト ラ ッ プの排気ガ ス 流入側 と 流出側 と を逆に な る よ う に排気ガ ス流入口側 2 1 3 と 排気ガス 流出 口側 2 1 4 と を逆に し、 排気ガ ス の流れを 筒体の内側 の外面側へ通過 さ せ る よ う に し て も、 同一サ イ ズ の フ ィ -ル タ エ レ メ ン ト な ら ば、 1 0 %程度の捕集 効率が低下す る だ けで、 大 き な差 は認め られず、 潢足す る 性能を有す る ト ラ ッ プが得 ら れた。
(試験例 2 ) (骨格断面の投影幅 ) 新たな用紙 - 3 .6 -
3 次元網状構造多孔体を構成する 金属骨格の断 面投影幅と フ ィ ルタ特性と の閬係について調べた。 試験は、 排気量 2 . 8 L の渦流式デ ィ ーゼ ルェ ン ジ ン の排気系に第 8週 ( A ) ( B ) に示すフ ィ ル タ エ レ メ ン ト を有する ト ラ ッ プ搆造を用いた。 実 施例および比較例では骨格の断面投影幅を換え、 試験は、 1 8 0 0 r p m、 5 k g f ' mで 3 時間 運転し ノ、'テ ィ キ ユ レ一 ト ト ラ ッ プを捕集 し、 捕 集量と圧力力損失を蕭ベた。 骨格断面の投影幅は、 空孔の平均径および空孔数によ っ て も変わる が、 1 7 〜 2 5 0 / m幅の 3 次元網状構造多孔体を使 用 した。 表 9 に実験に使用 した各種パテ ィ キ ユ レ ー ト ト ラ ッ プの実施例および比較例の構成を示す 表 1 0 には試験例 2 での評価結果を実施例およ び比較例に併せて示す。 実施例において、 3 次元 網状構造多孔体において、 多孔体の空孔径が 0 . ' 1 〜 1 . 0 mで、 かつ 3 次元網状搆造多孔俸か 'ら なる フ イ ルク エ レメ ン ト の厚み方向での空孔の 平均数が 1 ひ 個以上で、 フ ィ ルタ の濾過部におけ る多孔体に占め る体積充塡率が 1 0 〜 4 0 %で、 新たな^紙 フ ィ ル タ の排気ガ ス 流入表面積が 4 0 0 c m以上 を満足 し た上で 、 さ ら に 、 形成す る 金属骨格 の断 面幅が 2 0 m以上で あ る な ら ば、 い ずれ も 十分 な捕集量 と 過大な圧力損失 に な ら な い こ と を確認 し た。 前述の条件か ら 外れ る 範囲で は、 十分な 捕 集量 と 低い圧力損失を満足で き な か っ た
【表 9】
試験例 2で使用した各種パティキユ レ一 ト トラップの比較例の構成
(骨格の断面投影幅) 施 例 比 較 例
Figure imgf000039_0001
新たな甩紙 【表 1 ひ】 験
例 捕集量 (g )へ 圧力損失 ( K P a )
Figure imgf000040_0001
(試験例 3 ) (表面粗さ ) 3 次元網状構造多孔体の表面状態 と フ ィ ル ダ特 性と の関係について調べた。 試験は、 排気量 2 , 8 L の デ ィ ーゼルェ ン ジ ン の排気系に取り 付け、 西転数 1 8 0 0 r p m、 ト ルク 6 k g ί · mで 3 時間、 ノ、。ティ キ ュ レ ー ト を 捕集した。 試験ば第 9 図 ( A ) ( B ) に示した同心円状フ ィ ルタ エ レ メ ン ト を有する ト ラ ッ ブ構造を用いた 第 9 図 ( A ) ば ト ラ ッ プの縦断正面図で、 第 9 図 斩 な甩鈹 ( B ) は ト ラ ッ プの長手方向 中央縦断面側面図で あ る 。 ノ、。テ ィ キ ユ レ一 ト ト ラ ッ プ力く、 少な く と も 、 油 2 1 2 と 連通空孔 2 を有す る 耐熱性金属か ら な る 3 次元網状構造多孔体 2 1 1 か ら な る フ ィ ルタ エ レ メ ン ト 2 1 7 と 容器 2 1 2 力、 ら な り 、 径 の異 な る 複数本の筒体の フ ィ ルタ エ レ メ ン ト 2 1 7 a 、
2 1 7 b 、 2 1 7 c を各筒体間に所定の隙間を空 けて 同心上に該容器 2 1 2 内 に装着 さ れ、 最 も外 側に位置す る 筒体の一端の隙間 と 最 も 内側に位置 す る 筒体の端面開口を そ れぞれガ ス 流入口側 2 1
3 と ガ ス 流出口側 2 1 4 に お い て互い違 い に な る よ う に閉塞さ れて構成 さ れて い る 。 実験に用 い た フ ィ ルタ エ レ メ ン ト は、 3 次元網状構造多孔体の 金属 シー ト を一定の 曲率を も っ て作製 し た。 フ ィ ルタ エ レ メ ン ト の サ イ ズは、 実施例 1 で示 し た よ う に、 フ ィ ルタ エ レ メ ン ト へ の流入面積を考慮 し、 構造設計 し た。 平均孔径 0 . 5 m m の 3 次元網状 構造多孔体連続シー ト で外径 1 4 0 m m、 厚 さ 1
0 m m の 円筒、 外径 1 1 0 m m 、 厚 さ 1 0 m m の 円筒、 さ ら に、 外径 8 0 m m、 厚 さ 1 0 m m の 円 新たな用紙 筒を作製 した。 ガスが流入する濾過部体積中に占 め る 金属骨格の占め る体積率は 1 2 . 5 % と し た。 フ ィ ルタ エ レメ ン ト 部の有効長さ は 1 5 0 m m と し、 第 9 図 ( A ) に示すよ う な排気ガス の流れが 生 じる よ う に片端ばシール材と押え板によ り 固定 実験に使用 した耐熱性の 体は、 住友電工製 の N i 基の 3 次元網犾構造多孔体を ク ロ マ イ ジ ン グ処理によ り 合金化 した N i 一 C r 金属多孔体を 使用 した。
ク ロ マ イ ジ ング処理で は、 '塩化ク ロ ミ ゥ ム ガス が粉末から発生するため、 発生する量を コ ン ト 口 一ル、 あ る い は骨格に折出する速度をかえ る こ と がで き る ため、 通常の C V D プ ロ セ ス でよ く 経験 する よ う に、 N i — C r 合金化金属多孔体の骨格 表面状態も任意に変え る こ とがで き る。 N i — C r — A 1 合金化金属多孔体を作製する際に も粉末 に よ る合金化処理がな される。 こ の時、 少量ずつ 一 原料ガスを発生させ、 Ν ί 基多孔体骨格表面に析 出させる過程を経る と、 平滑な面が得 られ、 急激
新たな用紙 に原料ガ ス を発生 さ せ る と 、 骨格表面が粗れた 表 面状態が得 ら れ易 い こ と は よ く 経験す る こ と で あ る 。 表面が粗れた 状態 も 1 0 0 0 て 以上の還元性 雰囲気下で高温放置処理 さ せ た 場合 に は、 骨格 に 析出 し た元素が骨格内部へ元素拡散が は じ ま る 為、 折出直後 は粗 い表面状態で も 次第に平滑化 さ せ る こ と がで き る 。
本試験例で は、 析出 · 拡散状態を変え る こ と に よ り 、 骨格表面粗 さ を換え て作製 し た各 フ ィ ルタ の特性に つ い て検討 し調査 し た。 実験で は、 わ ざ と 1 0 5 0 °C で、 2 0 時間 と 通常処理の 5 倍以上 の時間をか け、 骨格表面を平滑にす る た め の拡散 処理 し、 R m a X 0 . 1 m以下の平滑度に し た 多孔体を フ ィ ルタ に し た も の を比較例 と し た。
表 1 1 に表面粗度を種 々 変え て作製 し た フ ィ ル タ エ レ メ ン ト と パテ ィ キ ュ レー ト 捕集量 と の時間 · 変化を示す。 表 1 1 に" ¾す よ う に 、 骨格表面粗 さ が粗い方が、 平滑な場合よ り も パテ ィ キ ュ レ ー ト が捕集さ れる 初期にお け る 効率が高 く 、 特に表面 状態は、 捕集初期に影響があ る こ と が判 つ た 。 表 新たな用紙 . 面粗さ R m a X 0 . 2 m以上であれば捕集効果 があ る こ とが判つ たが、 特に本発明では、 表面粗 さ R m a x 0 . 2 m以上であれば形状は問わず、 N i — C r 合金化金属多孔体と 同 じ く 、 粉末を使 用 し合金化法で作製される N i — C r 一 A 1 合金 化金属多孔体に も適用でき、 材質ば限定さ れる も ので はない。
[表 1 1】
試験例 3による 3次元網状構造多孔体の骨格表面状態と捕集性能評価結果
Figure imgf000044_0001
(試験例 4 ) (波形成形品)
本発明に蘭わるパティ キ ュ レー ト ト ラ ッ プの実 施例について、 比較例とあわせて、 次に説明する
第 4 図 ( A ) ( Β ) はそれぞれ本実験例に閬ゎ る ト ラ ッ プの縦断正面図および ドラ ッ プ長手方向
新たな用紙 中央部縦断断面図で あ る 。
ノ、。テ ィ キ ュ レ ー ト ト ラ ッ プ は 、 第 4 図 ( A ) ( B ) に示すよ う に、 フ ィ ル タ エ レ メ ン ト が、 連通気孔 を も つ耐熱性金属か ら な る 3 次元網状構造多孔体 3 1 1 力、 ら な り 、 フ ィ ル タ エ レ メ ン ト の筒体 3 1
7 が筒体軸を中心 と して、 周方向に規制性を も つ て、 波形に形成さ れてお り 、 こ の筒体が、 フ ィ ル タ エ レ メ ン ト 収納容器 3 1 2 内に収容さ れ、 こ の 筒体 3 1 7 'の一端の端面開口 の他端の外周面 と該 容器 3 1 2 内周面 と の間に形成さ れる 空間 と を閉 塞 してパテ ィ キ ュ レ ー ト 捕集体 3 2 5 が形成さ れ て い る 。
以下詳細に説明す る 。
(実施例)
予め所定寸法に切断さ れた 4 0 重量% C r を舍 む金属製の 3 次元網状構造多孔体シ一 ト を プ レ ス 成形に よ っ て、 周方向に波形に成形 した筒扰フ ィ ルタ エ レ メ ン ト を作製 した。 エ レ メ ン ト の厚 さ は 1 O m m —定と し、 所定の厚さ に な る よ う に、 予 めサ イ ズを変えて作製 した波形成形 した シ 一 ト を 新たな用紙 重ねあわせ、 一体化 した上で、 再度の仕上げ成形 を行っ た。 容器のサイ ズは内径 1 6 0 Φ と し、 フ ィ ルタ エ レメ ン ト の長さ は 3 5 O m m と し た。 具体的実施例は、 表 1 2 に示す 3 次元網状構造 多孔体の空孔の孔形は 0 . l i m、 0 . 5 m、 1 m と し、 体積充塡率を 1 0 — 4 0 %の範囲で 変え る よ う に、 重ねる シー ト の厚みを調整 した。 骨格の孔数は、 厚み方向で横切る孔数を 3 力 所測 定し、 求めた。
こ の よ う に して成形された波形フ ィ ルタ エ レ メ ン ト の筒体 3 1 Ί を、 フ ィ ルタ エ レ メ ン ト収納容 器 3 1 2 内に収容 し、 こ の筒体 3 1 7 の一端の端 面開口 と他端の外周面と該容器 3 1 2 内周面 と の 間に形成さ れる空間とを閉塞 してパテ ィ キ ュ レー ト 捕集体 3 2 5 を形成 した。
(比較例)
本比較例と しては、 実施例と同一容器内に実施 例における波形フ ィ ルタ エ レ メ ン ト の数を 4 つに 減 ら したパティ キ ュ レー ト捕集体および、 ピ ッ チ の数 0 の円柱状筒体 1 本の フ ィ ルタ ヱ レ メ ン ト を た 紙 ^ 作製 し、 容器内 に装着 し、 端面を閉塞 し て パ テ ィ キ ュ レ ー ト 捕集体を作製 し た。 比較例 の 具体的構 成を 表 1 2 に実施例 と あ わせて示す。 試験 は、 排気量 2 . 8 L デ ィ ー ゼ ル エ ン ジ ン の 排気系 に取 り 付 け、 回転数 1 6 0 0 r p m 、 ト ル ク 6 k g f · in で 6 時間ま で運転 し、 ノ、。 テ ィ キ ュ レ ー ト の捕集を行 っ た。 上述の実施例お よ び比較 例 の捕集量 と 圧力損失の測定を行い、 評価 し た。 表 1 3 に示す よ う に 、 本実施例 のパ テ ィ キ ユ レ ー ト ト ラ ッ プ は、 比較例に対 し て、 同一捕集時間 に おいて、 ほ ぼ同一捕集量で 'あ り な 力 ら 、 1 5 〜
2 0 % の圧力損失減の値を 示 し た。 試験 4 の結果か ら 、 同一容器を使用 す る 場合、 フ ィ ル タ エ レ メ ン ト を波形に成形す る こ と に よ り フ ィ ルタ エ レ メ ン ト の排気ガ ス の流入表面積を増 加す る こ と がで き な いため、 同一外径の円柱状筒 体 フ ィ ル タ エ レ メ ン ト を使用 し た ト ラ ッ プよ り も 同一捕集量で比較圧 し た場合に、 圧力損失 の低下 - が小 さ い利点が見い だ さ れた。 さ ら に、 本実験で用 い た フ ィ ル タ エ レ メ ン ト に
新たな用紙 対して、 排気ガス は、 第 4 図 ( A ) に示すよ う に、 フ ィ ルタ エ レ メ ン ト の筒体外周側か ら フ ィ ルタ エ レ メ ン ト の筒体内面側へ通過する 。 こ の例の場合 も、 閉塞する端面を逆にする こ と によ り ガスの流 れ方向を逆に して も同様に フ ィ ルタ 効果が得ら れ る こ とは、 い う ま でも ない。 同一サ イ ズな らば、 実施例のおよそ 1 0 %減に留ま る こ と を別の試験 によ り 確認 した。
[表 1 2】
試験例 4で使用した各種パティキュ レー ト ト ラ ップの実施例および 比較例の構成 (波形 1、 周方向)
Figure imgf000048_0001
新たな用紙 [表 1 3】 試 験 例 4 に お け る 評 価 結 果
Figure imgf000049_0001
(試験例 5 ) 本発明 に関わ る パ テ ィ キ ュ レー ト ト ラ ッ プの実 施例につ い て、 比較例 と あわせて、 次に説明す る 第 5 図 ( A ) ( B ) はそ れぞれ本実験例に関わ る ト ラ ッ プの縦断正面図お よ び ト ラ ッ プ長手方向 中央部縦断断面図で あ る 。 パ テ ィ キ ユ レ一 ト ト ラ ッ プ は、 第 5 図 ( A ) ( B ) に示す よ う に、 フ ィ ルタ エ レ メ ン ト が、 連通気孔を も つ N i — C r 合 金か ら な る 3 次元網状構造多孔体 4 1 1 か ら な り フ ィ ルタ エ レ メ ン ト の筒体 4 1 7 が筒体軸を 中心 と し て、 軸方向 に規則性を も っ て、 波形に 形成 さ 新た な用紙 れてお り 、 こ の筒体が、 フ ィ ルタ エ レ メ ン ト 収納 容器 4 1 2 丙に収容され、 こ の筒体 4 1 7 の一端 の端面開口と他端の外周面と該容器 4 1 2 内周面 と の間に形成される空間 とを閉塞してパテ ィ キ ュ レ ー ト捕集体 4 2 5 が形成されて い る 。
以下詳細に説明する。
(実施例)
予め所定寸法に切断さ れた 4 0 重量% C r を舍 む N i 基合金か ら なる 3 次元網状構造多孔体シ一 ト をプ レ ス成形によ っ て、 周方向に波形に成形 し た筒状フ ィ ルタ エ レ メ ン ト を作製した。 エ レ メ ン ト の厚さ ば 1 0 m m—定と し、 所定の厚さ にな る よ う に、 予めサイ ズを変えて作製した波形成形し た シー ト を重ねあわせ、 一体化 した上で、 再度の 仕上げ成形を行っ た。 フ ィ ル タ エ レ メ ン ト 収納容 器は試験例 4 と同 じサイ ズの内径 1 6 0 と し、 フ ィ ルタ エ レメ ン ト から なる パティ キユ レ一 ト 捕 集体の長さ は 3 5 0 m m と した。 波形は軸方向に
3 5 、 7 倔に成る よ う に作製し、 フ ィ ルタ エ レ メ ン ト の ガス流入面積を替え、 性能評価 し た。
新たな用紙 ( 比較例 )
本実施例 と 比較す る た め に 、 波形成形 し な か つ た、 単な る 円柱状筒体を使用 し た。 容器 サ イ ズお よ び フ ィ ル タ エ レ メ ン ト の長 さ 、 厚み は実施例 と 合わせ た。
表 1 4 に本実施例 と比較例 と を 併せて フ ィ ル タ エ レ メ ン ト の 具体的構成を示す。
試験 は、 排気量 2 . 8 L の デ ィ ー ゼ ル エ ン ジ ン の排気系 に取 り 付 け、 回転数 1 6 0 0 r P m、 ト ル ク 6 k g f · m で 6 時間ま で運転 し、 ノ テ ィ キ ュ レ ー ト の捕集を行 っ た。 上述の実施例お よ び比 較例の捕集量 と 圧力損失の測定を行 い 、 評価 し た。
表 1 5 に実施例比較例の性能評価結果を示す。 同一外径の フ ィ ル タ エ レ メ ン ト が軸方向 に対 し て 波形に す る こ と で、 ほぼ同一の捕集量で あ る が、 圧力損失の上昇が抑え ら れて い る こ と が判 つ た。 こ れ は、 ノ、' テ ィ キ ュ レ ー ト 捕集体を形成す る フ ィ ルタ エ レ メ ン ト を波形に す る こ と で、 フ ィ ルタ エ レ メ ン ト の ガ ス 流入面積を 増加 さ せ た効果が得 ら れた た め で あ る 。
新たな用紙 さ ら に、 排気ガス は、 第 5 図 ( A ) に示すよ う に、 筒体の外周側か ら筒体の 内面側へ通過す る 。 こ の例の場合 も、 閉塞する 端面を逆に す る こ と に よ り ガス の長さ方向を逆に して も 同様に フ ィ ルタ 効果が得 ら れた はい う ま で も な い。
【表 1 4】
試験例 4で使用した各種パティキュレー 4 トラ ップの実施例および 比較例の構成 (波形 1、 周方向)
Figure imgf000052_0001
新たな甩紙 【表 1 5】
試 験 例 5 に お け る 評 価 結 果 捕集量 (g ) 、 圧力損失 (K P a )
N 0 .
Figure imgf000053_0001
(試験例 6 )
試験例 1 で は N i - C r 合金か ら な る金属 3 次 元網状構造多孔体を用 い た フ ィ ルタ に つ い て検討 結果に つ い て示 し たが、 必ず し も こ の組成に 限定 さ れ る も の で は な く 、 N i 一 C r 合金で は次 の組 成で作製 し た フ ィ ルタ に つ い て も検討 し た。 さ ら に、 N C r 一 A 1 合金か ら な る 3 次元網状構 造多孔体に つい て も 実施例 1 と 同 じ構造の フ ィ ル タ 構造の多孔体を形成 し た。 パー ナ に よ る 再生用 ホ ッ ト ガス 供給装置か ら平均温度 8 0 0 て の加熱 空気を 2 m 3 ノ m i n 送 り 込み、 捕集さ れたパテ ィ キ ユ レ一 ト を燃焼さ せ る こ と に よ っ て再生 し た 新たな用紙 なお、 表 1 6 に組成をかえて作製した本実施例と 比較例を試験結果とあわせて示す。 試験の結果、 表 1 6 に示すよ う に、 N i — C r 合金か ら なる 3 次元網状構造多孔体、 さ ら に、 N i — C r 一 A 1 合金か ら な る 3 次元網状構造多孔体で は、 次の範 囲の合金組成な ら、 5 0 0 画の再生に対 してなん ら損傷も な く 、 耐久性のあ る フ ィ ルタ を提供で き る こ とが判つ た。
5 0 0 回の再生では、 N i — C r 系で は、 C r
1 5 重量%以上な ら ば外観上大き な損傷も な く 耐 久性があ る こ とが判っ た。 C r 1 0 重量%以下で は脆 く て、 多孔質な酸化ス ケ ー ルが生成され、 耐 久性がない こ とが判っ た。 耐熱性向上に対して A 1 の添加は しな く て も大き な耐熱性に は大き な差 は認め られなかっ た。
新たな用紙 【表 1 6】
試験例 6 における 3次元網状構造多孔体の組成と
再生後の骨格劣化状況
Figure imgf000055_0001
(試験例 7 ) ( ヒ ー タ )
試験例 1 で は、 フ ィ ルタ エ レ メ ン ト に捕集さ れ た パ テ ィ キ ュ レ ー ト を除去す る 本発明 の 1 例 と し て、 厳密な制御な し にバ一 ナ に よ る 燃焼熱を利用 し た再生方式で、 耐熱性金属か ら な る 3 次元網状 構造多孔体に捕集さ れたパ テ ィ キ ュ レ ー ト が餘去 で き る こ と を示 し た。 こ こ で は、 耐熱性の 3 次元 網状構造多孔体に捕集さ れた パ テ ィ キ ュ レー ト を 新たな用紙 電気ヒ ータ方式で璣焼除去す る方式を提供する。 こ の場合、 ヒータ エ レ メ ン ト を ど う 配置 した ら よ いかが一つのポ イ ン ト であ る。 本発明で ば、 1 例 と して第 1 0 図に示すよ う に シ一ズヒ ータ を 3 次元網状構造多孔体か ら形成 した フ ィ ルタ エ レ メ ン ト の筒体を用いた。 シーズヒ ータ は排気ガス力 流入透過 し、 パティ キ ュ レー ト が捕集される壁の 内部に埋め込んであ る 。 第 1 0 図では、 筒体 6 1
7 中の位置 6 2 2 A、 B、 C、 D に シーズヒ ータ
6 2 2 A、 6 2 2 B \ 6 2 2 C、 6 2 2 D 力くでき る だけ、 ガス流入側に近い側内に埋め込ま れてい る 。 6 2 2 Aの シ一ズヒ ータ は 6 2 2 Aの シーズ ヒータ と一体であ り 、 端面 B 近傍で曲げら れて い る 。 曲 げ部ば端面 B に埋め込まれてい る。 6 2 2
C、 6 2 2 D も同様である。 6 2 2 A〜 6 2 2 D は概赂 9 0 度で配置されている。
こ の よ う に して得 ら れる ヒ ータ付フ イ ノレタ エ レ メ ン ト を第 8 図 ( A ) ( B ) に示すよ う な ト ラ ッ プ内に端面を閉塞する よ う に して 4 本装着 した。 今回の試験は、 こ のよ う に して得 られたフ ィ ルタ 新たな用紙 を ト ラ ッ プに装着す る 際に、 排気ガ ス 内側か ら 、 外側へ通過す る よ う に装着 した。 フ ィ ル タ ヱ レ メ ン ト の大 き さ は、 外径 1 5 0 Φ 、 厚 さ 1 0 m m、 長 さ 3 5 O m mで あ る 。 フ ィ ノレタ エ レ メ ン ト は、 N i — C r 合金力、 ら な り 、 空孔の平均径 0 . 5 m m の 3 次元網状構造多孔体を使用 し、 厚 さ 方向の 空孔の数 は 3 5 個、 体積充塡率は 2 0 % と な る よ う に成形 し、 作製 し た。 こ の ト ラ ッ プ一式を 2 . 0 L 排気量の デ ィ ー ゼ ル エ ン ジ ン の排気系 に取 り 付 け、 2 0 0 0 r p m、 5 k g f · mの ト ノレ ク で 排気運転を行 っ た。 初期圧力損失が 1 K P a で あ つ た も のが、 運転経過につれて、 捕集さ れたパテ ィ キ ュ レー ト に よ る 圧力損失が増大 し、 5 時間で 6 K P a に な っ た 。 デ ィ ーゼルエ ン ジ ン 力、 ら 排出 さ れたパテ ィ キ ュ レー ト を 背圧が高 く な る前に電 気 ヒ ー タ に通電す る こ と に よ り ノ、。テ ィ キ ュ レ ー ト を燃焼除去す る 必要があ り 、 試験で は、 こ の時点 で電気 ヒ ー タ に通電 し加熱 し た。 こ の実験で は、 6 2 2 A と 6 2 2 B ( 十 ) 極 と し、 6 2 2 C 、 6
2 2 D を ( 一 ) 極 と して通電 し た。 つ う で ん時間 新たな用紙 と と もに、 ト ラ ッ プの圧力損失が急激に低下 し、 ほぼ初期の 1 一 2 K P a に低下する こ とが認め ら れた。 捕集されていたパテ ィ キ ュ レー ト が燃焼消 滅 して、 フ ィ ルタ再生が良好に行われた こ と を示 す。
排気ガス流入側に設けた ヒ ータで保証さ れたパ テ ィ キ ュ レー ト が、 金属性の 3 次元網扰構造多孔 体と と も に加熱昇温 し、 パティ キ ュ レ ー ト に着荷 し、 燧焼を始め、 速やかに燃焼が飛火 し、 フ ィ ル タ の再生を完了 してい るわけである。
こ のよ う な方式で再生完了 した フ ィ ルタ につい て観察したが、 特別異常点は認め られず正常であ り 、 材料への負荷も少ない方式であ る こ とがわか つ た。 ノ
本発明に使用する 3 次元網状構造多孔体は金属 であ り 、 しかも多孔性であ る ため、 コ ーデ ィ エ ラ ィ ト フ ィ ルタ に比べて熱容量、 熱伝導率が低い、 それ故、 すすの燃焼部分で発生する熱は多量の排 ガ ス によ って急速に除去され易 く 、 フ ィ ルタ材料 の局部的な異常過熱の防止が可能と な る。 一方、 新たな用紙 燃焼部分 の ご く 近傍に限 っ て維持 さ れ、 そ れ故、 急速な燃焼あ る い は、 冷却に よ る 熱衝撃 は生 じ ず、 穏やかで 、 き わ め て望ま し い速度で の 燃焼が行わ れ る の で あ る 。
本実施例で は、 ヒ ー タ を ガ ス 流入口面側の筒体 内側近 く に埋め込んだが、 ガス の流れが外側か ら 内側に流入す る 場合に は筒体外側近 く に、 ヒ ー タ を埋 め込む法が熱効率か ら 考え て 、 望ま し い。
本実施例で は、 第 8 図 ( B ) に示す よ う な ト ラ ッ プ内 に 4 本の フ ィ ルタ ヱ レ メ ン ト を 装着 し た。 円排気量お よ び再生 シ ス テ ム に応 じ て ア レ ン ジ し て い い の は言 う ま で も な い。
〔 産業上の利用 可能性 〕
以上説明 し たよ う に、 本発明 に よ れば、 デ ィ ー ゼルエ ン ジ ン車か ら排出 さ れ る パテ ィ キ ュ レ ー ト を捕捉す る の に、 捕集効率 も高 く 、 圧力損失の上 昇が少な く 、 再生時のパ テ ィ キ ユ レ 一 ト の燃焼に よ る 熱応力 に も 耐え得 る デ ィ ーゼルエ ン ジ ン排気 ガス 浄化用パテ ィ キ ュ レー ト ト ラ ッ プが得 ら れ る 効果があ る 。
新たな用紙

Claims

〔請 求 の 範 囲〕
(1) フ ィ ルタ エ レ メ ン ト と容器と力、 ら な り 、 フ ィ ルタ エ レ メ ン ト が前記容器内に装着さ れてお り 、 前記フ ィ ルタ エ レ メ ン ト が連通空孔を有する耐熱 性金属骨格か ら なる 3 次元網状構造多孔体か ら な る デ ィ 一ゼ ルェ ン ジ ン排気ガ ス浄化用パ テ ィ キ ュ レ一 ト ト フ ッ フ °。
(2) 排気系の途中に設置さ れた容器と、 前記容器 内に フ ィ ル タ エ レメ ン ト が装着さ れたデ ィ ーゼル ェ ン ジ ン排気ガス浄化用パテ ィ キ ユ レ 一 ト ト ラ ッ プ に お い て 、 前記フ ィ ル タ エ レ メ ン ト が連通空孔 を有する 耐熱性金属骨格か らなる 3 次元網状構造 多孔体か ら な り 、 前記空孔の平均孔径が 0 . 1 〜 1 m mで、 前記フ ィ ルタ エ レ メ ン ト の厚み方商に おける空孔の平均数が 1 0 偭以上であ り 、 前記フ ィ ルタ エ レ メ ン' ト の濾過部に お け る前記金属骨格 の占め る体積充塡率が 1 0 〜 4 0 %てあ り 、 前記 フ ィ ルタ エ レ メ ン ト の排気ガ ス流入表面積が前記 ト ラ ン プを取り 付ける ェ ン ジ ンの排気量 1 L あた
¾ 4 0 C c m 2 ¾上である こ とを特徵と する デ ィ 新たな用紙 ―ゼル エ ン ジ ン排気ガ ス 浄化用ノ、' テ ィ キ ュ レ ー ト
ト フ ッ フ °。
(3) 前記 3 次元網状構造多孔体 の金属骨格 の 断面 投影幅が 2 0 m以上で あ る こ と を特徴 と す る 請 求項 1 記載のデ イ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用
ノヾ テ ィ キ ュ レ ー ト ト ラ ッ フ 。
(4) 前記 3 次元網状構造多孔体の金属骨格の表面 粗 さ が— R m a X 0 . 2 m以上で あ る こ と を特徴 と す る 請求項 1 ま た は 2 記載のデ ィ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用パテ ィ キ ュ レ ー ト ト ラ ッ プ。
(5) 前記 フ ィ ル タ エ レ メ ン ト の筒体が複数本、 前 記容器内 に装着 さ れ、 各筒体 の一方の端部外周面 と 前記容器内周面 と の間に形成 さ れる 空間 と 各筒 „ 体の他方の端面開口 と を そ れぞれ閉塞 し て形成 さ れたパテ ィ キ ュ レー ト 捕集体を有する こ と を特徴 ― と す る 請求項 1 、 2 、 3 の い ずれかの項に記載の
デ ィ ニゼルエ ン ジ ン排気ガ ス浄化用パテ ィ キ ュ レ
'一'卜 ··ト フ ッ フ 。 .
(6) 柽の異な る 複数本の フ ィ ル タ エ レ メ ン ト の筒 体が各筒体間に所定の隙間を あ けて 同心状に前記
新たな用紙 容器内に装着され、 最も外側に位置する 筒体の一 端の外周面と前記容器の内周面との間に形成さ れ る空間と、 各茼体間に形成さ れる一端の隙間 と、 最も内側に位置する筒体の端面開口をそれぞれ、 ガス流入口側とガス流出口側において互い違いに なる よ う に閉塞して形成さ れたパテ ィ キ ユ レ一 ト 捕集体を有する こ とを特徴とする請求項 1 、 2 、
3 のいずれかの項に記載のデ ィ 一ゼルェ ン ジ ン徘 気ガス浄化用ノ、'テ ィ キ レー ト ト ラ ッ プ。 (7} 周方向も し く は軸方向に波形に成形された前 記フ ィ ルタ ヱ レメ ン ト の筒体が前記容器内に装着 され、 こ の筒体の一端の端面開口 と、 他端の外周 面と前記容器内周面と の間に形成さ れる空間 と を - 閉塞して形成されたバテ ィ キ ュ レー ト捕集体を有 する こ とを特徵とする請求項 1 、 2 3 のいずれ かの項に記載のデ イ ーゼルェ ン ジ ン排気ガス浄化 用ノヽ'テ ィ キ ュ レー ト ト ラ ツ ブ。
(8) 前記耐熱性金属が N i 基合金であ っ て、 さ ら に前記合金の組成が N i : .5 0 〜 8 0 重量%、 C r : 2 0 〜 5 0 重量%か らなる こ とを特徵と す る 新たな用紙 請求項 1 〜 6 の い ずれかに記載の デ ィ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用パテ ィ キ ユ レ 一 ト ト ラ ッ プ。
(9) 前記耐熱性金属が N i 基合金で あ っ て 、 さ ら に前記 N i 基合金の組成が N i : 5 0 〜 8 5 重量 %、 C r : 1 5 〜 5 0 重量%、 A 1 : 1 〜 6 重量 %か ら な る こ と を特徴 と す る 請求項 1 〜 6 の い ず れかに記載のデ ィ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用 ノヽ テ ィ 十 ユ レ — ト ト ラ ッ フ。。
(10) 前記 フ イ ノレ タ エ レ メ ン ト に捕集 さ れた パ テ ィ キ ュ レ ー ト を燃焼除去す る た め の電気 ヒ ー タ エ レ メ ン ト が設 け ら れた こ と を 特徴 と す る 請求項 1 〜 8 の い ずれかに記載のデ ィ ー ゼ ル ェ ン ジ ン排気ガ ス 浄化用 ノ、。 テ ィ キ ュ レ ー ト ト ラ ッ プ。
新たな用紙
PCT/JP1992/000634 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust gas WO1993023144A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP92910207A EP0603392B1 (en) 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust gas
DE69216101T DE69216101T2 (de) 1992-05-13 1992-05-13 Partikelfilter zur reinigung von dieselmotorabgas
PCT/JP1992/000634 WO1993023144A1 (en) 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust gas
US08/185,983 US5458664A (en) 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1992/000634 WO1993023144A1 (en) 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust gas

Publications (1)

Publication Number Publication Date
WO1993023144A1 true WO1993023144A1 (en) 1993-11-25

Family

ID=14042345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000634 WO1993023144A1 (en) 1992-05-13 1992-05-13 Particulate trap for purifying diesel engine exhaust gas

Country Status (4)

Country Link
US (1) US5458664A (ja)
EP (1) EP0603392B1 (ja)
DE (1) DE69216101T2 (ja)
WO (1) WO1993023144A1 (ja)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655212A (en) * 1993-03-12 1997-08-05 Micropyretics Heaters International, Inc. Porous membranes
JP3567488B2 (ja) * 1994-06-28 2004-09-22 住友電気工業株式会社 高耐食性金属多孔体の製造方法
EP0707139B1 (en) * 1994-10-13 2000-01-19 Sumitomo Electric Industries, Ltd. Particulate trap
US5611831A (en) * 1994-11-16 1997-03-18 Isuzu Ceramics Research Institute Co., Ltd. Diesel particulate filter apparatus
US5682740A (en) * 1995-05-12 1997-11-04 Isuzu Ceramics Research Institute Co., Ltd. Diesel particulate filter apparatus
DE19524399C2 (de) * 1995-07-04 2000-01-13 Karlsruhe Forschzent Verfahren zum Regenerieren von mit brennbaren Substanzen beladenen, elektrisch leitfähigen Filtermaterialien durch Verbrennung sowie Filterkerze zur Ausübung des Regenierverfahrens
EP0761279B1 (en) * 1995-08-22 2002-11-20 Denki Kagaku Kogyo Kabushiki Kaisha Honeycomb structure
US5782941A (en) * 1996-09-23 1998-07-21 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine
DE19701684A1 (de) * 1997-01-20 1998-07-23 Deutz Ag Partikelfilter
JPH10317945A (ja) * 1997-05-21 1998-12-02 Sumitomo Electric Ind Ltd 排気ガス浄化装置
WO2000038819A1 (en) * 1997-07-18 2000-07-06 Rypos, Inc. Self-cleaning and self-sealing particle filter
US5853437A (en) * 1997-07-18 1998-12-29 Peter; Klaus J. Self-cleaning and self-sealing particle filter
GB9804739D0 (en) * 1998-03-06 1998-04-29 Johnson Matthey Plc Improvements in emissions control
FR2781690B1 (fr) * 1998-08-03 2002-04-12 Ecia Equip Composants Ind Auto Dispositif de regeneration d'un filtre a particules de purification des gaz d'echappement d'un moteur de vehicule automobile
FR2784306A1 (fr) * 1998-10-12 2000-04-14 Leone Morabito Dispositif de filtrage d'un courant de gaz emanant des tuyaux d'echappement de vehicules
JP2001073742A (ja) 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd ディーゼルエンジン用パティキュレートトラップ
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
DE10045342C1 (de) * 2000-09-14 2001-11-22 Drafas Gmbh Einrichtung zum Behandeln von Abgasen aus technischen Verbrennungsprozessen
US6598388B2 (en) 2001-02-01 2003-07-29 Cummins, Inc. Engine exhaust gas recirculation particle trap
US6572682B2 (en) 2001-06-26 2003-06-03 Rypos, Inc. Self-cleaning filter system using direct electrically heated sintered metal fiber filter media
US6540816B2 (en) 2001-08-23 2003-04-01 Fleetguard, Inc. Regenerable filter with localized and efficient heating
GB0128772D0 (en) * 2001-12-03 2002-01-23 Delphi Tech Inc Diesel particulate filter
JP2003293729A (ja) * 2002-04-02 2003-10-15 Purearth Inc 炭素粒子の減少装置
US6942708B2 (en) * 2002-04-18 2005-09-13 Rypos, Inc. Bifilar diesel exhaust filter construction using sintered metal fibers
JP2006526726A (ja) * 2003-04-24 2006-11-24 ビーワイディー カンパニー リミテッド マフラー及び触媒コンバーター装置
US6991668B2 (en) * 2003-09-26 2006-01-31 Towsley Frank E Diesel soot filter
JP2005180262A (ja) * 2003-12-18 2005-07-07 Tetsuo Toyoda 粒子状物質の減少装置
US20080028754A1 (en) * 2003-12-23 2008-02-07 Prasad Tumati Methods and apparatus for operating an emission abatement assembly
US7025810B2 (en) * 2004-01-13 2006-04-11 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel-fired burner of an emission abatement assembly
US7243489B2 (en) * 2004-01-13 2007-07-17 Arvin Technologies, Inc. Method and apparatus for monitoring engine performance as a function of soot accumulation in a filter
US20050150215A1 (en) * 2004-01-13 2005-07-14 Taylor William Iii Method and apparatus for operating an airless fuel-fired burner of an emission abatement assembly
US20050150219A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for controlling the temperature of a fuel-fired burner of an emission abatement assembly
US7685811B2 (en) * 2004-01-13 2010-03-30 Emcon Technologies Llc Method and apparatus for controlling a fuel-fired burner of an emission abatement assembly
US20050150216A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for cleaning the electrodes of a fuel-fired burner of an emission abatement assembly
US7118613B2 (en) * 2004-01-13 2006-10-10 Arvin Technologies, Inc. Method and apparatus for cooling the components of a control unit of an emission abatement assembly
US7908847B2 (en) * 2004-01-13 2011-03-22 Emcon Technologies Llc Method and apparatus for starting up a fuel-fired burner of an emission abatement assembly
US8641411B2 (en) * 2004-01-13 2014-02-04 Faureua Emissions Control Technologies, USA, LLC Method and apparatus for directing exhaust gas through a fuel-fired burner of an emission abatement assembly
US7581389B2 (en) * 2004-01-13 2009-09-01 Emcon Technologies Llc Method and apparatus for monitoring ash accumulation in a particulate filter of an emission abatement assembly
US20050150376A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for monitoring the components of a control unit of an emission abatement assembly
WO2005070175A2 (en) * 2004-01-13 2005-08-04 Arvin Technologies, Inc. Emission abatement assembly and method of operating the same
US7628011B2 (en) * 2004-01-13 2009-12-08 Emcon Technologies Llc Emission abatement assembly and method of operating the same
DE102005006122A1 (de) * 2004-02-11 2005-09-15 Arvin Technologies, Inc., Troy Partikelfilterbaugruppe
DE102005019672A1 (de) * 2005-04-26 2006-11-02 Daimlerchrysler Ag Filtersystem
GR1005904B (el) 2005-10-31 2008-05-15 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ-ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΑΞΙΟΠΟΙΗΣΗΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ (κατά ποσοστό 40%) Καταλυτικο φιλτρο μεταλλικου αφρου για το καυσαεριο των κινητηρων ντηζελ.
DE102005061958A1 (de) * 2005-12-23 2007-07-05 Arvinmeritor Emissions Technologies Gmbh Partikelfilter für eine Abgasanlage
EP1914536A1 (en) * 2006-10-17 2008-04-23 Ibiden Co., Ltd. Particulate matter sensor for exhaust gas purifying apparatus
US7805926B2 (en) * 2007-04-30 2010-10-05 Caterpillar Inc Exhaust treatment system having an acidic debris filter
US8789363B2 (en) 2007-06-13 2014-07-29 Faurecia Emissions Control Technologies, Usa, Llc Emission abatement assembly having a mixing baffle and associated method
WO2009055452A2 (en) 2007-10-24 2009-04-30 Mott Corporation Sintered fiber filter
US20090178395A1 (en) * 2008-01-15 2009-07-16 Huffmeyer Christopher R Method and Apparatus for Regenerating a Particulate Filter of an Emission Abatement Assembly
US20090178389A1 (en) * 2008-01-15 2009-07-16 Crane Jr Samuel N Method and Apparatus for Controlling a Fuel-Fired Burner of an Emission Abatement Assembly
US20090178391A1 (en) * 2008-01-15 2009-07-16 Parrish Tony R Method and apparatus for operating an emission abatement assembly
US20090180937A1 (en) * 2008-01-15 2009-07-16 Nohl John P Apparatus for Directing Exhaust Flow through a Fuel-Fired Burner of an Emission Abatement Assembly
KR100969378B1 (ko) * 2008-03-31 2010-07-09 현대자동차주식회사 배기 가스 정화 장치
FI20095735A0 (fi) * 2009-06-29 2009-06-29 Ecocat Oy Puhdistinrakenne
GB2475097A (en) * 2009-11-06 2011-05-11 Total Vehicle Technology Ltd Analysing an exhaust gas using an inorganic filter
EP3120916B1 (en) * 2010-02-22 2021-10-20 Hitachi Metals, Ltd. Production method for a ceramic honeycomb structure
US20120211408A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter With Internal Support Structures
US20120211411A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter
US20120285324A1 (en) * 2011-05-10 2012-11-15 Cummins Filtration Ip Inc. Filter with Specified Flow Path Combinations
DE102011117172B4 (de) * 2011-10-28 2016-04-21 Mann + Hummel Gmbh Dieselpartikelfilter und Filteranordnung
US9089800B2 (en) * 2012-02-03 2015-07-28 Msp Corporation Method and apparatus for vapor and gas filtration
US9140155B2 (en) * 2013-06-03 2015-09-22 Caterpillar Inc. Modular exhaust system
US10730047B2 (en) * 2014-06-24 2020-08-04 Imagine Tf, Llc Micro-channel fluid filters and methods of use
JP2016090439A (ja) * 2014-11-06 2016-05-23 株式会社日本自動車部品総合研究所 粒子状物質検出素子及び粒子状物質検出センサ
CN106285839A (zh) * 2015-05-28 2017-01-04 杨琦 一种柴油汽车金属丝球颗粒捕集器
CN113550811B (zh) * 2021-06-02 2022-05-20 内蒙古农业大学 一种柴油机排气颗粒物捕集器及其捕集方法
DE102022105526A1 (de) * 2022-03-09 2023-09-14 Aixtron Se CVD-Vorrichtung sowie Verfahren zum Reinigen einer Prozesskammer einer CVD-Vorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511024A (en) * 1978-07-11 1980-01-25 Origin Electric Co Ltd Filter moldings and production thereof
JPS5710319A (en) * 1980-06-23 1982-01-19 Toyota Motor Corp Exhaust gas filter for internal combustion engine
JPS58151417U (ja) * 1982-03-31 1983-10-11 株式会社 土屋製作所 排気ガスフイルタ
JPS58166823U (ja) * 1982-04-30 1983-11-07 株式会社土屋製作所 排気ガスフイルタ装置
JPS59119319U (ja) * 1983-01-31 1984-08-11 株式会社土屋製作所 排気ガスフイルタ装置
JPS63117115A (ja) * 1986-11-04 1988-05-21 Matsushita Electric Ind Co Ltd デイ−ゼル排ガス浄化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545273A (en) * 1977-06-14 1979-01-16 Toshiba Corp Vapor removing device
JPS574216A (en) * 1980-06-10 1982-01-09 Toyota Motor Corp Exhaust gas filter for internal combustion engine
JPS58151417A (ja) * 1982-02-27 1983-09-08 Sumitomo Metal Ind Ltd 加熱炉
DE3208118A1 (de) * 1982-03-06 1983-09-08 Philips Patentverwaltung Verfahren zur herstellung einer digitalen filteranordnung als integrierte schaltung
JPS59119319A (ja) * 1982-12-27 1984-07-10 Seiko Epson Corp 液晶ライトバルブ
US4687579A (en) * 1986-05-02 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Sintered composite medium and filter
SU1371705A1 (ru) * 1986-05-07 1988-02-07 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов,Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Способ регенерации металлотканевого фильтра
US4758272A (en) * 1987-05-27 1988-07-19 Corning Glass Works Porous metal bodies
DE3818281A1 (de) * 1988-03-10 1989-09-21 Schwaebische Huettenwerke Gmbh Abgasfilter
US5318606A (en) * 1989-04-04 1994-06-07 Pall Corporation Filtration system
US4957543A (en) * 1989-06-16 1990-09-18 Inco Limited Method of forming nickel foam
DE4032086A1 (de) * 1990-10-10 1992-04-16 Didier Werke Ag Russpartikelfilter
US5114447A (en) * 1991-03-12 1992-05-19 Mott Metallurgical Corporation Ultra-high efficiency porous metal filter
US5171341A (en) * 1991-04-05 1992-12-15 Minnesota Mining And Manufacturing Company Concentric-tube diesel particulate filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511024A (en) * 1978-07-11 1980-01-25 Origin Electric Co Ltd Filter moldings and production thereof
JPS5710319A (en) * 1980-06-23 1982-01-19 Toyota Motor Corp Exhaust gas filter for internal combustion engine
JPS58151417U (ja) * 1982-03-31 1983-10-11 株式会社 土屋製作所 排気ガスフイルタ
JPS58166823U (ja) * 1982-04-30 1983-11-07 株式会社土屋製作所 排気ガスフイルタ装置
JPS59119319U (ja) * 1983-01-31 1984-08-11 株式会社土屋製作所 排気ガスフイルタ装置
JPS63117115A (ja) * 1986-11-04 1988-05-21 Matsushita Electric Ind Co Ltd デイ−ゼル排ガス浄化装置

Also Published As

Publication number Publication date
US5458664A (en) 1995-10-17
EP0603392A4 (ja) 1994-08-31
DE69216101D1 (de) 1997-01-30
EP0603392A1 (en) 1994-06-29
DE69216101T2 (de) 1997-07-17
EP0603392B1 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
WO1993023144A1 (en) Particulate trap for purifying diesel engine exhaust gas
CN1969073B (zh) 无机纤维集合体及其制造方法、蜂窝结构体及其制造方法
JP5649945B2 (ja) 表面捕集層付き担体及び触媒担持表面捕集層付き担体
US5425236A (en) Catalyzer arrangement for the exhaust gases of an internal combustion engine
CN100395435C (zh) 逆向喷气再生的壁流式金属网板柴油车排气微粒捕集器
JP6487982B1 (ja) 排ガス浄化用触媒
KR100747088B1 (ko) 열내구성이 개선된 디젤엔진 매연여과장치용 촉매식 dpf
JP2732031B2 (ja) デイーゼル機関の排気微粒子フイルタ
JP6539551B2 (ja) 排ガス処理装置、触媒の昇温方法、ハニカム構造体の再生方法、及びアッシュ除去方法
JPWO2008026675A1 (ja) セラミックハニカムフィルタ
US6102976A (en) Exhaust gas purifier
JP2004526091A (ja) 燃焼機関からの排気ガスの後処理装置及び方法
JPH11500053A (ja) 内燃機関用排気浄化装置
EP1991765A1 (en) An apparatus for the separation of particles contained in exhaust gases of internal combustion engines
JP2003097253A (ja) 多孔質金属複合体、該多孔質金属複合体を用いたdpf、及び該dpfを装備するディーゼル排気ガス浄化装置
RU2476693C2 (ru) Фильтр из металлических волокон для очистки выхлопного газа, имеющий перепускную часть щелевого типа
JP2962042B2 (ja) ディーゼルエンジン排気ガス浄化用パティキュレートトラップ
CN102652032A (zh) 可再循环的微粒过滤器
JP6986116B1 (ja) 排ガス浄化用触媒
JP2002349232A (ja) 排気ガス浄化装置のフィルタ片回収装置
CN101070768A (zh) 柴油机自再生高效尾气净化消声器
JP2004076633A (ja) 粒子状物質除去装置
JPH01143611A (ja) フィルタ用構造体
JP2002097925A (ja) 多層フェルト構造のディーゼルパティキュレートフィルタ
CN1323227C (zh) 柴油机尾气前处理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 08185983

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1992910207

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1992910207

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992910207

Country of ref document: EP