WO1992020509A1 - Device for analyzing working hours of injection molding machine - Google Patents

Device for analyzing working hours of injection molding machine Download PDF

Info

Publication number
WO1992020509A1
WO1992020509A1 PCT/JP1992/000623 JP9200623W WO9220509A1 WO 1992020509 A1 WO1992020509 A1 WO 1992020509A1 JP 9200623 W JP9200623 W JP 9200623W WO 9220509 A1 WO9220509 A1 WO 9220509A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
injection molding
operating
state
molding machine
Prior art date
Application number
PCT/JP1992/000623
Other languages
English (en)
French (fr)
Inventor
Masao Kamiguchi
Osamu Saito
Kazuo Kubota
Masanobu Takemoto
Original Assignee
Fanuc Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd. filed Critical Fanuc Ltd.
Priority to KR1019920703323A priority Critical patent/KR0124808B1/ko
Priority to EP92910206A priority patent/EP0540752B1/en
Priority to DE69221424T priority patent/DE69221424T2/de
Priority to US07/961,900 priority patent/US5344301A/en
Publication of WO1992020509A1 publication Critical patent/WO1992020509A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/762Measuring, controlling or regulating the sequence of operations of an injection cycle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/02Registering or indicating working or idle time only
    • G07C3/04Registering or indicating working or idle time only using counting means or digital clocks

Definitions

  • the present invention relates to an operation time analyzer that measures and totals elapsed time for a specific operation state of an injection molding machine.
  • the operator of the injection molding machine operates a timer / stopwatch in response to the operation, and automatically calculates the automatic operation time and manual operation time of the injection molding machine and the loss time of alarm occurrence.
  • the timer stopwatch etc. it was difficult for the operator to operate the timer stopwatch etc. incorrectly, and it was difficult to obtain correct measurement results.
  • An object of the present invention is to provide an operation time analysis device for an injection molding machine that can accurately analyze and store the operation time for each operation state without the need for an operator. To provide.
  • a first aspect of the present invention provides an operating state detecting means for detecting various operating states of an injection molding machine, and detecting for each type of operating state detected by the operating state detecting means. And a data output means for displaying and outputting the accumulated time for each operating state accumulated by the time measuring means.
  • the various operating states include the power-on time of the injection molding machine, and the cumulative operating time of each operating state measured by each timing means with respect to the power-on time accumulated by the timing means.
  • Means for calculating the ratio of the operation time, and the data output means displays and outputs the calculated ratio of the operation time for each operation state.
  • the various operating states include any one of a heater rising time, an alarm generation time, a stop time after production is completed, a manual operation time, and an automatic operation time.
  • the central control computer and a plurality of injection molding machines are connected by a data transmission line, only the operation state detecting means is provided in each injection molding machine, and the other means are provided in the central control computer.
  • a second aspect of the present invention provides an operating state detecting means for detecting various operating states of the injection molding machine, a clock means, and a signal when a time output from the clock means matches a preset time.
  • Totaling time output means for outputting the operation time, and a time which is reset by an output signal from the totaling time output means and which is detected by the operation state detecting means for each type of operation state is cumulatively counted.
  • Time counting means, state-based operation time storage means for sequentially storing the time accumulated by each of the time counting means based on the output signal from the tallying time output means, and each operation stored in the state-based operation time storage means Data to display and output the accumulated time for each state Data output means.
  • the various operating states include the power-on time of the injection molding machine, and the ratio of the cumulative operating time of each operating state clocked by each timer to the power-on time accumulated by the timer.
  • the operation time storage means for each state also stores the ratio of the calculated operation time, and the data output means also displays the ratio of the operation time together with the accumulated time count for each operation state. Output.
  • this operating state includes any of the following: heater rise time, alarm occurrence time, stop time after production completion, manual operation time, semi-automatic operation time, and automatic operation time.
  • the totaling time output means outputs a signal once a day
  • the state-specific operation time storage means stores the state-specific operation time for each day and the ratio of the operation time.
  • the clock means has a calendar function. The month and day output from the clock means are read by an output signal from the tallying time output means, and if the last day of the month is the last day of the month, the operation of each day stored in the operating time storage means for each state of sleep is read. The operation time for each type of state is totaled, and the ratio of the total operation time of each state to the total power-on time is calculated. There is provided a means for storing the operating time and the ratio of the operating time in the operating time storing means for each state every month.
  • the monthly operation time storage means stores one year's worth of data
  • the monthly operation time storage means stores the corresponding month's stored data of the extracted month. Rewrite to the operation time for each state and the ratio of operation time.
  • a central control computer and multiple injection molding machines They are connected by a transmission line, and only the operating state detecting means is provided in each injection molding machine, and the other means are provided in the central management computer.
  • the elapsed time for each specific operation state is stored in the state operation time storage means. Is integrated and stored.
  • the accumulated time stored in the state-specific operation time storage means is displayed and output by the data output means for each specific operation state.
  • the operating time storage means for each sleep state further calculates a ratio of the integrated time for each specific operating state based on the relationship between the integrated time in the power-on state and other integrated times, and stores the ratio of the integrated time in the specific operating state. Display and output via data output means for each state.
  • the value of the operation time storage means for each state is automatically initialized.
  • the display is output every predetermined period. Therefore, according to the operating time analyzer of the injection molding machine according to the present invention, a measurement error due to an erroneous operation, such as when an operation is performed by operating a timer / stopwatch or the like in response to a driving operation, does not occur. Moreover, creating a troublesome daily report to record the measurement results eliminates the hassle. Also, unlike the case of performing the operation time analysis by manual calculation based on the raw time data described in the daily work report, there is no misreading of data and no calculation error, etc. Sex is greatly improved.
  • FIG. 1 is a block diagram showing a main part of an electric injection molding machine according to one embodiment of the present invention
  • FIG. 2 is a flowchart showing an outline of a state detection process performed by the PMC CPU of the embodiment.
  • FIG. 3 is a flowchart showing an outline of an operation time storage process performed by the PMC CPU of the embodiment.
  • Fig. 4 is a continuation of the flowchart showing the outline of the operation time storage processing
  • Fig. 5 is a continuation of the flowchart showing the outline of the operation time storage processing
  • Fig. 6 is a display request executed by the PMC CPU of the embodiment.
  • FIG. 7 is a conceptual diagram showing a file storing data for one month for each day
  • FIG. 8 is a conceptual diagram showing a file storing data for one year for one month
  • FIG. 9 is a concept showing an example of a data display state.
  • FIG. 10 is a block diagram showing an example of an operation time analyzer by a centralized management computer.
  • the electric injection molding machine 19 to which the operating time analyzer according to the present invention is applied includes, as schematically shown in FIG. 1, a fixed platen 27, a movable platen 28, an injection cylinder 29, and a screw 30. Further, the injection cylinder 29 has a band heater 34 as a heating means and a thermocouple 30 as a temperature detecting means.
  • the movable platen 28 is moved along a tie bar (not shown) by a shaft output of the mold clamping servo motor M 1 via a drive conversion device 31 constituted by a ball nut & screw toggle mechanism or the like. You.
  • the screw 30 is moved in the axial direction by an injection servomotor M3 via a drive converter 32 composed of a ball nut & screw, a boss & serration, and the like. Further, screw 30 is driven by a gear Rotational movement for weighing and kneading is performed via a transmission mechanism such as the structure 33.
  • the numerical control device that drives and controls the injection molding machine 19 includes a microcontroller (hereinafter referred to as NCCPU) 12 for numerical control and a microprocessor (hereinafter referred to as PMCCPU) 14 for a programmable machine controller. Is connected via a data bus to a ROM 17 storing a program for controlling a sequence operation of the injection molding machine and a non-volatile RAM 8 used for storing an integrated time of each operation state.
  • NCCPU microcontroller
  • PMCCPU microprocessor
  • the microprocessor 12 for numerical control is connected with a ROM 15 storing a management program for drivingly controlling the injection molding machine 19 as a whole, a RAM 4 used for temporary storage of data, etc., and a servo interface 11.
  • the servo interface 11 includes a servo circuit 1 for the servomotor M1 for mold clamping, a servo circuit 2 for the servomotor M2 for measuring rotation, and a servo circuit for the servomotor M3 for injection. Circuit 3 is connected.
  • the feedpack signals from the pulse coders P1, P2, and P3 provided in the servo modes M1 to M3 are input to the servo circuits 1, 2, and 3, respectively.
  • FIG. 1 shows only these servo motors M1 to M3, and omits other servo motors, for example, servo motors for an ejector, mold thickness adjustment, nozzle touch, and the like.
  • the NCCPU 12 and PMCCPU 14 are connected via a bus arbiter controller 13. Further, the non-volatile shared RAM 5, the input circuit 6, and the output circuit 7 are connected to the bus arbiter controller 13 via a data bus.
  • the servo circuit 3 has a built-in torque limit circuit that outputs a torque limit value to regulate the maximum injection pressure by the injection servo motor M3. Input from circuit 7. ONZOF F of the band heater 34 is controlled by the PMC CPU 14 through the output circuit 7 and the heater circuit 10. On the other hand, the temperature of each part of the injection cylinder 29 detected by the thermocouple 35 is A / D converted and input to the manual circuit 6.
  • the input circuit 6 of the numerical control device further receives the current time from the clock device 9.
  • the clock device 9 has an automatic calendar function for automatically updating the year, month, and day values based on preset data, in addition to the output of the current time regarding hours, minutes, and seconds.
  • the bus arbiter controller 13 selects a data bus and manages the input and output of data between each element, and the operator panel controller 16 includes a numerical control device and a manual data input device with a CRT display (hereinafter referred to as CRTZMD I). Make up the interface between 18).
  • Various setting conditions for the injection molding work are set and input to the shared RAM 5 via the CRT / MDI 18 at the discretion of the operator.
  • the CRT / MD I 18 consists of an operation panel provided on the injection molding machine main body side and a terminal provided separately from the injection molding machine main body, and a CRT display device, numeric keys for data input, and a soft key for command input.
  • the operation panel of the CR T / MD I 18 has a semi-automatic operation switch that executes only one cycle of the injection process from mold clamping to the ejection based on a program, an automatic operation switch that repeatedly executes this ejection process, and a manual operation. An operation switch is provided.
  • the injection molding machine 19 has an abnormality detection function of detecting an abnormality of each part of the injection molding machine and outputting an alarm, a counting function of integrating and storing the number of product shots, a cold start prevention function, and the like.
  • This abnormality detection function is activated when an abnormality of the numerical controller is detected by the self-diagnosis program or when an abnormality is detected in the servomotor of each axis.
  • the position deviation when driving the servo motor Ml for clamping, the servo motor M2 for measuring rotation, the servomotor M3 for injection, etc. is abnormal due to foreign matter entering between the dies, clogging of the nozzle, solidification of the resin, etc.
  • the NCCPU 12 or PMCCPU 14 that manages the operation sets the alarm detection flag of the shared RAM 5.
  • the counter that accumulates and stores the number of product shots is automatically incremented each time one cycle of the injection process by the injection molding machine 19 is completed, and this value is set to the number of products set in advance by the CRT / MD I 18.
  • the injection molding machine 19 automatically stops with the mold open, and the PMCCPU14 sets the production completion flag of the shared RAM5. If the number of productions is not set, or if the number of productions is reset by operation from CRTZMD I 18, the counter value and production completion flag are reset, and the operation is canceled thereafter Until the automatic operation of the injection molding machine 19 is continued. Note that the number of product shots is integrated and stored. Counter does not work unless the production number is set.
  • the heating temperature of the injection cylinder 29 is set by the CRTZMD I 18 and the power to the band heater 34 is turned on, and then all of the injection cylinders 29 detected by the thermocouple 35 are detected.
  • the cold start prevention timer operates for a predetermined time (normally 15 to 25 minutes).
  • the cold start prevention flag is set in the shared RAM 5 so that the injection molding machine 19 does not perform the injection molding operation until the predetermined time elapses after the power is turned on. This cold start prevention flag is automatically reset at the end of the predetermined time measurement by the cold start prevention timer. Then, when the power is re-applied to Bandhi overnight, this flag is set again.
  • the injection molding machine 19 includes the NCCPU 12 operating based on the management program stored in the ROM 15, the PMC CPU 14 operating based on the sequence program stored in the ROM 17, and the shared RAM M5.
  • the NCCPU 12 performs pulse distribution to each axis via the servo interface 11 based on the set values and the like stored in the CPU, and the PMCCPU 14 controls the drive by managing the entire sequence operation.
  • PMCC PU 14 determines whether or not the cold start prevention flag is set in shared RAM 5 in the state detection process at predetermined intervals. That is, it is determined whether or not the band heater 34 is in a temperature increasing process for heating the injection cylinder 29 (step S1). As a result, if the band heater 34 is in the process of increasing the temperature, the execution period ⁇ t of this process is added to the temperature increase time storage register Ta, and the heater temperature increase time is accumulated and stored (step S 7). Is completed.
  • step S1 the determination result in step S1 is true (Y: the heater is being heated), No action is taken on the other measured objects.
  • step S1 in the state detection process of FIG. 1 is always false (N), and the process proceeds to step S2. Transition. Then, the PMC CPU 14 performs other state determination processing after the next cycle.
  • step S2 the PMCCPU 14 determines whether or not the alarm detection flag has been set, that is, whether or not each part of the injection molding machine 19 has detected an abnormality. If an abnormality is detected, the execution period ⁇ t is added to the alarm occurrence time storage register Tb, and the alarm occurrence time is integrated and stored (step S8), and the state detection processing in this cycle ends. In the state where the alarm detection flag is set, the operation of the injection molding machine 19 is automatically stopped, and no other measurement target operation is performed during that time. If no alarm is detected in the state detection processing in this cycle, the PMC CPU 14 further proceeds to the determination processing in step S3, and determines whether or not the production completion flag has been set. That is, it is determined whether or not the expected number of injection molding operations have been completed.
  • the PMC CPU 14 adds the execution cycle ⁇ t to the stop time storage register Tc that stores the stop time after the production is completed, and The stop time is accumulated and stored (step S9), and the state detection processing in this cycle ends.
  • the production completion flag In order to drive the injection molding machine 19 after production is completed, the production completion flag must be reset by operation from the CRTZMD I 18 regardless of whether it is manual operation, semi-automatic operation, or automatic operation. For manual operation, semi-automatic operation and automatic operation after the production is completed, the operation time is not added to the stop time storage register Tc.
  • any of manual operation, semi-automatic operation, and automatic operation can be selected and executed. Therefore, the PMC CPU 14 determines whether any of these operation states is in progress. Move on. Therefore, the PM CCPU 14 determines which of the manual operation switch, semi-automatic operation switch, and automatic operation switch provided on the operation panel of the injection molding machine is operating.
  • the execution period ⁇ t is added to the time storage register Td, and the time of the manual operation is integrated and stored (step S4, chip S10). If the semi-automatic operation is being performed, the execution period ⁇ t is added to the semi-automatic operation time storage register T e to accumulate and store the semi-automatic operation time (steps S5 and S11).
  • the execution period ⁇ t is added to the automatic operation time storage register T f and the automatic operation time is accumulated and stored (steps S6 and S12). Also, all operation switches must be in operation. 2 field, adds the register T g in the execution period delta t for storing other operation times (Step S 13).
  • the order of the discrimination processing for detecting specific operating states that do not overlap each other, such as when the heater is being heated, an alarm is being generated, production is completed, etc., can be changed as appropriate.
  • the PM CCP ⁇ 14 repeatedly executes the operation time storage processing as shown in FIGS. 3 to 5 at predetermined intervals.
  • the current data relating to hours, minutes, and seconds is read from the clock device 9, and it is determined whether or not this value matches a preset data totaling time (step S14).
  • the operation time storage processing of this cycle is ended without performing the processing after step S15 described later. Note that the resolution of hour * minute * second in the clock device 9 is matched with the execution cycle of the operation time storage processing in the PMCCPU14, and the result of the determination in step S14 becomes true ( ⁇ ) once a day.
  • the PMCCPU 14 Only in the cycle of When the current data on the hour, minute, and second of the clock device 9 matches the preset data collection time, the PMCCPU 14 reads the current data on the date from the clock device 9 and stores it as the date index d (step S15). .
  • the PMCCPU 14 stores the value of the temperature rise time storage register Ta, which stores the integrated time of the specific operation state for the entire day from the previous day's data collection time to the current data collection time, and the value of the alarm occurrence time storage register Tb.
  • Stop time storage register Tc value manual operation time storage register Td value, semi-automatic operation time storage register Te value, automatic operation time storage register ⁇ , value, other operation time register Tg Read the value. Then, read the value of each register (Ta to Tg) and turn on the power for one day, which is the sum of the values.
  • the three hour values correspond to the date index d, and the storage areas Tad, Tbd, Ted, Tdd, Ted, and T of the file in the nonvolatile RAM 8 that store data for one month for each day. Update and store fd, T gd, and ⁇ ⁇ 1 (step SI 6). Then, all the values of the registers Ta to Tg are initialized (step S17).
  • the PMC CPU 14 calculates the ratio of the power-on time to one day, and the heater heating time, alarm occurrence time, stop time after production completion, manual operation time, and semi-automatic operation for one day power-on time.
  • the time, the automatic operation time, and the ratio of other operation times are calculated, and the results are made to correspond to the date index, and the respective storage areas T, d, T a, d, T b, of the files in the nonvolatile RAM 8 are calculated.
  • d, Tc'd, Td'd, Te'd, Tf'd, and Tg'd are updated and stored, respectively (step S18).
  • the PMC CPU 14 determines whether or not the current value d of the date read this time coincides with the final date of the current month, which is the totaling date (step S19). If they do not match, the process from step S20 described below is not performed, and the operation time storage process in this cycle ends.
  • step S20 reads the current data on the month from the clock device 9, and stores it as the month index m. And then, every month, one year worth of overnight 4
  • Each storage area of non-volatile RAM 8 files to be stored Term, T arn, Tb m, T cm, T dm, T ern, T fm, T gm are all based on the value of the index m.
  • 1 is set to the data reading index i (step S22).
  • PMCCPU14 stores data for 1 month every day
  • each of the storage areas T, m, Tam, Tbm, Tcm, Tdm, Tem, Tfm, and Tgm of the file storing the data for the current month (see Fig. 8), the last date from the first item of the current month
  • the cumulative value of the power-on time, the cumulative value of the heater heating time, the cumulative value of the alarm occurrence time, the cumulative value of the stop time after production completion, the cumulative value of the manual operation time, the semi-automatic The integrated value of the running time, the integrated value of the automatic operating time, and the integrated value of other operating times are stored.
  • the PMCCPU 14 calculates the total time (seconds) of the current month on the basis of the value of the last date d of the current month (step S26), and performs the power-on time for this one month by a process substantially equivalent to the above step S18.
  • the heating time for the power-on time for one month, the alarm generation time, and the The percentages of the stop time, manual operation time, semi-automatic operation time, automatic operation time, and other operation time are calculated, and these values are associated with the month index m and stored in the file of nonvolatile RAM8 (see Fig. 8).
  • the PMC CPU 14 In substantially parallel with the above-described state detection processing and operation time storage processing, the PMC CPU 14 repeatedly executes a display request detection processing as shown in a flowchart of FIG. 6 at predetermined intervals. In this process, it is determined that the display request from the CRTZMD I 18 has been detected (step SO 1), and the display screen of the CRT display device is switched, and the data display screen as shown in FIG. The operating time data for one month for one day and the operating data for one year for one month as shown in (b) are displayed on the display device of the CRT / MD I 18 (step S03).
  • the time at which the display of the operating time data was requested is based on the data aggregation time set in advance. If it is earlier than this time, the data has not been totaled, and the display screen that displays the operating time data for one month for each day, as shown in Fig. 9 (a), Each day's data from the day to the day before the current month and each day's data after the corresponding day of the previous month in the previous month will be displayed. For example, if the data aggregation time is set to 19: 00: 00: 00 and the display of the operation time data is requested at 18:30:00 on July 15th, July 1 The data for each day from June to July 14 and the data for each day from June 15 to June 30 are displayed.
  • the display screen that displays the operating time data for one month for each day displays the data for the last one month.
  • request display of uptime data If the calculated time is later than the preset data aggregation time, the monthly data from the current month to the current month and the monthly data from the corresponding month in the previous year as shown in Fig. 9 (b) , Is displayed.
  • the display screen displaying the operating time data for one year for each month displays the data for each month for the most recent one year.
  • the value of the time data on the CRT display screen in Fig. 9 is obtained by converting each data into units of hours, minutes, and seconds, and the display screen as shown in Fig. 9 was selected.
  • the PMC CPU 14 detects this in the determination processing of step S02, and shifts to another selection processing according to the operation.
  • the data output means in the present embodiment is constituted by the CRT display device of the CRTZMD I18, and the accumulated time and the ratio of each state in the injection molding machine 19 are changed every day or every month.
  • the data are collected in a predetermined period of time and stored in a file as shown in FIGS. 7 and 8, and are arbitrarily displayed and output at the request of the operet overnight. Further, in this embodiment, the data is displayed and output every day and every month.
  • the values of the respective operation time storage registers may be displayed by a display command without separating the data every day and every month. Also in this case, the percentage of the operation time of each operation state with respect to the power-on time is calculated and displayed.
  • the accumulated time for each state and its ratio can be changed every day and every month.
  • the printout may be performed in a predetermined period every time.
  • a file storing data for one day and one month as shown in Fig. 7 This means that the daily data is stored for the entire year. Using this data, it is possible to calculate the integrated value of the various operating hours for each day of the week, the average operating time thereof, and the ratio of each weekday to the various operating hours for one week.
  • the embodiment has been described in which the data collection work is performed by detecting the current date and month using the clock device 9 having the calendar function.However, the data is automatically reset by 24 hours measurement. Even when a clock device is used, the same processing as in the embodiment can be performed.
  • the process of the first embodiment (FIG. 2) can be applied as it is to the operation state detection process.
  • the processing of the first embodiment (FIGS. 3 to 5) cannot be directly applied to the operation time storage processing. That is, in the first embodiment, the current date from the clock device is detected in the processing of step S15, the last date of the current month is detected in the processing of step S19, and the month is read in step S20. Because.
  • the operating time storage processing shown in FIG. 3 and subsequent figures is modified and applied to the operating time storage processing.
  • the discrimination process of step S19 is removed from the operation time storage process shown in FIG. 3, and the process of sequentially incrementing the value of the date index d is performed instead of the process of step S15. Let it.
  • the value of the date index d when the power is turned on for the first time is 0. This makes it possible to update the value of the date index d each time the set time is detected in the discrimination process of step S14, and to automatically perform the processes of steps S16 to S18. .
  • step S20 in the operation time storage processing shown in FIGS. 4 and 5, a ten-key input from the CRT ZM DI 18 is detected, and the month index m and the number of days d in the m month are detected.
  • a process for initializing the value of the date index d to 0 is inserted between step S26 and step S27.
  • step S14 the date index d is calculated every time the arrival of the data aggregation time is detected in the determination processing of step S14.
  • the values are sequentially updated, and the processing from step S16 to step S18 is automatically performed in accordance with the value of the update date index d.
  • step S20 if the value m of the old moon and the number of days d of the m month are set and input at each turn of the month, the first day of the mth month to the last The data up to the d-th day is automatically integrated and totalized in the processing of steps S21 to S27.
  • the value of the index d is automatically initialized to 0 in the processing between step S26 and step S27, the value of the date index d is calculated on the first day of the m + January. Is reset to 1, and the same process can be repeated for one month.
  • the month index m and the number of days d in the m month are set with the numeric keypad, and some attention is required.
  • the operation and the effect are almost the same as those of the first embodiment using the clock device 9 having the force rendering function. You.
  • data is totaled every day and every month. It is also possible to collect data every week and every year.
  • the specification of each operating state to be detected can be arbitrarily selected and set according to the configuration of the injection molding machine. Furthermore, by determining the combination of the specific operation states, it is also possible to calculate the time consumed for condition setting and setup, the ratio thereof, and the like, and output the display. In order to calculate the time and percentage of time spent for setting and setting up conditions, a dedicated external switch is provided, the key operation of the CR TZM DI 18 is detected, and the injection molding machine 1 9The internal state detection signal may be used.
  • the power-on time for one day ⁇ d and the power-on time T for one month T and the value of m for one day or one month when the power was not turned on You can know the cutting time. Before turning off the power, input the key of the item indicating the reason for turning off the power from the external switch or the key of the CR TZM DI 18 and store the power-off time in the nonvolatile RAM 8 for each reason. Is also possible.
  • the current time of the clock device 9 is detected according to the reason input from the external switch or the CR TZM DI 18, and this value is stored in the nonvolatile RAM 8 while the power is
  • the current time is read from the clock device 9 immediately after the power is turned on again, the value of the current time stored at the time of power-off is subtracted from this value, and stored in the nonvolatile RAM 8 according to the reason for the power-off.
  • the reason for the power-off various items such as power-off for periodic maintenance, power-off for no production schedule, and power-off for repairing faults should be set in advance and stored.
  • a large number of injection molding machines are installed side by side to perform injection molding work. In this case, the analysis is performed by a single centralized computer without performing the operation time analysis using the equipment provided for each molding machine.
  • FIG. 10 is a block diagram showing a third embodiment in which a single centralized management computer 26 is provided for a plurality of injection molding machines 19a, 19b, 19c,... , A microprocessor 21, a ROM 22, a RAM 23, a CRT / MD I 24, and an external storage device 25 such as a floppy disk or a hard disk. Between these injection molding machines 19a, 19b, 19c ... and the central control computer 26, the data transmission path from the injection molding machines 19a, 19b, 19c ... and the central control computer 26 side. It is connected via interface 20.
  • the configuration of the injection molding machines 19a, 19b, 19c... With respect to the hardware is substantially the same as that of the injection molding machine 19 of the first embodiment.
  • the heater temperature detection signals from the injection molding machines 19a, 19b, 19c..., alarm generation signals, production completion signals, manual operation signals, semi-automatic signals, The operation signal, automatic operation signal, etc. are input to the central control computer 26 together with the code of each injection molding machine. Then, on the side of the central control computer 26, a process is executed for each code of each of the injection molding machines 19a, 19b, 19c... At predetermined intervals as shown in FIGS. 2 and 3 to 5, The data totaling result is stored in the external storage device 25 in a file as shown in FIGS. 7 and 8 provided for each code of the injection molding machine.
  • the code of the injection molding machine is input from the MDI and only the data relating to the desired injection molding machine is selectively displayed. You should make it.
  • all the software required for the data aggregation work will be deployed in the ROM 22 of the centralized management computer 26, so the injection molding machines 19a, 19b, 19
  • Each of c ... only needs to be provided with means for detecting a specific operating state, and is not limited to electric injection molding machines in which internal processing is performed by a control device, but may be used in various conventionally known injection molding machines. Can respond o
  • each of the injection molding machines 19a, 19b, 19c ... is of an electric type that performs internal processing by a control device, the processing required for data aggregation work is performed by the injection molding machine. And the central control computer 26, the burden on both control devices can be reduced.
  • each of the injection molding machines 19a, 19b, 19c ... is made to execute only the state detection processing as shown in FIG. 2 so that each injection molding machine stores data for one day.
  • the central control computer 26 polls the control devices of the injection molding machines 19a, 19b, 19c ... to collect data for each injection molding machine. Every time this data is collected, the processing as shown in FIGS. 3 to 5 can be performed for each injection molding machine and stored in the external storage device 25.
  • the processing of the central management computer 26 can be executed regardless of whether or not the power of the injection molding machine is turned on.
  • the third embodiment is a preferred embodiment when it is necessary to store the reason for turning off the power of the injection molding machine, its time, and the like.
  • the reason for turning off the power is transmitted from the injection molding machine to the centralized management computer 26 with the corresponding key, and the centralized management computer 26 manages the reason for the power off for each injection molding machine and its time in response to this reason. You It is easy to do. Further, if a detection means is provided for externally detecting the operating state of the injection molding machine regardless of whether or not the power is turned on, the down state of the injection molding machine can be continuously detected.

Description

明 細 書
射出成形機の稼働時間分析装置
技 術 分 野
本発明は、 射出成形機の特定の作動状態についての経過時間を計測して 集計する稼働時間分析装置に関する。
背 景 技 術
射出成形機の定期点検や生産管理等を合理的に行うためには、 射出成形 機がどのような作動状態に関しどの程度の時間稼働していたかを定期的に 分析する必要がある。
従来の射出成形機においては、 射出成形機のオペレータが運転操作に対 応してタイマゃストップウォッチ等を作動させ、 射出成形機の自動運転時 間や手動運転時間およびァラーム発生のロスタイム等を自らの手で計測し て作業日報等に筆記記録するようにしていたが、 オペレータがタイマゃス トップウォッチ等を誤操作することもあり、 正しい測定結果を得ることは 困難であった。
また、 通常の射出成形作業では 1人のオペレータが 1 0台前後の射出成 形機を管理するのが一般的であり、 このような場合での各成形機又は全成 形機の稼働時間の計測においては、 タイマやストップゥォツチ等の操作や 作業日報への書き込みが面倒であるし、 作業日報等に記載された生の時間 データに基づいて手計算で稼働時間の分析作業を行うような場合には、 デ —夕の読み違いや演算ミスも生じ易くなる。
発 明 の 開 示
本発明の目的は、 オペレータの手を煩わさずとも作動状態毎の稼働時間 を正確に分析し, 記憶することができる射出成形機の稼働時間分析装置を 提供することにある。
上記目的を達成するため、 本発明の第一の態様は、 射出成形機の各種作 動伏態を検出する作動状態検出手段と、 該作動状態検出手段で検出される 作動状態の種類毎に検出されている時間をそれぞれ累積計時する複数の計 時手段と、 これら計時手段で累積計時されている各作動状態毎の累積計時 時間を表示出力するデータ出力手段とを備える。
好ましくは、 上記各種作動伏態の中には、 射出成形機の電源投入時間を 含み、 上記計時手段で累積計時された電源投入時間に対する各計時手段で 計時された各作動伏態の累積作動時間の割合を算出する手段を備え、 上記 データ出力手段は算出された作動時間の割合を各動作状態毎に表示出力す る。 また、 この各種作動伏態にはヒータ上昇時間、 アラーム発生時間、 生 産完了後の停止時間、 手動運転時間、 自動運転時間のうちのいずれかが含 まれる。
さらに好ましくは、 集中管理コンピュー夕と複数の射出成形機がデータ 伝送路で接続され、 作動状態検出手段のみ各射出成形機に備え、 他の手段 は上記集中管理コンピュータに備えられている。
また、 本発明の第二の態様は、 射出成形機の各種作動状態を検出する作 動状態検出手段と、 時計手段と、 該時計手段からの時刻出力が予め設定さ れた時刻と一致すると信号を出力する集計時刻出力手段と、 該集計時刻出 力手段からの出力信号でリセッ 卜され、 上記作動伏態検出手段で検出され る作動状態の種類毎に検出されている時間をそれぞれ累積計時する計時手 段と、 上記集計時刻出力手段からの出力信号により上記各計時手段で累積 計時した時間を順次記憶する状態別作動時間記憶手段と、 該状態別作動時 間記憶手段に記憶された各作動状態毎の累積計時時間を表示出力するデー タ出力手段とを備える。
好ましくは、 上記各種作動状態の中には、 射出成形機の電源投入時間を 含み、 上記計時手段で累積計時された電源投入時間に対する各計時手段で 計時された各作動状態の累積作動時間の割合を算出する手段を備え、 上記 状態別作動時間記憶手段は算出された作動時間の割合も記憶し、 上記デ— 夕出力手段は、 各作動状態毎の累積計時時間と共に上記作動時間の割合も 表示出力する。 また、 この作動状態の中には、 ヒータ上昇時間、 アラーム 発生時間、 生産完了後の停止時間、 手動運転時間、 半自動運転時間、 自動 運転時間のうちのいずれかが含まれる。
好ましくは、 上記集計時刻出力手段は 1日 1回の信号を出力し、 上記状 態別作動時間記憶手段は各日毎の状態別作動時間及び上記作動時間の割合 好ましくは、 上記時計手段はカレンダー機能を有し、 集計時刻出力手段 からの出力信号により、 上記時計手段から出力される月, 日を読取り、 月 の最終日であると上記伏態別作動時間記憶手段に記憶された各日毎の作動 状態の種類毎の作動時間を合計し、 また、 合計された電源投入時間に対し て各状態の作動時間の合計の割合を算出し、 各合計値と各割合を上記読み 取った月の状態別作動時間、 作動時間の割合として月毎状態別作動時間記 憶手段に記憶させる手段を備える。
好ましくは、 上記月毎状態別作動時間記憶手段は 1年分のデータを記憶 し、 上記月毎状態別作動時間記憶手段に記憶させる手段は、 対応する月の 記憶データを箅出された月の状態別作動時間及び作動時間の割合に書き替 える。
さらに好ましくは、 集中管理コンピュータと複数の射出成形機がデータ 伝送路で接続され、 作動状態検出手段のみ各射出成形機に備え、 他の手段 は上記集中管理コンピュー夕に備えられている。
上述のように、 本発明によれば、 射出成形機の特定作動状態のそれぞれ が作動状態検出手段によつて検出されている間、 特定作動状態毎の経過時 間が状態别作勖時間記憶手段によって積算記憶される。 この状態別作動時 間記憶手段に記憶された積算時間は、 データ出力手段により特定作動状態 毎に表示出力される。 伏態別作動時間記憶手段は、 更に、 電源投入状態の 積算時間と他の積算時間との関係に基いて特定作動状態毎の積算時間の割 合を算出し、 積算時間の割合を特定作動伏態毎にデータ出力手段を介して 表示出力する。 特定作動状態毎の積算時間や積算時間の割合が表示出力さ れると状態別作動時間記憶手段の値が自動的に初期化され、 以下、 特定作 動状態毎の積算時間や積算時間の割合が所定期間毎に表示出力される。 従って、 本発明による射出成形機の稼働時間分析装置によると、 ォペレ 一夕が運転操作に対応してタイマゃストップウォッチ等を作動させて計測 を行う時のように誤操作による計測ミスが生じることはなく、 また、 計測 桔果を記録するために面倒な作業日報を作成するといつた煩わしさも解消 される。 また、 作業日報等に記載された生の時間データに基いて手計算で 稼働時間の分析作業を行う時のようにデータの読み違いや演算ミス等を生 じることもなく、 分析結果の信頼性が格段に向上する。
図面の簡単な説明
図 1は本発明の一実施例における電動式射出成形機の要部を示すプロッ ク図、
図 2は同実施例の P M C用 C P Uによって実施される状態検出処理の概 略を示すフローチャート、 図 3は同実施例の P M C用 C P Uによって実施される作動時間記憶処理 の概略を示すフローチヤ一ト、
図 4は作動時間記憶処理の概略を示すフローチヤ一卜の続き、 図 5は作動時間記憶処理の概略を示すフローチヤ一卜の続き、 図 6は同実施例の P M C用 C P Uによって実施される表示要求検出処理 の概略を示すフローチヤ一ト、
図 7は 1日毎 1ヶ月分のデータを記憶するフアイルを示す概念図、 図 8は 1ヶ月毎 1年分のデータを記憶するファイルを示す概念図、 図 9はデータ表示状態の一例を示す概念図、
図 1 0は集中管理コンピュータによる稼働時間分析装置の一例を示すブ 口ック図である。
発明を実施するための最良の形態 以下、 図面を参照して本発明の実施例を説明する。
本発明による稼働時間分析装置を適用した電動式射出成形機 1 9は、 図 1にその概略を示すように、 固定プラテン 2 7 , 可動プラテン 2 8 , 射出 シリンダ 2 9 , スクリユー 3 0を含み、 さらに、 上記射出シリンダ 2 9は 加熱手段としてのバンドヒータ 3 4および温度検出手段としての熱電対 3 0を備 る。
可動プラテン 2 8は、 型締め用サ一ボモータ M 1の軸出力により、 ボー ルナッ ト &スクリューゃトグル機構等によって構成される駆動変換装置 3 1を介しタイバー (図示せず) に沿って移動される。 また、 スクリュー 3 0は、 ボールナッ ト &スクリュ一およびボス &セレーション等によって構 成される駆動変換装置 3 2を介し射出用サーボモ一夕 M 3により軸方向に 移動される。 さらに、 スクリユー 3 0は、 サーボモータ M 2により歯車機 構 33などの伝動機構を介して計量混練りのための回転運動が行われる。 射出成形機 19を駆動制御する数値制御装置は数値制御用のマイクロプ 口セッサ (以下、 NCCPUという) 12とプログラマブルマシンコン卜 ローラ用のマイクロプロセッサ (以下、 PMCCPUという) 14とを備 え、 PMCCPU14には射出成形機のシーケンス動作を制御するプログ ラム等を格納した ROM17と各作動状態の積算時間の記憶用に利用され る不揮発性の RAM 8がデータバスを介して接続されている。
数値制御用のマイクロプロセッサ 12には射出成形機 19を全体的に駆 動制御する管理プログラムを格納した ROM 15, データの一時記憶等に 利用される RAM4, 及びサ一ボインタ一フヱイス 11が接続される。 そ して、 このサーボインターフェイス 11には型締め用サーボモータ M 1の ためのサ一ボ回路 1 , 計量回転用サーボモータ M2のためのサーボ回路 2, 射出用サーボモータ M 3のためのサ一ボ回路 3が接続される。 サーボモー 夕 M1〜M3にそれぞれ配備したパルスコーダ P 1, P 2, P 3からのフ イードパック信号はサーボ回路 1, 2, 3の各々に入力される。 なお、 図 1ではこれらサーボモータ M1〜M3のみ示し、 他のサーボモータ、 例え ば、 ェジ クタ用, 型厚調整用, ノズルタツチ用等のサーボモータに関し ては省略している。
NCCPU12と PMCCPU14とはバスアービタコン卜ローラ 13 を介して接続される。 さらにこのバスアービタコントローラ 13には不揮 発性の共有 RAM5, 入力回路 6, 出力回路 7の各々がデータバスを介し て接続されている。
また、 サーボ回路 3にはトルクリ ミ ッ ト回路が内蔵され、 射出用サーボ モータ M 3による最大射出圧力を規制するためのトルクリ ミッ ト値が出力 回路 7から入力される。 バン ドヒータ 34の ONZOF Fは PMC CPU 14により出力回路 7およびヒータ回路 10を介して制御される。 一方、 熱電対 35によって検出された射出シリンダ 29各部の温度は A/D変換 されて人力回路 6に入力される。
数値制御装置の入力回路 6には、 更に、 時計装置 9からの現在時刻が入 力される。 この時計装置 9は時 ·分 ·秒に関する現在時刻の出力に加え、 予めプリセッ 卜されたデータに基いて年 ·月 · 日の値を自動的に更新する ォートカレンダ一機能を備えている。
バスアービタコントローラ 13はデータバスを選択して各要素間におけ るデータの入出力を管理し、 オペレータパネルコントローラ 16は数値制 御装置本体と CRT表示装置付手動データ入力装置 (以下、 CRTZMD Iという) 18との間でインターフェイスを構成している。 そして、 射出 成形作業に関する各種の設定条件は、 オペレータの判断により、 CRT/ MD I 18を介して共有 RAM5に設定入力される。
CRT/MD I 18は、 射出成形機本体側に配備された操作盤と、 射出 成形機本体と別に配備した端末機とから成り、 CRT表示装置やデータ入 力用のテンキーおよびコマンド入力用のソフトキ一等を備えている。 CR T/MD I 18の操作盤には、 型締めからェジェク 卜に至る 1サイクルの 射出工程のみをプログラムに基いて実行する半自動運転スィツチ、 この射 出工程を繰り返し実行する自動運転スィッチ、 及び手動運転スィッチが設 けられている。
手動運転スィッチが選択された状態で、 型締め用, 計量回転用, 射出用, ェジェクタ用等の手動操作キーを選択的に操作すると、 各軸のサーボモー 夕が予め設定された速度で駆動されるが、 手動操作キ一による各軸の送り は、 共有 RAM 5に設定された条件と ROM 15に格納された管理プログ ラムとに基いて N C C P U 12によって管理される。 これら手動操作キー は半自動運転スィッチゃ自動運転スィッチおよび手動運転スィツチと共に 射出成形機本体側の操作盤に配備される。
また、 この射出成形機 19は、 射出成形機各部の異常を検出してアラー ムを出力する異常検出機能や製品ショッ ト数を積算記憶するカウント機能 および冷間起動防止機能等を備える。 この異常検出機能は、 自己診断プロ グラムによつて数値制御装置の異常が検出された場合や、 各軸のサーボモ —夕に異常が検出された場合に作動する。 例えば、 金型間への異物の侵入 やノズルの詰まりおよび樹脂の固化等によって型締め用サーボモータ Ml や計量回転用サーボモータ M 2および射出用サーボモー夕 M 3等の駆動時 の位置偏差が異常に増大したり、 または、 手動操作時に各軸のサ―ボモー 夕で駆動される可動ュニッ トがオーバ一トラベルしてリ ミツ トスイッチが 作動したような時に作動する。'このような異常が検出されると、 その動作 を管理する NCCPU12または PMCCPUl 4が共有 RAM 5のァラ —ム検出フラグをセッ トする。
製品ショッ ト数を積算記憶するカウンタは射出成形機 19による 1サイ クルの射出工程が完了する毎に自動的にカウントアップされ、 この値が C RT/MD I 18で予め設定された生産数に達すると、 射出成形機 19が 型開き状態で自動停止し、 PMCCPUl 4が共有 RAM5の生産完了フ ラグをセッ 卜する。 生産数を設定しない場合、 または、 CRTZMD I 1 8からの操作で生産数をリセッ 卜したような場合には、 カウンタの値およ び生産完了フラグがリセッ トされ、 以後、 運転が解除されるまで射出成形 機 19の自動運転が継続実施される。 なお、 製品ショッ ト数を積算記憶す るカウンタは生産数が設定されない限り機能しない。
また、 射出成形作業の開始に先立って CRTZMD I 18で射出シリン ダ 29の加熱温度を設定してバン ドヒータ 34への電源を投入した後、 熱 電対 35によって検出される射出シリンダ 29の全てのゾーンの温度が設 定値に対して所定の幅 (例えば設定値の ± 10%) の範囲に到達すると冷 間起動防止タイマが所定時間 (通常 15分〜 25分) 作動する。 電源を投 入して上記所定時間が経過するまでは、 射出成形機 19に射出成形動作を 行わせないよう、 共有 RAM 5に冷間起動防止フラグがセッ 卜される。 こ の冷間起動防止フラグは冷間起動防止タイマによる上記所定、時間の計時終 了を以て自動的にリセッ 卜される。 そしてバンドヒ一夕 34に電源を再投 入すると、 このフラグは再びセッ トされる。
上記構成において、 射出成形機 19は、 ROM15に格納された管理プ ログラムに基いて作動する N C C P U 12と ROM 17に格納されたシー ケンスプログラムに基いて作動する PMC C PU 14、 および、 共有 RA M5に記憶された設定値等に基いて、 N C C P U 12がサーボインターフ ェイス 11を介して各軸へのパルス分配を行い、 かつ、 PMCCPU l 4 が全体のシーケンス動作を管理することで駆動制御される。
図 2に示す状態検出処理, 図 3乃至図 5に示す作動時間記憶処理, 及び 図 6に示す表示要求検出処理は、 ROM17に格納されたタスクである。 この内、 図 2の状態検出処理のタスクは、 射出成形機 19に電源が投入さ れている限り、 PMC CPU l 4により微小時間 Δ t間隔で繰り返し実施 される。
以下、 図 2乃至図 6のフローチヤ一トを参照して本発明の第 1実施例に よる稼働時間分析装置の処理動作を説明する。 なお、 後述する不揮発性メ 0 モリで構成されている各種の作動時間記憶レジスタ (Ta, Tb, · · · · ) は予めリセッ トされていて初期状態にあるとする。
まず、 本実施例の作業伏態検出処理を図 2により説明すると、 PMCC P U 14は、 所定周期毎の状態検出処理で共有 RAM 5に冷間起動防止フ ラグがセッ 卜されているか否か、 即ち、 バンドヒー夕 34が射出シリンダ 29を加熱するための昇温過程にあるか否かを判別する (ステップ S 1) 。 その結果、 バンドヒータ 34が昇温過程にあれば、 昇温時間記憶レジスタ T aに本処理の実行周期 Δ tを加算し、 ヒータ昇温時間を積算記憶して (ステップ S 7) 、 この周期の状態検出処理を終了する。
前述したように、 バンドヒータ 34の昇温過程では射出成形機 19の射 出成形動作は禁止されるので、 ステップ S 1の判別結果が真 (Y: ヒータ 昇温中) である限り、 その間、 他の計測対象の作動が実行されることはな い。
バン ドヒータ 34の昇温過程が終了して冷間起動防止フラグがリセッ ト されると、 図 1の状態検出処理におけるステップ S 1の判別結果は常に偽 (N) となって、 ステップ S 2に移行する。 そして PMC C PU 14は次 周期以降の他の状態判別処理を実行することになる。
PMCCPU14は、 ステップ S 2で、 アラーム検出フラグがセッ トさ れているか否か、 即ち、 射出成形機 19の各部に異常が検出されているか 否かを判別する。 異常が検出されていれば、 アラーム発生時間記憶レジス タ Tbに実行周期 Δ tを加算してアラーム発生時間を積算記憶し (ステツ プ S 8) 、 この周期の状態検出処理を終了する。 なお、 アラーム検出フラ グがセッ 卜された状態では射出成形機 19の動作が自動停止されているの で、 その間、 他の計測対象の作動が実行されることはない。 また、 この周期の状態検出処理でアラームが検出されなければ、 PMC CPU 14は、 更に、 ステップ S 3の判別処理に移行し、 生産完了フラグ がセッ 卜されているか否か判別する。 即ち、 予定数の射出成形作業が完了 しているか否かを判別する。 予定数の射出成形作業が完了していると判別 した場合、 PMC CPU 14は、 生産完了後の停止時間を記憶する停止時 間記憶レジスタ T cに実行周期 Δ tを加算して生産完了後の停止時間を積 算記憶し (ステップ S 9) 、 この周期の状態検出処理を終了する。
なお、 生産完了後に射出成形機 19を駆動するためには、 手動運転, 半 自動運転, 自動運転の如何に関わらず、 CRTZMD I 18からの操作で 生産完了フラグをリセッ 卜しなければならないので、 生産完了後の手動運 転や半自動運転および自動運転についてはその作動時間が停止時間記憶レ ジス夕 T cに加算されてしまうことはない。
生産完了フラグが検出されない状態では、 手動運転, 半自動運転, 自動 運転のいずれも選択実行することができるから、 PMC C PU 14は、 こ れらいずれかの作業状態にあるかどうか判別する処理に移る。 そこで PM C C P U 14は、 射出成形機本体の操作盤に配備された手動運転スィッチ, 半自動運転スィツチ, 自動運転スィツチの内いずれのスィツチが作動して いるかを判別し、 手動運転中であれば手動運転時間記憶レジスタ T dに実 行周期 Δ tを加算して手動運転の時間を積算記憶する (ステップ S 4, ス チップ S 10) 。 半自動運転中であれば半自動運転時間記憶レジス夕 T e に実行周期 Δ tを加算して半自動運転の時間を積算記憶する (ステップ S 5, ステップ S 11) 。 自動運転中であれば自動運転時間記憶レジス夕 T f に実行周期 Δ tを加算して自動運転の時間を積算記憶する (ステップ S 6, ステップ S 12) 。 また、 いずれの運転スィッチも作動していなけれ 2 ば、 その他の作動時間を記憶するレジスタ T gに実行周期 Δ tを加算する (ステップ S 13) 。
図 2に示す伏態検出処理において、 ヒータ昇温中, アラーム発生中, 生 産完了…等互いに重複することのない特定作動状態を検出する判別処理の 順位は適宜変更することができる。
以上のようにして図 2の状態検出処理を実行する間に、 PM C C P ϋ 1 4はさらに所定周期毎に図 3乃至図 5に示すような作動時間記憶処理の夕 スクを繰り返し実行する。 この処理では時計装置 9から時 ·分 ·秒に関す る現在データを読込んで、 この値が予め設定したデータ集計時刻と一致し ているか否かを判別し (ステップ S 14) 、 一致していなければ後述する ステップ S 15以降の処理を行なわず、 この周期の作動時間記憶処理を終 了する。 なお、 時計装置 9における時 *分*秒の分解能は PMCCPU1 4における作動時間記憶処理の実行周期と整合されており、 ステップ S 1 4の判別結果が真 (Υ) となるのは 1日 1回の周期においてだけである。 時計装置 9の時 ·分 ·秒に関する現在データが予め設定されたデータ集 計時刻と一致すると、 PMCCPU14は時計装置 9から日付に関する現 在データを読込み、 日付指標 dとして記憶する (ステップ S 15) 。
次いで、 PMCCPU14は、 前日のデータ集計時刻から今回のデータ 集計時刻に至る丸 1日分の特定作動状態の積算時間を記憶した昇温時間記 憶レジスタ Taの値, アラーム発生時間記憶レジスタ Tbの値, 停止時間 記憶レジスタ T cの値, 手動運転時間記憶レジスタ Tdの値, 半自動運転 時間記憶レジスタ T eの値, 自動運転時間記憶レジスタ Τ ίの値, その他 の作動時間を記憶するレジスタ T gの値を読み取る。 そして読み取った各 レジスタの値 (Ta〜Tg) と、 それらの加算値である 1日分の電源投入 3 時間の値とを各々日付指標 dに対応させ、 1日毎 1ヶ月分のデータを記憶 する不揮発性 RAM 8のファイルの各記憶領域 T a d, T b d, T e d, T d d, T e d, T f d, T g d, Τσ <1に更新記憶する (ステップ S I 6) 。 それから上記各レジスタ T a乃至 T gの各値を全て初期化する (ス テツプ S 17 ) 。
その後、 PMC CPU 14は、 1日に対する電源投入時間の割合と、 さ らに、 一日の電源投入時間に対するヒータ昇温時間, アラーム発生時間, 生産完了後の停止時間, 手動運転時間, 半自動運転時間, 自動運転時間, 及びその他の作動時間の割合をそれぞれ算出し、 その結果を日付指標 に 対応させて不揮発性 RAM 8のファイルの各記憶領域 Tび' d, T a' d, T b' d, T c' d, T d' d, T e' d, T f ' d, T g' dにそれぞ れ更新記憶する (ステップ S 18) 。
1日毎 1ヶ月分のデータを記憶する不揮発性 RAM 8のファイルには、 図 7に示されるように、 日付ア ドレス d = 1〜31の記憶領域が設定され ている。 この各領域には、 図 7に示すように、 アドレス dの日における電 源投入時間と一日に対するその割合、 及び各種作動時間とその電源投入時 間に対するそれぞれの割合が記憶される。
次いで、 PMC C PU 14は、 今回読込んだ日付の現在値 dが集計の日 である当月の最終日付と一致するか否かを判別する (ステップ S 19) 。 一致しなければ後述するステップ S 20以降の処理を行なわずこの周期の 作動時間記憶処理を終了する。
一方、 今回読込んだ日付が当月の最終日付と一致した場合、 PMC CP U 14はステップ S 20に移行し、 時計装置 9から月に関する現在データ を読込んで月指標 mとして記憶する。 それから 1ヶ月毎 1年分のデ一夕を 4 一 記億する不揮発性 RAM 8のファイルの各記憶領域 Term, T arn, Tb m, T cm, T dm, T ern, T f m, T g mの各値を該指標 mの値に基 いて全て初期化した後 (ステップ S 21) 、 データ読込み指標 iに 1を設 定する (ステップ S 22) 。
次いで、 PMCCPU14は、 1日毎 1ヶ月分のデータを記憶している
RAM8のファイル (図 7参照) から初日 ( i = 1) から月最終日 ( i = d) までの各日のデータ、 すなわち、 各記憶領域 Τσ i, Ta i, Tb i, T c i, Td i, T e i, T f i , T g iの値を逐次読込んで、 それぞれ を 1ヶ月毎 1年分のデータを記憶する不揮発性 RAM 8の別のファイル (図 8参照) の各記憶領域 Τσπι, Tam, Tbm, T cm, T dm, T em, T f m, Tgmに積算記憶する (ステップ S 23, S 24, S 25) このようにして、 1ヶ月毎 1年分のデータを記憶する不揮発性 RAM 8 において、 当月のデータを記憶するファイル (図 8参照) の各記憶領域 T び m, Tam, Tbm, Tcm, T dm, T e m, T f m, Tgmには、 当月の第 1ョ目から最終日付である第 d曰目までの電源投入時間の積算値, ヒータ昇温時間の積算値, アラーム発生時間の積算値, 生産完了後の停止 時間の積算値, 手動運転時間の積算値, 半自動運転時間の積算値, 自動運 転時間の積算値, その他の作動時間の積算値の各々が記憶されることとな る。
次いで、 PMCCPU14は、 当月の最終日付 dの値に基いて当月の全 時間 (秒) を算出し (ステップ S 26) 、 前記のステップ S 18と略同等 の処理により、 この 1ヶ月に対する電源投入時間の百分率、 及び 1ヶ月の 電源投入時間に対するヒータ昇温時間, アラーム発生時間, 生産完了後の 停止時間, 手動運転時間, 半自動運転時間, 自動運転時間, その他の作動 時間の百分率をそれぞれ算出し、 これらの値を月指標 mに対応させて不揮 発性 RAM8のファイル (図 8参照) の各記憶領域 Τσ' m, T a' m, T b' m, T c ' m, T d' m, T e ' m, T f ' m, T g' mの各々に 更新記憶する (ステップ S 27) 。 こうしてこの周期の作動時間記憶処理 を終了する。
なお、 当月の最終日付 dの値が 30以下である場合には、 この周期の作 動時間記憶処理を終了する段階で、 1日毎 1ヶ月分のデータを記憶する不 揮発性 RAM 8のファイル (図 7参照) から、 ァ ドレス d + 1以降に残つ ているデータは消去され初期化される。
そして、 オペレータの要望で当月 (前月の一部を含む場合もある) 各日 の稼働時間データや当年 (前年の一部を含む場合もある) 各月の稼働時間 データを知りたい場合には、 CRTZMD I 18のソフ トキ一を操作して 稼働時間データの表示画面を選択し、 C R T表示装置にこれらのデータを 表示させる。
以上の状態検出処理や作動時間記憶処理と略並列的に、 PMC C P U 1 4は図 6のフローチヤ一卜に示されるような表示要求検出処理を所定周期 毎に繰り返し実行している。 この処理において、 CRTZMD I 18から の表示要求が検出されたことを判別して (ステップ S O 1) 、 CRT表示 装置の表示画面を切り替え、 図 9 (a) に示されるようなデータ表示画面 により、 1日毎 1ヶ月分の稼働時間データ、 および (b) に示されるよう な 1ヶ月毎 1年分の稼働時間データを CRT/MD I 18の表示装置に表 示する (ステップ S 03)。
稼働時間データの表示を要求した時間が予め設定したデータ集計時刻よ りも早い時間であれば当曰データの集計が完了していないので、 1日毎 1 ヶ月分の稼働時間データを表示する表示画面には、 図 9 ( a ) に示される ように、 当月第 1日から当月前日までの各日データと前月の今日対応日以 降の各日データとが表示されることとなる。 例えば、 データ集計時刻を 1 9時 0 0分 0 0秒に設定して 7月 1 5日の 1 8時 3 0分 0 0秒に稼働時間 データの表示を要求したとすれば、 7月 1曰から 7月 1 4曰までの各曰デ 一夕と 6月 1 5曰から 6月 3 0日までの各日データとが表示される。 5月 は 3 1曰まで 6月は 3 0曰までであるから、 1日毎 1ヶ月分の稼働時間デ —タを記憶した図 7のファイルにはァ ドレス d = 3 1のレコードに 5月 3 1日分のデータが残ることとなる。 しかし、 最終曰付 dの値が 3 0以下で ある場合には作動時間記憶処理の終了段階でァドレス d + 1以降のデー夕 を消去する処理がされるので、 6月 3 0日における作動時間記億処理が実 行された段階で 5月 3 1日分のデータが消去される。 従って、 7月 1 5日 の 1 8時 3 0分 0 0秒に稼働時間データの表示を要求したときには、 7月 1曰から 7月 1 4日までの各日データと 6月 1 5日から 6月 3 0曰までの 各日データのみが表示されることとなる。 また、 稼働時間データの表示を 要求した時間が予め設定したデータ集計時刻よりも遅い時間であれば、 当 月第 1曰から当月当日までの各日データと前月の明日対応曰以降の各日デ 一夕が表示されることとなる。 すなわち、 1日毎 1ヶ月分の稼働時間デー 夕を表示する表示画面は直近 1ヶ月分の各曰データを表示する。
1ヶ月毎 1年分の稼働時間データの場合もこれと同様であって、 稼働時 間デ一夕の表示を要求した時刻が予め設定したデータ集計時刻よりも早い 時間であれば、 当年 1ヶ月から当年前月までの各月データと前年の今月対 応月以降の各月データが表示される。 一方、 稼働時間データの表示を要求 した時間が予め設定したデータ集計時刻よりも遅い時間であれば、 当年 1 ヶ月から当年当月までの各月データと前年の当月対応月以降の各月データ が、 図 9 (b) に示すように、 表示される。 すなわち、 1ヶ月毎 1年分の 稼働時間データを表示する表示画面には直近 1年分の各月データが表示さ れる。
なお、 図 9における CRT表示画面の時間データの値は、 各データを時, 分, 秒の単位に変換して表示したものであり、 また、 図 9に示されるよう な表示画面が選択された状態で、 CRTZMD I 18の別のソフ トキ一が 操作されれば、 PMC CPU 14はステップ S 02の判別処理でこれを検 出し、 操作に応じて別の選択処理へと移行する。
以上に述べたように、 本実施例におけるデータ出力手段は CRTZMD I 18における CRT表示装置によって構成され、 射出成形機 19におけ る各状態毎の積算時間やその割合は、 1日毎または 1ヶ月毎の所定期間で 集計されて図 7および図 8に示されるようなファイルに記憶され、 ォペレ 一夕の要望で任意に表示出力される。 また、 本実施例では 1日毎、 1ヶ月 毎のデータを表示出力したが、 1日毎、 1ヶ月毎と区切らずに、 表示指令 で各作動時間記憶レジスタの値を表示するようにしてもよい。 この場合に おいても、 電源投入時間に対する各作動状態の作動時間の百分率を求めて、 表示する。
また、 CRT/MD I 18と共にプリンタ装置を配備することにより、 作動時間記憶処理におけるステップ S 18やステップ S 27の処理を実行 する度に各状態毎の積算時間やその割合を 1日毎, 1ヶ月毎の所定期間で プリ ント出力しても良い。
図 7に示すような 1日毎 1ヶ月分のデータを記憶するファイルを各月毎 に作成すれば、 1日毎のデータを丸 1年に亘つて記憶したことになる。 こ のデータを用いれば、 曜日毎の各種稼働時間の積算値やその平均稼働時間、 および、 1週間分の各種稼働時間に対する各曜日の占める割合等を算出す ることができる。
以上、 カレンダー機能を有する時計装置 9を用いて現在日付や月を検出 することによってデータの集計作業を行うようにした実施例に付いて説明 したが、 2 4時間計測で自動的にリセッ 卜される時計装置を用いた場合で あっても実施例と同様の処理を行わせることができる。
以下、 2 4時間計測の自動的にリセッ 卜される時計装置を用いた第 2実 施例について簡単に説明する。
この実施例では日付および月に関する値が全く関与しないから、 まず、 作動状態検出処理については、 前記第 1実施例 (図 2 ) の処理をそのまま 適用することができる。 しかし、 作動時間記憶処理については第 1実施例 の処理 (図 3〜5 ) をそのまま適用できない。 すなわち、 第 1実施例では、 ステップ S 1 5の処理で時計装置からの現在日付を検出し、 ステップ S 1 9の処理で当月の最終日付を検出し、 ステップ S 2 0で月を読込んでいる からである。
したがって、 この 2 4時間計測で自動的にリセッ 卜される時計装置を用 いた第 2実施例においては、 その作動時間記憶処理については図 3以降に 示される作動時間記憶処理を修正して適用しなければならない。 そこでま ず、 図 3に示される作動時間記憶処理からステップ S 1 9の判別処理を取 り除くと共に、 ステップ S 1 5の処理に替えて日付指標 dの値を逐次ィン クリメントする処理を実行させる。 なお、 初回の電源投入時における日付 指標 dの値は 0である。 これで、 ステップ S 1 4の判別処理で設定時刻を検出する毎に日付指標 dの値を更新してステップ S 1 6乃至ステップ S 1 8の処理を自動的に実 施させることが可能となる。 但し、 日付指標 dの値を実際の日付に合わせ るためには、 月初めに日付指標 dの値を初期設定する必要が生じる。 そこ で、 更に、 図 4乃至図 5に示される作動時間記憶処理におけるステップ S 2 0の処理に替えて、 C R T ZM D I 1 8からのテンキー入力を検出して 月指標 mおよび m月の日数 dを設定する処理を構成し、 ステップ S 2 6と ステップ S 2 7との間に日付指標 dの値を 0に初期化するための処理を挿 入する。
以上のように修正することにより、 射出成形機 1 9に電源を投入して運 転を開始すれば、 ステップ S 1 4の判別処理でデータ集計時刻の到来が検 出される毎に日付指標 dの値が逐次更新され、 該更新日付指標 dの値に対 応してステップ S 1 6乃至ステップ S 1 8の処理を自動的に実施される。 また、 図 4のステップ S 2 0に替わる処理で、 月の変わり目毎にオペレー 夕が旧い月の値 mおよび m月の日数 dを設定入力すれば、 第 m月の第 1日 目から最終第 d日目までのデータがステップ S 2 1乃至ステップ S 2 7の 処理で自動的に積算されて集計される。 また、 ステップ S 2 6とステップ S 2 7との間の処理で指標 dの値が自動的に 0に初期化されるから、 第 m + 1月の第 1日目には日付指標 dの値が 1に再設定され、 以下同様にして 1ヶ月分の処理を繰り返し実行させることができる。
以上のように、 2 4時間計測で自動的にリセッ 卜される時計装置を用い た第 2実施例においては、 月指標 mおよび m月の日数 dをテンキーで設定 入力する際に多少の注意力を要求されるが、 作用, 効果の点に関しては力 レンダー機能を有する時計装置 9を用いた第 1実施例の場合と略同等であ る。
以上の実施例では 1日毎, 1ヶ月毎にデータを集計するようにしている カ^ 1週間毎, 1年毎にデータを集計させるようにすることも可能である。 検出すべき各作動伏態の特定は射出成形機の構成等に応じて任意に選択 設定することができる。 更に、 特定作動状態の組み合わせ態様等を判別す ることにより、 条件出しや段取りのために消費された時間やその割合等を 算出して表示出力させることも可能である。 条件出しや段取りのために消 費された時間やその割合等を算出するため、 専用の外部スィツチを設けた り、 C R TZM D I 1 8のキー操作等を検出したり、 更に、 射出成形機 1 9内部の状態検出信号を用いることもある。
上述の第 1 , 第 2実施例では、 1日の電源投入時間 Τ σ dや 1ヶ月の電 源投入時間 Tび mの値によって 1日又は 1ヶ月の電源が投入されなかった 時間、 すなわち電源切断時間を知ることができる。 また、 電源を切断する 前の段階で外部スィツチや C R TZM D I 1 8のキーから電源切断の理由 を示す項目のキーを入力し、 その理由毎に電源切断時間を不揮発性 R A M 8に記憶させることも可能である。 例えば、 電源を切断する直前に外部ス ィツチや C R TZM D I 1 8から入力された理由に応じて時計装置 9の現 在時間を検出し、 この値を不揮発性 R A M 8に記憶すると共に、 電源が再 投入された直後の段階で時計装置 9から現在時間を読込み、 この値から電 源切断時点で記憶した現在時間の値を減じ、 電源切断の理由に対応して不 揮発性 R A M 8に記憶させることができる。 なお、 電源切断の理由として は、 定期保守のための電源切断, 生産予定がないための電源切断, 故障修 復のための電源切断等の各種項目を予め設定して記憶させておく と良い。 次に第 3実施例として、 多数の射出成形機を併設して射出成形作業を行 わせる場合には、 各成形機毎に配備した装置で稼働時間分析はせずに、 単 一の集中管理コンピュータで分析作業を行う場合を示す。
図 10は、 複数の射出成形機 19 a, 19 b, 19 c…に対して単一の 集中管理コンピュータ 26を配備した第 3実施例を示すプロック図であり、 集中管理コンピュータ 26の要部は、 マイクロプロセッサ 21, R OM 2 2, R AM23, CRT/MD I 24およびフロッピ一ディスクやハード ディスク等からなる外部記憶装置 25などによって構成される。 これら複 数の射出成形機 19 a, 19 b, 19 c…と集中管理コンピュータ 26と の間は射出成形機 19 a, 19 b, 19 c…からのデータ伝送路と集中管 理コンピュータ 26側のインタ一フェイス 20を介して接続されている。 ここの射出成形機 19 a, 19 b, 19 c…のハ一ドウヱァに関する構 成は前記第 1実施例の射出成形機 19と略同等である。
まず、 集中管理コンピュータ 26によってデータの集計作業を行う場合 には、 射出成形機 19 a, 19 b, 19 c…からのヒータ昇温検出信号, アラーム発生信号, 生産完了信号, 手動運転信号, 半自動運転信号, 自動 運転信号等を各射出成形機のコ一ドと共に集中管理コンピュータ 26に入 力する。 そして、 集中管理コンピュータ 26の側で、 各射出成形機 19 a, 19 b, 19 c…の各コード毎に図 2および図 3乃至図 5に示されるよう な所定周期毎の処理を実行させ、 外部記憶装置 25に射出成形機のコード 毎に設けられた図 7および図 8のようなファイルにデータの集計結果を記 憶させるようにする。 また、 集計結果を CRT表示装置付手動データ入力 装置 24の CRT表示画面に表示する場合には、 射出成形機のコードを M D Iから入力して所望の射出成形機に関するデータのみを選択的に表示さ せるようにすれば良い。 この場合、 データの集計作業に必要とされるソフ トウヱァは全て集中管 理コンピュータ 2 6側の R O M 2 2に配備されることになるので、 射出成 形機 1 9 a , 1 9 b , 1 9 c…の各々には特定の作動状態を検出するため の手段を設けるだけで良く、 制御装置で内部処理を行う電動式射出成形機 のようなものに限らず、 従来公知の各種射出成形機に対応することができ る o
また、 射出成形機 1 9 a , 1 9 b , 1 9 c…の各々が制御装置で内部処 理を行う電動式のものであれば、 データの集計作業に必要とされる処理を 射出成形機と集中管理コンピュータ 2 6とに分担させることにより、 双方 の制御装置の負担を軽減化することもできる。
例えば、 図 2に示されるような状態検出処理のみを射出成形機 1 9 a , 1 9 b , 1 9 c…の各々に実行させて各射出成形機に 1日分のデータを蓄 えさせ、 データ集計時刻毎に集中管理コンピュータ 2 6から射出成形機 1 9 a , 1 9 b , 1 9 c…の制御装置をポーリングして各射出成形機毎のデ 一夕を収集する。 このデータを収集する毎に、 図 3乃至図 5に示されるよ うな処理を各射出成形機毎に行い、 外部記憶装置 2 5に記憶させるように することができる。
また、 集中管理コンピュータ 2 6を用いてデータの収集作業を行わせる ような場合においては、 射出成形機の電源投入の有無に関わりなく集中管 理コンピュータ 2 6の処理を実行させることができるから、 射出成形機の 電源切断の理由やその時間等を記憶する必要のある場合には、 第 3実施例 は好適な実施例となる。 電源切断の理由を対応するキーでもって射出成形 機から集中管理コンピュータ 2 6に送信し、 この理由に対応して集中管理 コンピュータ 2 6が射出成形機毎の電源切断の理由やその時間等を管理す ることは容易である。 また、 射出成形機の作動状態を電源投入の有無に関 わりなく外部的に検出するような検出手段を設ければ、 射出成形機の伏態 を休みなく検出することができる。 例えば、 固定プラテン 2 7や可動ブラ テン 2 8に金型の着脱を検出するリ ミ ッ トスィツチ等を配備することによ り、 電源切断後に行われた金型着脱作業の時間等を射出成形機毎に管理す ることも可能である。

Claims

請 求 の 範 囲
1 . 射出成形機の各種作動伏態を検出する作動状態検出手段と、 該作動状 態検出手段で検出される作動伏態の種類毎に検出されている時間をそれ ぞれ累積計時する複数の計時手段と、 これら計時手段で累積計時されて いる各作動伏態毎の累積計時時間を表示出力するデータ出力手段とを備 えたことを特徵とする射出成形機の稼働時間分析装置。
2. 上記各種作動状態の中には、 射出成形機の電源投入時間を含み、 上記 計時手段で累積計時された電源投入時間に対する各計時手段で計時され た各作動伏態の累積作動時間の割合を算出する手段を備え、 上記データ 出力手段は算出された作動時間の割合を各動作状態毎に表示出力する請 求項 1記載の射出成形機の稼働時間分析装置。
3 . 上記各種作動状態はヒータ上昇時間、 アラーム発生時間、 生産完了後 の停止時間、 手動運転時間、 半自動運転時間、 自動運転時間のうち少な くともどれかひとつを含む請求項 1または 2記載の射出成形機の稼働時 間分析装置。
4 . 集中管理コンピュータと複数の射出成形機がデー夕伝送路で接続され、 作動状態検出手段のみ各射出成形機に備え、 他の手段は上記集中管理コ ンピュー夕に備えられている請求項 1または 2または 3記載の射出成形 機の稼働時間分析装置。
5. 射出成形機の各種作動状態を検出する作動状態検出手段と、
時計手段と、
該時計手段からの時刻出力が予め設定された時刻と一致すると信号を 出力する集計時刻出力手段と、
該集計時刻出力手段からの出力信号でリセッ 卜され、 上記作動状態検 出手段で検出される作動状態の種類毎に検出されている時間をそれぞれ 累積計時する計時手段と、
上記集計時刻出力手段からの出力信号により上記各計時手段で累積計 時した時間を順次記憶する状態別作動時間記憶手段と、
該伏態別作動時間記憶手段に記憶された各作動状態毎の累積計時時間 を表示出力するデータ出力手段と、
を備えたことを特徴とする射出成形機の稼働時間分析装置。
6 . 上記各種作動状態の中には、 射出成形機の電源投入時間を含み、 上記 計時手段で累積計時された電源投入時間に対する各計時手段で計時され た各作動伏態の累積作動時間の割合を算出する手段を備え、 上記状態別 作動時間記憶手段は算出された作動時間の割合も記憶し、 上記データ出 力手段は、 各作動状態毎の累積計時時間と共に上記作動時間の割合も表 示出力する請求項 5記載の射出成形機の稼働時間分析装置。
7 . 上記集計時刻出力手段は 1日 1回の信号を出力し、 上記状態別作動時 間記憶手段は各日毎の状態別作動時間を記憶する請求項 5記載の射出成 形機の稼働時間分析装置。
8 . 上記集計時刻出力手段は 1日 1回の信号を出力し、 上記状態別作動時 間記憶手段は各日毎の状態別作動時間及び上記作動時間の割合を記憶す る請求項 6記載の射出成形機の稼働時間分析装置。
9 . 上記時計手段はカレンダー機能を有し、 上記集計時刻出力手段からの 出力信号により、 上記時計手段から出力される月, 日を読取り、 月の最 終日であると上記状態別作動時間記憶手段に記憶された各日毎の作動状 態の種類毎の作動時間を合計し、 各合計値を上記読み取った月の状態別 作動時間として月毎状態別作動時間記憶手段に記憶させる手段を備える 請求項 7記載の射出成形機の稼働時間分析装置。
1 0. 上記月毎伏態别作動時間記憶手段は 1年分のデータを記憶し、 上記 月毎状態別作動時間記憶手段に記憶させる手段は、 対応する月の記憶デ 一夕を算出された月の状態別作動時間に書き替える請求項 9記載の射出
5 成形機の稼働時間分析装置。
1 1. 上記時計手段はカレンダー機能を有し、 上記集計時刻出力手段から の出力信号により、 上記時計手段から出力される月, 日を読取り、 月の 最終ョであると上記状態別作動時間記憶手段に記億された各日毎の作動 状態の種類毎の作動時間を合計し、 かつ、 合計された電源投入時間に対
10 して各状態の作動時間の合計の割合を算出し、 各合計値と各割合を上記 読み取った月の状態別作動時間、 作動時間の割合として月毎状態別作動 時間記憶手段に記憶させる手段を備える請求項 7または 8記載の射出成 形機の稼働時間分析装置。
1 2. 上記月毎伏態別作動時間記憶手段は 1年分のデータを記憶し、 上記 I S 月毎状態別作動時間記憶手段に記憶させる手段は、 対応する月の記憶デ
一夕を算出された月の状態別作動時間及び作動時間の割合に書き替える 請求項 1 1記載の射出成形機の稼働時間分析装置。
1 3. 上記各種作動状態はヒータ上昇時間、 アラーム発生時間、 生産完了 後の停止時間、 手動運転時間、 半自動運転時間、 自動運転時間のうち少 0 なくともどれかひとつを含む請求項 5乃至 1 0記載のいずれか 1つの射 出成形機の稼働時間分析装置。
1 4. 上記各種作動状態はヒータ上昇時間、 アラーム発生時間、 生産完了 後の停止時間、 手動運転時間、 半自動運転時間、 自動運耘時間のうち少 なくともどれかひとつをを含む請求項 1 1または 1 2記載の射出成形機 - 2 1 - の稼働時間分析装置。
1 5 . 集中管理コンピュータと複数の射出成形機がデータ伝送路で接続さ れ、 作動状態検出手段のみ各射出成形機に備え、 他の手段は上記集中管 理コンピュータに備えられている請求項 5乃至 1 0または 1 3記載のい ずれか 1つの射出成形機の稼働時間分析装置。
1 6 . 集中管理コンピュータと複数の射出成形機がデータ伝送路で接続さ れ、 作動状態検出手段のみ各射出成形機に備え、 他の手段は上記集中管 理コンピュータに備えられている請求項 1 1または 1 4記載の射出成形 機の稼働時間分析装置。
1 7. 集中管理コンピュータと複数の射出成形機がデータ伝送路で接続さ れ、 作動状態検出手段のみ各射出成形機に備え、 他の手段は上記集中管 理コンピュータに備えられている請求項 1 2または 1 4記載の射出成形 機の稼働時間分析装置。
PCT/JP1992/000623 1991-05-18 1992-05-14 Device for analyzing working hours of injection molding machine WO1992020509A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019920703323A KR0124808B1 (ko) 1991-05-18 1992-05-14 사출 성형기의 가동시간 분석장치
EP92910206A EP0540752B1 (en) 1991-05-18 1992-05-14 Device for analyzing working hours of injection molding machine
DE69221424T DE69221424T2 (de) 1991-05-18 1992-05-14 Vorrichtung zur analyse der betriebsstunden einer spritzgiessmaschine
US07/961,900 US5344301A (en) 1991-05-18 1992-05-14 Operating time analyzing apparatus for an injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3140582A JP2727139B2 (ja) 1991-05-18 1991-05-18 射出成形機の稼働時間分析装置
JP3/140582 1991-05-18

Publications (1)

Publication Number Publication Date
WO1992020509A1 true WO1992020509A1 (en) 1992-11-26

Family

ID=15272045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000623 WO1992020509A1 (en) 1991-05-18 1992-05-14 Device for analyzing working hours of injection molding machine

Country Status (6)

Country Link
US (1) US5344301A (ja)
EP (1) EP0540752B1 (ja)
JP (1) JP2727139B2 (ja)
KR (1) KR0124808B1 (ja)
DE (1) DE69221424T2 (ja)
WO (1) WO1992020509A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571539A (en) * 1994-12-30 1996-11-05 D & L Incorporated Mold with an on-board counter or monitor
JPH0918979A (ja) * 1995-06-28 1997-01-17 Canon Inc 稼働状態管理システム
JPH1134137A (ja) * 1997-07-18 1999-02-09 Sumitomo Heavy Ind Ltd 射出成形機の注意喚起装置
JPH11170326A (ja) * 1997-12-15 1999-06-29 Fanuc Ltd 射出成形機のアラーム分析方法および分析装置
JP3425543B2 (ja) * 1999-09-13 2003-07-14 株式会社名機製作所 射出成形方法および射出成形装置
KR100406824B1 (ko) * 2001-08-16 2003-11-21 주식회사 대양기술 행정운동기계의 작동현황감지시스템 및 이의 제어 방법
US6685458B2 (en) 2001-10-11 2004-02-03 Acushnet Company Split metal die assembly with injection cycle monitor
JP3756871B2 (ja) * 2002-11-07 2006-03-15 日精樹脂工業株式会社 射出成形機の電源遮断方法
US7534378B2 (en) * 2004-03-03 2009-05-19 Rexam Prescription Products Inc. Plastic forming process monitoring and control
JP4091631B2 (ja) * 2005-11-17 2008-05-28 ファナック株式会社 機械の信号処理装置
JP2008112209A (ja) * 2006-10-27 2008-05-15 Omron Corp 稼働状態モニタリング装置、稼働状態モニタリング方法、およびプログラム
CN101770217A (zh) * 2008-12-30 2010-07-07 鸿富锦精密工业(深圳)有限公司 数控成型机显示控制系统及方法
WO2010148278A2 (en) 2009-06-18 2010-12-23 Progressive Components International Corporation Electronic cycle counter
US8883054B2 (en) 2009-06-18 2014-11-11 Progressive Components International Corporation Mold monitoring
JP6352189B2 (ja) 2011-10-10 2018-07-04 プログレッシブ コンポーネンツ インターナショナル コーポレーション 金型加工活動状態をモニタするためのシステムおよび方法
JP5596105B2 (ja) * 2012-11-09 2014-09-24 ファナック株式会社 射出成形機の型厚調整装置
JP6183708B2 (ja) * 2013-12-17 2017-08-23 宇部興産機械株式会社 型締装置
WO2018092212A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 作業状況見える化装置
DE102022106288A1 (de) * 2022-03-17 2023-09-21 Kraussmaffei Technologies Gmbh Verfahren zur Überwachung eines Maschinenteils
DE102022115702A1 (de) 2022-06-23 2023-08-03 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung von Maschinenbetriebsdaten einer Maschine, System, Computerprogramm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212042A (en) * 1981-06-24 1982-12-27 Toshiba Mach Co Ltd Molding data collector for injection molding machine
JPS5824962A (ja) * 1981-08-06 1983-02-15 Dainippon Printing Co Ltd 工票読取集計装置
JPS58132446A (ja) * 1982-01-29 1983-08-06 リア・シ−グラ−・インコ−ポレ−テツド 作業領域内での作業資材の流れを制御し該流れに関する実時間デ−タを集収する方法および装置
JPS6490718A (en) * 1987-09-30 1989-04-07 Toyo Machinery & Metal Molding machine provided with working state recording device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311320A (ja) * 1986-07-03 1988-01-18 Fanuc Ltd 過熱防止機能を有する射出モ−タ制御方法
JPH02213904A (ja) * 1989-02-15 1990-08-27 Yokogawa Electric Corp マルチ処理システム
JPH03203621A (ja) * 1989-12-30 1991-09-05 Shigumatsukusu Kk 射出成形機監視システム
JP2673464B2 (ja) * 1990-06-18 1997-11-05 ファナック株式会社 成形モニタ装置
JPH0484305A (ja) * 1990-07-27 1992-03-17 Nec Corp 数値制御装置の制御方式
US5200126A (en) * 1990-11-29 1993-04-06 Eastman Kodak Company Method and apparatus for monitoring the stability of the injection molding process by measurement of screw return time
JPH04331125A (ja) * 1991-03-12 1992-11-19 Sekisui Chem Co Ltd 射出成形品における外観不良予測方法
JP3031530U (ja) * 1996-04-05 1996-11-29 有限会社フジ写真工芸 カレンダーの日付色変え用シール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212042A (en) * 1981-06-24 1982-12-27 Toshiba Mach Co Ltd Molding data collector for injection molding machine
JPS5824962A (ja) * 1981-08-06 1983-02-15 Dainippon Printing Co Ltd 工票読取集計装置
JPS58132446A (ja) * 1982-01-29 1983-08-06 リア・シ−グラ−・インコ−ポレ−テツド 作業領域内での作業資材の流れを制御し該流れに関する実時間デ−タを集収する方法および装置
JPS6490718A (en) * 1987-09-30 1989-04-07 Toyo Machinery & Metal Molding machine provided with working state recording device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Information Processing, Vol. 15, No. 4, April 1974, (Tokyo, JP), Y. TSUBOI "Applications of a minicomputer in labor saving and automation", pages 240-245, see particularly line 26, right-hand column, page 244 to line 22, left-hand column, page 245. *
See also references of EP0540752A4 *

Also Published As

Publication number Publication date
DE69221424D1 (de) 1997-09-11
DE69221424T2 (de) 1997-12-11
JP2727139B2 (ja) 1998-03-11
EP0540752A4 (en) 1993-10-13
US5344301A (en) 1994-09-06
EP0540752B1 (en) 1997-08-06
KR930701283A (ko) 1993-06-11
KR0124808B1 (ko) 1997-12-01
EP0540752A1 (en) 1993-05-12
JPH04341817A (ja) 1992-11-27

Similar Documents

Publication Publication Date Title
WO1992020509A1 (en) Device for analyzing working hours of injection molding machine
JP3088403B2 (ja) 機械の消費電力表示装置
EP1927912B1 (en) Production status display and production status display method of molding machine
KR900001931B1 (ko) 공정 모니터가 가능한 사출성형기
US3147370A (en) Measuring and controlling system
JP2004216715A (ja) 射出成形機のモニタ装置
EP0487740B1 (en) Method of monitoring operating conditions of injection molding machine
JP3766390B2 (ja) 射出成形機のモニタ装置
US5154935A (en) Injection pressure control apparatus for an electrically-operated injection molding machine
JPS6125661B2 (ja)
KR970002297B1 (ko) 전동식 사출성형기의 배압제어방법 및 그의 장치
JP2997435B2 (ja) 射出成形機の稼働時間分析装置
JP2004148521A (ja) 射出成形機の表示装置
JP2006247874A (ja) 射出成形用波形表示方法及び装置
JP2012153077A (ja) 射出成形機の稼働状態監視装置
GB2034890A (en) Indicating cycle times to an operator of a machine
JP3595572B2 (ja) 射出成形機の段取り誤り検出方法
JP4008365B2 (ja) 射出成形機の表示方法
JP5356893B2 (ja) 射出成形機の電力監視装置
JPH11115016A (ja) 射出成形機
JPH069832Y2 (ja) 複数の単位系で画面表示・条件設定ができる射出成形機
JP2009017995A (ja) ミシンの生産管理装置
JPH01178431A (ja) 射出成形機の各種工程タイマの残り時間表示方式
JPH05180959A (ja) ストップウォッチ装置
JPH04249128A (ja) 射出成形機のモニタデータ及び成形条件印字方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992910206

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992910206

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992910206

Country of ref document: EP