WO1992016641A1 - Process for expressing polypeptide - Google Patents

Process for expressing polypeptide Download PDF

Info

Publication number
WO1992016641A1
WO1992016641A1 PCT/JP1992/000289 JP9200289W WO9216641A1 WO 1992016641 A1 WO1992016641 A1 WO 1992016641A1 JP 9200289 W JP9200289 W JP 9200289W WO 9216641 A1 WO9216641 A1 WO 9216641A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
added
sod
polypeptide
solution
Prior art date
Application number
PCT/JP1992/000289
Other languages
English (en)
French (fr)
Inventor
Hideaki Hagiwara
Yasunobu Takeshima
Original Assignee
Hagiwara, Yoshihide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagiwara, Yoshihide filed Critical Hagiwara, Yoshihide
Priority to EP92906714A priority Critical patent/EP0533942B1/en
Priority to DE69213145T priority patent/DE69213145T2/de
Priority to AU15659/92A priority patent/AU650531B2/en
Priority to CA002082802A priority patent/CA2082802C/en
Publication of WO1992016641A1 publication Critical patent/WO1992016641A1/ja
Priority to FI925143A priority patent/FI925143A/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora

Definitions

  • the present invention relates to a method for expressing a polypeptide, and more specifically, by transforming a carrier DNA containing a structural gene encoding a polypeptide having useful physiological activity using a cyanobacterial cell as a host,
  • the present invention relates to a method for efficiently expressing the polypeptide.
  • Cyanobacteria also known as cyanobacteria, is a prokaryote that does not have a nuclear envelope, like E. coli. However, cyanobacteria resemble the photosynthesis mechanism of higher plants, especially red algae, and use the light from the sun as an energy source to biosynthesize organic substances from water and carbon dioxide and a small amount of inorganic salts. It is capable of growing in large quantities nutritionally.
  • cyanobacteria There are also many species of cyanobacteria that have been considered edible since ancient times [Spirulina, Aphanothece, Nostoc, etc.], and pathogenicity and parasitism to animals have been reported. Absent. Therefore, cyanobacteria are suitable as a host for genetic recombination and have excellent safety.
  • cyanobacteria having the above-mentioned characteristics and it can be expressed in large quantities, foods, functional foods, It is possible to produce feed, etc., and it is expected that it will be possible to produce low-cost, energy- and resource-saving pharmaceuticals, quasi-drugs, and cosmetic raw materials.
  • RuBisC0 an operon that functions in cyanobacterial cells by linking the initiation region and transcription termination region to the structural gene that is to be expressed
  • RuB isCO uses the transcription initiation region and transcription termination region.
  • the structural gene was expressed efficiently, and that the amount of expression was also affected by the type of vector into which the created operon was introduced.
  • a method for expressing a polypeptide in a cyanobacterial cell by transforming the cyanobacterial cell with a carrier DNA containing a structural gene encoding a polypeptide having a physiological activity.
  • a structural gene encoding a physiologically active polypeptide as a carrier DNA, and an Anakistis niju located upstream of the structural gene A run characterized by using a carrier DNA containing a transcription start region of the RuBisC0 gene of Lance and a transcription termination region of the RuBisC0 gene located downstream of the structural gene.
  • a method for expressing a polypeptide having a physiological activity in algal cells is provided.
  • a structural gene that encodes a biologically active polypeptide (hereinafter sometimes referred to as a “useful structural gene” for convenience) and a ribulose of Anarchys nidulans (An acy stisnidu 1 ans) 1,5 —The transcription initiation region, SD-like sequence and transcription termination region of diphosphate carboxylase oxygenase (RuB is CO) [K. Shinozaki and M. Sugiura, liol. Gen. Genet. 200: 27-32 (1985), Masanobu Kumano ⁇ Masahiro Sugiura, Genetics 38 (1 2): 26-31 (1 984) etc.]
  • the specific method for preparing the carrier DNA linked with is shown in the Examples below. An outline of the basic operation is given below.
  • the DNA fragment containing the RuBisCO promoter is, for example, the plasmid pANE18 (of pBR322) described in Shino zagi et al. [Proc. Natl. Acad. Sci. USA, 80: 4050-4054 (1983)].
  • An E.coRI site containing a 5.6 MDa E.coli fragment containing the RuBisCO promoter region was inserted into the E.coli site using a conventional method (T. Maniatis et al., Molecular cloning-A Laboratory Manual- Cold Spring Horbor Laboratory published) and can be prepared by cutting out with restriction enzymes EcoRI, SacI and PstI. c
  • the terminator region of RuB is CO can be obtained, for example, from the publication of K. Shinozaki et al. [Proc. Natl. Acad. Sci. USA 80: 4050-4054 ( 1983)], the plasmid pANP1155 (having a Pstl site of pBR322 into which a PstI fragment of about 1.5 MDa containing a RuBisCO terminator region) was inserted into restriction enzymes PstI and Eco It can be prepared by cutting out with 52I.
  • an SD-like sequence is introduced as a ribosome recognition sequence upstream of the useful structural gene and downstream of one promoter region.
  • SD-like sequence it is preferable to use a sequence complementary to the liposomal RNA of the host cyanobacterium, and GGAG is used as the SD-like sequence when using Anakistis niduulance 6301 strain as the cyanobacterium.
  • a base sequence can be used, but the present invention is not limited to this.
  • Other base sequences known as SD-like sequences can also be used. Since such an SD-like sequence has a small number of bases, it is usually created by synthesis.
  • the SD-like sequence is usually located before the ATG (translation start point), and the length (number of bases) from the SD-like sequence to the ATG may affect the expression of useful structural genes. It is desirable to adjust the expression level so as to be optimal according to the type, the base sequence of the structural gene and the like.
  • the length varies depending on the type of host cyanobacteria, the nucleotide sequence of the structural gene, etc., but is generally about 3 to 10 bases, and the optimal length depends on the nucleotide sequence of the host structural gene, etc. Can be determined experimentally.
  • the preparation of a DNA fragment containing an SD-like sequence can usually be performed before or before ATG (translation start point), and the synthesis of the DNA fragment can be performed by a gene manipulation technique known per se [for example, See “Sequence Chemistry Experiment Lecture 1 Gene Research Method II”, Tokyo Kagaku Dojin (1987)].
  • Polypeptides having a physiological activity that can be expressed by the method of the present invention are not limited to specific ones. Can be efficiently expressed.
  • Useful peptides that can be expressed by the method of the present invention include, for example, human SOD, interleukin (human, mouse, etc.), human interferon 1, 1, 5; or human, insulin, human tumor necrosis.
  • Factor TNF
  • human colony stimulating factor CSF :
  • human tissue plasmaminactivator tPA
  • human properokinase perokinase
  • human blood coagulation factor IV, VII) ⁇ XIII
  • human-erythropoietin human nerve growth factor
  • human-secretory trypsin inhibitor growth hormone (human, male, pig, pig, chicken, fish, etc.), growth hormone Release factor, antibody (immunoglobulin), insecticidal protein (BT protein, etc.), seed storage protein (Phaseolin, zein, glutenin, glycinin, hordin, etc.) and polypeptides having an amino acid sequence substantially the
  • a polypeptide having an amino acid sequence substantially identical to a useful peptide is defined as a useful peptide per se or within a range that does not substantially lose the activity inherent in the useful peptide.
  • the amino acid sequence of the useful peptide is used to mean a polypeptide related to the useful peptide in which a part of the amino acid sequence is replaced with another amino acid.
  • polypeptide having an amino acid sequence substantially identical to human-SOD includes Jabusch et al. [Biochemistry, 19: 2310-2316 ( 19 80)] and Barra et al. [FEBS Letters 120; 53-55 (1980)]
  • the enzyme activity as hSO D is not substantially lost.
  • a part of the amino acid sequence (generally, 5 or less, preferably 2 or less) also includes a polypeptide related to hSOD in which another amino acid is substituted, specifically, (a ) h S OD
  • the promoter and the SD-like sequence do not need to be single, and two or more promoters can be used in tandem and Z or two or more SD-like sequences can be used in tandem. .
  • the operon containing the above-mentioned useful structural gene can transform the host substantially as it is depending on the type of the host and / or the type of the operation, but usually, a vector (plasmid) suitable for the host is used. ⁇ used for transformation
  • Vector 1Q A wide variety of vectors used in cyanobacterial cells can be used as the vector into which the above-described expressible operation can be introduced.
  • pUC104, pUC105 [CJ Kuhlemeier et al. al., Mol. Gen. Genet. 184: 249-254 (1981)]
  • pLS103 [LA Sherman and P. van de Putte, J. Bacteriol, 150: 410-413 (1982)]
  • pDPL13 S. Gendel et al., J. Bacteriol, 156: 148-154 (1983)]
  • p UC 303 [CJ hlhlemeier et al., Plasmid 10: 156-163.
  • Such vectors can also be derived from plasmids and viruses as needed, for example, the OriA region of plasmid pBAl from Anakistis nidueurans and the multicloning region of plasmid pUC. And the Ori E region of Escherichia coli Co 1 El-based plasmid and the shuttle vectors pBAX18, pBAX20, etc., which can be replicated in Escherichia coli and cyanobacterial cells constructed by the present inventors. [Refer to the examples described later and a patent application filed on March 8, 1991, filed by the same applicant whose title is "New Plasmid" (Japanese Patent Application No. 3-67774).
  • the hSOD operon prepared as described in (5) above using a useful structural gene encoding hSOD is, for example, pBAS18 or pBAXl capable of replicating in Anakistis-dudurans cells.
  • E c oR I recognition site if a cleaved with the restriction enzyme E c oR I, together with DN a fragment of the Onoo is inserted Ri by the exerting a T 4 DN a ligase, h Vector for SOD expression is obtained.
  • the number of operons inserted into the vector need not be one, but two, three, four or more can be tandemed in the same direction.
  • the hS0D expression vector thus obtained can be crawled in Escherichia coli according to a conventional method (T. lianiatis et al., Published by Molecular Cloning-A Laboratory Manual-Cold Spring Horbor Laboratory).
  • Examples of the cyanobacterial cells that can be transformed with the carrier DNA constructed as described above include the following. Anakistis nidueurans 6301 strain (Synechococcus PCC 63 01),
  • Nostoc PCC 7119 (Anabaena PCC 7119),
  • Transformation of these host cyanobacterial cells with the carrier DNA is carried out by a method known per se, for example, ED Porter [CRC Critical Reviews in Microbiology 13 (2): 111-132], DA lightfoot et al. [J. Genera 1, Microbiology 134: 1509—1514 (1988)], SS Golden et al. [J. Bacteriol, 158: 361-242 (1984)], H. Daniel et al. [Proc. Natl. Acad. Sci. USA 83: 2546—2550 ( 1986)] T. Matsunaga et al. [Appl. Biochem. Biotechnol. 24/25: 151-160 (1990)].
  • the hSOD expression vector can be introduced into Anakistis nidulans and transformed by the method of DA Lightifoot et al.
  • the resulting transformants are selected based on ampicillin resistance, etc., and then the desired transformants are obtained by the immunoblotting method, octeroney method, SOD activity staining in polyacrylamide gel, and measurement of SOD activity. You can be sure that.
  • the transformant thus obtained can be expressed in a physiologically active polypeptide by culturing it under light irradiation in a medium known per se in accordance with the growth of the host cell.
  • the culture medium preferably contains an appropriate amount of an agent for selectively growing the transformant, such as ampicillin.
  • the transformant host is Anakistis nidurans, BG-11 medium, MDM medium, etc.
  • the culture temperature is generally 10 to 35 ° C, preferably Is suitable at 25 to 30 ° C.
  • the pH of the culture medium is usually suitable in the range of 7 to 8 and the illuminance is preferably in the range of 500 to 500 lux.
  • the cultivation can be performed under such conditions for about 5 to about 20 times. Further, the culture can be carried out under standing or stirring.
  • the expression efficiency of useful peptides is extremely high, and the separation and recovery of useful peptides produced in cyanobacterial cells can be performed from cultures by a method known per se. it can. For example, cells are collected by centrifugation from the culture solution, crushed, and then subjected to commonly known methods, such as salting out, dialysis, ion exchange chromatography, gel filtration chromatography, chromatofocusing, and hide-port phobic. Separation and recovery can be performed by appropriately combining operations such as interaction chromatography, affinity chromatography, and electric swimming.
  • the physiologically active polypeptide produced in this way can be used for pharmaceuticals, quasi-drugs, cosmetics and the like.
  • Transformed cyanobacteria cultured under light irradiation are collected by centrifugation after culturing, and can be used as they are as food, feed, and functional foods.
  • the RuBisCO promoter used in the recombinant DNA of the present invention can induce the expression of a useful structural gene located downstream thereof in a large amount under the control of light. Do not use expensive drugs commonly used to induce expression using the trp promoter, etc. ⁇ There are advantages, such as not being necessary.
  • FIG. 1 is a flow chart for preparing an Anakistis nydurans RuBisCO expression control region (EcoRI—Pstl fragment).
  • FIG. 2 shows the nucleotide sequences of ten oligonucleotides chemically synthesized to synthesize a region containing an SD-like sequence (PstI—Hindill fragment).
  • FIG. 3 is a process chart for preparing a region containing an SD-like sequence (Pst I—Hindill II fragment).
  • FIG. 4 is a flow chart for the preparation of a RuBisCO expression control region (EcoR I—Hin dill fragment).
  • Figure 5 shows the preparation of RuBisCO transcription termination and construction of puC-h SODt plasmid.
  • Figure 6 shows the construction of the hSOD operon.
  • Figure 7 shows the nucleotide sequence of the hSOD operon (S0D7).
  • FIG. 8 shows the construction of vector plasmids pBAX18, 19. and 20.
  • FIG. 9 is a diagram showing the results of S0D activity staining.
  • FIG. 10 shows the results of Western blotting.
  • FIG. 11 shows the results of octeroney.
  • the DNA was incorporated into the cells by incubating at C for 3 minutes.
  • To this suspension was added 1 ml of LB medium (10 gZ 1 bactotryptone, 5 g /) yeast extract, 10 gZl NaC], and the mixture was incubated at 37 ° C for 1 hour with shaking.
  • the cell suspension was plated on 100 1 and 200 ml of LB agar medium (containing 50 // gZml ampicillin and 1.5% agar). The plate was incubated for 24 hours at 37 and colonies were isolated.
  • the residue was dissolved in 50 nI of TE (10 mM Tris-HC1 (pH 8.0), 1 mM EDTA), and 1/10 volume of an electrophoresis marker (0.25% bromophenol, 0.25%) was added.
  • % Xylene cyanol, 30% glycerol loaded on a 1.5% agarose gel, and electrophoresed with TAE buffer (4 OmM Tris-acetate, 2 mM EDTA) at 50 V for 1.5 hours. After the electrophoresis, the gel was immersed in a 0.5 g / ml ethidium solution (in TAE) for 15 minutes to stain the DNA.
  • the stained gel was placed on a transilluminator, and ultraviolet light was applied to cut out a band containing the target DNA.
  • the target DNA fragment (about 120 Obp) was purified using a DNA purification kit Geneciean (manufactured by BI0101).
  • a ligation solution 51 (100 / zg) was added with a cell suspension 100 1 of E. coli J Ml 09 strain treated with 50 mM CaCl 2 and mixed gently. After incubating the mixture in ice water for 30 minutes, Incubate with ⁇ for 2 minutes. DNA was incorporated into cells. To this suspension was added 1 ml of 2YT liquid medium, and the mixture was incubated at 37 ° C for 1 hour with shaking.
  • the isolated white colony was inoculated with a platinum loop into 2 ml of 2YT liquid medium (containing 5 ampicillin), and cultured at 37 ° C for one hour. 1 ml of the culture solution was transferred to a 1.5-ml Eppendorf tube, and centrifuged at 1500 O rpm for 30 seconds to collect cells. The collected cells were suspended in 150 1 of SET buffer (20% sucrose, 50 mM Tris—HCl (pH7.6), 50 mM EDTA), and 51 ENase solution (10 mg Zml ribonuclease A, 0.1 M Sodium drunkate (pH 4.8) and 0.3 mM EDTA were added and mixed well with a portex mixer.
  • SET buffer 20% sucrose, 50 mM Tris—HCl (pH7.6), 50 mM EDTA
  • 51 ENase solution (10 mg Zml ribonuclease A, 0.1 M Sodium drunkate (pH 4.8) and 0.3 mM ED
  • the precipitate was dissolved in sterile water, a part of the precipitate was digested with restriction enzymes EcoR indill (both manufactured by Takara Shuzo Co., Ltd.), and subjected to 1.5% agarose gel electrophoresis. It was confirmed that the I fragment was inserted into pUC18.
  • a colony confirmed to have the SacI-SphI fragment inserted into pUC18 was transferred to 400 ml of 2YT liquid medium (containing 100 gZml ampicillin) and cultured once. The cultured cells were collected by centrifugation at 8000 rpm for 10 minutes at 4 rpm, and plasmid DNA was prepared in a large amount by the SDS-alkali method.
  • oligonucleotides were synthesized by a phosphoamidite method using a DNA synthesizer 38A (Applied 'Biosystems' Japan).
  • aqueous ammonia 27% or more was added in 0.5 ml portions every 15 minutes, and oligonucleotides were cut out from the silica support and collected in vials.
  • To the vial was further added lnil ammonia water, sealed with a cap and a film, and heated at 55 ° C for at least 8 hours to remove the protecting group (acyl group) at the base.
  • oligonucleotides 4 g of Kinase buffer (5 OmM T ri s -HC 1 ( ⁇ 7.6). 10 mM MgC 1 2 0. ImM E DTA, 5mM DTT, 0. ImM spermidine, 1.7 ⁇ M ATP) 120 ⁇ mixed 1, T 4 polynucleotide kinase (Takara Shuzo Co.) 9Units was added and incubated 37 for 15 minutes. Then added so that the A TP final concentration ImM, again added T 4 polynucleotide quinic over Ze 9Units, and incubated at 37 ° C 25 min. After the reaction, the enzyme that had been heat treated for 90, 5 minutes was inactivated. The phosphorylated oligonucleotide was purified using a nucleic acid purification cartridge Nensorb20.
  • the solution was heated 90 ° C, 5 minutes, 2 hours and gradually cooled to 4, was added a 10 Omm DTT and 10 mM ATP by 10 ⁇ 1, (manufactured by Takara Shuzo Co.) further T 4 DNA ligase 2.5 units were added and incubated at 4 for 15 hours.
  • the reaction solution was treated with an equal volume of phenol-chloroform, DNA was precipitated by ethanol precipitation, and used for the next experiment.
  • HC 1 (pH 8.5), 10 OmM MgCl 2 , 10 mM DTT, 10 OmM KC 1) 10 1 and Hindill 64 units (8 ⁇ 1) were added to sterile water to adjust to 100 I.
  • the tube (1.5 ml volume) was reacted at 37 ° C for 3 hours.
  • This reaction solution was treated with an equal volume of phenol-chloroform, and DNA was recovered by ethanol precipitation.
  • the DNA residue was dissolved in 751 sterile water, 5 X EcoRI buffer 201 and EcoRI 60 units (5 ⁇ 1) were added, and reacted at 37 ° C for 3 hours. After the reaction, phenol-chloroform treatment and ethanol precipitation were performed in the same manner.
  • the recovered DNA was dissolved in TE to a concentration of 0.25 ⁇ gZ / z1 and used for the next experiment.
  • Each colony containing plasmid pARupl, 2, 3, and 4 is cultured in 200 ml of 2YT liquid medium (containing 100 ⁇ gZml ampicillin), and the amount of each plasmid DNA is increased by SDS-alkaline method.
  • 2YT liquid medium containing 100 ⁇ gZml ampicillin
  • P ANP 1155 K. Shinozaki et al.
  • 500 ng (0, 5 zl) was added to the cell suspension 100 1 of 50 m M CaC l 2 treated E. coli JM 109 strain , Mildly mixed. The mixture was incubated in ice water for 30 minutes and then incubated at 42 ° C for 2 minutes to allow the DNA to be incorporated into the cells.
  • the isolated colonies were cultured in 2.8 liters of 2YT liquid medium (containing 25 gZml tetracycline), and the plasmid DNA was transferred to SDS-AL. It was prepared in large quantities by the force method.
  • Pst I fragment DNA solution 64.5 ⁇ ⁇ (approximately 10 ⁇ g) was added to l O xE c 052 I buffer (100 mM Tris- HC I (pH 9.0, 30 mM MgCl 2 , lOO OmM NaCl, 0.1% BSA) 7.5 1 and Eco 52 I (manufactured by Toyobo Co., Ltd.) 18 units (3 ⁇ 1) were added and incubated for 3 hours at 37 ° C. After incubation, phenol was treated with a single-mouthed form and ethanol was precipitated. The collected DNA was dissolved in 81 sterilized water.
  • ligation solution 1 1 (about 40n g) in 50mM C a C l 2 of the cell suspension 100 ⁇ 1 of the treated E. coli J Ml 09 shares added and gently combined mixed. The mixture was incubated in ice water for 30 minutes, followed by an additional 2 minutes at 42 to allow the DNA to be incorporated into the cells. To this suspension was added 1 ml of 2 ⁇ ⁇ liquid medium, and after shaking culture at 37 ° C for 1 hour, 2 YT agar medium (5 O / ig Zml ampicillin, 40 mg Zl X-gal, 23.83 mg / l I PTG and (Including 1.5% agar).
  • Plasmids were prepared from the obtained white colonies, and colonies having the desired plasmid pARut13 were screened by analyzing the restriction enzyme map. Culture the screened colonies in 400 ml of 2YT liquid medium (containing 10 ampicillin) and add plasmid
  • the DNA was prepared in large amounts by the SDS-AliCri method.
  • the DNA was recovered by ethanol precipitation, and the target DNA fragment (about 300 bp) was separated by 1.5% agarose gel electrophoresis.
  • the DNA was electroeluted from the gel and purified using the nucleic acid purification cartridge Nensorb20.
  • pUC13—h—SOD Japanese Patent Application No. 1 in which a full-length DNA fragment (475 bp) encoding human superoxide dismutase was inserted into the Hindlll-BamHI site of pUC13.
  • PUC 13-h-SOD (BamH I-Eco RI) DNA 50 Ong (1/1) and transcription termination region 60 ng (0.
  • Ligation kit A solution 11.2 ⁇ 1 was added and mixed well.
  • Taka ra ligation kit B solution 1.4 I was added to this solution, and the mixture was stirred well and incubated at 16 ° C for 30 minutes. After the reaction, this solution was used for transformation of E. coli JM109 strain.
  • ligation solution 2 1 (about 70 ng) in 50 mM C a C 1 2 in E. coli J Ml 09 strain cell suspension 100 1 added for treated and mixed Oda ⁇ crab. After the mixture was incubated in ice water for 30 minutes, the DNA was further incubated at 42 for 2 minutes to allow the DNA to be incorporated into the cells. Add 1 ml of 2YT liquid medium to this suspension, shake culture at 37 ° C for 1 hour, and add 2YT agar medium (containing 50 gZml ampicillin, 40 mgZl X-gal, 23.83 mgZl I PTG and 1.5% agar). ). Plasmid was prepared from the obtained white colonies, and the colonies having the desired DNA fragment were screened by analyzing the restriction enzyme map. The screened colonies were cultured in 60 ml of a 2YT liquid medium (containing 100 // gZml ampicillin), and plasmid DNA was prepared by the SDS-single force method.
  • Expression control region (ARu pl, 2, 3 and 4) 1.12 ⁇ (2.11) and Hindill—EcoRI fragment 2.11 g (2.2 zl) were added to 5 x 1 ligation buffer (25 OmM T ris—HC 1 (pH 7.6)> 50 mM Mg Cl 2 ) 100 mM ⁇ 2 ⁇ ⁇ , 1 OmM A
  • TP 2 1, T 4 DNA ligase ( Takara Shuzo Co., Ltd.) 2.5 units (1 beta 1) and sterilized water were added to 20 1 and the Etsu Eppendorf, respectively Re its tubes prepared. After incubating the tubes at 15 for 15 minutes, the reaction was stopped by heat treatment at 60 for 10 minutes. To each of these solutions, 10 l of 5XEc0RI buffer, 12 units (1 ⁇ 1) of EcoRI and sterilized water were added to obtain 50 ⁇ 1. These solutions were incubated at 37 ° C for 3 hours. After the reaction, each target DNA fragment (about 1200 bp each in FIG. 7) was separated by 2% agarose gel electrophoresis and purified using Geneclean.
  • Takara ligation kit A solution 24 1 was added to 100 ng (1 ⁇ l) of DNA and 320 ng (2/1) of pUC18 DNA treated with EcoRI and alkaline phosphatase. Each was added and stirred well. Takara ligation kit B solution 31 was added to each of these solutions, and the mixture was thoroughly stirred, followed by incubation with 1.
  • Plasmids were prepared from the obtained white colonies, and colonies containing each of the desired plasmids (pUC1-Rupt-hSODl. 2, 3 and 4) were screened by analyzing the restriction enzyme map. Each of the screened colonies was placed in 20 Oml of 2YT liquid medium (10 (Including ampicillin), and each plasmid DNA was prepared in a large amount by the SDS-Alikari method. (4) Isolation of EcoRI fragment (about 1200 bp)
  • the mixture was further reacted at 37 ⁇ for 2 hours.
  • the DNA was collected by phenol-chloroform treatment and ethanol precipitation, and the DNA was collected, and 100 ⁇ 1 of 0.1 MT ris-HC 1 (pH 8.0) To this solution was added 10 1 alkaline phosphatase solution and incubated for 1 hour at 37 ° C. After the reaction, add 10 fi 1 of alkaline phosphatase solution and further at 65 ° C. for 30 minutes. The solution was treated with phenol-chloroform and precipitated with ethanol to recover DNA.
  • the mixture was treated with phenol-chloroform, and the DNA was precipitated by ethanol precipitation and dissolved in 1741 sterile water.
  • To each of these solutions was added 24 units of 10 ⁇ H buffer 20] and Ec047 ⁇ (manufactured by Takara Shuzo Co., Ltd.), and the mixture was incubated at 37 for 3 hours.
  • the DNA was precipitated by ethanol precipitation, and the target DNA fragment (2550 bp) was separated by 1.5% agarose gel electrophoresis.
  • the separated DNA fragment was purified using Geneclea II to prepare a solution of 501 in 0.1 M Tris-HC1 (pH 8.0).
  • plasmid DNA is subjected to SDS-alkaline method.
  • the colonies thus obtained are transferred to a 2 ml BG-11 (containing 10 / g / l ampicillin) liquid medium, and irradiated with light (light source: white fluorescent lamp; 2000 to 3000 lux).
  • the cells were cultured for 10 days.
  • these culture solutions were transferred to 100 ml of BG-11 (containing 10 ⁇ gZml ampicillin) liquid medium, and cultured under light irradiation (2000 to 300000 lux) for 20 days.
  • 10 ml of each of these culture solutions was transferred to 100101 of 8 G-11 (containing 50 // gZml ampicillin) liquid medium, and cultured under light irradiation for 20 days.
  • Electrophoresis was carried out using an acrylamide gel prepared by a photopolymerization method using riboflavin [protein nucleic acid enzyme 11: 744 (1966)]. After swimming, the gel is washed 2-3 times (5 minutes) with 5 OmM potassium phosphate (pH 7.8)-0.5 mM ED, and Nitroble tetrazolium (NBT) solution (2.5 mM NBT, 5 OmM potassium phosphate) , 0.5 mM EDTA, pH 7.8) for 7 minutes.
  • NBT Nitroble tetrazolium
  • Electrophoresis was performed on a 20% SDS-polyacrylamide gel in a reduced state under the conditions of Laenmli et al. (Nature, 237, 680 (1970)). After electrophoresis, the nitrocellulose membrane proteins in the gel (Amersham, was electrically transferred to Hybond (C). The film immersed for 20 minutes in 50% methanol containing 0.3% H 2 0 2, the endogenous Peruokishidaze After inactivation, the cells were immersed in TBS (2 OmM Tris—HC1, 0.9% NaCl, pH 7.4) containing 5% skim milk and 0.1% Tween 20 at 37 ° C. for 2 hours (blocking).
  • TBS OmM Tris—HC1, 0.9% NaCl, pH 7.4
  • the cyanobacterium Anakistis nidulans has endogenous SOD (Fe-SOD), but it can be measured separately from hSOD (Cu-Zn-SOD) depending on whether it is inhibited by ImM KCN. It is possible. Put 5 OmM potassium phosphate (pH7.8), 0. ImM EDTA, 0. ImM xanthine, 10 M cytochrome C (Pharma Heart Type III Sigma) and sample (SOD) into an optical cell (for 1 ml), The total volume is 980 zl.
  • V was the rate of cytochrome C reduction when no SOD sample was added.
  • the SOD that inhibits cytochrome C reduction by 50% under these conditions was assumed to be l / 3uni1 :, and the total number of units in the sample was determined from (vZ-1). Publishing).
  • 100 mM KC1 (10 ⁇ 1) was added to the reaction solution after measuring, the cytochrome C reduction rate ′ was determined, and the number of units was determined (vZ′1-1).
  • the activity of hSOD generated in cells of Anakistis nidulans ⁇ (vZG1) (v / V—1) ⁇ was determined.
  • the specific activity (activity per 1 A 280 units) of the crude extract obtained from the transformant was as high as 0.7 to 12 units / A 280 (see Table 1).
  • PBAXSOD9 6.76 These specific activities were strongly affected by the type of the base vector and the number of bases between the SD-like sequence and ATG, and the amount of the specific activity was also high in PBAXSOD8 (based on PBAX18, The number of bases between A and ATG was 8 bases).
  • useful peptides can be expressed with extremely high efficiency using cyanobacterial cells as a host, and the manufactured useful peptides can be used as pharmaceuticals, quasi-drugs, cosmetics, etc.
  • the cultured transformed cyanobacterium can be used as food, feed, and functional food.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

明 細 書 ポリべプチドの発現方法
技術分野
本発明はポリペプチドの発現方法に関し、 さらに詳しくは、 ラン藻細 胞を宿主として用い、 有用生理活性を有するポリべプチドをコ一ドする 構造遺伝子を含有する担体 D N Aで形質転換することにより、 効率よく 該ポリべプチドを発現させる方法に関する。
背景技術
ラン藻(cyanobacteria シァノバクテリアともいう) は、 大腸菌など と同様に、 核膜をもたない原核生物である。 しかし、 ラン藻は高等植物、 特に紅藻の光合成機構と類似しており、 太陽からの光をエネルギー源と して、 水及び二酸化炭素とわずかな無機塩類とから有機物質を生合成し、 独立栄養的に大量に増殖することが可能である。
また、 ラン藻は古くから食用とされてきた種も数多くあり [スピルリ ナ(Spirulina)、 スィゼンジノリ(Aphanothece)、 ネンジュモ(Nostoc)な ど]、 動物に対しての病原性及び寄生性も報告されていない。 従 て、 ラン藻は遺伝子組換えのための宿主として適しており、安全性にも優れ ている。
上記のような特徵を持つラン藻に有用な生理活性べプチドをコ一ドす る遺伝子を導入し、 大量に発現できれば、 農作物のように季節や天候に 左右されずに食料、 機能性食品、. 飼料等をつくることが可能であり、 さ らに、 低コスト、 省エネルギー、 省資源的な医薬品、 医薬部外品、 化粧 品原料等の生産が可能となることが期待できる。 近年、 ラン藻を宿主とする宿主一ベクター系の開発が急速に進展し、 Anacystis nidulansR 2 (Synechococcus PCC 7942)、 Afrmenellum quad rupl icatum (Synechococcus PCC 7002)、 Synechocystis PCC 6803, Anab aena PCC 7120などの種を用いて、 多くの異種タンパク質遺伝子の発現 が報告されている [ヒトのカーボニック ·アンヒドラーゼおよび大腸菌 lac IQ リブレッサータンパク質の発現については G. D. Price and M. E. Badger, Plant Physiol. 91 : 505-513 (1989) ;高 等藻類(Cyanophora paradoxa)のァロフィコシァニンの発現については E. de Lorimier et al., J. Bacterol. 169 : 1830一 1835 (1 987) ; Bacillus amyloliquefaciens A50のな一アミラーゼの発 現については Ι· V. Elanskaya and I. B. Morzunova, Mol. Genet. Mik robiol. Virusol. 0 (9) :.7— 11 (1989) ; B. shaericus 1 593Mの殺虫タンパク質の発現については N. Tandeau de Marsac et al., Mol. Gen. Genet. 209 : 396-398 (1987) ; B. thu ringiensis var. israelensis の I S OkDa δーェンドトキシンの 発現については Angsuthanasombat and S. Panyim, Appl. Environ. Microbid. 55 : 2428— 2430 (1989) ; B. subtilisのレ バンシュクラーゼの発現については Υ· Cai and C. P. folk, J. Bacter iol, 172 : 3138— 3145 (1990) ; Vibrio harveiおよび V. _fischeriのルシフェラーゼの発現については G. Schmetterer et al. , J. Bacteriol, 167 : 411— 414 (1986) ;大腸菌の β一 ガラクトシダーゼの発現については!). J. Scanlan et al. , Gene 90 : 43-49 (1990) 、 M. E. Schaefer and S. S. Golden, J. Ba cteriol, 171 : 3973— 3981 (1989) 及び J. S. Buzby e t al., Science 230 : 805-807 (1985) ;大腸菌のグル タミン酸デヒドロゲナーゼの発現については D. A. Lightfoot et al, , Plant liol. Biol. 11 : 335— 344 (1988) ;大腸菌の recA タンパク質の発現については B. C. Murphy et al. , J. Bacteriol, 1 72 : 967-976 (1990) ;大腸菌の Mn—スーパーォキシド ジスムターゼの発現については M. Y. Gruber et al. , Proc. Natl. Aca d. Sci. USA87 : 2608-2612 (1990) ;光合成細菌 Bhodo spirillum rubrumの RuB i s COの発現については J. Pierce et al. , Proc. Natl. Acad. Sci. SA 86 : 5753-5757 (1989) ;バクテリオファージー; lの c I リプレッサータンパク質の発現につい ては D. Friedberg and J, Seijffers, liol. Gen. Genet, 203 : 50 5-510 (1986) 参照] 。
しかし、 上記報告の多くは、 異種タンパク質をコードする遺伝子の発 現のために、 その宿主の遺伝子自身の転写開始領域をそのまま用いてお り、 目的のタンパク質の発現量はごく微量である。 また、 大腸菌の t a cプロモーターや OLPLプロモーターを用いて異種タンパク質 (ヒトー カーボニック ·アンヒドラーゼ、 ファージ一ス c I リプレッサー) を発 現させた報告では、 目的タンパク質の発現量を増加させるために、 それ らのプロモーターの制御タンパク質をコードする遺伝子も同一ベクター 上に導入するなどの工夫がなされているが、 該報告中に発現量が記載さ れているヒトーカーボニック ·アンヒドラーゼでも、 その発現量は可溶 性タンパク質の約 0.3%という少量であり、 期待されるほどの発現量 は得られていない。
一方、 異種タンパク質 (大腸菌の; S—ガラク トシダーゼ) の発現のた めの転写開始領域として宿主ラン藻の転写開始領域を用いるという報告 もなされている [前出の Gene 90 : 43— 49 (1990)及び; T.Bac teriol. 171 : 3973— 3981 (1989) ] 。 しかし、 いず れの場合にも、 ラン藻の構造遺伝子中に ^一ガラク トシダーゼ遺伝子が 導入されているため、 融合タンパク質として発現されており、 目的の異 種タンパク質の産生という点で問題がある。
そこで、 本発明者らは、 ラン藻細胞を宿主として、 生理活性を有する ポリペプチドの効率的発現を図るべく、 まず、 アナキスティス ·ニデュ ランス(Anacystis nidulans)の R u B i s C 0遺伝子の転写開始領域及 び転写終止領域を発現させようとする構造遺伝子と連結させ、 ラン藻細 胞中で機能するオペロンの作成について鋭意研究を行った結果、 RuB i s CO転写開始領域及び転写終止領域を用いることにより、 構造遺伝 子が効率よく発現すること、 'また、 作成したオペロンを導入するべクタ 一の種類によっても、 その発現量が影響することを見出した。
そしてきらに、 大腸菌などで報告のある SD配列から ATG (翻訳開 始点) 間の塩基数が構造遺伝子の発現に影響を与えることを見い出し、 塩基数の最適化によって発現量を著るしく高めることに成功し、 本発明 を完成するに至った。
発明の開示
かくして、 本発明によれば、 生理活性を有するポリペプチドをコード する構造遺伝子を含有する担体 D N Aでラン藻細胞を形質転換すること により、 ラン藻細胞で該ポリべプチドを発現させる方法において、 該担体 DNAとして、 生理活性を有するポリべプチドをコ一ドする構 造遺伝子と、 該構造遺伝子の上流側に位置するアナキスティス ·ニジュ ランスの R u B i s C 0遺伝子の転写開始領域と、 該構造遺伝子の下流 側に位置する該 R u B i s C 0遺伝子の転写終止領域を含有する担体 D N Aを使用することを特徴とするラン藻細胞での生理活性を有するポリ ぺプチドの発現方法が提供される。
以下、 本発明の発現方法についてさらに詳細に説明する。
[1] 担体 DNAの造成
生理活性を有するポリべプチドをコ一ドする構造遺伝子 (以下、 便宜 上 「有用構造遺伝子」 ということがある) と、 アナキスティス ·ニデュ ランス (An a cy s t i s n i d u 1 a n s ) のリブロース一 1, 5—ジリン酸カルボキシラーゼ ォキシゲナーゼ (RuB i s CO) の 転写開始領域、 SD様配列及び転写終止領域 [K. Shinozaki and M. S ugiura, liol. Gen. Genet. 200 : 27-32 (1985) 、 熊野正 信 ·杉浦昌弘、 遺伝 38 (1 2) : 26 - 3 1 ( 1 984) 等参照] と が連結した担体 DN Aを調製するための具体的な方法は後記実施例に示 すとおりであり、 以下、 その基本的操作について概説する。
(1) RuB i s COの転写開始 (プロモーター) 領域の調製
RuB i s COのプロモーターを含む DNA断片は、 例えば!:. Shino zagiらの文献 [Proc. Natl. Acad. Sci. USA, 80 : 4050— 405 4 (1983) ] に記載のプラスミ ド pANE18 (pBR322の E c oR Iサイ トに RuB i s COプロモーター領域を含む約 5.6MD aの E c oR I断片が揷入されているもの) を常法(T. Maniatis et al. , Molecular cloning - A Laboratory Manual-Cold Spring Horbor Labor atory刊)に従って、 制限酵素 E c o R I、 S a c I及び P s t Iを用い て切り出すことにより調製することができる。 c
0
(2) RuB i s COの転写終止 (ターミネータ一) 領域の調製 Ru B i s COのターミネータ一領域は、 例えば K. Shinozakiらの文 献 [Proc. Natl. Acad. Sci. USA 80 : 4050-4054 (1983) ] に記載のプラスミ ド pANP 1155 (pBR322の P s t lサイ 卜に RuB i s COターミネータ一領域を含む約 1.5MDaの P s t I断片が挿入されているもの) を制限酵素 P s t I及び E c o 52 Iを 用いて切り出すことにより調製することができる。
(3) SD様配列の調製
本発明において用いる組換え DNAには、 リボソーム認識配列として、 有用構造遺伝子の上流側で且つプロモータ一領域の下流側に S D様配列 が導入される。
S D様配列としては、 宿主のラン藻のリポソ一マル RN Aと相捕的な ものを使用するのが好ましく、 ラン藻としてアナキスティス ·ニジユラ ンス 6301株を用いる場合の SD様配列としては GGAGなる塩基配 列のものが使用できるが、 これに限られるものではなく、 SD様記列と して知られている他の塩基配列のものも同様に使用することができる。 そのような SD様配列は塩基数が少ないので、 通常、 合成によってつく ることが多い。
また、 SD様配列は通常 ATG (翻訳開始点) の前に位置し、 SD様 配列から AT Gまでの長さ (塩基数) は有用構造遺伝子の発現に影響を 与える可能性があるので、 宿主の種類、 構造遺伝子の塩基配列等に応じ て発現量が最適となるように調節することが望ましい。 その長さは宿主 ラン藻の種類、 構造遺伝子の塩基配列等により異なるが、 一般には 3〜 10ベース程度であり、 最適の長さは宿主構造遺伝子の塩基配列等に応 じて実験的に決めることができる。
SD様配列を含む DNA断片の調製は通常 ATG (翻訳開始点) の前 まで又は ATGも含めて行なうことができ、 その DNA断片の合成はそ れ自体既知の遺伝子操作技術 [たとえば日本生化学会編 「続生化学実験 講座 1遺伝子研究法 II」 東京化学同人刊 (1987年) 参照] によって 容易に行なうことができる。
(4) 有用構造遺伝子の調製
本発明の方法により発現しうる生理活性を有するポリべプチド (以下、 便宜上 「有用ペプチド」 ということがある) は、 特定のものに限定され るものではなく、 本発明の方法によれば、 各種の有用ペプチドを効率よ く発現させることができる。
しかして、 本発明の方法により発現させうる有用べプチドとしては、 例えばヒトー SOD、 インターロイキン (ヒ ト、 マウスなど) 、 ヒトイ ンターフェロン一 , 一;5又はーァ、 ヒトーインスリン、 ヒトー腫瘍壊 死因子 (TNF) 、 ヒ トーコロニー刺激因子 (CSF:) 、 ヒトー組織プ ラスミノーゲンァクティベータ一 (t PA) 、 ヒ トープロゥロキナーセ、 ゥロキナーゼ、 ヒ ト一血液凝固因子 ( I〜V、 VII〜XIII) 、 ヒトー エリスロポエチン、 ヒ トー神経成長因子、 ヒトー心房性ナトリウム利尿 ペプチド ( 一 hANP) 、 ヒトー脖分泌性トリプシンインヒビター、 成長ホルモン (ヒト、 ゥシ、 ブタ、 ニヮトリ、 魚類など) 、 成長ホルモ ン放出因子、 抗体 (免疫グロブリン) 、 殺虫タンパク質 (BT蛋白質な ど) 、 種子貯蔵タンパク質 (ファゼォリ ン、 ゼイン、 グルテニン、 グリ シニン、 ホルディンなど) など並びにこれら有用ペプチドと実質的に同 一のアミノ酸配列を有するポリべプチドが挙げられる。 g ここで有用べプチドと実質的に同一のアミノ酸配列を有するポリぺプ チドとは、 有用べプチドそれ自体並びにその有用べプチドが本来もつ活 性を実質的に失なうことがない範囲内で該有用べプチドのァミノ酸配列 の一部が他のアミノ酸と置き換つた有用べプチドに類縁するポリべプチ ドをも包含する意味で使用するものである。
従って、 後記実施例で使用されているヒトー SODを例にとって言え ば、 「ヒトー SODと実質的に同一のアミノ酸配列を有するポリべプチ ド」 には、 Jabuschら [Biochemistry, 19 : 2310— 2316 (19 80) ] 及び Barraら [FEBS Letters 120 ; 53~55 (1980) ] が報告したアミノ酸配列を有する h SODポリペプチドの他に、 hSO Dとしての酵素活性を実質的に失なうことがない範囲内でァミノ酸配列 の一部 (一般には 5個以下 好ましくは 2個以下) が他のアミノ酸と置 き換つた h SODに類縁するポリべプチドをも包含され、 具体的には、 (a) h S OD
(b) hSODの 6番目のシスティン残基 (Cys) がァラニン残 基 (A 1 a) に置き換ったもの (特開平 2— 156884号公 報参照) 、
(c) hSODの 111番目のシスティン残基 (Cy s) がセリン 残基 (S e r) に置き換ったもの (特公昭 62— 130684 号明細書参照) 、
(d) JiSODの 6番目のシスティン残基 (Cy s) がァラニン残 基 (A I a) に、 そして 111番目のシスティン残基 (Cy s) がセリン残基にそれぞれ置き換ったもの (特公昭 63-273 473明細書参照) 等が挙げられ 。
上記の如き有用べプチドをコ一ドする有用構造遺伝子の調製は、 それ 自体既知の遺伝子操作技術 [例えば、 日本生化学会編 「続生化学講座
1遺伝子研究法 II」 東京化学同人刊 (1987年) ;村松正実編 「医学における遺伝子工学」 東京化学同人刊 (1987年) 等の実験 書参照] によって、 有用ペプチドを産生する能力をもつ動物、 植物、 微 生物等の供給源細胞から抽出クローニングしたり或いは化学的に合成す ることにより行なうことができる。
(5) 有用構造遺伝子を含有する発現可能なオペロンの造成 上記のようにして調製される RuB i s COプロモーター領域、 SD 様配列を含む DNA断片及び RuB i s COターミネータ一領域は、 生 理活性を有するポリべプチドをコ一ドする有用構造遺伝子と共に、 (プ 口モーター領域) 一 (SD様配列を含む DNA断片) 一 (翻訳開始コド ン、 ATG) — (有用構造遺伝子) 一 (翻訳終止コドン) 一 (ターミネ 一ター領域) の順で、 それ自体既知の方法により連結され、 ラン藻細胞 中で発現可能なオペ口ンが造成される。
プロモーター及び SD様配列はそれぞれ単一である必要はなく、 2つ 又はそれ以上のプロモーターを縦列させて用いたり及び Z又は 2つ又は それ以上の S D様配列を縦列させて用いることも可能である。
上記の有用構造遺伝子を含有するオペロンは、 宿主及び 又はオペ口 ンの種類等によっては実質的にそのままの状態で宿主を形質転換するこ とも可能であるが、 通常は宿主に適したベクター (プラスミ ド) に導入 して形質転換に用いられる σ
(6) ベクター 1Q 前記の発現可能なオペ口ンを導入しうるベクターとしては、 ラン藻細 胞中で用いられる広範囲の種類のベクターを使用することができ、 例え ば、 p U C 104、 pUC 105 [C. J. Kuhlemeier et al. , Mol. Ge n. Genet. 184 : 249-254 (1981) ] ; p L S 103 [L. A. Sherman and P. van de Putte, J. Bacteriol, 150 : 410— 413 (1982) ] ; p D P L 13 [S. Gendel et al. , J. Bacteri ol, 156 : 148-154 (1983) ] ; p U C 303 [C. J. Κυ hlemeier et al., Plasmid 10 : 156一 163. (1983) ] ; p S G 111 [S. S. Golden and L. A. Sherman, J. Bacteriol, 155 : 966-972 (1983) ] ; p PUC 29 [C. J, Kuhlemeier et al. , Gene 31 : 109— 116 (1984) ] ; pPLAN B a 1 [D. E. Landenbach et al., Mol. Gen Genet, 199 : 300一 305 (1985) ] ; p B AS 18 [1 Shinozaki et al., Gene 19 : 221-224 (1982) ] などが挙げられる。
また、 そのようなベクターは、 プラスミ ド及びウィルスから必要に応 じて誘導することができ、 例えばアナキスティス ·ニデユランス由来の プラスミ ド pBAlの O r i A領域と、 プラスミ ド pUCのマルチクロ 一二ング領域と、 大腸菌 Co 1 E l系プラスミ ドの O r i E領域とから 本発明者らによって造成された大腸菌及びラン藻細胞内で複製可能なシ ャトルベクター p B AX18、 p BAX20なども有利に使用すること ができる [後記実施例及び平成 3年 3月 8日付で出願された同一出願人 による発明の名称が「新規プラスミ ド」 の特許出願 (特願平 3— 677 74号) 参照] 。
(7) 担体 DNAの構築 上記 (5) で述べた有用構造遺伝子を含有する発現可能なオペロンは、 それ自体既知の遺伝子操作技術によって、 上記 (6) で述べた如きべク ター (プラスミ ド) に導入することができる。
例えば h SODをコードする有用構造遺伝子を用いて前記 (5) に述 ベた如くして調製される h SODオペロンは、 例えばアナキスティス · 二デュランス細胞中で複製可能な pB AS 18又は p BAX l 8の例え ば E c oR I認識部位を制限酵素 E c oR Iを用いて開裂させ、 おのお のの DN A断片を一緒にし、 T4DN Aリガーゼを作用させることによ り挿入され、 h SOD発現用べクタ一が得られる。 ベクター中に挿入さ れるオペロンは 1つである必要はなく、 同一方向であれば、 2、 3、 4 個又はそれ以上縦列させることも可能である。
このようにして得られる h S 0 D発現用ベクターは大腸菌で常法(T. lianiatis et al., Molecular Cloning - A Laboratory Manual-Cold Spri ng Horbor Laboratory刊) に従ってクローリングすることができる。
[2] 形質転換
前述の如く して造成される担体 DN Aを用いて形質転換することので きるラン藻細胞としては、 例えば、 次にものを例示することができる。 アナキスティス ·ニデユランス 6301株(Synechococcus PCC 63 01)、
アナキスティス ·二デュランス R 2株 (Synechococcus PCC 794
2)、
Synechococcus PCC 7002、
Synechococcus PCC 7418 (Aphanothece halophitica)ゝ
Synechocystis PCC 6803、 Synechocystis PCC 6714、
Spirulina platensis
Anabaena PCC 7120 CNos toe PCC 7120)、
Nostoc PCC 7119 (Anabaena PCC 7119) 、
Calothrix PCC 7601など。
前記の担体 DNAによるこれら宿主ラン藻細胞の形質転換はそれ自体 既知の方法、 例えば、 E. D. Porter [CRC Critical Reviews in Microb iology 13 (2) : 111— 132] 、 D. A. lightfootら [J. Genera 1, Microbiology 134 : 1509— 1514 (1988) ] 、 S. S. Goldenら [J. Bacteriol, 158 : 36一 42 (1984) ] 、 H. Dani ellら [Proc. Natl. Acad. Sci. USA 83 : 2546— 2550 (19 86 ) ] T. Matsunagaら [Appl. Biochem. Biotechnol. 24/25 : 151-160 (1990) ] などに従って行なうことができる。 例えば、 h SOD発現ベクターをアナキスティス ·二デュランスへ D. A. Lightifootらの方法で導入し形質転換することができる。
得られる形質転換体はアンピシリン耐性などにより選抜した後、ィムノ ブロッテイング法、ォクテロニー法、ポリアクリルアミ ドゲル中での SO D活性染色、 SOD活性の測定などにより、 所期の形質転換体が得られ ていることを確認することができる。
このようにして得られる形質転換体は、 光の照射下で宿主細胞の増殖 に応じたそれ自体既知の培地で培養することにより生理活性を有するポ リベプチドの発現を行わせることができる。 培: ¾は形質転換体が選択的 に増殖するための適当量の薬剤、 例えばアンピシリンなどを含むことが 好ましい。 形質転換体宿主がアナキスティス ·ニデユランスの場合、 培地として は B G— 1 1培地、 MD M培地などが適しており、 また、 培養条件とし て、 培養温度は一般に 1 0〜3 5 °C、 好ましくは 2 5〜3 0 °Cが適して いる。 さらに培地の p Hは通常 7〜8の範囲内及び照度は 5 0 0〜5 0 0 0ルクスの範囲内が適している。 培養はこのような条件下で 5〜2 0 曰程度行なうことができる。 また、 培養は静置又は撹拌下で行なうこと ができる。
以上に述べた本発明の方法によれば、 有用べプチドの発現効率が極め て高く、 ラン藻細胞中に産生される有用ペプチドの分離回収は、 培養物 からそれ自体既知の方法で行なうことができる。 例えば、 培養液から遠 心分離で細胞を集め、 破砕したのち、 通常知られている方法、 例えば塩 析、 透析、 イオン交換クロマトグラフィー、 ゲルろ過クロマトグラフィ 一、 クロマトフォーカツシング、 ハイ ド口フォービックインターラクシ ヨンクロマトグラフィー、 ァフィ二ティークロマトグラフィー、 電気泳 動などの操作を適宜組合せることにより分離 ·回収することができる。
このようにして製造される生理活性を有するポリべプチドは、 医薬品、 医薬部外品、 化粧料等に利用することができる。
また、 光照射下で培養された形質転換ラン藻は、 培養後、 遠心分離な どで集められ、 そのまま食料 ·飼料 ·機能性食品として利用することも できる。
なお、 本発明における組換え D N Aに用いられる R u B i s C Oプロ モーターは、 その下流に位置する有用構造遺伝子の発現を光の制御下で 大量に誘導することができ、 大腸菌の lac, tac, trp プロモーターなど を用いて発現を誘導させる場合に通常用いられる高価な薬剤を使用しな ^ くてもよいなどの利点がある。
図面の簡単な説明
図 1はアナキスティス ·ニデユランス RuB i s CO発現調節領域 (Ec oRI— Ps t l断片) の調製のための工程図である。
図 2は SD様配列を含む領域 (P s t I— Hi n dill断片) を合成 するために化学合成した 10個のオリゴヌクレオチドの塩基配列である。 図 3は SD様配列を含む領域 (Ps t I— Hi n dill靳片) の調製 のための工程図である。
図 4は RuB i s CO発現調節領域 (E c oR I— H i n dill断片) の調製のための工程図である。
図 5は RuB i s CO転写終止領の調製および p u C-h SOD t プラスミ ドの構築図である。
図 6は h S ODオペロンの造成図である。
図 7は hSODオペロン (S0D7) の塩基配列である。
図 8はベクタープラスミ ド pBAX18、 19.および 20の構築図 ある。
図 9は S 0 Dの活性染色の結果を示す図である。
図 10はウェスタンブロッテングの結果を示す図である。
図 11はォクテロニーの結果を示す図である。
実施例
以下、 実施例により本発明をさらに具体的に説明する。
実施例 1
I. 発現調節領域の調製
(1-1) p ANE 18のクローニンク: p BR322の E c oR Iサイ トに Anacystis nidulans 6301株 のリブロース一 1, 5—ジリン酸カルボキシラーゼ/ォキシゲナーゼ遺 伝子のプロモーター領域を含む 560 Obpの断片が挿入された pANE 18 (K. Shinozakiら、 Proc. Natl. Acad. Sci. USA 80 : 4050- 4054 (1983) ) 4 Ong(l^l)を 5 OmM C a C 12処理した E scherichia coli HB 101株の細胞懸濁液 1 00 1に加え、 おだえ かに混合した。 混合液を氷水中で 30分間インキュベートした後、 さら に 42。Cで 3分間ィンキュベートして DNAを細胞中にとりこませた。 この懸濁液に lmlの L B medium ( 10 gZ 1バク ト トリプトン、 5 g /】酵母抽出エキス、 10 gZ l Na C】) を加え、 振盪しながら 3 7°Cで 1時間ィンキュベートした。 この細胞懸濁液を 100 1および 2 0 0 ΐ とり LB寒天培地 (50 // gZmlアンピシリ ン、 1.5 %寒 天を含む) 上にプレートした。 このプレートを 37 で 24時間インキ ュペートし、 コロニーを単離した。
単離したコロニーを 2mlの 2 YT液体培地 (16 g/ \パク トトリプ トン、 10 gZ l酵母抽出エキス、 5 g/ l Na C lおよび 50 z g /mlアンピシリンを含む) に白金耳で植え付け 37 で一晚培養した。 培養液を lmlとり 200mlの 2 YT液体培地 (100 g/mlアンピシ リンを含む) に加え、 37 で一晩培養した。 培養した細胞を 8000 rpm、 10分間遠心して集め、 プラスミ ド DNAを SDS—アルカリ法 (B. Perbal, A Practical Guide to Molecular Cloning, p 273〜 2 76、 John Wiley and Sons Inc. 刊) により大量に調製した。
( I一 2) S a c I -S p h I断片の単離 (図:!参照)
大量調製した pANE l 8DNA 10〃 1 (10 ^ g) と l O xLow ID buffer (100 mM Tris-HCl(p H7.5) 、 100mM MgC l 2、 1 OmMジチオスレィトール (DTT) ) 10〃 1及び S a c I (宝酒 造 (株) 製) 50 unitsに滅菌水を加えて 100 1としたエツペンド ルフチューブ (1.5 ml容) を 37 °Cで 3時間反応させた。 反応後、 1 0 xHigh buffer (50 OmM Tris-HCl ( p H 7.5 )、 100 mM MgC I 2、 1 OmM DTT、 10 OmM Na C 1 ) 15 1、 S p I (宝酒造 (株) 製) 50 units及び滅菌水 30 β 1を加えてさら に 37¾で 3時間反応させた。 反応後、 1/10容の 3 Μ酢酸ナトリウム (ρΗ4.8) 及び 2.5容のエタノールを加え、 一 20¾で 2時間以上 放置した。 生じた沈殿を 1500 Orpm、 4 °Cで 10分間遠心し、 70 %エタノールで洗浄後、 減圧乾固させた。 残渣を 50 n Iの TE (10 mM Tr i s-HC 1 (pH8.0) 、 1 mM EDTA) に溶解し、 1/10容の電気泳動用マーカー (0.25%ブロモフエノールブル一、 0. 25%キシレンシァノール、 30%グリセロール) を加え、 1.5%ァ ガロースゲルにのせ TAE buffer (4 OmM Tris-acetate、 2 mM EDTA) で 50V、 1.5時間電気泳動を行った。 泳動後、 ゲルを 0. 5 g/mlのェチジゥムブ口マイ ド溶液 (TAE中) に 15分間浸漬し、 DNAの染色を行った。 染色したゲルをトランスイルミネーター上にの せ、 紫外線をあて目的とする DNAを含むバンドを切り出した。 目的の DNA断片 (約 120 Obp) を、 DNA精製用キット Geneciean (B I 0101社製) を用いて精製した。
(1-3) S a c I -S p h I断片の pUC 18でのクローニング (図 (1) pUC18の Sa c l— Sph l消化 p U C 18 DNA 1 0 ^ 1 (10 g) と l O xLow buffer 5 fi 1 及び S a c I 50 unitsに滅菌水を加えて 50 1としたエツペンドル フチューブ (1.5ml容) を 37°Cで 3時間反応させた。 反応後、 10 xHigh buffer 7.5 i S ρ h I 50 units及び減菌水 37.5 / 1 を加えてさらに 37 で 3時間反応させた。 この反応液に等容のフエノ ール: クロロホルム:イソアミルアルコール (25 : 24 : 1) を加え 激しく撹拌したのち 15000rpm、 4°C、 で 4時間遠心して水層を分 取した。 この水層に 1ノ10容の 3 M醉酸ナトリウム (pH4.8) お よび 2.5容のエタノールを加え、 DNAをエタノール沈殿させた。 沈 殿を 15000rpm、 4°C、 10分間遠心して集め、 70%エタノール で洗浄し、 減圧乾固させた。 残渣を 20 1の ΤΕに溶解し、 次の実験 に使用した。
(2) S a c l— S p h l断片 (1200 b p) の pUC 1 8 (S a c I - S p h I ) への挿入
S a c I -S p h I断片 DNAO. 1 ί g (2 / 1 ) および pUC l
8 (S a c l— S p h l ) 0. 5 g (1 ^ 1 ) に 24 1の Takara D NA ligation Kit A液 (宝酒造 (株) 社製) を加え、 よく撹拌した。 この溶液に 3〃 1の Takara DNA ligation Kit B液を加えよく攬 拌した後、 16 で 1時間インキュベートした。 反応後、 この溶液を E. coli J Ml 09株の形質転換に使用した。
(3) pARu p l 8の大量調製
ligation溶液 5 1 (100 /z g) に 50mM C a C l 2で処理し た E. coli J Ml 09株の細胞懸濁液 100 1を加え、 おだやかに混 合した。 混合液を氷水中で 30分間インキュベートした後、 さらに 42 ^ でで 2分間インキュベー tして. DNAを細胞中にとりこませた。 この懸 濁液に lmlの 2 YT液体培地を加え、 振盪しながら 37°Cで 1時間イン キュベートした。 この細胞懸濁液を 100および 200 ^ 1とり 2 YT 寒天培地 (50 g/mlアンピシリン、 40mg/l 5—ブロモー 4一 クロロー 3—インドリルー ー D-チォガラタ トシド (X—gal)、 23. 83mgZlイソプロピル一^一 D—チォガラクトビラノサイド(I P TG)および 1.5%寒天を含む) 上にプレー卜した。 このプレートを 3 7 で 24時間ィンキュベー卜し、 得られた白いコロニーを新しい 2 Y T寒天培地 (50 gZmlアンピシリン、 X— gal、 I PTG、 1.5% 寒天を含む) にスポットして 37°Cで一晩培養することにより白いコロ ニーを単離した。
単離した白いコロニーを 2mlの 2 YT液体培地 (5 アンピ シリンを含む) に白金耳で植え付け 37 °Cで一晚培養した。 培養液を 1 mlとり 1.5ml容エツペンドルフチューブに移し、 1500 Orpm、 30 秒間遠心して細胞を集めた。 集めた細胞を 150 1の SET buffer (20%ショ糖、 50 mM Tr i s— HC l (pH7.6) 、 50m M EDTA) に懸濁し、 5 1の ENase溶液 ( 10 mgZmlリボヌクレ ァーゼ A、 0.1M醉酸ナトリウム (pH4.8)、 0.3mM EDT A) を加えポルテックスミキサーで十分混合した。 これに 350〃 1の 溶菌液 (1%SDS、 0.2N NaOH) を加え、 チューブを逆さに することによりおだやかに撹拌し、 完全に溶菌させた。 この溶菌液を氷 水中で 10分間ィンキュベートした後、 250 ^ 1の 3M^酸ナトリウ ム (PH4.8) を加え、 十分混合し、 さらに氷水中に 30分間放置し た。 この混合液を 15000rpm、 4でで 10分間遠心して S D Sおよ び染色体 DNAを沈殿させた。 上清を別のエツペンドルフチューブに移 し、 等量のィソプロピルアルコールを加えよく混合し、 15000rpm、 4てで 7分間遠心してプラスミ ド DN Aを沈殿として集めた。 沈殿を滅 菌水に溶解し、 一部を制限酵素 E c oR H i n dill (ともに宝酒 造 (株) 社製) 消化し、 1.5%ァガロースゲル電気泳動を行い 120 O b pの S a c l— S p h I断片が pUC l 8に揷入されていることを 確認した。
S a c I -S p h I断片が pUC 18に挿入されていると確認された コロニーを 400mlの 2 YT液体培地 (100 gZmlアンピシリンを 含む) に移し、 一晚培養した。 培養した細胞を 8000rpm、 4てで 1 0分間遠心して集め、 プラスミ ド DNAを SDS—アルカリ法により大 量に調製した。
(1 -4) E c oR I— P s t I断片の単離 .(図 1参照)
(1) E c oR I— H i n d II断片の単離
大量調製した pARu p 18DNA溶液 1 1 (10 ^ g) と 10 xK buffer (20 OmM T r i s— HC 1 (pH8.5) 、 100 mM MgC l 2、 1 OmM DTT、 1000 mM KC 1 ) 20 1及び H i n dIII40 unitsに滅菌水を加えて 200 1としたエツべ ンドルフチューブ (1.5ml容) を 20本用意し、 37°Cで 3時間反応 させた。 反応後、 フエノールークロロホルム処理し、 DN Aをエタノー ル沈殿して集め 155 1の滅菌水に溶解した。 この溶解に 5 X E c 0 R I buffer (50 OmM T r i s -HC 1 ( p H 7.5 ) > 35 m M Mg C 12. 25 OmM Na C】、 35mM 2.—メルカプトェ タノール、 0.05%ゥシ血清アルブミン (B S A))40 1 と E c 0 ΟΛ
20
R I 40 unitsを加え 200 1としたエツペンドルフチューブ (1. 5ml容) 20本を 3 7でで 3時間反応させた。 反応後、 同様にフエノー ルークロロホルム処理、 エタノール沈殿を行い DN Aを回収した。 目的 の DNA新片 (約 12 00 b p) を 1. 5 %ァガロースゲル電気泳動に s より分離し、 DNA—精製用キット Genecleanを用いて精製した。
(2) E c oR I — P s t l靳片 (約 350 b p) の単離
¾製した DNA断片 4 Q fi g (86 β 1 ) に l O xH i gh buffer 1 0 1と P s t I (宝酒造 (株) 社製) 48uni1;sを加え、 1 00 1としたエツペンドルフチューブ (1. 5ml容) を 3 7°Cで 3時間反応 0 させた。 反応後、 1.5%ァガロースゲル電気泳動を行い目的の DNA 断片 (約 35 0 b p) を分離した。 DNAをゲルから電気的に溶出し、 核酸精製用カートリッジ Nensorb20 (Dupond社製)を用いて精製した。 (1 -5) P s t I -H i n dill断片の合成
(1) オリゴヌクレオチドの合成および精製
s Shine Dalgarno (SZD) 配列を含む発現調節領域の合成のために 1
0個のオリゴヌクレオチド (図 2参照) を DNAシンセサイザー 38 0 A (アプライド 'バイオシステムズ' ジャパン社製) を用いてホスホア ミダイト法により合成を行った。 合成が終了したシリカゲルカラムに 2 mlのアンモニア水 (2 7%以上) を 0. 5mlずつ 15分おきに加え、 ォ ひ リゴヌクレオチドをシリカ支持体より切り出しバイアルに捕集した。 こ のバイアルにさらに lnilのアンモニア水を加え、 キャップおよびバラフ イルム等によりシールして 55°Cで 8時間以上加温し、 塩基部分の保護 基 (ァシル基) をはずした。 恒温槽よりバイアルを取り出し室温に戻し た後、 キャップをはずして減圧下で濃縮乾固した。 乾固後、 残渣を 20 の 0.01Mトリエチルァミンー酢酸溶液 (TEAA、 pH7.5) に溶解し、 AM— 313— 0DS (山村化学研究所製) カラムを用いて HPL Cでァセトニトリル、 0.1M TE AAの濃度勾配による溶出を 行いメインピークを分取した。 分取したピークを減圧下で濃縮乾固した 後、 80%醉酸 (ァセトニトリル溶液) 100 1を加え、 混合して室 温に 30分間放置することにより、 5' 未満のジメチルトリチル (DM Tr)基をはずし、 OH基に変換した。 30分経過後、 迅速に乾固し、 残渣を 0.01M TEAA (pH 7.5) 200 1に溶解し、 等容の ジェチルエーテルを加え、 DMT r基を抽出除去した。 この溶液を減圧 下で濃縮乾固した後、 110 / 1の 0.01M TEAA (pH7.5) に溶解し、 再び HPLCを用いて、 分取、 精製を行った。 分取したオリ ゴヌクレオチドを含む溶液を減圧下で乾固した後、 TEに溶解し、 次の 実験に使用した。
(2) 合成オリゴヌクレオチドのキナーゼによるリン酸化
精製したオリゴヌクレオチド 4 gを Kinase buffer (5 OmM T r i s-HC 1 (ρΗ7.6) . 10 mM MgC 12 0. ImM E DTA、 5mM DTT、 0. ImMスペルミジン、 1.7〃M ATP) 120^ 1に混合し、 T4ポリヌクレオチドキナーゼ (宝酒造 (株) 社 製) 9unitsを添加し、 37 で 15分間インキュベートした。 次に A TPを終濃度 ImMになるように加え、 再度 T4ポリヌクレオチドキナ ーゼ 9unitsを添加し、 37°Cで 25分間インキュベートした。 反応後、 90 、 5分間熱処理した酵素を失活させた。 リン酸化したオリゴヌク レオチドを核酸精製用カートリッジ Nensorb20を用いて精製した。
(3) P s t I— H i n dill断片の作製 4つの塩基数をかえた P s t I— H i n dill断片を T4DNAリガ一 ゼによるオリゴヌクレオチドの直結によって行った (図 3参照)。 P s t I一 H i n dlll断片を構成するオリゴヌクレオチドのうち下段のス 卜ランドの 5' 未満に位置するオリゴヌクレオチド 1.5〃g、 その他 のオリゴヌクレオチド 1 gに 5 xligation buffer (25 OmM T r i s -HC I (pH7.6) 、 10 mM MgC 12) 20 β ΐと滅菌 水を加えて 8 1とした。 この溶液を 90°C、 5分間加熱した後、 2 時間かけて 4でまで徐冷し、 10 OmM DTTと 10mM ATPを 10 ^ 1ずつ加え、 さらに T4 DNAリガーゼ (宝酒造 (株) 社製) 2.5 unitsを添加して 4 で 15時間インキュベートした。 反応液を等 容のフエノールークロロホルムで処理し、 DN Aをエタノール沈殿して 回収し次の実験に用いた。
(I一 6) E c oR I— H i n dill断片の作成 (図 4参照)
(1) E c oR I— P s t l断片 (プロモーター領域) と P s t I— H i n dlll断片の直結
前記 (1—4) で単離した E c oR I— P s t I断片 1.0 gに塩 基数の異なる 4つの P s t I -H i n dill断片それぞれ 0.5 gを 5 jcz lの 0.3Ϊ Na C lに混合し、 さらに Takara ligation kit B液 5 β 1を加えよく混合した。 この溶液を 26 °Cで 1時間以上インキュべ ートした。 反応後、 溶液をフエノール一クロ口ホルム処理し、 常法どう りエタノール沈殿して DN Aを回収した。
(2) ligation反応物の H i n dlll-E c o R I消化
回収した DNA残渣を 14.5 1の滅菌水に溶解し、 5 xH i n d II buffer ( 50 mM T r i s— HC I (p H 7.5) 、 35mM MgC l 2、 300mM N a C 1 ) 4 ;z 1および H i n dill 12un its (1.5 ^ 1 ) を加え、 37°Cで 1.5時間反応させた。 反応後、 さ らに 5xE c oR I buffer 4〃 l、 E c oR I 12 units (1.0 1 ) および滅菌水 5 /】を加え 37てで1.5時間反応させた。 反応 液を等量のフエノールークロロホルムで処理し、 DNAをエタノール沈 殿して回収した。
(I一 7) 塩基数の異なる 4つの発現調節領域 E c oR I -Η i n d III断片の pUC 18によるクローニング (図 4参照)
(1) pUC 18の E c oR I— H i η (ΠΙΓ消化
pUC 18 25〃gと 10XK buffer (20 OmM Tr i s—
HC 1 (pH8.5) 、 10 OmM MgC l 2、 10 mM DTT、 1 0 OmM KC 1 ) 10 1及び H i n dill 64 units ( 8〃 1 ) に 滅菌水を加えて 100 Iとしたエツペンドルフチューブ (1.5ml容) を 37 °Cで 3時間反応させた。 この反応液を等容のフエノールークロロ ホルムで処理し、 エタノール沈殿により DNAを回収した。 DNA残渣 を 75 1の滅菌水に溶解し、 5 X E c oR I buffer 20 1及び E c oR I 60 units (5^ 1) を加え、 37°Cで 3時間反応させた。 反応後、 同様にフエノールークロロホルム処理、 エタノール沈殿を行つ た。 回収した DN Aは TEに 0.25〃 gZ/z 1になるように溶解し、 次の実験に用いた。
(2) 4つの発現調節領域 E c oR I -H i n dill断片の pUC 1 8 (Ec oR I— H i n dill) への揷入
4つの E c oR I -H i n dill断片をそれぞれ 60 n g (1〃 1 ) と pUC18 (E c oR I— H i n dill) 500 n g (2 1 ) ずつ ^ をそれぞれエツペンドルフチューブに入れ、 Takara ligation kit A液 24 β Iを加えよく混合した。 これらの混合液に、 さらに Takara ligat ion kit B液 3 1を加え、 混合した後、 16°Cで 2時間以上反応さ せた。 この溶液を次の実験に用いた。
(3) pARu p l、 2、 3および 4の大量調製
ligation溶液 3〃 1 (56 n g) に 50 mM C a C 12で処理した E. coli J Ml 09株の細胞懸濁液 100 ^ 1を加え、 おだやかに混合 した。 混合液を氷水中で 30分間インキュベートした後、 さらに 42 で 2分間ィンキュベートして DN Aを細胞中に取りこませた。 この懸濁 液に 1mlの 2 YT液体培地を加え、 37°C、 1時間の振盪培養後、 2Y T寒天培地 (50 gZmlアンピシリン、 40mg/l X— gal、 23.8 3mgZl I PTGおよび 1.5%寒天を含む) にプレーテした。 得られ た白いコロニーからプラスミ ドを調製し、 制限酵素地図を解析すること によって目的のプラスミ ド pARup 1、 2、 3および 4) を保持して いるコロニーをスクリ一二ングした。
プラスミ ド pARup l、 2、 3および 4を保持しているそれぞれの コロニーを 200mlの 2 YT液体培地 (100 ^ gZmlアンピシリンを 含む) で培養し、 それぞれのプラスミ ド DNAを SDS—アルカリ法に より大量に調製した。
(1 -8) E c oR I— H i n dill断片の単離
大量調製したプラスミ ド DNA (pARu p l、 2、 3および 4) を 20 £g (20 ^ 1 ) とり、 10 XK buffer 20 ^ K H i n dll I 120 units (15 ^ 1 ) および滅菌水を加えて 200 1としたェ ッペンドルフチューブを各々のプラスミ ドで 6チューブずつ用意した。 これらのチューブを 37°Cで 3時間インキュベートした。 反応後、 フエ ノールークロロホルム処理し、 DN Aをエタノール沈殿して集め、 それ ぞれ 150 1の滅菌水に溶解した。 これらの DNA溶液にそれぞれ 5 xEc oR I buffer 40 1及び£。 01 1 120 units ( 10 β 1 ) を加え 37°Cで 3時間ィンキュベートした。 反応後、 DNAをェ タノール沈殿して回収した。 目的のそれぞれの DN A断片を 1.5%ァ ガロースゲル電気泳動により分離した。 DNAをゲルから電気的に溶出 し、 核酸精製用カートリッジ Nensorb20を用いて精製した (ARup 1、 2、 3および 4) 。
II. 転写終止 (ターミネータ一) 領域の調製 (図 5参照)
(II- 1 _ pANP1155のクローニング
PBR322の P s t Iサイ トに Anacystis nidulans 6301株の リブロース一 1, 5—ジリン酸カルボキシラーゼ/ォキシゲナーゼ遣伝 子のターミネータ一領域を含む約 1500 b pの断片が挿入された p A N P 1155 (K. Shinozakiら、 Proc. Natl. Acad. Sci. USA 80 : 4050-4054 (1983) ) 500 n g (0, 5 z l) を 50m M CaC l 2処理した E. coli J M 109株の細胞懸濁液 100 1 に加え、 おだやかに混合した。 混合液を氷水中で 30分間インキュベー トした後、 さらに 42 で 2分間インキュベートして DNAを細胞中に 取りこませた。 この懸濁液に lmlの LB液体培地を加え、 37°C、 1時 間の振盪培養後、 LB寒天培地 ( 12.5 ig/mlテトラサイクリンお よび 1.5%寒天を含む) にプレートし、 コロニーを単離した。
単離したコロニーを 2.8リッ トルの 2 YT液体培地 (25 gZml テトラサイクリンを含む) で培養し、 プラスミ ド DNAを SDS—アル 力リ法により大量に調製した。
(II一 2) E c 052 I -P s t I断片の調製
(1) P s t l断片の単離
大量調製した P ANP 1155DNA20 g (20〃 1 ) と 10 x High buffer 20〃 I、 P s t l 120 units (10 /^ 1 ) に滅菌水 を加えて 20
Figure imgf000028_0001
】 としたエツペンドルフチューブ (1.5ml容) 6本 用意し、 37でで 3時間インキュベートした。 反応後、 DNAをェタノ ール沈殿して回収し、 目的の DNA断片 (約 1500 b p) を 1.5% ァガロースゲル電気泳動により分離した。 分離した D N Aを Geneclean により精製し、 次の実験に用いた。
(2) P s t I断片の E c 052 I消化
P s t I断片の DNA溶液 64.5 β \ (約 10 ^ g) に l O xE c 052 I buffer (100 mM Tr i s— HC I (pH9.0、 30m M MgC l 2、 l O O OmM Na C l、 0.1% B S A) 7.5 1及び E c o 52 I (東洋紡績 (株) 社製) 18units (3 κ 1 ) を加 え 37¾で 3時間インキュベートした。 インキュベート後、 フエノール 一クロ口ホルム処理、 エタノール沈殿して DN Αを回収した。 回収した DNAを 8 1の滅菌水に溶解した。
(II一 3) pARu t l 3の作製
(1) E c o 52 I— P s t I断片の平滑末端化
II一 2で調製した E c 052 I -P s t I断片の DNA溶液 8 1に DNA Blunting Kit (宝酒造 (株) 社製) の x 10 buffer 1 1 を加え、 70 で 5分簡インキュベートした後、 37 °Cの恒温槽に移し た。 この溶液に DN A Blunting Kitの T 4 DNA polymerase 1 lを加え、 ピペッティングによりやだやかに混和し、 37 で 5分間 反応させた。 反応後、 この溶液に DN A Blunting Kit の DNA dilu tion buffer 4 0 Iを加え、 ボルテックスで激しく撹拌することによ り酵素を失活させた。
(2) pUC13の Sma I消化および脱リン酸化
pUC 13 DNA 20〃g (20 i l) に 5xSma I buffer
(5 OmM Tr i s—HC l (pH8.0) 、 35mM MgC l 2、 l O OmM KC】、 35mM 2—メルカプトエタノール、 0.05 % BSA) 4 0 β \ , Sma l (宝酒造 (株) 社製) 8 Ounits (1 0^ 1) および滅菌水 130 1を加え、 30 で 4時間反応させた。 反応後、 フエノールークロロホルム処理、 エタノール沈殿をして DN A を回収した。 回収した DNAを 100〃 1の 0.1M Tr i s—HC 1 (pH8.0) に溶解し、 10 1のアルカリフォスファターゼ溶液
(1. Ounitsアル力リフォスファターゼ (AP、 宝酒造 (株) 社製) 、 1 OmM Tr i s-HC l (pH7.5) 50mM NaC l、 l mM Z n S 04) を加え、 37 で 2時間反応させた。 反応後、 さら に 10 1のアルカリフォスファターゼ溶液を加え 65°Cで 30分間ィ ンキュペートした。 反応液をフエノール一クロ口ホルム処理し、 DNA をエタノール沈殿して集め 0.5 gZ〃 1になるように TEに溶解し た。
(3)平滑化断片の pUC 13 (Sma I、 AP) への挿入
平滑末端化断片の DNA溶液 2 / 1 (約 100 n g) と Sma I、 ァ ルカリフォスファターゼ処理した pUC 13の DNA溶液 2 1 (1. 0 β g に Takara ligation kit A液 32 1を加え、 よく撹拌した。 この溶液に Takara ligation kit B液 4 /z 1を加えよく撹拌した後、 1 6 で 1時間以上インキュベートした。 反応後、 この溶液を E. coli J Ml 09株の形質転換に使用した。
(I 1 -4) 8 &111111—£じ 01^ 1断片の調製
(1) pARu t l 3の大量調製
ligation溶液 1 1 (約 40n g) に 50mM C a C l 2で処理し た E. coli J Ml 09株の細胞懸濁液 100 ^ 1を加え、 おだやかに混 合した。 混合液を氷水中で 30分間インキュベートした後、 さらに 42 で 2分間インキュベートして DNAを細胞中に取りこませた。 この懸 濁液に lmlの 2 ΥΤ液体培地を加え、 37°C、 1時間の振盪培養後、 2 YT寒天培地 (5 O/i gZmlアンピシリン、 40mgZl X— gal、 23. 83mg/l I PTGおよび 1.5%寒天を含む) にプレートした。 得ら れた白いコロニーからプラスミ ドを調製し、 制限酵素地図を解析するこ とによって目的のプラスミ ド p ARu t 13を保持しているコロニーを スクリーニングした。 スクリーニングしたコロニーを 400mlの 2 YT 液体培地 (10 アンピシリンを含む) で培養し、 プラスミ ド
DNAを SDS—アル力リ法により大量に調整した。
(2) B amH I -E c oR I断片の単離
大量調製したプラスミ ド DNA (p ARu t 13) 15^g (15 1) に 10 ΧΚ buffer 20 1、 B a mH I (宝酒造 (株) 社製) 120 units (10 1) 及び滅菌水を加えて 200 1としたエツべ ンドルフチューブ (1.5 ml容) を 8本用意した。 これらのチューブを 30 で 3時間インキュベートした。 反応後、 フエノール一クロ口ホル ム処理し、 DN Aをエタノール沈殿して集め、 それぞれ 110 1の滅 菌水に溶解した。 これらの DNA溶液に 5 X E c o R I buffer 30 β 1及び E c o R I 120 units (10 ^ 1 ) を加え、 37°Cで 3時 間インキュベートした。 反応後、 DNAをエタノール沈殿して回収し、 目的の DNA断片 (約 300 b p) を 1.5 %ァガロースゲル電気泳動 により分離した。 ゲルから DNAを電気的に溶出し、 核酸精製用カート リッジ Nensorb20を用いて精製した。
III. hオペ口ンの造成
(III一 1) h遺伝子への転写終止領域の連結 (図 5参照)
(1) pUC 13— h— S ODの B amH I— E c oR I消化
pUC 13の H i n dlll-B amH Iサイ トにヒトースーパーォキ シド · ジスムターゼをコ一ドする完全鎖長 DNA断片 (475 b p) が 挿入された pUC 13— h— S OD (特願平 1一 210129号特許出 願明細書の実施例 1参照) 10 /z g (20 z l ) に 5 xE c oR I bu ffer 40 ^ K E c o R I 120 units ( 10〃 1 ) 及び滅菌水を 加えて 2 0 0 1 としたエツペンドルフチューブを 3 7 で 3時間ィン キュペートした。 反応後、 フエノールークロロホルム処理、 エタノール 沈殿して DNAを集め、 215 の滅菌水に溶解した。 この溶液に 1 0 xK buffer 25 1及び8 &111111 100 units (10 ^ 1 ) を加え、 30°Cで 3時間反応させた。 反応後、 DNAを Genecleanを用 いて精製した。
(2) 転写終止領域(B amH I - E c oR I )の pUC 13— ]!一 S OD (B amH I - E c o R I ) への挿入
PUC 13 - h-SOD (B amH I - E c o R I ) DNA50 Ong (1 / 1 ) と IIで調製した転写終止領域 60ng(0. \ ) に Takara ligation kit A液 11.2^ 1を加え、 よく混合した。 この溶液に Taka ra ligation kit B液 1.4 Iを加えよく撹拌した後、 16°Cで 3 0分間インキュベートした。 反応後、 この溶液を coli JM109株 の形質転換に使用した。
(III一 2) H i n dlll-E c o R I (h S 0 D—terminater)断片 の調製
(1) pUC l 3-h SOD tの大量調製
ligation溶液 2 1 (約 70 ng) に 50 mM C a C 12で処理した E. coli J Ml 09株の細胞懸濁液 100 1を加え、 おだ^かに混合 した。 この混合液を氷水中で 30分間インキュベートした後、 さらに 4 2でで 2分間インキュべ一トして DN Aを細胞中に取りこませた。 この 懸濁液に lmlの 2 YT液体培地を加え、 37°C、 1時間の振盪培養後、 2 YT寒天培地 (50 gZmlアンピシリン、 40mgZl X— gal、 2 3.83mgZl I PTGおよび 1.5%寒天を含む) にプレートした。 得られた白いコロニーからプラスミ ドを調製し、 制限酵素地図を解析す ることにより目的の DN A断片を保持しているコロニーをスクリーニン グした。 スクリーニングしたコロニーを 60mlの 2 YT液体培地 (10 0// gZmlアンピシリンを含む) で培養し、 プラスミ ド DNAを SDS 一アル力リ法により調製した。
(2) H i n dill— E c oR I断片の単離
調製した pUC 13— h S OD t DNA溶液 50〃 1 (25 β g) に 10 x K buffer 20 // 1、 H i n d III 120 units (15 ^ 1 ) 及び滅菌水を加え、 200 1としたエツペンドルフチューブ (1.5 ml容) を 2本用意した。 これらのチューブを 37°Cで 3時間インキュべ 一卜した。 反応後、 フエノール一クロ口ホルム処理し、 DNAをェタノ ール沈殿して集め、 それぞれ 150 1の滅菌水に溶解した。 これらの DNA溶液に 5 X E c 0 R I buffer 40 ^ 1及び£ 0 01¾ 1 12 0 units (10 ^ 1 ) を加え、 37 で 3時間ィンキュベートした。 反 応後、 DNAをエタノール沈殿して回収し、 目的の DNA断片 (約 79 O b p) を 1.5%ァガロースゲル電気泳動により分離した。 DNAを Genecleanによって精製した。
(III一 3) H i n dlll-E c oR I ( h S 0 D— terminater)断片 と発現調節
領域 ARu p l、 2、 3および 4) の連結 (図 6参照)
発現調節領域 (ARu p l、 2、 3および 4) 1. 12 β (2. 1 1 ) と H i n dill— E c oR I断片 2. 11 g (2.2 z l ) に 5 x1 igation buffer (25 OmM T r i s— HC 1 (p H 7. 6) > 50 mM Mg C l 2) 100 mM ΌΤΤ2 β ΐ , 1 OmM A
TP 2 1、 T4DNA ligase (宝酒造 (株) 社製) 2.5 units (1 β 1 ) 及び滅菌水を加えて 20 1 としたエツペンドルフチューブをそ れぞれ用意した。 これらのチューブを 15 で一晚ィンキュベートした 後、 60 で 10分間熱処理して反応を止めた。 これらの溶液にそれぞ れ 5 X E c 0 R I buffer 10 l、 E c oR I 12 units ( 1〃 1 ) 及び滅菌水を加え 50 β 1とした。 これらの溶液を 37°Cで 3時間 インキュベートした。 反応後、 目的のそれぞれの DNA断片 (図 7参照 それぞれ約 1200 b p) を 2%ァガロースゲル電気泳動によって分離 し、 Genecleanを用いて精製した。
(III一 4) 4つの h S OD遺伝子発現用 DN A断片のクローニング (1) pUCl 8の E c oR I消化、 アルカリフォスファターゼ処理 プラスミ ド pUC18DNA20〃g (30 ϊ ) に 5 xE c oR I buffer 40 E c o R I 120 units (10^ 1) に滅菌水 を加えて 200/z 1としたエツペンドルフチューブを 37°Cで 3時間ィ ンキュペートした。 反応後、 フエノールークロロホルム処理、 エタノー ル沈殿して DNAを集め、 100 1の 0.1M Tr i s— HC 1 (p H8.0) に溶解した。 この溶液に 10 1のアルカリフォスファタ一 ゼ溶液を加え、 37°Cで 1時間インキュベートした。 反応後、 さらに 1 0 】のアル力リフォスファターゼ溶液を加え 65°Cで 30分間ィンキ ュペートした。 反応液をフエノールークロロホルム処理し、 DNAをェ 夕ノール沈殿して集め 0.1 ii /. IL 1になるように ΤΕに溶解した。 (2) h S オペロン断片の p UC 18 (EcoRI、 AP処理) への揷入
h SODオペロン (Promoter-S OD— terminaterl、 2、 3および 4) DNA 100ng(l μ 1 ) と Ec oRI、 アルカリフォスファタ一 ゼ処理した pUC18DNA320ng (2 /1) に Takara ligation kit A液 24 1をそれぞれ加え、 よく撹拌した。 これらの溶液に Takara ligation kit B液 3 1ずつ加え、 よく撹拌した後、 1でで一晚 インキュベートした。
(3) pUCl 8-Rup t-hSODl. 2、 3及び 4の大量調製 各々の ligation溶液 4 1 (約 50ng) に 50mM C a C 12で処 理した E. coli J Ml 09株の細胞懸濁液 200 β ΐずつ加え、 おだ やかに混合した。 これらの混合液を氷水中で 30分間インキュベートし た後、 さらに 42でで 2分間ィンキュベートして DNAを細胞中に取り こませた。 これら懸濁液に lmlの 2 YT液体培地を各々加え、 37°C、 1時間の振盪培養後、 2¥丁寒天培地 (50 / 1111ァンピシリン、 4 OmgZml X-g a 23.83 mgX 1 I P T Gおよび 1.5 %寒天 を含む) にプレートした。 得られた白いコロニーからプラスミ ドを調製 し、 制限酵素地図を解析することにより目的の各々のプラスミ ド (pU CI 8-Rup t-hSODl. 2、 3及び 4を保持しているコロニー をスクリーニングした。 スクリーニングした各々のコロニーを 20 Oml の 2YT液体培地 (10
Figure imgf000035_0001
ンピシリンを含む) で培養し、 各 々のプラスミ ド DNAを SD S—アル力リ法により大量に調製した。 (4) E c oR I断片 (約 1200 bp) の単離
大量調製したプラスミ ド (PUC18— Rup t— hSODl、 2、 3及び 4) DNA約 (20 1 ) に 5xEc oR I buffer 40 ^ Ec oR I 120 units (10^ 1) 及び滅菌水 130 1を加え 200 1としたエツペンドルフチューブを各々のプラスミ ド で 3本ずつ用意した。 これらのチューブを 37°Cで 3時間インキュベー トした。 反応後、 DNAをエタノール沈殿して集め、 各々のプラスミ ド ごとに 100 1の TEに溶解した。 目的の各々の DN A断片 (約 12 00 bp) を 1.5%ァガロースゲル電気泳動によって分離し、 Genecle anを用いて精製した。
I V. ラン藻用 hSOD遣伝子発現ベクターの造成 (図 8参照)
(IV— 1) pBR322へのマルチクローニングサイ ト (pUC18 由来) の導入
(1) p BR 322の E c oR I— H i n dlir消化、 アル力リフォ スファターゼ処理 Λ
4 p BR322DNA溶液20^ 1 ( 10 g) に 5 x H i n d III b uffer (5 OmM T r i s— HC 1 (pH7.5) 、 35mM MgC "、 300mM Na C l ) 0 I , H i n d III 80 units ( 1 Ο β Ι 及び滅菌水 130 1を加え、 37°Cで 2時間ィンキュベート した。 反応後、 この溶液に 5 X E c 0 R I buffer 40 ^ 1、 E c o R I 120 units (10 ^ 1 ) 及び滅菌水 50 1を加え、 さらに 3 7^で 2時間反応させた。 反応後、 フエノールークロロホルム処理、 ェ タノール沈殿して DNAを集め、 100〃 1の 0.1M T r i s—HC 1 (pH8.0) に溶解した。 この溶液に 10 1のアルカリフォスフ ァターゼ溶液を加え、 37°Cで 1時間インキュベートした。 反応後、 1 0 fi 1のアル力リフォスファターゼ溶液を加え、 さらに 65°Cで 30分 間ィンキュベ一トした。 この溶液をフエノールークロロホルム処理し、 エタノール沈殿して DN Aを回収した。
(2) pUC 18からマルチクローニングサイ ド(E c oR I— H i n dill) の単離
pUC 18 DNA溶液 30 1 (20 tt g) に 10 xK buffer 2 0/ί 1、 H i η dill 80 units (10 ^ 1 ) 及び滅菌水 14 1を 加えたエツペンドルフチューブ 2本用意し、 37°Cで 3時間インキュべ ートした。 反応後、 フエノール一クロ口ホルム処理し、 エタノール沈殿 して DNA集め、 112.5 1の滅菌水に溶解した。 これらの溶液に 5 X E c 0 R I buffer 30 l、 E c oR I 90 units CI .5 β I ) を加え、 37でで 3時間インキュベートした。 DNAをエタノール 沈殿して回収し、 1.5%ァガロースゲル電気泳動を行い目的の DNA 断片 (約 50 b p) を分離した。 DNAをゲルから電気的に溶出し、 フ エノールークロ口ホルム処理、 ェタノール沈殿して精製した。
(3) p BR322 (E c oR I— H i n dill消化) とマルチクロ 一二ングサイ 卜の連結
p BR 322 (Ec oR I— H i n dIII、 AP処理) DNA 0.2 ^ g (1^ 1) とマルチクローニングサイ ト DNAO.2 g (1 1 ) に TE 1〃 1、 Takara ligation kit A液 24 1を加え、 よく撹 拌した。 この溶液に Takara ligation kit B液 3^ 1を加え 16て で 4時間インキュベートした。
(4) プラスミ ド p BR322Mのクローニング
ligation溶液 3〃 1 (40iig) に 50mM じ 8 ( 12処理した1;. co li HB10.1の細胞懸濁液 200 ^ 1を加え、 おだやかに混合した。 この混合液を氷水中で 30分間ィンキュベートした後、 さらに 42 で 2分間ィンキュベートして DNAを細胞中にとりこませた。 この懸濁液 に 1.8 mlの 2 YT液体培地を加え、 37 °Cで 1時間の振盪培養後、 L B寒天培地 (50 / gZinlアンピシリンを含む) にプレートした。 得ら れたコロニーからプラスミ ドを調製し、 制限酵素地図を解析することに より目的のプラスミ ド (pBR322M) を保持しているコロニーをス クリーニングした。 スクリーニングしたコロニーを 200011の2¥丁液 体培地 (1 OO ig/mlアンピシリンを含む) で培養し、 プラスミ ド D NAをSDS—ァルカリ法により大量に調製した。
(I V— 2) PvuII-Ec o 47 III断片 (2550 b p) の単離 前記 (I V— 1) を調製した BR322Mプラスミ ド DNA10 ig (l Ow l) に l OxM buffer (10 OmM Tr i s— HC 1 (p H7.5) 10 OmM MgC l 2、 10mM DTT、 500mM Na C l ) 20 I . P vull (宝酒造 (株) 社製) 120 units (1 0 ^ 1 ) および滅菌水を加え 200 ^ 1としたエツペンドルフチューブ 3本用意した。 これらのチューブを 37 °Cで 3時間ィンキュベートした。 反応後、 フエノールークロロホルム処理し、 DN Aをエタノール沈殿し て集め、 174 1の滅菌水にそれぞれ溶解した。 これらの溶液に 10 xH buffer 20 】および E c 047ΙΠ (宝酒造 (株) 社製) 2 4unitsずつ加え、 37でで 3時間インキュベートした。 DNAをエタ ノール沈殿し回収し、 目的の DNA断片 (2550 b p) を 1.5%ァ ガロースゲル電気泳動により分離した。 分離した D N A断片は Geneclea IIを用いて精製し、 50 1の 0. 1M T r i s— HC 1 (pH8.0) 溶液とした。 この溶液に 5〃 1のアル力リフォスファターゼ溶液を加え、 37 で 1時藺ィンキュベートした。 反応後、 5 1のアル力リフォス ファターゼ溶液を加え、 65でで 30分間さらにィンキュベートした。 反応後、 フエノールークロロホルム処理し、 エタノール沈殿して DN A を集め、 20 /ί 1の TEに溶解した。
( I V— 3) p BAS 18QA. nidulansにおける複製開始点の分離 P BR322の B amH Iサイトに A. nidulans 6301株の内在性 プラスミ ド (p BAl、 B amH I消化) を挿入した大腸菌と A. nidul ansとの間のシャトルベクター p B A S 18 (k. Shinozakiら、 Gene, 1 昱: 221— 224 (1982) ) を E. coli HB 101に導入し、 LB液体培地 (50 ^ gZmlアンピシリンを含む) で培養し、 SDS— アル力リ法を用いて大量に調製した。
調製した pBAS 18DNA14 g (20 ^ 1 ) に 10 xK buff er 20 ^ K B amH I 100 units ( 10 1 ) および滅菌水を 加えて 200 1 としたエツペンドルフチューブ 3本用意し、 30°Cで 3時間インキュベートした。 反応後、 DNAをエタノール沈殿して回収 し、 目的の DN A断片 (ρ ΒΑ 1、 約 8.0 k b p) を 1%ァガロース ゲル電気泳動を行い分離し、 Genecleanにより精製した。
分離 ·精製した p BA l (B amH I消化) DNA2 g (5〃 1 ) に l O xK buffer 5 f Xh o I 24 units ( 2 1 ) および 滅菌水 38 1を加え、 37 で 3時間ィンキュベートした。 反応後、 フエノールークロ口ホルム処理し、 ェタノール沈殿して D N Aを集めた。 得られた p B A 1の B amH I -Xh 0 I消化 D N Aの両末端を Takara ligation kitを用いて平滑末端化した。
( I V-4) 小型化 E. coli-A. nidulansシャトルベクター p B A X 18 (6.9 k b p) の造成
(1) p BAX l 8 (約 6.9 k b) の作成
平滑末端化 DNA40ng (2 1 ) と P v u II— E c ο 47 III断片 の DNA 20 Ong (4 1 ) に Takara ligation kit A液 48 /z l を加え、 よく撹拌した後、 B液 を加え、 16°Cで 4時間インキュ ペートした。 この溶液を用い E. coli HB 101株を形質転換し、 L B寒天培地 (50 / gZmlアンピシリン、 1.5%寒天を含む) にプレ ートしてコロニーを得た。 得られたコロニーからプラスミ ドを調製し、 制限酵素地図を解析することにより目的のプラスミ ド p BAX l 8を保 持するコロニーをスクリーニングした。 スクリーニングしたコロニーを 45mlの 2 YT液体培地 (100 g/mlのアンピシリンを含む) で培 養し、 プラスミ ド DNAを SD S—アルカリ法により調製した。
(2) p BAX20 (約 5. 8 k b) の作成 ^ 前記 (I V— 3) で調製した B amH I— Xh o I (平滑末端化) D NA断片 1 fi g (4〃 I) に 10 xM buffer 2 1、 P v u II 1 1 (12miits) 及び滅菌水 13 1 ) を加え、 37°Cで 3時間イン キュペートした。 この反応液 2 1 (l O Ong) に (2) で調製した P V ull— E c o 47DNA断片 10 Ong (2 1 ) 及び Takara ligati on kit A液 16 / 1を加え、 よく撹拌した後、 さらに、 B液 4 i l を加え、 16°Cで 2時間インキュベートした。 反応後、 この溶液を用い て E. coli HB 101株を形質転し、 LB寒天培地 (50 zgZmlァ ンピシリン、 1.5%寒天を含む) にプレートしてコロニーを得た。 得 られたコロニーから目的のプラスミ ド (p BAX20) を保持している コロニーをスクリーニングし、 200mlの 2 YT液体培地 (100 g mlアンピシリンを含む) で培養し、 プラスミ ド DNAを SDS—アル カリ法により調製した。
(I V-5) h SOD遺伝子発現用ベクターのクローニング
(1) p B AX 18の E c oR I消化、 アルカリフォスファターゼ (AP) 処理
p BAX 18DNA 10 g (20 1 ) に 5 xE c oR I buffer K E c oR I 120 units (10 ί 1 ) および滅菌 130 1を加え 200 ^ 1としたェンペンドルフチューブ 2本を用意した。 これらのチューブを 37°Cで 3時間インキュベートした後、 DNAを Ge necleanにより精製し、 100 /^ 1の 0.1M Tr i s— HC 1 (pH 8.0) に溶解した。 この溶液に 10 Iのアルカリフォスファターゼ 溶液を加え 37°C、 1時間インキュベートした後、 さらに 10 1のァ ルカリフォスファターゼ溶液を加え 65°Cで 30分間ィンキュベートし た。 反応後、 フエノールークロロホルム処理、 エタノール沈殿して DN Aを回収した。
(2) h S ODオペロンと p B AX 18 (E c oR I、 AP処理) の 連結、 大量調製
前記 (III一 4) で調製した 4つの h SODオペロン (約 1.2 k b p)
0.25 z g (1〃 1 ) に E c oR I、 AP処理した p BAX 18 0. 5 g (1 l ) をそれぞれに加え、 Takara ligation kit を用いて li gationさせた。 これら ligation溶液を用い E. coli HB 101株をそれ ぞれ形質転換し、 それぞれ LB寒天培地 (50 gZmlアンピシリンを 含む) にプレートしてコロニーを得た。 得られたコロニーからプラスミ ドを調製し、 制限酵素地図を解析することにより目的の各々のブラスミ ド (p BAXS OD 6、 p BAXSOD 7、 p BAXSOD 8、 p B A XSOD 9> p BAXS 0D6— 4、 p B A X S 0 D 7— 4及び p B A XSOD 8-4) を保持するコロニーをスクリーニングした。 スクリー ニングした各々のコロニーを 50mlの L B液体培地 (l O O g/ ηΙァ ンピシリンを含む) で培養し、 プラスミ ド DNAを SDS—アルカリ法 により調製した。
(3) P BAS 18の E c oR I消化、 アルカリフォスファターゼ (AP) 処理
p BAS 18DNA 18 z g (30 u l ) に 5 xE c oR I buffer
40 E c oR I 12 units ( 10 1 ) および滅菌水 120 li 1を加え 200 ^ 1 としたエツペンドルフチューブを 37°Cで 3時間 インキュベートした。 反応後、 フエノールークロロホルム処理、 クロ口 ホルム処理し、 DNAをエタノール沈殿して回収した。 回収した DNA を 100 z】の 0.1Ϊ Tr i s— HC】 (pH8.0) に溶解し、 1 0 β Iのアル力リフォスファターゼ溶液 (lunitsZl 0〃】) を加え、 37でで 1時間インキュベートした。 1時間後、 10^ 1のアルカリフ ォスファターゼ溶液を加え、 65てで 30分間インキュベートした。 反 応後、 フエノールークロロホルム、 クロ口ホルム処理、 エタノール沈殿 して DNAを精製 ·回収した。
(4) h S ODオペロンと p B AS 18 (E c 0 R I、 AP処理) の 連結、 大量調製
前記 (III一 4) で調製した 4つの h S ODオペロン (約 1.2 k b) それぞれ 0.25 g (1 fi g) に EcoRI、 AP処理した pBAS 18 1.5 g (2 i l) をそれぞれ加え、 Takara ligation kitを用 いて ligationさせた。これらの反応液を用い E. coli HB 101株をそ れぞれ形質転換し、 それぞれ LB寒天培地 (50 α g mlアンピシリン 一 1.5%寒天を含む) にプレートしてコロニーを得た。 得られたコロ ニーからプラスミ ドを調製し、 制限酵素地図を解析することにより目的 のプラスミ ド (pBASOD6、 pBASOD7、 pBASSOD8、 PBASOD9) を保持するコロニーをスクリーニングした。 スクリー ニングした各々のコロニーを 200mlの 2 YT液体培地 (100〃 gZ mlアンピシリンを含む) で培養し、 プラスミ ド DNAを SDS—アル力 リ法を用いて調製した。
V. S OD遺伝子のラン藻 Anacystis nidulans 6301、 R2による
(V- 1 ) A. nidulans 6301 CSvnechococcus PCC6301 ) およ び R2株 (Synechococcus PCC7942) の形質転換 1 0 Omlの BG— 1 1液体培地で 1〜5日間培養した細胞を 8 0 00 rpmで 5分間遠心して集め、 1 0mlの新鮮な液体培地に懸濁した (1 08 〜 1 0 ecellsZml) 。 この細胞懸濁液を 1 mlずつポリプロピレンチュー ブ(Falcon205 9) に分注し、 それぞれのチューブに調製したプラス ミ ド DNAを 0. 1〜1 O ^ gの濃度で加えた。 これらのチューブをそ れぞれアルミホイルでおおい、 3 0°Cで一晩培養した後、 おおっていた アルミホイルをはずし、 光照射下 (光源:白色光蛍光灯; 1 00 0〜2 000ルクス) 、 3 0°Cでさらに 6時間培養した。 これらの細胞懸濁液 から 1 00〜50 0 / 1取り、 B G— 1 1寒天培地 (I mMチォ硫酸ナ トリウム、 1〜5 gZmlアンピシリン、 1. 5%寒天を含む) にプレ 一卜した。 これらのプレートを光照射下 (光源;白色光蛍光灯; 200 0〜3000ルクス) で 4〜: 1 0日間培養した。
CV- 2) 培養
このようにして得られたコロニーを 2mlの BG— 1 1 (1 0 / g/ l アンピシリンを含む) 液体培地に移し、 光照射下 (光源:白色光蛍光灯 ; 2000〜30 0 0ルクス) で 1 0日間培養した。 次に、 これらの培 養液を 1 00mlの B G— 1 1 (1 0 ^ gZmlアンピシリンを含む) 液体 培地に移し、 光照射下 (2000〜3 00 0ルクス) で 2 0日間培養し た。 さらに、 これらの培養液.をそれぞれ 1 0mlずっとり、 1 00101の8 G— 1 1 (50 // gZmlアンピシリンを含む) 液体培地にそれぞれ移し、 光照射下で 20日間培養した。 細胞を 80 0 0rpm、 4°Cで 1 0分間遠 心して集め、 1 mM Hepes buffer ( p H 7. 0 ) に再懸濁し、 遠心す ることによって洗浄した。 洗浄後、 細胞は実験使用時まで一 2 0°Cで保 存した。 CV-2) h S ODの検出
(1) h— SOD活性染色
リボフラビンを加えた光重合法 [蛋白質核酸酵素 11 : 744 (19 66) ] で作成したアクリルアミ ドゲルを用い、 電気泳動を行った。 泳 動後、 ゲルを 5 OmMリン酸カリウム (pH7.8) — 0.5mM ED 丁 で2〜3回 (5分) 洗浄し、 ニトロブル一テトラゾリゥム (NBT) 溶液 (2.5mM NBT、 5 OmMリン酸カリウム、 0.5mM ED TA、 pH7.8) に 7分間浸した。 次にリボフラビン溶液 (100^ Mリボフラビン、 3 OmMテトラメチルエチレンジァミン、 5 OmMリ ン酸カリウム、 0.5mM EDTA、 pH 7.8) に浸し、 ゲル中のコ ントラストができるまで白色光中で発色させた。 その結果を 9図に示す。 この図において S OD活性のある部分は発色せず、 他の部分は紫となる が、 これからわかるように、 アナキスティス '二デュランス自身が持つ F e— S OD以外に、 形質転換体では h S ODの活性が検出された。
(2) 抗ヒトー SOD抗体による検出
(2-1) ウェスタンブロッテイング
20%SDS—ポリアクリルァミ ドゲルを用いて、 Laenmliら (Natur e、 237、 680 (1970) ) の条件下、 還元状態で電気泳動を行つ た。 泳動後、 ゲル中のタンパク質をニトロセルロース膜 (アマシャム社 製、 Hybond (C) に電気的に移した。 この膜を 0.3% H202を含む 50%メタノールに 20分間浸し、 内性のペルォキシダーゼを失活させ た後、 5%スキムミルク、 0.1% Tween20を含む TB S (2 OmM Tr i s— HC 1、 0.9% NaC l、 pH7.4) に 37 °Cで 2時 間浸した (ブロッキング) 。 ブロッキング処理した膜を洗浄液 (0.0 5% Tween20を含む TB S) で 5分間洗い、 1Z1000抗体ヒ ト 一 SOD (ャギ I gG、 Binding Site社製) 、 0.1% Tween20を含 む TB Sに 37 °Cで 2時間ィンキュベートした。 膜を洗浄液で 20分間 (5分 X 4) 洗浄した後、 1 Omgジァミノベンチジン (DAB) 及び 1 5〃 1の 32% H202を含む 40mlの 0.1M Tr i s— HC 1 (p H7.4) で染色させた。
その結果、 形質転換体から抽出した抽出液を泳動したレーン上に、 標 準試料の hSOD (シグマ社製) と同じ位置に、 褐色に染色されたバン ドが検出された (図 10) 。
(2-2) ォクテロ一ニー法 (免疫学実験入門!) 74〜77、 学会出 版センター刊) 1.2% agarose溶液 ( 10 mMリン酸 buff er (p H 7. 2) 、 0.15M NaC l及び 0.1% N a N3を含む) をシャーレ (Falcon 1029) に厚さ 2〜 3 mmになるように固め、 適当な位置に穴 を開ける。 中央の穴に抗ヒ トー S OD抗体を 10^ 1、 その回りの穴に は形質転換体の抽出液 (10/i l) 、 コントロールとして A. nidulans R2 (非形質転換体) の抽出液 (40^ 1) 及び標準試料の h SODを 入れ、 4 で一晚インキュベートした。 インキュベート後、 寒天プレー トをシャーレより取り出し、 PBS ( 10 mMリン酸 buffer、 pH 7. 2、 0.15M NaC 1) に浸し、 十分に除タンパクした (PBSを数 回交換、 2〜3日間) 。 このプレートを 0.5%アミ ドプラック溶液
(90mlメタノール、 l Onil氷酢酸) に浸し、 染色した。 その結果、 抗 ヒトー SOD抗体と標準試料の hSOD、 形質転換体の抽出液 (6— 4、 8-4) との間に沈降線が形成されるのがわかった。 さらに、 その沈降 線は一本の線 (コの字) として現われ、 形質転換体中に標準試料の h S ODと同じ抗原 (ヒトー SOD) がっくられていることが確認された (図 11)。
(3) h— SOD活性の検出
ラン藻アナキスティス ·二デュランスは内性の SOD (F e— SOD) をもっているが、 : hSOD (Cu · Zn— SOD) とは ImM KCN によって阻害されるかどうかによって活性を区別して測定することが可 能である。 光学セル (1ml用) に 5 OmMリン酸カリウム (pH7.8) 、 0. ImM EDTA、 0. ImMキサンチン、 10 Mチトクロム C (ゥマ心臓 Type III シグマ社製) 及びサンプル (SOD) を入れ、 全 容を 980 z lとする。 これにキサンチン酸化酵素 (ベーリンガーマン ハイム社製) を 20^ I加え、 反応を開始し、 チトクローム C還元を 5 5 Onmの吸光度増加の初速 (30〜60秒) を求め、 この値をジとする。 S ODサンプルを加えないときのチトクローム C還元速度を Vとした。 この条件下でのチトクローム C還元を 50%阻害する S ODを l/3uni1: とし、 (vZ ー 1) からサンプル中の総 unit数を求めた (植物酵素 · 蛋白質研究法 P 373浅田浩二、 共立出版) 。 また を測定した反応液 に l OOmM KC 1 (10 ί 1) を加え、 チトクローム C還元速度 ' を求め、. unit数を求めた (vZ ' 一 1)。 アナキスティス ·ニデュ ランスの細胞中に生成された h SODの活性 { (vZジー 1) 一 (v/ V — 1 ) } を g'めた。
その結果、形質転換体から得られた粗抽出液の比活性 (lA 280unit あたりの活性) は 0.7〜12units/A280という高い値を示した (表
1) 基となる 発現ベクター h SOD発現量 ベクタープラスミ ド (比活性、 units/A280)
PBASOD6 6.57
PBASOD7 8.85 p B AS 18 PBASOD8 7.61
p B A S OD 9 5.98
PBAXSOD6 7.18
PBAXSOD7 9.98 p B AX 18 PBAXSOD8 11.79
PBAXSOD9 6.76 また、 これらの比活性は基となるベクターの種類及び SD様配列と A TGと間の塩基数によって強く影響を受け、 量も比活性が高かったのは PBAXSOD8 (PBAX18を基にし、 SD〜ATG間の塩基数が 8塩基) であった。
産業上の利用分野
以上に述べた本発明によれば、 ラン藻細胞を宿主として有用プチピド を極めて高い効率で発現させることが可能であり、 製造される有用ぺプ チドは医薬品、 医薬部外品、 化粧等として利用することができ、 また、 培養された形質転換ラン藻は、 食料、 飼料、 機能性食品として利用する ことができる。

Claims

請 求 の 範 囲
1. 生理活性を有するポリべプチドをコードする構造遺伝子を含有 する担体 DN Aでラン藻細胞を形質転換することにより、 ラン藻細胞で 該ポリべプチドを発現させる方法において、
該担体 DN Aとして、 生理活性を有するポリペプチドをコードする構 造遺伝子と、 該構造遺伝子の上流側に位置するアナキスティス ·ニジュ ランスの RuB i s CO遺伝子の転写開始領域と、 該構造遺伝子の下流 側に位置する該 RuB i s CO遺伝子の転写終止領域を含有する担体 D NAを使用することを特徴とするラン藻細胞での生理活性を有するポリ ペプチドの発現方法。 .
2. 該担体 DNAが、 生理活性を有するポリペプチドをコードする 構造遺伝子と、 該構造遺伝子の上流側に位置するアナキスティス ·ニジ ュランスの RuB i s CO遺伝子の転写開始領域と、 該構造遺伝子の下 流側に位置する該 RuB i s CO遺伝子転写終止領域からなるオペロン が導入されたベクタープラスミ ドである請求の範囲第 1項記載の方法。
3. ベクタープラスミ ドがプラスミ ド p B AS 18、 p B AX 18、 又は PBAX20である請求の範囲第 2項記載の方法。
4. 生理活性を有するポリべプチドがヒトー SODと実質的に同一 のアミノ酸配列を有するポリべプチドである請求の範囲第 1項記載の方 法 o
5. ヒトー SODと実質的に同一のアミノ酸配列を有するポリぺプ チドをコードするヒトー SOD構造遺伝子と、 その上流側に位置するァ ナキスティス ·ニジュランスの RuB i s CO遺伝子の転写開始領域と、 該ヒトー SOD構造遺伝子の下流側に位置する該 RuB i s CO遺伝子 の転写終止領域からなるヒ トー SODオペロン。
6. 請求の範囲第 5項記載のヒ トー SODオペロンが導入されたべ クタ一プラスミ ド pBAS 18又は PBAX18よりなるヒ トー SOD 発現べクタ一。
7. 請求の範囲第 6項記載のヒ トー SOD発現ベクターで形質転換 されたラン藻細胞。
8. 請求の範囲第 7項記載のラン藻細胞を培地で培養し、 その培養 物からヒ トー SODを採取することを特徴とするヒ トー SODの製造方 法。
9. 請求の範囲第 8項記載の方法で製造されたヒ ト— SOD。
PCT/JP1992/000289 1991-03-13 1992-03-11 Process for expressing polypeptide WO1992016641A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP92906714A EP0533942B1 (en) 1991-03-13 1992-03-11 Process for expressing polypeptide
DE69213145T DE69213145T2 (de) 1991-03-13 1992-03-11 Verfahren zur expression von polypeptiden
AU15659/92A AU650531B2 (en) 1991-03-13 1992-03-11 Process for expressing polypeptide
CA002082802A CA2082802C (en) 1991-03-13 1992-03-11 Method for expressing polypeptides in cyanobacteria
FI925143A FI925143A (fi) 1991-03-13 1992-11-12 Foerfarande foer expression av polypeptider

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/73905 1991-03-13
JP3073905A JPH0767393B2 (ja) 1991-03-13 1991-03-13 ポリペプチドの発現方法

Publications (1)

Publication Number Publication Date
WO1992016641A1 true WO1992016641A1 (en) 1992-10-01

Family

ID=13531673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000289 WO1992016641A1 (en) 1991-03-13 1992-03-11 Process for expressing polypeptide

Country Status (13)

Country Link
EP (1) EP0533942B1 (ja)
JP (1) JPH0767393B2 (ja)
KR (1) KR0163062B1 (ja)
AT (1) ATE141951T1 (ja)
AU (1) AU650531B2 (ja)
CA (1) CA2082802C (ja)
DE (1) DE69213145T2 (ja)
FI (1) FI925143A (ja)
IL (1) IL101182A (ja)
OA (1) OA09713A (ja)
PT (1) PT100236B (ja)
TW (1) TW321686B (ja)
WO (1) WO1992016641A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574549B2 (ja) * 1991-03-08 1997-01-22 萩原 義秀 新規プラスミド
JPH06253820A (ja) * 1993-02-26 1994-09-13 Hideo Fukuda 細菌のエチレン生成酵素をコードする遺伝子を含むdna断片を含有するベクターで形質転換させたらん藻の形質転換体と、その形質転換体を利用したエチレン製造方法
FR2706465B1 (fr) * 1993-06-11 1995-08-25 Heliosynthese Sa Procédé de production et d'extraction de superoxyde-dismutases thermostables à partir d'une culture de micro-organismes photosynthétiques.
JPH10150984A (ja) * 1996-11-19 1998-06-09 Hagiwara Yoshihide 抗体分子の製造方法
JP5688665B2 (ja) * 2011-10-18 2015-03-25 国立大学法人茨城大学 自己溶菌能を有するシアノバクテリアを用いたバイオ燃料等有用物質の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137286A (ja) * 1983-10-03 1985-07-20 カイロン コーポレイション ス−パ−オキシドジスムタ−ゼ遺伝子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1216531A (en) * 1983-03-15 1987-01-13 Neil A. Straus Cloning vectors for cyanobacterium
US5516693A (en) * 1987-03-04 1996-05-14 Board Of Trustees Operating Michigan State University Hybrid gene incorporating a DNA fragment containing a gene coding for an insecticidal protein, plasmids, transformed cyanobacteria expressing such protein and method for use as a biocontrol agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137286A (ja) * 1983-10-03 1985-07-20 カイロン コーポレイション ス−パ−オキシドジスムタ−ゼ遺伝子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Biochemistry, Vol. 19, No. 11, (1980), J. R. JABUSCH et al. "Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutase" P. 2310-2316. *
Gene, Vol. 90, No. 1, (1990), D. J. SCANLAN et al. "Construction of lacz promoter probe vectors for use in Synechococcus : application of carbon dioxide-requlated promoters" P. 43-49. *
Journal of Bacteriology, Vol. 171, No. 7, (1989), M. R. SCHAEFER et al. "Differential expression of members of a cyanobacterial psbA gene family in response to light" P. 3973-3981. *
Molecular & General Genetics, Vol. 200, No. 1, (1985), K. SHINOZAKI et al. "Genes for the Large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase constitute a single operon in a cyanobacterium Anacystis nidulans 6301" P. 27-32. *
Proceedings of the National Academy of Sciences of the USA, Vol. 80, No. 13, (1983), K. SHINOZAKI et al. "Molecular clonin and sequence analysis of the cyanobacterial gene for the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase" P. 4050-4054. *

Also Published As

Publication number Publication date
IL101182A0 (en) 1992-11-15
OA09713A (en) 1993-08-30
TW321686B (ja) 1997-12-01
FI925143A0 (fi) 1992-11-12
IL101182A (en) 1998-08-16
JPH0767393B2 (ja) 1995-07-26
DE69213145T2 (de) 1997-01-23
EP0533942A4 (en) 1994-06-01
FI925143A (fi) 1992-11-14
ATE141951T1 (de) 1996-09-15
EP0533942B1 (en) 1996-08-28
KR0163062B1 (ko) 1998-11-16
EP0533942A1 (en) 1993-03-31
AU1565992A (en) 1992-10-21
JPH04330294A (ja) 1992-11-18
DE69213145D1 (de) 1996-10-02
PT100236B (pt) 1999-06-30
CA2082802A1 (en) 1992-09-14
CA2082802C (en) 2003-07-29
AU650531B2 (en) 1994-06-23
PT100236A (pt) 1993-05-31

Similar Documents

Publication Publication Date Title
CN115011616B (zh) 一种乙醛脱氢酶基因rkaldh及其应用
CN110982807B (zh) 一种高效稳定的纤维素酶突变体
CN112210519A (zh) 一种以食用菌分泌乙醛脱氢酶的基因工程菌
CN102181469A (zh) 枯草芽孢杆菌表面展示人血清白蛋白重组芽孢及其制备方法
WO2023097975A1 (zh) 一株产d-阿洛酮糖3-差向异构酶的菌株及其应用
CN111549018A (zh) 一类热稳定性提高的蛋白酶突变体及其编码基因和应用
Burns et al. Evolution of the tryptophan synthetase of fungi. Analysis of experimentally fused Escherichia coli tryptophan synthetase alpha and beta chains.
WO1992016641A1 (en) Process for expressing polypeptide
US5804408A (en) Expression of human SOD in blue green algae
CN111117942A (zh) 一种产林可霉素的基因工程菌及其构建方法和应用
CN110669788B (zh) 一种紫球藻叶绿体表达系统及其应用
CN108342400B (zh) 重组表达草酸氧化酶的基因工程菌及其构建方法和应用
CN114672525A (zh) N-乙酰基-5-甲氧基色胺的生物合成方法及其应用
Pollock et al. Molecular biology of c-type cytochromes from Desulfovibrio vulgaris Hildenborough
US5945278A (en) Method and system for enhanced production of commercially important exoproteins in gram-positive bacteria
CN114672524B (zh) 一种催化非天然氨基酸衍生物的双功能血红素蛋白
RU2803949C1 (ru) Способ экспрессии белка crm197
CN110066814B (zh) β-D-葡萄糖苷酶基因及其编码蛋白
WO2024103825A1 (zh) 合成寡糖的成熟多肽序列及应用
KR100497204B1 (ko) 유산균으로부터 분리된 신규한 분비신호
RU2221868C2 (ru) Ген l-аспарагиназы erwinia carotovora и штамм escherichia coli вкпм № в-8174 - продуцент l-аспарагиназы erwinia carotovora
JPS63287485A (ja) 単子葉植物の形質転換方法
CN114350586A (zh) 高产l-半胱氨酸的基因工程菌、构建方法及应用
CN116769750A (zh) 一种高活力磷脂酶突变体及其应用
Li et al. Using glycerol-inducible expression system to overexpressed maltooligosaccharide-forming α-amylase in Bacillus subtilis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA FI KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU MC ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2082802

Country of ref document: CA

Ref document number: 925143

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1992906714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992906714

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992906714

Country of ref document: EP