WO1992000166A1 - Arm driving mechanism in industrial articulated robot - Google Patents

Arm driving mechanism in industrial articulated robot Download PDF

Info

Publication number
WO1992000166A1
WO1992000166A1 PCT/JP1991/000839 JP9100839W WO9200166A1 WO 1992000166 A1 WO1992000166 A1 WO 1992000166A1 JP 9100839 W JP9100839 W JP 9100839W WO 9200166 A1 WO9200166 A1 WO 9200166A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
axis
fixed
drive motor
support
Prior art date
Application number
PCT/JP1991/000839
Other languages
English (en)
French (fr)
Inventor
Nobutoshi Torii
Yasuo Naito
Takeshi Okada
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1992000166A1 publication Critical patent/WO1992000166A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • B25J9/047Revolute coordinate type the pivoting axis of the first arm being offset to the vertical axis

Definitions

  • the present invention relates to an industrial articulated robot having a plurality of degrees of freedom in a three-dimensional space.
  • a new drive mechanism for the arm is provided.
  • a first arm (W-axis arm) connected to a swing body and a second arm (U-axis arm) connected to the end of the first arm.
  • a parallel link mechanism is arranged, and one of the two drive motors provided at the pivot axis of the first arm drives the rotation of the first arm, and the other drive motor passes through the parallel link mechanism.
  • the drive mechanism equipped with the parallel link mechanism is erected on a fixed base 1a fixed to the floor, and is rotated about the vertical axis with respect to the fixed base 1a.
  • Swivel base (W-axis base) 1 The base of the W-axis arm 2 is pivotally attached to 1b, and the U-arm 3 is pivotally supported on the tip of the W-axis arm 2 so that it can rotate freely.
  • the rear extension 3a of the W-axis arm 2 and the W-axis arm 2 and the two connecting levers 5 and 6 constitute a parallel link mechanism.
  • a censored robot equipped with a drive mechanism that directly drives two arms has a W-axis base that rotates on the vertical axis with respect to the fixed base 1a.
  • W-axis drive motor Ichita 3 ⁇ 44 2 journaled controllably rotating the proximal end of the W-axis arm 2 via, U axis to the tip of the W-axis arm 2 through a U-axis drive motor M 3
  • the arm 3 is pivotally supported for controlled rotation.
  • the operation angle of the U-axis arm 3 can be set sufficiently wide, but the moment applied to the U-axis arm 3 is increased. It is necessary to make the W-axis drive motor M z a large output motor in order to work directly on the W-axis arm 2.
  • An object of the present invention is to drive the above-described conventional articulated robot. It is intended to eliminate the shortcomings of the mechanism.
  • Another object of the present invention is to reduce the load of W Jikumukurodo motor M 2 for driving the first arm of the articulated robot (W-axis arm), a second arm (U-axis arm) It is an object of the present invention to provide an industrial articulated robot having a novel arm drive mechanism capable of increasing the operation angle.
  • At least a lowermost fixed base a swingable base member capable of swinging around a vertical swing axis with respect to the fixed base
  • a first arm capable of rotating relatively to a horizontal axis with respect to the turning base member
  • a second arm (U-axis arm) rotatable relative to the first arm relative to another horizontal axis drawing;
  • An industrial articulated robot having a robot wrist, and further comprising:
  • the first arm, the fixing member, and the support member are formed at least as link elements, and the link arm performs a link operation in response to the rotation of the first arm driven by the W-axis drive motor.
  • FIG. 1 is a schematic diagram showing a structural principle of a driving mechanism of an arm of an industrial censored mouth bot according to a first embodiment of the present invention
  • FIG. 2A is a mechanical explanatory diagram of the arm driving mechanism shown in FIG. 1,
  • FIG. 2B is an analysis model diagram of the driving mechanism shown in FIG. 1,
  • FIG. 3 is a front view of an industrial articulated robot having the arm driving mechanism shown in FIG. 1,
  • FIG. 4 is a sectional view taken along the line IV—IV in FIG. 3,
  • FIG. 5 is a schematic side view of a driving mechanism of an arm of an industrial articulated ⁇ -bot according to a second embodiment of the present invention
  • FIG. 6 is a schematic side view of an industrial articulated mouth bot according to a third embodiment of the present invention.
  • Fig. 7 shows an industrial articulated motor including a parallel link mechanism. Schematic side view of the conventional arm movement mechanism
  • FIG. 8 is a schematic side view of a conventional industrial articulated robot in which the first and second arms are directly driven by respective drive motors.
  • the industrial articulated robot is erected on a fixed base 11a fixed to the floor, and is indicated by an arrow 0 around the vertical axis by driving a drive motor (not shown).
  • a swivel base lib (hereinafter referred to as W-axis base) for controlled swing is provided.
  • the arm and its drive mechanism are mounted on the W-axis base 11b. That is, it has a fixed lever 110 horizontally fixed to the W-axis base 11b, and one end of the fixed lever 10 is connected to a first arm (W-axis drive motor Mz ) via a W-axis drive motor Mz.
  • the rear end of the W-axis arm 12 is pivotally supported so that it can be controlled and rotated in the direction indicated by the arrow W.
  • the other end of the fixed lever 10 has a connecting lever 20 of the same length as the first arm 12. Are rotatably supported.
  • One end of the support lever 30 having the same length as the fixed lever 10 is rotatably supported at the upper end of the first arm 12 and the other end is rotatably supported at the upper end of the connection lever 20. . Therefore, the fixed lever 10, the W to arm 12, the connecting lever 20 and the supporting lever 30 constitute a parallelogram link mechanism.
  • the second arm (U-axis arm) 13 is located at one position on the support lever 30 (in this example, an intermediate portion of the support lever 30). There is axially supported to be capable of controlled rotation in the direction indicated by the arrow U through the U-axis drive motor M 3 for driving the same arm. Beyond this second arm 1 3 At the end is a conventional robot wrist 14.
  • the support lever 30 is divided at the pivot point into a length s , and a length of £ 3 ⁇ , and as shown in Fig. 2 ⁇
  • T w is found to be not affected by Mome down bets Tu acting on the U-axis arm 1 3.
  • the size of the W axis drive motor M 2 can be reduced. possible, in addition, the U-axis arm 1 3 for configurations that are directly drive movement by U-axis drive motor M 3, the U-axis arm 1 3 around the pivot point on the support lever 3 0 The freedom of movement over a large turning angle is obtained. That is, as compared with the conventional W ⁇ dynamic motor M 2 shown in FIG. 8, mow the load hanging on the W-axis drive motor M 2 of the present embodiment can be reduced and hence, it also allows size reduction of the motor output I got it.
  • FIGS. 3 and 4. The concrete configuration of an industrial articulated robot having a plurality of degrees of freedom by applying the arm drive mechanism shown in FIG. 1 described above is shown in FIGS. 3 and 4. I have.
  • FIGS. 3 and 4 the same reference numerals as those in FIG. 1 indicate the corresponding elements of the elements in FIG. good.
  • the W-axis base 11b and the fixed lever 10 are integrated into one body, and the W-axis arm is provided at two positions on the body.
  • the pivot point 12 and one end of the coupling lever 20 are pivoted.
  • a pivot ⁇ ⁇ provided at the other end of the support lever 30 having one end pivotally attached to the upper end of the connection lever 20 is pivotally attached to the upper end of the W-axis arm 12 via a rotary bearing 32.
  • the U-axis drive motor M 3 is mounted on the support lever 130 via a coaxial type reducer R 3, and controls and moves the U-axis arm 13 with respect to the support lever 30. It has a configuration.
  • this articulated robot has a configuration in which the length £ 31 of the support lever 30 in the first arm drive mechanism approaches zero as much as possible.
  • W-axis drive motor M z for driving the W-axis arm 1 2 also drives a W-axis arm 1 2 via the reduction gear R 2 of coaxial type.
  • the industrial articulated robot shown in FIGS. 3 and 4 has an arm drive mechanism substantially equivalent to the arm drive mechanism shown in FIG. As described above, it is needless to say that the degree of freedom of movement over a large turning operation angle of the U-wheel arm 13 can be obtained, and that the load on the W ⁇ drive motor M z can be reduced. . Note that the rear end of the U ⁇ arm 1 3 and wrist drive motor M 4 is mounted, robot wrist 1 4, two to comprise three operational flexibility, therefore, the robot is a three-dimensional It has five or six degrees of freedom in the space. Next, a second embodiment of the present invention will be described.
  • a fixed sprocket that is non-rotatably mounted on a W base base lib that is rotatable around the vertical axis with respect to the fixed base 11a.
  • the W-axis arm 12 is mounted on the fixed sprocket 33 via the W-axis drive motor Mz so that it can be controlled and rotated in the direction indicated by the arrow W.
  • a supporting sprocket 34 having the same diameter as the fixed sprocket 33 is rotatably supported at the upper end, and a connecting chain 21 is stretched over both sprockets 33, 34 and the supporting sprocket is supported.
  • 3 to 4 has a configuration in which ⁇ to enable controlled rotation in the direction indicated by the U-axis arm 1 3 by the arrow U through the U-axis drive motor M 3.
  • the support sprocket 34 is provided with the same parallel link function as the support lever 130 of the embodiment of FIG. 1 due to the rotation of the arrow W of the W arm 12. Therefore, it has similar functions and advantages.
  • the rotation range of the W-axis arm 12 is not limited, and therefore, the operation of the W-axis arm 12 The angle can be wide enough.
  • FIG. 6 shows still another embodiment.
  • a fixed gear 35 is fixed to the W-axis base 11b so that it cannot rotate, and the W-axis arm 12 is attached to the fixed gear 35 via the W-axis drive motor Mz by an arrow W.
  • the supporting gear 36 of the same diameter is movably supported, the fixed gear 35 and the supporting gear 36 are connected by a connecting gear 37, and the U ⁇ drive motor M 3 is mounted on the supporting gear 36.
  • a structure is provided in which the U-axis arm 13 is pivotally supported in the direction shown by the arrow U through a control surface.
  • the arm movement mechanism shown in FIG. 6 has the same operation and advantages as the embodiment of FIG. 5 described above.
  • the first arm (W-axis arm) is fixed so that relative rotation with respect to the rotative W-axis base serving as a base of the first arm (W-axis arm) is impossible.
  • the base end of the first arm is pivotally attached to the other fixed member by a W ⁇ drive motor M so that the control operation can be freely performed.
  • a support member is rotatably pivoted at the distal end of the first arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

明細書
産業用多関節型ロ ボッ ト のアームの駆動メ カ ニズム 技術分野
本発明は、 三次元空間内で複数の自由度を有する産業用多 関節型ロボッ トに関し、 特に複数のアームが夫々の関節にお いて水平旋回軸線回りに旋回可能な多関節型ロボッ トにおけ るアームの新規な駆動メ 力ニズムに関する。
背景技術
従来の産業用多関節型ロボッ トにおいては、 旋回胴に結合 された第 1 アーム ( W軸アーム) と、 その第 1 アームの先端 に結合された第 2アーム ( U軸アーム) との間に平行リ ンク 機構を配置し、 第 1アームの旋回軸心に設けた 2 つの駆動モ ータの一方の駆動モータで第 1 アームの旋回を駆動し、 他方 の駆動モータで平行リ ンク機構を経由して第 2 アームを駆動 する型式の構造と、 W軸アームと U轴アームとをそれらの関 節部に設けた各駆動モータで独立に直接的に駆動する型式の 構造とがある。
平行リ ンク機構を備えた駆動メ カ ニズムは、 第 7図に示す 如く、 床面に固定された固定ベース 1 a に立設されてその固 定ベース 1 a に対して縦軸線.回りに旋画する旋回ベース ( W 軸ベース ) 1 bに W軸アーム 2の後端を枢着すると共に W軸 アーム 2 の先端に U轴アーム 3 を回動自在に軸支し、 U軸ァ ーム 3 の後方延長部 3 a と W軸アーム 2 と 2 つの連結レバ一 5及び 6 によ って平行リ ンク機構を構成し、 W軸アーム 2 の 後端と W軸べ一ス 1 b とを枢着する関節に、 W軸駆動モータ M 2 と U軸駆動モータ M 3 とを配置し、 各モータ Μ 2 , M 3 によってそれぞれ W軸アーム 2の矢印 Wの面動と、 U軸ァー ム 3 の矢印 Uの回動とを制御している。 なお、 U軸アーム 3 の先端には、 ロボッ ト手首 4が U軸アーム 3又はその延長部 3 aに搭載された手首駆動モータ (図示なし) によって複数 の旋回軸線回りに制御駆動されるように取付けられている。 他方、 2 つのアームを直接駆動する駆動メ カ ニズムを備え た多閲節型ロボッ トは、 第 8図に示す如く、 固定ベース 1 a に対して縦軸面りに回動する W軸べ一ス 1 に、 W軸駆動モ 一タ ¾4 2 を介して W軸アーム 2の基端を制御回動可能に軸支 し、 W軸アーム 2の先端に U軸駆動モータ M 3 を介して U軸 アーム 3を制御回動するように軸支している。
第 7図に示す前者の駆動メ カ ニズムでは、 U軸アーム 3に 負荷されるモーメ ン トが W軸アーム 2 には作用しないため、 W蚰駆動モータ M z に負荷する トルクを軽滅でき るが、 平行 リ ンク機構が有るために U軸アーム 3の動作角度を広く とる ことはできない。
また、 第 8図に示す各軸直接駆動メ カ ニズムでは、 U軸ァ —ム 3の動作角度は十分に広く とることができるが、 U軸ァ ーム 3 に負荷するモ一メ ン 卜が W軸アーム 2にも直接的に作 用するため、 W軸駆動モータ M z を大出力モータにする必要 力 ある。
発明の開示
本発明の目的は、 上述した従来の多関節型ロボッ トの駆動 メ カニズムにおける欠点を解消せんとする ものである。
本発明の他の目的は、 多関節型ロボッ トの第 1 のアーム ( W軸アーム) を駆動する W軸躯動モータ M 2 の負荷を軽減 すると共に、 第 2 のアーム ( U軸アーム) の動作角度を広く することが可能な新規なアーム駆動メ カニズムを備えた産業 用多関節ロボッ トを提供せんとする ものである。
本発明によれば 少な く とも最下部の固定ベースと、 該固定ベースに対して縦方向の旋回軸線回りに旋回可能な 旋回性べ一ス部材と、
前記旋回ベース部材に対して水平軸線回りに相対的に旋回 可能な第 1 アーム ( W軸アーム) と、
前記第 1 アームに対して他の水平軸線画りに相対的に旋回 可能な第 2アーム ( U軸アーム) と、
前記第 1 アームを駆動するための W軸駆動モータ手段と、 前記第 2 アームを駆動するための U轴駆動モータ手段と、 前記第 2 アームの先端に具備される複数の動作自由度を有 したロボッ ト手首とを備えた産業用多関節型ロボッ トであつ て、 更に、
前記旋回性ベース部材に対して旋回動作が不可能に固定さ れた部材であって、 かつ、 それに、 前記第 2アームの後端が 前記 W軸駆動モータ手段を介して制御画動が自在に軸支され た固定部材と、
前記第 1 アームの先端に枢着された部材であって、 かつ、 それに、 前記第 2 アームの後端が前記 U軸駆動モータ手段を 介して制御回動が自在に枢着された支持部材と、 前記第 1 アーム と、 前記固定部材と、 前記支持部材とを少 な く ともリ ンク要素として形成れ、 前記 W軸駆動モータの躯 動による前記第 1 アームの旋回に応じてリ ンク動作する平行 リ ンク機構とを、
具備して構成された産業用多関節躯動型ロボッ トが提供され る e
図面の簡単な説明
本発明の上述及び他の目的、 特徴、 利点を以下に添付図面 に示す実施例に基づいて更に明らかにする力 添付図面にお いて、
第 1図は、 本発明の第 1 の実施例による産業用多閲節型口 ボッ ト のアームの駆動メ 力二ズムの構造的原理を示す略示機 構図、
第 2 A図は、 第 1図に示すアーム駆動メ カ ニズムの力学的 説明図、
第 2 B図は、 第 1図に示した駆動メ カ ニズムの解析モデル 図、
第 3図は、 第 1図に示すアームの駆動メ カニズムを備えた 産業用多関節型ロボッ ト の正面図、
第 4図は、 第 3図の IV— IV線に沿う断面図、
第 5図は、 本発明の第 2実施例による産業捃多関節型 αボ ッ ト のアームの駆動メ カニズムの略示側面図、
第 6図は、 本発明の第 3 の実施例による産業用多関節型口 ボツ トの略示側面図、
第 7図は、 平行リ ンク機構を含んだ産業用多関節型モータ の従来のアーム躯動メ 力二ズムの略示側面図、
第 8図は、 第 1、 第 2 アームを夫々の駆動モータで直接的 に駆動する従来の産業用多関節型ロボッ トの略示側面図。 発明を実施するための最良の態様
第 1図を参照すると、 産業用多関節型ロボッ トは、 床面に 固定される固定ベース 1 1 aに立設され、 図示されていない 駆動モータの駆動により、 縦軸回りに矢印 0で示す制御旋回 を行う旋回性のベース l i b (以下、 W軸ベースと言う ) を 備えている。 この W軸ベース 1 1 b に結合されてアームと、 その駆動メ カニズムが搭載されている。 すなわち、 W軸べ一 ス 1 1 bに水平に固定された固定レバ一 1 0を有し、 固定レ バー 1 0の一端には W軸駆動モータ M z を介して第 1 のァー ム (W軸アーム) 1 2の後端が矢印 Wで示す方向の制御回動 が可能に軸支され、 固定レバー 1 0 の他端には、 第 1 アーム 1 2 と同長の連結レバ一 2 0が回動可能に軸支されている。 また、 固定レバー 1 0 と同長の支持レバ一 3 0の一端は、 第 1 アーム 1 2の上端に、 他端は上記連結レバ一 2 0 の上端 にそれぞれ回動自在に軸支されている。 従って、 固定レバー 1 0 、 W toアーム 1 2、 連結レバー 2 0及び支持レバー 3 0 で平行四辺形リ ンク機構を構成している。
さて、 本実施例のアーム躯動メ カニズムの特徴として、 上 記支持レバー 3 0上の一位置 (本例では同支持レバー 3 0 の 中間部位) に、 第 2アーム ( U軸アーム) 1 3が、 同アーム を駆動する U軸駆動モータ M 3 を介して矢印 Uで示す方向に 制御回動が可能に軸支されている。 この第 2 アーム 1 3 の先 端には慣用のロボッ ト手首 1 4が装着されている。
上述した多関節型口ボッ トのアーム駆動メ 力二ズムに関し て作用力、 モーメ ン トの釣合いを考察すると、 第 2 A図及び 第 2 B図を参照することにより、 下記の約合い式が得られる のが理解できる。
即ち、 長さ £ 2 の第 1 アーム ( U軸ァ ム) 1 3に関して は、
モーメ ン ト に就き、
T u - W ζ £ 2 cos 0 = 0 ( 1 )
上下方向の力の釣合いに就き、
F I y- W2 = 0 …… ( 2 )
左右方向の力の均合いに就き、
F , χ = 0 ( 3 )
支持レバ一 3 0 は、 軸支点で長さが s ,と £ 3 ζとに分けら れ、 第 2 Β図に示すように、
回転モ一メ ン トに就いて、
- J„ + F Z y £ 3 1 - F a y £ 32 = 0 ( 4 )
上下方向の力の均合に就いて、
F ay- F jy+ F zy-W! = 0 … ·· ( 5 )
左右方向の力の釣合いに就いて、
F 3X- F ix+ F Zx= 0 . … .· ( 6 ).
他方、 第 1 アーム (W軸アーム) 1 2に関しては、
モーメ ン ト に就いて、
Tw - ¥ z y £ I sin ^ + F 2 χ £ i cos 0 = 0
…… ( Ί )
そして、 tan 0 = F 3X/ F 3yであるから、 上記各式 ( 1 ) 〜 ( 7 ) を解く と W軸アーム 1 2に作用するモーメ ン Tw は、
Tw = ( W: + Wz ) ϋ , sin θ ······ ( 8 ) となる。
つまり、 Tw は、 U軸アーム 1 3に作用するモーメ ン ト Tu の影響は受けないことがわかる。
即ち、 第 1図に示した多関節駆動型ロボッ 卜のアーム駆動 メ カニズムにあっては、 第 2アーム ( U軸アーム ) 1 3のモ 一メ ン ト Tu が、 第 1 アーム (W軸アーム) 1 2の駆動用の W軸駆動モータ M2 に対する負荷となることはない。
ロボッ ト手首 1 4を備えた U蚰アーム 1 3に負荷されるモ ーメ ン トが W轴アーム 1 2に影響しない構造であるため、 W 軸駆動用のモータ M2 を小さ く することが可能であり、 その 上、 U軸アーム 1 3 は U軸駆動モータ M3 により直接的に駆 動される構成のために、 U軸アーム 1 3 は支持レバー 3 0上 の軸支点を中心とした大きな旋回動作角度に渡る動作自由度 が得られるのである。 つまり、 第 8図に示した従来の W蚰駆 動モータ M2 に比べて、 本実施例の W軸駆動モータ M2 に掛 かる負荷が軽減でき、 故に、 モータ出力の小型化も可能にな つた。
但し、 W軸アーム 1 2の回動範囲は、 上記の平行リ ンク機 構に起因する制約を受ける。
上述した第 1図に図示されたアーム駆動メ 二ズムを応用 した複数の動作自由度を有した産業用多関節型ロボッ トの具 体的な構成が第 3図、 第 4図に示されている。
第 3図、 第 4図において、 第 1図と同一の参照番号は、 第 1図における要素の対応要素を示しているものと理解すれば 良い。
なお、 この第 3図、 第 4図に示す多関節型ロボッ トでは、 W軸ベース 1 1 b と固定レバー 1 0 とが 1 つのボディーに一 体化され、 そのボディーの 2位置に W軸アーム 1 2 の枢着点 と連結連結レバ一 2 0 の一端が枢着されている。 他方、 その 連結レバー 2 0 の上端に一端が枢着された支持レバー 3 0 の 他端に設けたビボッ ト轴が回転軸受 3 2を介して W軸アーム 1 2の上端に枢着され、 その枢着軸心上において、 支持レバ 一 3 0 に U軸駆動モータ M 3 が同軸型の減速機 R 3 を介して 搭載され、 U軸アーム 1 3を支持レバー 3 0 に対して制御画 動させる構成を有している。 すなわち、 この多関節型ロボッ トでは、 第 1 のアーム駆動メ 力二ズムにおける支持レバー 3 0の長さ £ 3 1が限りなくゼロに近づいた構成を有している。 なお、 W軸アーム 1 2を駆動する W軸駆動モータ M z も同 軸型の減速機 R 2 を介して W軸アーム 1 2を駆動する。
この第 3図、 第 4図に示す産業用多関節型ロボッ 卜が、 第 1図に示すアーム駆動メ 力ニズムと実質的に等価の構成のァ —ム駆動メ カニズムを有することから、 既述したように、 U 輪アーム 1 3の大きな旋回動作角度に渡る動作自由度が得ら れ、 かつ、 W轴駆動モータ M z に掛かる食荷を軽減できる利 点を享受することができることは言うまでもない。 なお、 第 U蚰アーム 1 3 の後端には手首駆動モータ M 4 が搭載されて おり、 ロボ ッ ト手首 1 4 は、 2つないし 3 つの動作自由度を 備え、 従って、 ロボッ トは三次元空間内で 5つまたは 6つの 動作自由度を備えている。 次に、 本発明の第 2の実施例に就いて、 説明する。
第 5図を参照すると、 本実施例の産業用多関節型ロボッ ト においては、 固定ベース 1 1 a に対して縦軸心回りに旋回可 能な W蚰ベース l i bに回動不能に固定スプロケ ッ ト 3 3を 取付け、 固定スプロケ ッ ト 3 3 に W軸駆動モータ M z を介し て W軸アーム 1 2が矢印 Wで示す方向に制御回動が可能に軸 支され、 W軸アーム 1 2の上端に固定スプロケッ ト 3 3 と同 径の支持スプロケ ッ ト 3 4を回動自在に轴支し、 両スブロケ ッ ト 3 3、 3 4 に連結チヱーン 2 1 を張設すると共に支持ス プロケ ッ ト 3 4には U軸駆動モータ M 3 を介して U軸アーム 1 3を矢印 Uで示す方向に制御回動が可能に轴支した構成を 有している。
本実施例にあっても、 W蚰アーム 1 2の矢印 Wの回動に起 因して、 支持スプロケッ ト 3 4が第 1図の実施例の支持レバ 一 3 0 と同様の平行リ ンク機能を奏し、 故に同様の作用及び 利点を備えている。
その上、 本実施例にあっては、 平行リ ンクの死点が存在し ないため、 W軸アーム 1 2 の回動範囲が制限されることはな く、 従って、 W軸アーム 1 2 の動作角度も十分広く とるこ と が出来る。
第 6図は更に別の実施例を.示している。
第 6図に示す如く、 W軸ベース 1 1 bに固定ギヤ 3 5を回 動不能に固定し、 同固定ギヤ 3 5に、 W軸駆動モータ M z を 介して W軸アーム 1 2を矢印 Wで示す方向の制御回動が可能 に軸支した構成及び W軸アーム 1 2の先端に固定ギヤ 3 5 と 同径の支持ギヤ 3 6を画動自在に轴支し、 固定ギヤ 3 5 と支 持ギヤ 3 6 とを連結ギヤ 3 7で連結すると共に、 支持ギヤ 3 6上に U轴駆動モータ M 3 を介して U軸アーム 1 3を矢印 U で示す方向に制御面動が可能に軸支した構成を備えたいる。
この第 6図に示すアーム躯動メ カニズムにあっては、 上述 した第 5図の実施例と同一の作用及び利点を備えている。
上述の記載から明らかなように、 本発明によれば、 第 1 ァ ーム (W軸アーム) の基台となる旋画性の W軸ベースに対す る相対回転が不可能なように固定された一つの固定部材に、 第 1 アームの基端を、 W轴駆動モータ Mによって、 制御画動 が自在であるように枢着し、 第 1 アームの先端には支持部材 を回動自在に軸支すると共に、 同支持部材に対して第 2ァ一 ム ( U軸アーム) の基端を U ½駆動モータ M 3 で、 制御が Θ 動自在に枢着し、 固定部材と支持部材とを平行リ ンク機構の 2つの平行リ ンク要素をを形成するように互いに連結したァ ーム駆動メ 力二ズムを備えた産業用多鬨節型ロボッ トを構成 したので、 ロボッ ト手首を先端に備えた第 2アームに掛かる 負荷モーメ ン トが第 1 アーム (W軸アーム) の W軸駆動モー 夕に影響しない構造が得られた。 その結果、 W軸駆動モータ M z を小出力化するこ とができ、 その上、 第 2 アームに影響 しない構造であるため、 W轴駆動用モータ を小型化でき. その上、 第 2アームは直接的に U轴駆動モータで駆動する方 式のために、 その動作角度が大き く取れる。

Claims

請求の範囲
1 . 少な く とも最下部の固定ベースと、
該固定ベースに対して縦方向の旋回軸線回りに旋回可能な 旋回性ベース部材と、
前記旋回べ一ス部材に対して水平軸線回りに相対的に旋画 可能な第 1 アーム (W軸アーム) と、
前記第 1 アームに対して他の水平軸線回りに相対的に旋画 可能な第 2 アーム ( U軸アーム) と、
前記第 1 アームを駆動するための W軸駆動モータ手段と、 前記第 2アームを駆動するための U蚰駆動モータ手段と、 前記第 2アームの先端に具備される複数の動作自由度を有 したロボッ ト手首とを備えた産業用多関節型ロボッ トであつ て、 更に、
前記旋回性ベース部材に対して旋回動作が不可能に固定さ れた部材であって、 かつ、 それに、 前記第 2アームの後端が 前記 W蚰駆動モータ手段を介して制御回動が自在に軸支され た固定部材と、
前記第 1 アームの先端に枢着された部材であって、 かつ、 それに、 前記第 2 アームの後端が前記 U軸躯動モータ手段を 介して制御回動が自在に枢着された支持部材と、
前記第 1 アームと、 前記固定部材と、 前記支持部材とを少 な く ともリ ンク要素として形成れ、 前記 W軸駆動モータの駆 動による前記第 1 アームの旋回に応じてリ ンク動作する平行 リ ンク機構とを、 具備して構成されたことを特徴とする産業用多閬節駆動型口 ボッ ト。
2 . 前記平行リ ンク機構は、 前記固定部材と前記支持部材 とに両端が枢着された連結部材を更に具備することを特徴と した請求の範囲 1 に記載の産業用多関節駆動型ロボッ ト。
3 . 前記平行リ ンク機構は、
前記旋回性ベース部材に固定され、 かつ、 前記第 1 アーム の後端を旋回可能に支持することにより、 前記固定部材を形 成する固定スプロケッ ト部材と、
前記第 1 アームの先端に旋画可能に枢着されて前記支持部 材を形成する支持スプロケ ッ ト部材と、
前記固定スプロケッ ト部材と前記支持スプロケッ ト とに掛 け渡されて前記連結部材を形成する連結チ ーンとを、 具備して構成された請求項 2に記載の産業用多関節 II動型口 ボッ ト。
4 , 前記平行リ ンク機構は、
前記旋回性ベース部材に固定され、 かつ、 前記第 1 アーム の後端を旋回可能に支持することにより、 前記固定部材を形 成する固定ギヤ要素と、
前記第 1 アームの先端に旋回可能に抠着されて前記支持部 材を形成する支持ギヤ要素と-、
前記固定ギヤ要素、 前記支持ギヤ要素の両ギヤに嚙合して 前記連結部材を形成する連結ギヤ要素とを、
具備して構成された請求項 2に記載の産業用多関節駆動型口 ボッ ト。
5 . 前記旋回性ベース部材と前記平行リ ン ク機構の固定部 材とがー体ボディ一に形成されている請求項 1 に記載の産業 用多関節駆動型ロボッ ト。
PCT/JP1991/000839 1990-06-22 1991-06-21 Arm driving mechanism in industrial articulated robot WO1992000166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16294790A JPH0457684A (ja) 1990-06-22 1990-06-22 産業用ロボットのアーム連結構造
JP2/162947 1990-06-22

Publications (1)

Publication Number Publication Date
WO1992000166A1 true WO1992000166A1 (en) 1992-01-09

Family

ID=15764289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000839 WO1992000166A1 (en) 1990-06-22 1991-06-21 Arm driving mechanism in industrial articulated robot

Country Status (3)

Country Link
EP (1) EP0489168A4 (ja)
JP (1) JPH0457684A (ja)
WO (1) WO1992000166A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360788A (zh) * 2020-03-19 2020-07-03 上海交通大学 七自由度串并混联防死点机械臂
CN111360787A (zh) * 2020-03-19 2020-07-03 上海交通大学 七自由度串并混联机械臂及机器人

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE501207C2 (sv) * 1993-04-30 1994-12-12 Asea Brown Boveri Industrirobot
KR0160689B1 (ko) * 1995-04-24 1998-12-15 김광호 로보트의 원점복귀 장치
AU1594601A (en) * 1999-11-12 2001-06-06 Microdexterity Systems, Inc. Manipulator
CA2516593C (en) 2003-02-21 2011-04-26 Knoll, Inc. Mechanical arm with spring counterbalance
JP6684439B2 (ja) * 2016-03-30 2020-04-22 日本電産株式会社 ロボット
FR3063666B1 (fr) * 2017-03-08 2021-05-07 Neoditech Dispositif pour la manipulation et/ou le positionnement d'objet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143991A (ja) * 1982-02-15 1983-08-26 株式会社日平トヤマ 産業用ロボツトの関節ア−ム
JPS59107878A (ja) * 1982-12-13 1984-06-22 日産自動車株式会社 関節型産業用ロボツト
JPS60255382A (ja) * 1984-05-28 1985-12-17 株式会社ダイフク 空圧作動ロボツト

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610058A (en) * 1969-07-14 1971-10-05 Astro Space Lab Inc Extensible foldable manipulator
JPS5615987A (en) * 1979-07-17 1981-02-16 Akashi Seisakusho Kk Joint type robot
US4398863A (en) * 1981-05-15 1983-08-16 Westinghouse Electric Corp. Pick and place robot
GB2109337A (en) * 1981-09-14 1983-06-02 Univ Surrey A robotic arm
DE3139674A1 (de) * 1981-10-06 1983-04-28 Rhein-Ruhr Gummi Gmbh, 4300 Essen Vorrichtung zum handhaben von gegenstaenden (roboter)
DE3445055A1 (de) * 1984-12-11 1986-06-12 Reis GmbH & Co, 8753 Obernburg Mehrachsiger, programmierbarer manipulator mit einem trainingsarm zum programmieren des manipulators
JPH0790474B2 (ja) * 1985-04-27 1995-10-04 日産自動車株式会社 関節型産業用ロボット
JPH0832402B2 (ja) * 1989-12-28 1996-03-29 川崎重工業株式会社 産業用ロボツト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143991A (ja) * 1982-02-15 1983-08-26 株式会社日平トヤマ 産業用ロボツトの関節ア−ム
JPS59107878A (ja) * 1982-12-13 1984-06-22 日産自動車株式会社 関節型産業用ロボツト
JPS60255382A (ja) * 1984-05-28 1985-12-17 株式会社ダイフク 空圧作動ロボツト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0489168A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360788A (zh) * 2020-03-19 2020-07-03 上海交通大学 七自由度串并混联防死点机械臂
CN111360787A (zh) * 2020-03-19 2020-07-03 上海交通大学 七自由度串并混联机械臂及机器人
CN111360787B (zh) * 2020-03-19 2021-06-29 上海交通大学 七自由度串并混联机械臂及机器人
CN111360788B (zh) * 2020-03-19 2021-06-29 上海交通大学 七自由度串并混联防死点机械臂

Also Published As

Publication number Publication date
EP0489168A4 (en) 1992-11-25
JPH0457684A (ja) 1992-02-25
EP0489168A1 (en) 1992-06-10

Similar Documents

Publication Publication Date Title
JPH0832402B2 (ja) 産業用ロボツト
JP4971984B2 (ja) ロボットの関節構造
KR101683325B1 (ko) 관절형 로봇 손목
JPS587433B2 (ja) 特に工業ロボツト用のマニピユレ−タ
JPS6116599B2 (ja)
JP2004216535A (ja) 多関節ロボット
JPH0367839B2 (ja)
JPH07100309B2 (ja) 歩行ロボットのための腕に転用可能な脚機構
WO1992000166A1 (en) Arm driving mechanism in industrial articulated robot
US6336374B1 (en) Device for relative displacement of two elements
JPH0659635B2 (ja) ロボツト手首
EP0193149B1 (en) Joint mechanism for manipulators
WO1991012117A1 (fr) Robot industriel du type a bras articule, avec mecanisme d'articulation de commande
WO1987007200A1 (en) Vertical multi-articulated robot
KR101796799B1 (ko) 관절형 로봇 손목
JPH0457685A (ja) 産業用多関節ロボットのアーム駆動機構
WO1994022643A1 (en) Articulated robot
JPS60203556A (ja) 風防ワイパ装置
WO1984001537A1 (fr) Bras articule pour robot industriel
JPH0890463A (ja) 水平多関節形ロボット
JPH035438Y2 (ja)
JP2006522290A (ja) 関節アームに使用する駆動装置
JPH0746475Y2 (ja) 回動・旋回アーム駆動装置
JPH0243671Y2 (ja)
SU1144875A1 (ru) Манипул тор

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE IT SE

WWE Wipo information: entry into national phase

Ref document number: 1991910893

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991910893

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991910893

Country of ref document: EP