WO1991010241A1 - Low-loss oxide magnetic material - Google Patents

Low-loss oxide magnetic material Download PDF

Info

Publication number
WO1991010241A1
WO1991010241A1 PCT/JP1990/001017 JP9001017W WO9110241A1 WO 1991010241 A1 WO1991010241 A1 WO 1991010241A1 JP 9001017 W JP9001017 W JP 9001017W WO 9110241 A1 WO9110241 A1 WO 9110241A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
loss
magnetic material
low
less
Prior art date
Application number
PCT/JP1990/001017
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Shoji
Tsutomu Otsuka
Atsushi Yonekura
Tetsuyoshi Chiba
Tatsuya Chiba
Original Assignee
Tokin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2024364A external-priority patent/JP2551491B2/ja
Application filed by Tokin Corporation filed Critical Tokin Corporation
Priority to DE69020726T priority Critical patent/DE69020726T2/de
Priority to EP90912078A priority patent/EP0460215B1/en
Publication of WO1991010241A1 publication Critical patent/WO1991010241A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites

Definitions

  • the present invention relates to a low-loss oxide magnetic material used for power transformers and the like.
  • Mn-Zn spinel-type lights containing (Ca0) and 0.005 to 0.100% by weight of silicon dioxide (Si02) have already been developed.
  • the technical problem of the present invention is to provide a low-loss oxide magnetic material that can be used practically with a small iron loss even when used at a high frequency of 100 kHz or more, and thus can suppress heat generation to an allowable temperature or less. To provide a fee.
  • 30 to 42 mol% of manganese monoxide ( ⁇ ), 4 to 19 mol% of zinc oxide (Zn 0) as the first component, and ferric oxide (balance) F e 2 0 3) only contains a 0.0 2 to 0.1 5 wt% of oxide Cal Shiumu (C a O) as a second component, 0.0 0 5 to 0.1 0 0% by weight of and a second oxidation Gay element (S i 0 2), low-loss oxide magnetic material is obtained which comprises a 1.0 0% by weight of hafnium oxide (H f 0 2) as a third component .
  • the in the low loss oxide magnetic material, as the third component, further 0.3 0 wt% oxide di Rukoniumu (Z r 0 2), 0. 2 0 % by weight of the oxide banner Jiumu (V 2 0 5) and low-loss oxide magnetic material shall be the Toku ⁇ to include at least one 0.3 0% by weight of oxide tantalum (T a 2 05) is obtained.
  • any one of the low-loss oxide magnetic materials described above 0.5% by weight may be further used as the third component.
  • the low-loss oxide magnetic material and with the third component, further oxidation gully um 0.50 wt% or less (not including 0) (G a 2 03), 0.80 wt% or less ( 0 oxide tantalum (T a 2 of the 0-containing first) 5), low, characterized in that it comprises one or more at least zirconium oxide of 0.50 wt% or less (not including 0) (Z r 0 2)
  • a lossy oxide magnetic material is obtained.
  • the essential additive of the third component to that hafnium oxide of 1.0 0 wt% or less (not including 0) (H f 0 2), the above the element This is because an appropriate amount has the effect of suppressing the growth of coarse crystal grains and precipitating at the grain boundaries, increasing the specific resistance of the grain boundaries.
  • any additives of the third component oxide zirconium two ⁇ beam of 0.3 0 wt% or less (not including 0) (Z r 0 2), 0. 20 wt% the following vanadium oxide (not including 0) (V 2 0 5), and 0.3 0 0 was set to at least one weight percent of tantalum oxide (T a 2 03), said appropriate amount of these elements
  • hafnium oxide (Hf02) has the effect of suppressing the growth of coarse crystal grains and precipitating at the crystal grain boundaries, increasing the specific resistance of the grain boundaries.
  • the third component in addition to the essential additive and optional additives of the third component, the third component further 0.5 0 wt% or less (not including 0) of aluminum oxide (A 1 2
  • oxide gully um (G a 2 03), the liquid phase formed by reaction with off line bets main component, has the effect of improving the leak resistance at the time of sintering.
  • gallium oxide is promoted in sinterability, has a uniform crystal grain size, and reduces hysteresis loss.
  • FIG. 2 A diagram showing a relationship between the temperature and power loss (PB) of low-loss oxide magnetic material according to the embodiment of Figure 1 the present invention, and comparative examples.
  • Te not added hafnium oxide (H f 0 2) material (curve 1) and 1.1 0 wt% of hafnium oxide (H f 0 2)
  • the added material (curve 7) is also shown in Fig. 2, and
  • Fig. 2 shows the temperature characteristics of the power loss PB at a frequency of 1 MHz and a maximum magnetic flux density of 500 G according to Example 8 of the conventional power supply module.
  • Fig. 3 shows the frequency characteristics of the power loss at the maximum magnetic flux density of 500 G and the temperature of 29 in Example 9 in comparison with the case of the conventional power supply light. Use the graph shown below.
  • ferric oxide Fe 2 0 3
  • manganese monoxide Mn O
  • Z n 0 zinc oxide
  • subcomponent as, containing 0.0 1 5% by weight of silicon dioxide (S i 0 2) and 0.080 wt% of calcium oxide (C a O), hafnium oxide (H f 0 2) was added as an additional component
  • the oxygen partial pressure is 0.1 at%, temperature
  • Fig. 1 shows the relationship between the temperature T [° C] and the power loss P B CkW / m 3 3 when the addition amount of hafnium oxide (H f 02) was set to a parameter in the obtained oxide magnetic material.
  • the power loss is PB [kW / ra 3 ] when the frequency is 1 MHz and the maximum magnetic flux density Bm is 500 G.
  • curve 1 without the addition of hafnium oxide (H f 0 2) curve 2 the case of adding 0.20% by weight of the oxide Hafuniu arm (H f 0 2), Curve 3 0 . when the addition of 40% by weight of hafnium oxide (H f 0 2), curve 4.
  • the power loss PB becomes larger than when no additive is added.
  • the hafnium oxide (H f 0 2) 1. (exclusive of 0%) 00 wt% or less at a frequency 1MHz who added it, Cal it is the power loss P B than without addition decreases.
  • Table 1 as an oxide magnetic material (subcomponent obtained in Example 1, 0.0 1 5% by weight of silicon dioxide (S i 0 2), 0. 080 wt% of calcium oxide (C a O) and 0.60% by weight of hafnium oxide (HfO 2 ), and a conventional oxide magnetic material (0.01% by weight of 0.01% by weight of manganese oxide (S i 0 2) and containing 0.080 wt% oxidizing calcium ⁇ beam (C a 0), hafnium oxide (H f 0 2) Are not added) (initial permeability i, saturation magnetic flux density B is (magnetic flux density at magnetizing force 15 [Oe]) [G], residual magnetic flux density B r [G], coercive force He [0e]. shown. Note that the 53 mole percent ferric oxide either principal component (F e 2 0 3), manganese oxide
  • the first embodiment of the present invention has various characteristics required as a core material for a switching power supply, such as an initial magnetic permeability i of 1,000 or more and a saturation magnetic flux density of 5,000 G or more. That property is fully satisfied.
  • hafnium oxide as an additive than that (H f 0 2) is sufficiently satisfied the properties required as the magnetic core material for Sui etching power, the frequency is above 200kHz, the power loss P B, for example, about 0.60 It can be seen that when the weight% is added, it can be improved by about 500 kW / m 3 at a temperature of 60 compared to the case where it is not added.
  • An embodiment 2 - mixed oxide powder, molding, as a main component sintered oxide magnetic material comprising 53 mol% of ferric oxide (F e 2 0 3), 36 mol% of manganese monoxide ( ⁇ ⁇ ), and 1 1 contain mol% of zinc oxide (Z n O), oxidation calcium ⁇ beam as a secondary component (C a 0), and silicon dioxide (S i 0 2) a conventional low-loss oxide content range of the magnetic material (calcium oxide (C a 0) is from 0.02 to 0.1 5 wt%, silicon dioxide (S i 0 2) is 0.005 to 0.100 wt% range) prior containing at of the low-loss oxide magnetic material further oxidation Jirukoniu ⁇ (Z r 0 2), complex added in varying proportions an additive oxide Aruminiumu (a 1 2 03) and acid hafnium (H f 0 2) pressure
  • the low-loss oxide magnetic material of Example 2 the conventional example in which the above additives were not added
  • Example 2 It was fabricated a plurality of low-loss oxide magnetic material.
  • the respective oxide raw materials were weighed and mixed in a predetermined amount, and then granulated, formed and pressed, and subjected to an oxygen partial pressure of 5% in a nitrogen gas atmosphere. Samples were obtained by firing at temperatures of less than 0.0 at% and at temperatures of 1100 to 1300.
  • Table 2 shows the sample N (11, 13 to 17, No. 19, 20, 22, 22, 23, 25, and 26) of the prototype example 2 and the sample No. 8 as a conventional example and the comparative example.
  • sample Nos. 18, 21 and 24 in No. 2 the content of each sub-component and additive component and the frequency 2
  • the maximum magnetic flux density Bm at 00 kHz is that the minimum value for the sample temperature of power loss P B in the case of 1 000 G.
  • zirconium dioxide is an additive (Z r 02), by the combined addition of the oxidizing Aruminiumu (A 1 2 03) and oxide Hough Niumu (H f 0 2), conventional sample No.
  • Example 3 Conventional Examples, and Comparative Examples
  • each oxide material was weighed and mixed in a predetermined amount, and then granulated and pressed, and the oxygen partial pressure was adjusted to 5.0 in a nitrogen gas atmosphere. At at% or less, 110 C! A sample was obtained by firing at a temperature of ⁇ 1300 ° C.
  • Table 3 shows the sample Nos. 29, 31 to 35, 37, 38, 40, 41, 43, and 44 of the prototype Example 3, Sample No. 8 as the conventional example, and Sample No. 3 of Comparative Example 3.
  • .36, 39, and 42 show the content of each sub-component and additive component and the minimum value of the power loss with respect to the sample temperature when the maximum magnetic flux density Bm is 1 000 G at a frequency of 200 kHz. is there.
  • the titanium dioxide is additive (T i 0 2), pentoxide vanadium (V 2 05), and the combined addition of hafnium oxide (H f 0 2), samples of conventional Comparative Example No. 8 It can be seen that the power loss has been reduced. It is considered that the additive, V 20, and H f 02 precipitate at the grain boundaries, increase the resistivity of the grain boundaries, and have the effect of uniforming the crystal structure. It is considered that the power loss was reduced in the same manner as in Example 2.
  • Table 4 shows the initial values of the conventional sample No. 1-8 and the sample No. 15 of Example 2 of the present invention
  • Table 5 shows the initial values of the conventional sample No. 8 and the sample No. 33 of Example 3 respectively.
  • ferric oxide Fe 2 0 3
  • manganese monoxide Mn O
  • 8 mol% of acid zinc Z n 0
  • silicon dioxide S i 02
  • calcium oxide C a 0
  • hafnium oxide H f 0 2
  • zirconium oxide Z r 0 2
  • trioxide aluminum Niumu a 1 2 0 3
  • vanadium pentoxide V 2 0 5 alone or combined was added, mixed, granulated, after molding press, in a nitrogen gas atmosphere, the oxygen partial pressure 5.
  • the optimum Sintering was carried out at a sintering temperature of 1100 to 1300 ° C.
  • hafnium dioxide H f 0 2
  • dioxide di Rukoniumu Z gamma 02
  • oxide Aruminiumu A 1 2 03
  • V 2 05 vanadium pentoxide
  • the value of the power loss showed a lower value than the value of the conventional low loss oxide magnetic material, the characteristic value, as compared with the conventional value, It can be seen that it is improved by about 50%.
  • Example No. 85 1, 1 ⁇ wt% added (Sample No. 85) is the power dissipated is greater Natsutei Table 8 that the hafnium oxide (H f 0 2) added in excess, in Example 5 and Sample No. 56 in Example 4 and sample No. 83, a conventional subcomponent (sample No. 45, 72), initial permeability i, saturation magnetic flux density B 15, the residual magnetic flux density B r, retention H e, shows a comparison of the resistivity p, the The specific resistance of the low-loss magnetic material according to the invention is more than 20 times higher than that of the low-loss magnetic material of the conventional composition.
  • Example 6 5 3 mole percent ferric oxide as a main component (F e 2 0 3), 3 9 mol% of manganese monoxide ( ⁇ ⁇ ), and 8 mol% of zinc oxide (Z n 0) containing, as an auxiliary component, 0.0 1 0 to 0.04 0% by weight, silicon dioxide (S i 0 2), 0. 0 2 0 ⁇ 0. 1 5 % by weight of the oxide Karushiumu (C a 0) containing, as an additional component 0.0 1 to 0.80 wt.% oxidizing Hough Niumu (H f 0 2), 0. 0 0 5 ⁇ 0.
  • Table 9 the best showing the core loss characteristic samples in the oxide magnetic material obtained by changing the tempering ⁇ conditions In each composition, silicon dioxide (S i 0 2), oxide Karushiu arm (C a 0), (2 H f 0) hafnium oxide, the power loss in the case of the temperature 6 0 ° C, the magnetic flux density 5 0 0 G when the evening oxide pointer Le (T a 2 0 5) as parameters It shows P B (KW / DI 3 ).
  • oxide magnetic material of the present invention is superior to the conventional material (sample 106) in each case.
  • silicon dioxide (S i 0 2) is 0.030 wt oxide Cal Shiumu (C a 0) is 0.060 wt%
  • hafnium oxide (H f 0 2) is 0.1 5% by weight
  • oxide Tan Yuru (T a 2 0 5) sample No. 1 02 was prepared by adding 05 wt% 0.1 is compares with conventional Fuyurai bets by power loss PB has become about 1 Bruno 2, significant low loss The characteristics are realized.
  • An embodiment 7 - First as shown in 1 0 Table as a main component, 5S mole% of ferric oxide (F e 2 0 3), 39 mol% of manganese monoxide
  • M n 0 Containing (M n 0) and 8 mol% of zinc oxide (Z n O), silicon dioxide trace as an additive component (S i 0 2), and calcium oxide (C a 0), 0.50 wt% or less ( oxidation gully um of not including 0) (G a 2 0 5) , further, 0.80 wt% or less
  • hafnium oxide H ⁇ 0 2
  • tantalum oxide not including 0
  • tantalum oxide not including 0
  • ZrO2 zirconium oxide
  • temperature 1100- Sintered at L300 ° C for 1-4 hours to obtain an oxide magnetic material.
  • the sample In the first 0 Table in the oxide magnetic material obtained by changing the sintering conditions in each composition, the sample exhibited the most excellent core loss characteristic, oxidation gully um (G a 2 0 5), oxidized Hough Niumu (H f 0 2), evening oxide tantalum (T a 2 0 5), zirconium oxide (Z r 0 2) as a parameter, the temperature 60.
  • C the power loss P B (Kw / m 3 ) at a magnetic flux density of 500 G is shown.
  • the unit is wt% for each additive
  • Sample No. 21 3 as a main component 53 mol% of the acid ferric (F e 2 0 3), manganese monoxide (M n 0) of 39 mol%, 8 mol% of oxide Zinc (ZnO), 0.08% by weight calcium oxide (Ca0), 0.015% by weight silicon dioxide
  • the oxide magnetic material of the present invention (sample numbers 201 to 212) is superior to the conventional one in each case.
  • H f 0 2 oxide tantalum (T a 2 05), oxidized zirconium Niumu (Z r 0 2) is 0.40% by weight of the oxide gully ⁇ beam (G a 2 0 5), 0.15 wt% of hafnium oxide ( H f 0 2) sample No. 207 was prepared by adding, as compared to conventional Fuyurai preparative power, the power loss P B has become about 1 Z3, is realized remarkable Shii lower loss .
  • An embodiment 8 - Fig. 2 excised Sample No. 203, 207, 21 1 obtained in Example 7, the frequency 1 MHz, the temperature characteristics of the power loss P B in the case of the maximum magnetic flux density 500 G, conventional It is shown in comparison with the case of the power ferrite.
  • the invented product has power over the entire temperature range. It can be seen that the loss is extremely superior to the conventional power supply light.
  • an Mn—Zn fluoride oxide magnetic material containing silicon dioxide and calcium oxide not more than 1.0% by weight (excluding 0) of HfO 2 is added.
  • the power loss can be reduced even at high frequencies of 100 kHz or more, and the switching power supply can be used as a material for high-frequency magnetic cores. It is possible to provide a material that is sufficiently adapted to the reduction in size and weight of the device.
  • the M n-Z n ferrite oxide magnetic material as an additive, further, 0. Zirconium oxide 3 0 by weight% or less (not including 0) (Z r 0 2 ), ⁇ . 30% by weight or less (excluding 0) of tantalum oxide (Ta205) at least one type to further improve various characteristics required as a transformer for switching power supply.
  • various characteristics such as power loss can be further improved.
  • the M n-Z n Fuwerai preparative based oxide magnetic material comprising the oxidation gully um 0.50 wt% or less (not including 0) (G a 2 03), 0.30 wt% or less (0-containing first) tantalum oxide (T a 2 0 5), hafnium oxide 1.00 wt% or less (not including 0) (H f 0 2), zirconium oxide 0.50 wt% or less (not including 0) by adding (Z r 0 2) at least one, even in the high-frequency frequency is above 200 kHz with sufficiently satisfy characteristics required as a sweep rate etching power source material, Ri by conventional, power It is possible to provide a low-loss oxide magnetic material with significantly reduced PB loss, and to provide a material suitable as a material for a high-frequency magnetic core, which is sufficiently suitable for reducing the size and weight of a switching power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

明 細 書 低損失酸化物磁性材料
「技術分野」
本発明は, 電源トラ ンス等に用いられる低損失酸化物磁 性材料に関する。
「背景技術」
従来のスィ ッチング電源用の変圧器においては, スイ ツ チング周波数と して, 専ら 1 0〜 200 kHz 程度のものが 使用されており, これに対応すべき低損失酸化物磁性材料 と して, 主成分として, 30〜42モル%の一酸化マンガ ン (M n 0 ) , 4〜 1 9モル%の酸化亜鉛 ( Z n 0 ) 及び 残部と して, 酸化第二鉄 (F e 2 03 ) を含み, 副成分と して, 0. 02〜0. 1 5重量%の酸化カルシウム
( C a 0) と 0. 005〜0. 1 00重量%の二酸化ゲイ 素 (S i 02 ) とを含む Mn— Z n系スピネル型フヱライ トがすでに開発されている。
近年, スイ ッチング電源を小型 ·軽量化するために, ス ィ ツチング周波数が 1 0 OkHz 以上の高周波で使用するの が, —般的となりつつある。
ところが, 従来の成分を有する低損失酸化物磁性材料を: スイ ツチング周波数が 1 00 kHz 以上のスイ ツチング電源 用の変圧器の磁心材料と して使用すると, 鉄損による電力 損失が大きく, それによる発熱のため, 許容温度以上に温 度が上昇し, トランス自体やその周辺部品を損ない使用に 耐えないという欠点があつた。
そこで, 本発明の技術的課題は, 周波数が 1 0 0 kHz 以 上の高い周波数で使用しても鉄損を小さく, 従って発熱を 許容温度以下に抑えて実用に供し得る低損失酸化物磁性材 料を提供することにある。
「発明の開示」
本発明によれば, 第 1成分として, 3 0〜 4 2モル%の 一酸化マンガン (Μ η Ο) , 4〜 1 9モル%の酸化亜鉛 ( Z n 0) 及び残部として酸化第二鉄 (F e 2 03 ) を含 み, 第 2成分として 0. 0 2〜 0. 1 5重量%の酸化カル シゥム ( C a O) と, 0. 0 0 5〜 0. 1 0 0重量%の二 酸化ゲイ素 ( S i 02 ) とを含み, 第 3成分として 1. 0 0重量%以下の酸化ハフニウム (H f 02 ) を含むことを 特徴とする低損失酸化物磁性材料が得られる。
本発明によれば, 前記低損失酸化物磁性材料において, 前記第 3成分として, さらに 0. 3 0重量%以下の酸化ジ ルコニゥム ( Z r 02 ) , 0. 2 0重量%以下の酸化バナ ジゥム ( V 2 05 ) 及び 0. 3 0重量%以下の酸化タンタ ル (T a 2 05 ) の少なく とも一種を含むことを特徵とす る低損失酸化物磁性材料が得られる。
本発明によれば, 前記したいずれかの低損失酸化物磁性 材料において, 前記第 3成分として, さらに 0. 5 0重量 %以下 ( 0を含まず) の酸化アルミニウム A 1 2 03 , 及 び 0, 3 0重量%以下 ( 0を含まず) の酸化チタ ン T i 0
2 の少なく とも一種を含むことを特徴とする低損失酸化物 磁性材料が得られる。
本発明によれば, 低損失酸化物磁性材料において, 前記 第 3成分と して, さらに, 0.50重量%以下 ( 0を含まず) の酸化ガリ ウム (G a 2 03 ) , 0.80重量%以下 ( 0を含 まず) の酸化タ ンタル (T a 2 05 ) , 0.50重量%以下 ( 0を含まず) の酸化ジルコニウム ( Z r 02 ) の少なく とも 1種以上を含むことを特徴とする低損失酸化物磁性材 料が得られる。
こ こで, 本発明において, 第 3成分のうちの必須添加物 を, 1. 0 0重量%以下 ( 0を含まず) の酸化ハフニウム (H f 02 ) と したのは, この元素の上記適量は, 粗大結 晶粒成長の抑制を行うとともに, 結晶粒界に析出して, 粒 界の比抵抗を増加させる効果があるからである。
また, 本発明において, 第 3成分のうちの任意添加物と して, 0. 3 0重量%以下 ( 0を含まず) の酸化ジルコ二 ゥム ( Z r 02 ) , 0. 20重量%以下 ( 0を含まず) の 酸化バナジウム (V 2 05 ) , 及び 0. 3 0 0重量%以下 の酸化タンタル (T a 2 03 ) の少なく とも一種と したの は, これらの元素の上記適量は, 酸化ハフニウム (H f 0 2 ) と同様に, 粗大結晶粒成長の抑制を行うとともに, 結 晶粒界に析出して, 粒界の比抵抗を増加させる効果があり, これら酸化ハフニウム, 酸化ジルコニウム, 酸化バナジゥ ム, 及び酸化タ ンタルの添加量は, それぞれの成分の上記 した適量の上限値を越えると著しい粒成長が生じ, 経済的 でなく, また, 電力損失特性が劣化するからである。
また, 本発明において, 上記第 3成分のうちの必須添加 物及び任意添加物の他に, 第 3成分として, さらに 0. 5 0重量%以下 (0を含まず) の酸化アルミニウム (A 1 2
03 ) , 及び 0, 3 0重量%以下 ( 0を含まず) の二酸化 チタン (T i 02 ) の少なく とも一種を含むとしたのは, 酸化アルミニウム (A l 2 03 ) , 及び二酸化チタン (T
1 02 ) は, 上記上限値内において, 結晶内に固溶し, 結 晶粒内の組織を均一にし, 結晶内部の抵抗を増加させるか らである。 なお, この上限値を越えると著しい電力損失を 増加させる。
—方, 本発明において, 酸化ガリ ウム (G a 2 03 ) は、 フ ライ ト主成分と反応して液相を形成し、 焼結時の漏れ 性を改善させる効果を有する。 その結果、 酸化ガリ ウムは、 焼結性が促進され、 結晶粒径が均一化して、 ヒステリ シス 損は低減する。
「図面の簡単な説明」
第 1図は本発明の実施例に係る低損失酸化物磁性材料の 温度と電力損失 (P B ) との関係を示す図で, 比較例とし. て, 酸化ハフニウム (H f 02 ) を添加しない材料 (曲線 1 ) 及び 1. 1 0重量%の酸化ハフニウム (H f 02 ) を 添加した材料 (曲線 7) を併せて示し, 第 2図は実施例 8 に関わる周波数 1 MHz , 最大磁束密度 5 0 0 Gのときの電 力損失 P B の温度特性を従来の電源用フユライ 卜の場合と 比較して示すグラフ, 第 3図は実施例 9に関わる最大磁束 密度 5 0 0 G, 温度 2 9てのときの電力損失の周波数特性 を従来の電源用フヱライ トの場合と比較して示すグラフで める。
「発明を実施するための最良の形態」
以下, 本発明の実施例について, 図面を参照して, 説明 する。
一実施例 1一
主成分として, 53モル%の酸化第二鉄 (F e 2 03 ) , 37モル%の一酸化マンガン (Mn O) 及び 1 0モル%の 酸化亜鉛 (Z n 0) を含有し, 副成分として, 0. 0 1 5 重量%の二酸化ケイ素 (S i 02 ) と 0. 080重量%の 酸化カルシウム (C a O) を含有し, 添加成分として酸化 ハフニウム (H f 02 ) を添加し, これらを混合し, 予焼 し, 微粉碎し, 造粒し, 成形プレスした後, 酸素分圧 0. 1 a t %, 温度
1 1 50 において焼結し, 酸化物磁性材料を得た。
第 1図は得られた酸化物磁性材料に対し酸化ハフニウム (H f 02 ) の添加量をパラメ一夕とした時の温度 T [°C] と電力損失 PB CkW/m3 3 の関係を示した図である。 第 1 図においては電力損失は P B [kW/ra3 ] は周波数が 1MHz , 最大磁束密度 Bm が 500 Gの場合を示している。 また, 第 1図において, 曲線 1は酸化ハフニウム (H f 02 ) を 添加しない場合, 曲線 2は 0. 20重量%の酸化ハフニゥ ム (H f 02 ) を添加した場合, 曲線 3は 0. 40重量% の酸化ハフニウム (H f 02 ) を添加した場合, 曲線 4は. 0. 60重量%の酸化ハフニウム (H f 02 ) を添加した 場合, 曲線 5は 0. 80重量%の酸化ハフニウム (H f 02 ) を添加した場合, 曲線 6は 1. 00重量%の 酸化ハフニウム (H f 02 ) を添加した場合, 曲線 7は 1. 1 0重量%の酸化ハフニウム (H f 02 ) を添加した場合 の特性をそれぞれ示している。
第 1図より周波数 1 MHz の場合においては電力損失 P B は酸化ハフニウム (H f 02 ) を添加するか否かに無関係 に温度が約 60°Cの時最小値を有する。 そして酸化ハフ二 ゥム (H f 02 ) の添加量を増加していく につれて, 電力 損失 P B は小さく なり, 添加量が 0. 60重量%の時が最 も電力損失 P B は小さく なり, それより も添加量を増加し ていく につれて, 電力損失 P B が増加していき, 添加量が
1. 1 0重量%を越えると, 添加しない時より も電力損失 P B が大きく なる。
以上から, 周波数 1MHz において酸化ハフニウム (H f 02 ) を 1. 00重量%以下 (0%を含まず) 添加した方 が, 添加しないものより電力損失 PB が小さく なる事がわ かる。
第 1表に, 実施例 1により得られた酸化物磁性材料 (副 成分と して, 0. 0 1 5重量%の二酸化ケイ素 (S i 02 ) , 0. 080重量%の酸化カルシウム (C a O) 及び 0. 60重量%の酸化ハフニウム (H f 02 ) を含有) と, 従 来の酸化物磁性材料 (副成分と して 0. 01 5重量%の二. 酸化ゲイ素 (S i 02 ) と 0. 080重量%の酸化カルシ ゥム (C a 0) を含有し, 酸化ハフニウム (H f 02 ) は添加しない) の諸特性 (初透磁率 i , 飽和磁束密度 B is (磁化力 1 5 [Oe]における磁束密度) [G] , 残留磁束 密度 B r [G] , 保持力 He[0e]を示す。 尚, 主成分はいずれ も酸化第二鉄 (F e 2 03 ) を 53モル%, 酸化マンガン
(M n 0 ) を 37モル%及び酸化亜鉛 ( Z n 0 ) を 10モ ル%含有している。
第 1表より明らかな如く, 本発明の実施例 1のものは, スイ ッチング電源用磁心材料として求められる諸特性, 例 えば初透磁率 i が 1 000以上, 飽和磁束密度が 500 0 G以上等という特性を十分に満たしている。
以上のことより添加物として酸化ハフニウム (H f 02 ) は, スイ ッチング電源用磁心材料として求められる諸特性 を十分に満たし, 周波数が 200kHz 以上において, 電力 損失 PB を, 例えば約 0. 60重量%添加した場合, 添加 しない場合に比較し, 温度 60 で約 500 kW/m3 改善で きることがわかる。
磁気特性 Β 1 5 B r H e 1
[G] [G] [Oe] 本発明 1818 5480 1880 0.46 従来例 2110 5000 1770 0.35
一実施例 2 - 酸化物粉末を混合, 成形, 焼成してなる酸化物磁性材料 を主成分として, 53モル%の酸化第二鉄 (F e 2 03 ) , 36モル%の一酸化マンガン (Μη Ο) , 及び 1 1モル% の酸化亜鉛 (Z n O) を含有し, 副成分として酸化カルシ ゥム (C a 0) , 及び二酸化ケイ素 (S i 02 ) を従来の 低損失酸化物磁性材料の成分範囲 (酸化カルシウム (C a 0) が 0. 02〜0. 1 5重量%, 二酸化ケイ素 (S i 0 2 ) が 0. 005〜0. 100重量%の範囲) で含有する 従来の低損失酸化物磁性材料に, さらに, 酸化ジルコニゥ 厶 ( Z r 02 ) , 酸化アルミニゥム ( A 12 03 ) 及び酸 化ハフニウム (H f 02 ) の添加物を種々の割合で複合添 加した複数の実施例 2の低損失酸化物磁性材料, 上記添加 物を添加しない従来例, 及び比較例 2として, 上記添加物 の単独または複合添加した複数の低損失酸化物磁性材料を 試作した。 これらの実施例 2, 従来例, 及び比較例 2の試 作においては, それぞれの酸化物原料を所定量秤量し混合 した後, 造粒, 成形プレスし, 窒素ガス雰囲気中において, 酸素分圧 5. 0 a t %以下で, 1 100〜 1300ての温 度で焼成して試料を得た。
第 2表は, 試作した実施例 2の試料 N( l 1 , 1 3〜1 7, No.1 9, 20 , 22, 23, 25, 26と, 従来例として 試料 No.8, 及び比較例 2の試料 No.18 , 21, 24につい て, それぞれの副成分及び添加成分の含有量と, 周波数 2 00 kHz で最大磁束密度 Bmが 1 000 Gの場合の電力損 失 PB の試料温度に対する最小値を示したものである。
第 2表によれば, 添加物である二酸化ジルコニウム (Z r 02 ) , 酸化アルミニゥム ( A 12 03 ) 及び酸化ハフ ニゥム (H f 02 ) の複合添加によって, 従来例の試料 No.
8より電力損失が減少していることがわかる。
これは, これらの添加物において, Z r 02 と H f 02 は, 低損失酸化物磁性材料の粒界に析出して, 粒界の抵抗 率を増大させ, A l 2 03 は結晶内に固溶して結晶内の抵 抗率を増大させ, 且つ結晶組織を均一にする効果があった と考えられ, これらの複合作用によって, 組織内部の電磁 気特性の均一化と組織全体の抵抗率を増大せしめ, これが 鉄損失を減少せしめたものと, 考えられる。
また, 第 2表において, H f 02 1. 1 0添加した試料 No.24においては, 異常粒の成長が認められ, そのため電 力損失が大きく なつたと考えられる。
第 2 表
副成分 (wt%) 添加成分 (wt%) 電力 ί鉄
No. S ί 0 C a 0 7 r Oo AO 0¾ H f O9 PB (KV/m3 ) 従来例 8 n 015 n 040 o n o 450
11 n u o uu 370
13 n n β(] 315 u n in n 335 本発明 15 ff π in 190
2?n
17 ί 0 30 970 比較例 18 0.40 460 本発明 19 0.10 0.25 210
20 0.50 255 比較例 21 0.60 450 本発明 22 0.05 0.80 225
23 1.00 265 比較例 24 0 0 1.10 500 本発明 25 0.025 0.10 0.05 0.60 200
26 0.015 0.060 0.60 245
一実施例 3 - 実施例 2と同様の主成分と従来の副成分範囲を含有する 従来の低損失酸化物磁性材料に, さらに二酸化チタ ン (T i 02 ) , 五酸化バナジウム (V 2 05 ) , 及び酸化ハフ ニゥム (H f 02 ) の添加物を種々の割合で複合添加した 複数の実施例 3の低損失酸化物磁性材料を各種試作し, こ の比較例として, 上記添加物を添加しない従来の低損失酸 化物磁性材料, 及び比較例 3と して上記添加物を単独また は複合添加した複数の低損失磁性材料を併せて各種試作し 実施例 3, 従来例, 及び比較例 3の試作においては, 実 施例 2と同様に, それぞれの酸化物原料を所定量秤量し混 合した後, 造粒, 成形プレスし, 窒素ガス雰囲気中におい て, 酸素分圧 5. 0 a t %以下で, 1 1 0 C!〜 1 300 °C の温度で焼成して試料を得た。
第 3表は, 試作した実施例 3の試料 No.29, 31〜35, 37, 38, 40, 4 1, 43, 44と, 従来例として試 料 No.8, 及び比較例 3の試料 No.36 , 39, 42について, それぞれの副成分及び添加物成分の含有量と, 周波数 20 0 kHz で最大磁束密度 Bmが 1 000 Gの場合の電力損失 の試料温度に対する最小値を示したものである。 第 3表 によれば, 添加物である二酸化チタン (T i 02 ) , 五酸 化バナジウム (V 2 05 ) , 及び酸化ハフニウム (H f 0 2 ) の複合添加によって, 従来の比較例の試料 No.8より電 力損失が減少していることがわかる。 これは, 添加物, V 2 0 , 及び H f 02 が粒界に析出して粒界の抵抗率を増大 させ, 且つ結晶組織を均一にする効果があつたと考えられ, これらの複合作用によって, 実施例 2と同様にして, 電力 損失を減少せしめたものと考えられる。
第 3表において, H f 02 を 1. 10重量%添加した試 料 No.42においては, 異常粒の成長が認められ, そのため 電力損失が大きく なつたと考えられる。
第 4表は, 従来の試料 1¼8と本発明の実施例 2の試料 No. 1 5について, 第 5表は, 従来の試料 No.8と, 実施例 3の 試料 No.33について, それぞれの初透磁率; 飽和磁束密 度 Β 15, 残留磁束密度 B r, 及び抵抗率 pの各電磁気特性 について比較したものである。
第 4表及び第 5表では, (JL , B 15, B rについては, 試 料 No.8と No.1 5, 又は, 試料 No.33のいずれも遜色なく, 抵抗率のみが実施例 2の No.1 5又は実施例 3の No.33のそ れぞれが, 従来の Να8の十倍以上の値を示している。 この 抵抗率の格段の向上が, 渦電流損失を減少せしめた主な原 因になっていることが理解される。 第 3 表
;-式料 副成分 (wt%) 添加成分 (wt%) 電力 ί跌
No. S i 02 C a O T i 02 v2 05 H f 02 P B (KW/m3 ) 従来例 8 0.015 0.040 0 0 0 450 本発明 29 〃 〃 0 0 0.40 380
31 〃 〃 0 0.05 0.60 380
32 〃 0.05 0 〃 335
33 〃 〃 0.05 0.05 〃 230
34 〃 〃 0.10 〃 ft 270
35 〃 0.30 〃 〃 300 比較例 36 〃 〃 0.40 〃 ft 470 本発明 37 〃 〃 ' 0.05 0.10 〃 245
38 〃 〃 0.20 〃 465 比較例 39 〃 〃 0.80 〃 410 本発明 40 〃 〃 〃 0.05 0.80 255
41 〃 〃 〃 〃 1.00 305 比較例 42 〃 〃 〃 〃 1.10 520 本発明 43 0.025 〃 〃 〃 0.60 250
44 0.015 0.060 〃 〃 0.60 270
第 4 表
磁気特性 t> 1 5 B r P 試料 No. (100kHz) [G] [G] [Qcm] 本発明 15 2180 5020 1275 1220 従来 8 2110 5000 1770 110
第 5 表
磁気特性. β B 1 5 B r P 試料 No. (100kHz) [G] [G] [Qcm] 本発明 33 2200 5035 1310 1175 従来 8 2110 5000 1770 110
以上, 本発明の実施例 2, 3によって, 1 00kHz 以上 の電力損失の低減がなされ, 1 00kHz 以上の高周波にお けるスィ ツチング電源用 トランスコア材料として優れた低 損失酸化物磁性材料が得られることが確認された。
一実施例 4一
主成分と して, 53モル%の酸化第二鉄 (F e 2 03 ) , 39モル%の一酸化マンガン (Mn O) 及び 8モル%の酸 化亜鉛 (Z n 0) に, 副成分と して, 二酸化ケイ素 (S i 02 ) , 酸化カルシウム ( C a 0 ) , 酸化ハフニウム ( H f 02 ) , 酸化ジルコニウム (Z r 02 ) , 三酸化アルミ ニゥム (A 1 2 03 ) , 五酸化バナジウム (V 2 05 ) を 単独または複合添加し, 混合し, 造粒し, 成形プレスした 後, 窒素ガス雰囲気中において, 酸素分圧 5. 0 a t %以 下, 各組成において, 最適焼結温度である 1 1 00〜 1 3 00 °C温度で焼結した。
第 6表は, 主成分として 53モル%酸化第二鉄 (F e 2 03 ) , 39モル%の一酸化マンガン (Mn O) 及び 8モ ル%の酸化亜鉛 (Ζ η Ο) を含有する Μ η— Ζ ηフヱライ トに, 副成分として二酸化ケイ素 (S i 02 ) , 酸化カル シゥム (C a O) を添加し, 更に, 酸化ハフニウム (H f 02 ) と酸化ジルコニウム
(Z r 02 ) , 及び選択成分として, 酸化アルミニゥム
( A 1 2 03 ) と五酸化バナジウム (V 2 05 ) とを複合 添加したときの, 周波数が 1 MHz , 最大磁束密度 Bの値が 5 0 0 G (ガウス) の場合の電力損失 (鉄損) の 6 0。C付 近に於ける夫々の副成分に於ける値を示す。
本発明の副成分と電力損失 (鉄損) との値を示す第 6表 を参照して説明する。
第 6表より, 二酸化ハフニウム (H f 02 ) , 二酸化ジ ルコニゥム ( Z Γ 02 ) , 酸化アルミニゥム ( A 1 2 03 )
, 五酸化バナジウム (V 2 05 ) の複合添加によって, 電 力損失の値は, 従来の低損失酸化物磁性材料の値に比べて 低い値を示し, 特性値は, 従来の値に比べて, ほぼ 5 0 % 程向上していることがわかる。
酸化ハフニウム (H f 02 ) を過剰に添加した 1. 1 0 重量%添加 (試料番号 58) は電力損失が大きく なつてい る 0
第 6 表
Figure imgf000021_0001
%は第 7表の試料と共通副成分を有する c 一実施例 5—
実施例 4と同様にして, 主成分として, 5 3モル%の酸 化第二鉄 (F e 2 03 ) , 3 9モル%の一酸化マンガン (M n 0) 及び 8モル%の酸化亜鉛 (Ζ π Ο) に, 副成分 として, 二酸化ケイ素 (S i 02 ) , 酸化カルシウム (C a 0) , 酸化ハフニウム (H f 02 ) , 酸化ジルコニウム (Z r 02 ) , 及び選択成分として酸化アルミニゥム (A 1 2 03 ) , 二酸化チタン (T i 02 ) を単独または複合 添加し, 混合し, 造粒し, 成形プレスした後, 窒素ガス雰 囲気中において, 酸素分圧 5. 0 & 1 %以下, 各組成にお いて, 最適焼結温度である 1 1 0 0〜 1 3 0 0で温度で焼 し? o
第 7表は, 主成分として 5 3モル%の酸化第二鉄 (F e 2 04 ) 3 9モル%の一酸化マンガン (Mn O) を含有し, 副成分として二酸化ケイ素 ( S i 02 ) , 酸化カルシウム ( C a 0) を基本とし, さらに酸化ハフニウム (H f 02 ) と酸化ジルコニウム (Z r 02 ) , 及び選択成分として酸 化アルミニウム (A 1 2 03 ) と二酸化チタ ン (T i 02 ) とを複合添加したときの, 周波数が Ι ΜΗζ , 動作磁束密度 Bが 50 0 G (ガウス) の場合の電力損失 (鉄損) の 60 °C付近に於ける各組成の於ける値を示す。
本発明の組成と, 電力損失 (鉄損) との値を示す第 7表 について説明する。 —
Figure imgf000023_0001
*は第 6表の試料と共通副成分を有する c 第 7表より, 酸化ハフニウム (H f 02 ) , 二酸化ジル コニゥム ( Z r 02 ) , 酸化アルミニウム (A l 2 03 ) , 二酸化チタン (T i 02 ) の複合添加によって, 電力損失 が向上していることがわかる。 又, 電力損失は, 例として 前述の通り周波数が 1 MHz , 最大磁束密度 500 G (ガウ ス) での測定値を示す。
酸化ハフニウム (H f 02 ) を過剰に添加した 1, 1 〇 重量%添加 (試料番号 85) は電力損失が大きく なつてい 第 8表は, 実施例 4における試料番号 56と実施例 5に おける試料番号 83と, 従来副成分 (試料番号 45, 72) について, 初透磁率 i , 飽和磁束密度 B 15, 残留磁束密 度 B r, 保持力 H e , 比抵抗 pの比較を示すが, 本発明に よる低損失磁性材料の比抵抗の値は, 従来の組成の低損失 磁性材料に比べて, 20倍以上の高い値となっている。
尚, 実施例 4, 実施例 5において, 窒素ガス雰囲気中酸 素分圧 0. 5%における焼結温度は,
1 1 00〜 1300 の範囲において, 最適温度で焼結し た。 8 表 磁気特性 B 1 5 B r H e P 料 No. (100kHz) [G] [G] [Oe] [Qcm] 実施例 4 56 1500 5400 1900 0.46 2200 難例 5 83 1750 5350 1850 0.45 2300 従 来 15/72 1900 5000 1770 0.35 100
—実施例 6 - 主成分として 5 3モル%の酸化第二鉄 (F e 2 03 ) , 3 9モル%の一酸化マンガン (Μη Ο) , 及び 8モル%の 酸化亜鉛 (Z n 0 ) を含有し, 副成分として, 0. 0 1 0 〜 0. 04 0重量%, 二酸化ケイ素 ( S i 02 ) , 0. 0 2 0〜 0. 1 5重量%の酸化カルシゥム ( C a 0 ) を含有 し, 添加成分として 0. 0 1〜 0. 80重量%の酸化ハフ ニゥム (H f 02 ) , 0. 0 0 5〜 0. 3 0 0重量%の酸 化タンタル ( T a 2 05 ) を添加し, これらをボールミル にて混合した後, 予焼し, 粉砕し, 造粒し, 成形プレスし た後, 酸素分圧 0〜3 % ( 0を含まず) , 温度 1 1 0 0〜 1 3 0 0でで 1〜4時間焼結し, 酸化物磁性材料を得た。 第 9表は, 各組成に於いて焼锆条件を変化させて得られ た酸化物磁性材料の中で最も優れたコアロス特性を示した 試料について, 二酸化ケイ素 ( S i 02 ) , 酸化カルシゥ ム ( C a 0 ) , 酸化ハフニウム (H f 02 ) , 酸化夕 ンタ ル (T a 2 05 ) をパラメータとしたときの温度 6 0 °C, 磁束密度 5 0 0 Gとしたときの電力損失 P B (KW/DI3 ) を 示したものである。
第 9表において, 試料番号 1 06は主成分として 5 3モ ル%の酸化第二鉄 ( F e 2 03 ) , 3 モル%の一酸化マ ンガン (Μ η Ο) , 及び 8モル%の酸化亜鉛 (Z n O) を 含有し, 0. 0 1 5重量%の二酸化ケイ素
( S i 02 ) , 0. 080重量%の酸化カルシウム'( C a 0) を副成分と し, 酸化ハフニウム (H f 02 ) , 酸化夕 ンタル (T a 2 05 ) を添加していない従来の電源用 M n — Z n系フヱライ トである。
本発明における酸化物磁性材料は, いずれの場合も従来 のもの (試料 1 06) より優れていることがわかる。 また, 二酸化ケイ素 (S i 02 ) が 0. 030重量 酸化カル シゥム (C a 0) が 0. 060重量%, 酸化ハフニウム (H f 02 ) が 0. 1 5重量%, 酸化タン夕ル (T a 2 0 5 ) が 0. 05重量%を添加して作製した試料番号 1 02 は, 従来のフユライ トと比較して電力損失 P B が約 1ノ 2 程度になっており, 著しい低損失特性を実現している。
第 9 表
Figure imgf000028_0001
1MHz 500G, 60て, 各添加量とも単位は wt%
一実施例 7 - まず、 第 1 0表に示す通り, 主成分と して, 5Sモル%の 酸化第二鉄 (F e 2 03 ) , 39モル%の一酸化マンガン
(M n 0) 及び 8 モル%の酸化亜鉛 (Z n O) を含有し, 添加成分として微量の二酸化ケイ素 (S i 02 ) , 及び, 酸化カルシウム (C a 0) , 0.50重量%以下 (0を含まず) の酸化ガリ ウム (G a 2 05 ) , さらに, 0.80重量%以下
(0を含まず) の酸化ハフニウム (H ί 02 ) , 0.50重量 %以下 (0を含まず) の酸化タンタル (T a 2 05 ) , 0. 50重量%以下 (0を含まず) の酸化ジルコニウム (Z r 0 2 ) , 少なく とも 1種を添加し, これらをボールミ ルにて 混合した後, 予焼し, 粉砕し, 造粒し, 成形プレスした後, 酸素分圧 0〜3% (0%を含まず) , 温度 1 1 00〜: L 3 00°Cで 1〜4時間焼結し, 酸化物磁性材料を得た。
第 1 0表は各組成において焼結条件を変化させて得られ た酸化物磁性材料の中で, 最も優れたコアロス特性を示し た試料について, 酸化ガリ ウム (G a 2 05 ) , 酸化ハフ ニゥム (H f 02 ) , 酸化夕 ンタル (T a 2 05 ) , 酸化 ジルコニウム (Z r 02 ) をパラメータとし, 温度 60。C, 磁束密度 500 Gの場合の電力損失 PB (Kw/m3 ) を示し たものである。 一
第 1 0表
(各添加量を変化させた時の, コアロス特性)
( 1 MHz 5 0 0 G 6 0で)
Figure imgf000030_0001
各添加物とも単位は wt% こ こで, 試料番号 21 3は, 主成分と して 53モル%の酸 化第二鉄 ( F e 2 03 ) , 39モル%の一酸化マンガン (M n 0) , 8 モル%の酸化亜鉛 (Z n O) , 0.08重量%の酸 化カルシウム (C a 0) , 0.015 重量%の二酸化ケイ素
( S i 02 ) を含有し, 酸化ガリ ウム (G a 2 05 ) , 酸 化ハフニウム (H f 02 ) , 酸化タ ンタル (T a 2 05 ) , 酸化ジルコニウム (Z r 02 ) , を添加していない M n— Z nフェライ トである。
この結果, 本発明における酸化物磁性材料 (試料番号 2 0 1〜21 2) は, いずれの場合も, 従来のものより優れ ているこ とがわかる。
また, 酸化ガリ ウム ( G a 2 05 ) , 酸化ハフニウム
( H f 02 ) , 酸化タ ンタル ( T a 2 05 ) , 酸化ジルコ ニゥム ( Z r 02 ) が 0.40重量%の酸化ガリ ゥム ( G a 2 05 ) , 0.15重量%の酸化ハフニウム (H f 02 ) を添加 して作成した試料番号 207は, 従来の電源用フユライ ト と比較して, 電力損失 PB が 1 Z3程度になっており, 著 しい低損失化を実現している。
一実施例 8 - 第 2図は実施例 7で得られた試料番号 203, 207, 21 1を摘出し, 周波数 1 MHz 、 最大磁束密度 500 Gの 場合における電力損失 PB の温度特性を, 従来の電源用フ . ェライ 卜の場合と比較して示した。
この実施例 8の第 2図から, 発明品は全温度範囲で電力 損失が従来の電源用フユライ トに比べ極めて優れているこ とがわかる。
一実施例 9 一
第 3図は, 実施例 7で得られた試料番号 2 0 3, 2 0 7 , 2 1 1 について, 温度 6 0て, 最大磁束密度 5 0 0 Gの場 合における電力損失 P B の周波数特性を, 従来の電源用フ ュライ 卜の場合と比較して示した。 いずれの発明品も全周 波数領域で従来の電源用フエライ トと比べ著しく優れてい ることがわかる。
「産業上の利用可能性」
本発明によれば, 二酸化ケイ素及び酸化カルシウムを含 む M n— Z nフユライ ト酸化物磁性材料において, 1 . 0 0重量%以下 (0を含まず) の H f 0 2 を添加することに より, スイ ッチング電源用 トラ ンスとして求められる諸特 性を充分満足するとともに, 周波数が 1 0 0 k H z以上の 高周波においても従来より も電力損失を低減でき, 高周波 磁心用材料としてスイ ツチング電源の小型, 軽量化に十分 に適合した材料を提供することができる。
また, 本発明によれば, この M n— Z nフェライ ト酸化 物磁性材料において, 添加物として, さらに, 0 . 3 0重 量%以下 ( 0を含まず) の酸化ジルコニウム ( Z r 0 2 ) , 〇. 3 0重量%以下 ( 0を含まず) の酸化タ ンタル (T a 2 0 5 ) の少なく とも一種を含むことにより, スィ ッチン グ電源用 トラ ンスとして求められる諸特性を更に向上させ ることができる。
また, 本発明によれば, これら Mn— Z nフェライ ト系 酸化物磁性材料において, 0. 50重量%以下 (0を含ま ず) の A 12 03 及び 0. 30重量%以下 ( 0を含まず) の T i 02 の少なく とも一種を含むことにより, 更に, 電 力損失等の諸特性を向上させることができる。
できる。
—方, 本発明によれば, M n— Z nフヱライ ト系酸化物 磁性材料において, 0.50重量%以下 (0を含まず) の酸化 ガリ ウム (G a 2 03 ) を含み, 0.30重量%以下 (0を含 まず) の酸化タンタル (T a 2 05 ) , 1.00重量%以下 (0を含まず) の酸化ハフニウム (H f 02 ) , 0.50重量 %以下 (0を含まず) の酸化ジルコニウム (Z r 02 ) の 少なく とも 1種を添加することにより, スィ ッチング電源 用材料として求められる特性を十分に満足するとともに周 波数が 200 kHz 以上の高周波においても, 従来のものよ り, 電力損失 P B が著しく低減できた低損失酸化物磁性材 料を提供でき, 高周波磁芯用材料と してスイ ッチング電源 の小型, 軽量化に十分適した材料を提供可能とするもので め

Claims

請求 の 範 囲
1. 第 1成分として, 3 0〜42モル%の一酸化マンガ ン (Mn 0) , 4〜 1 9モル%の酸化亜鉛 ( Z n 0) , 及 び残部として酸化第二鉄 (F e 2 03 ) を含み,
第 2成分として, 0. 0 2〜 0. 1 5重量%の酸化カル シゥム ( C a O) と, 0. 0 0 5〜 0. 1 0重量%のニ酸 化ゲイ素 ( S i 02 ) とを含み,
第 3成分として, 1. 0 0重量%以下 ( 0を含まず) の 酸化ハフニウム (H f 02 ) を含む
ことを特徵とする低損失酸化物磁性材料。
2. 第 1の請求項記載の低損失酸化物磁性材料において, 前記第 3成分として, さらに 0. 3 0重量%以下 ( 0を 含まず) の酸化ジルコニウム (Z r 02 ) , 0. 2 0重量 %以下 (0を含まず) の酸化バナジウム (V 2 05 ) , 及 び 0. 3 0重量%以下 ( 0を含まず) の酸化タンタル (T a 2 05 ) の少なく とも一種を含む
ことを特徴とする低損失酸化物磁性材料。
3. 第 1又は第 2の請求項記載の低損失酸化物磁性材料 において,
前記第 3成分として, さらに 0. 5 0重量%以下 (0を 含まず) の A 1 2 03 , 及び 0. 3 0重量%以下 ( 0を含 まず) の T i 02 の少なく とも一種を含むことを特徵とす る低損失酸化物磁性材料。
4. 第 1請求項記載の低損失酸化物磁性材料において, 前記第 3成分と して, さらに,
0.5 重量%以下 ( 0を含まず) の酸化ガリ ゥム (G a 2 03 ) , 0.8 重量%以下 ( 0を含まず) の酸化タンタル (T a 2 03 ) , 0.5 重量%以下 ( 0を含まず) の酸化ジ ルコニゥム (Z r 02 ) の少なく とも 1種以上を含むこと を特徴とする低損失酸化物磁性材料。
PCT/JP1990/001017 1989-12-26 1990-08-09 Low-loss oxide magnetic material WO1991010241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69020726T DE69020726T2 (de) 1989-12-26 1990-08-09 Oxid-magnetmaterial mit geringem verlust.
EP90912078A EP0460215B1 (en) 1989-12-26 1990-08-09 Low-loss oxide magnetic material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP1/339358 1989-12-26
JP33935889 1989-12-26
JP1/341277 1989-12-28
JP34127789 1989-12-28
JP2024364A JP2551491B2 (ja) 1989-02-04 1990-02-05 低損失酸化物磁性材料
JP2/24364 1990-02-05

Publications (1)

Publication Number Publication Date
WO1991010241A1 true WO1991010241A1 (en) 1991-07-11

Family

ID=27284622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001017 WO1991010241A1 (en) 1989-12-26 1990-08-09 Low-loss oxide magnetic material

Country Status (3)

Country Link
EP (1) EP0460215B1 (ja)
DE (1) DE69020726T2 (ja)
WO (1) WO1991010241A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0551907B1 (en) * 1992-01-14 1997-04-09 Matsushita Electric Industrial Co., Ltd. An oxide magnetic material
DE19722307B4 (de) * 1997-05-28 2005-04-07 Kaschke Kg (Gmbh & Co.) Mangan-Zink-Ferrit und Verfahren zu seiner Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836974A (ja) * 1981-08-27 1983-03-04 住友特殊金属株式会社 低磁気損失Mn−Znフェライトの製造方法
JPS61252606A (ja) * 1985-05-01 1986-11-10 Tohoku Metal Ind Ltd 低損失酸化物磁性材料
JPS6362206A (ja) * 1986-09-02 1988-03-18 Tdk Corp 電源用超低損失フエライト
JPS63151620A (ja) * 1986-12-13 1988-06-24 Tokin Corp 低損失酸化物磁性材料
JPH01259509A (ja) * 1988-04-11 1989-10-17 Tokin Corp 低損失酸化物磁性材料
JPH0254902A (ja) * 1988-08-19 1990-02-23 Sony Corp 低損失フェライト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246128A (en) * 1979-08-08 1981-01-20 Bell Telephone Laboratories, Incorporated Method of making MnZn ferrites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836974A (ja) * 1981-08-27 1983-03-04 住友特殊金属株式会社 低磁気損失Mn−Znフェライトの製造方法
JPS61252606A (ja) * 1985-05-01 1986-11-10 Tohoku Metal Ind Ltd 低損失酸化物磁性材料
JPS6362206A (ja) * 1986-09-02 1988-03-18 Tdk Corp 電源用超低損失フエライト
JPS63151620A (ja) * 1986-12-13 1988-06-24 Tokin Corp 低損失酸化物磁性材料
JPH01259509A (ja) * 1988-04-11 1989-10-17 Tokin Corp 低損失酸化物磁性材料
JPH0254902A (ja) * 1988-08-19 1990-02-23 Sony Corp 低損失フェライト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0460215A4 *

Also Published As

Publication number Publication date
EP0460215B1 (en) 1995-07-05
EP0460215A4 (en) 1993-10-20
DE69020726T2 (de) 1996-01-04
DE69020726D1 (de) 1995-08-10
EP0460215A1 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
KR102094797B1 (ko) MnZn계 페라이트 및 그 제조 방법
JP4694973B2 (ja) MnCoZnフェライトおよびトランス用磁心
JP2007070209A (ja) MnZn系フェライトの製造方法
JP2009173483A (ja) MnZn系フェライトおよびトランス用磁心
KR100627117B1 (ko) 페라이트 재료
JP4129917B2 (ja) フェライト材料およびその製造方法
WO2022085281A1 (ja) MnZn系フェライト
JPH06310321A (ja) 酸化物磁性体材料
JP2004161593A (ja) フェライト材料
JP4750563B2 (ja) MnCoZnフェライトおよびトランス用磁心
JPH081844B2 (ja) 電源用高周波低損失フェライト
JP2004247370A (ja) MnZnフェライト
JPH113813A (ja) フェライト材料
WO1991010241A1 (en) Low-loss oxide magnetic material
JP2007311387A (ja) 酸化物磁性材料
JP2004247602A (ja) MnZn系フェライト電波吸収体
JP3597665B2 (ja) Mn−Niフェライト材料
JP4761175B2 (ja) 低損失フェライトおよびこれを用いた磁心
JP2551491B2 (ja) 低損失酸化物磁性材料
JPH09219306A (ja) 低損失酸化物磁性材料およびその製造方法
JP2562061B2 (ja) 低損失酸化物磁性材料
JP2007031210A (ja) MnZnフェライト
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JPH10270231A (ja) Mn−Niフェライト材料
JP3366708B2 (ja) 低損失Mn−Zn系フェライト

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990912078

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990912078

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990912078

Country of ref document: EP