WO1991007484A1 - Protein having activity like that of human protein c and/or activated human protein c - Google Patents

Protein having activity like that of human protein c and/or activated human protein c Download PDF

Info

Publication number
WO1991007484A1
WO1991007484A1 PCT/JP1990/001471 JP9001471W WO9107484A1 WO 1991007484 A1 WO1991007484 A1 WO 1991007484A1 JP 9001471 W JP9001471 W JP 9001471W WO 9107484 A1 WO9107484 A1 WO 9107484A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
human
arg
asp
dna
Prior art date
Application number
PCT/JP1990/001471
Other languages
English (en)
French (fr)
Inventor
Masahiko Suzuki
Kenji Wakabayashi
Yoshihiko Sumi
Yataro Ichikawa
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Publication of WO1991007484A1 publication Critical patent/WO1991007484A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6464Protein C (3.4.21.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21069Protein C activated (3.4.21.69)

Definitions

  • Proteins with human protein C and Z or activated human protein c-like activity are proteins with human protein C and Z or activated human protein c-like activity
  • the present invention is directed to a protein having a human oral c or activated human arotin c-like activity .
  • a human protein that can be used as an anticoagulant or a fibrinolysis promoter It is a protein having C-like or activated human protein C-like activity.
  • amino acid sequence is abbreviated by the method adopted by the IUPAC-IUB Biochemistry Committee (CBN), and the following abbreviations are used, for example.
  • the DNA sequence is abbreviated by the type of base included in each of the deoxyribonucleotides constituting the DNA sequence. For example, the following abbreviations are used.
  • a Adenine (indicating deoxyduric acid.)
  • Arotin C is a precursor of plasma serine protease and is activated on the surface of platelets and vascular endothelial cells by limited degradation by a complex of thrombin and its receptor, thrombomodulin.
  • human tarotin C has 155 amino acids from the amino terminal Ala to the carboxyl terminal Leu in the light chain, and 262 amino acids from the amino terminal Asp to the carboxyl terminal Pro from the amino terminal Ala to the carboxyl terminal Leu.
  • the light and heavy chains are biosynthesized in the form of (3 ⁇ 4N—) light chain-Lys-Arg-heavy (one-COOH) in cells, and Lys- Arg is cleaved to form a double chain.
  • the light chain and heavy chain form a disulfide bond between Cys at position 141 from the amino terminus of the light chain and Cys at position 120 from the amino terminus of the heavy chain.
  • the conversion of human protein C to APC is The activation is performed by removing the activation polypeptide from the amino terminus (hereinafter referred to as the N-terminus) of the heavy chain of indine C to the amino acid at the 12th amino acid to the amino acid at the N-terminus of the heavy chain:
  • the amino acid sequence of APC consists of the amino acid sequence of human protein C, from the amino acid sequence of human protein C to the amino acid at the 12th position from the N-terminus of the heavy chain to the amino acid at the N-terminus of the heavy chain. Excluded:
  • the amino-terminal structure is important because of the presence of the Gia and EGF-like domains, but the carboxyl-terminal side, particularly the heavy chain, is bound to the 14th Cys and beyond. The effect on the activity of the amino acid at the carboxyl terminal is not clear.
  • the cleavage site located on the carboxy-terminal side of the activated peptide is activated by an activating enzyme (in vivo, a thrombin-thrombomodulin complex as described above).
  • an activating enzyme in vivo, a thrombin-thrombomodulin complex as described above.
  • the interaction between the enzyme and the substrate (motoprotein C) is thought to be affected by the active center and the three-dimensional structure around the cleavage site. Therefore, in the variant in which part or all of the amino acid at the carboxy terminal side is deleted after the 141st Cys residue of human arrotin C, the active center of the enzyme and the substrate It is expected that the rate of activation will increase as a result of easier access to the internal cleavage site. However, there is no report of such a study, and it is unclear whether such a variant has activity.
  • the present invention is basically a natural type of human protein.
  • Cys The protein typically has a form in which one (3 ⁇ 4) n-R2-— is linked to the light chain carboxy terminus and the heavy chain amino terminus and is linked to each other.
  • the heavy chain of type human rotatin C or activated human tarotin C can be combined and biosynthesized by the structure shown in Table 3 below, and becomes double-stranded during secretion from cells.
  • Rt,, 3 ⁇ 4 is Arg or Lys
  • Heavy chain Heavy chain of human rotatin C or activated human arrotin C
  • the proteins having various amino acid sequences of the present invention have properties and activities similar to those of natural human arrotin or activated human arrotin C, respectively.
  • the protein obtained in the present invention has an anticoagulant activity, a fibrinolytic accelerating activity, an amidase activity and the like. And so on That is, a protein having the same properties as the natural type human protein C obtained by the present invention can be treated with the arotin C activating enzyme in the same manner as the natural type human protein A, thereby obtaining a protein similar to the natural type APC.
  • the protein C-activating enzyme includes thrombin, thrombin-thrombomodulin complex, snake venom, and the like.
  • the APC activity is an anticoagulant activity that selectively degrades coagulation activation factor 5 and activation factor VIII, and an inhibitor of tissue plasminogen activator.
  • tissue plasminogen activator examples include fibrinolysis-promoting activity resulting from inactivating PAI-1 by reacting with PAI-1.
  • the wood invention also includes a protein having a structure of a naturally-occurring human protein C, and the amino acid sequence from the amino acid at the twelfth amino acid to the amino terminal of the heavy chain of the amino acid sequence of the protein. Is a combination selected from the amino acids shown in Table 2 below, provided that 13 to 12 combinations are deletion, deletion, deletion, Asp, Thr, Glii, Asp, G, Gl, Asp, Gin, Val , Asp, Pro, and Ar. ) Human rotatin C and / or activated human Includes proteins with Rotin C-like activity
  • Specific examples of the matching include, for example, the following.
  • proteins having the various N-terminal amino acid sequences of the heavy chain according to the present invention have the same properties or APC activity as natural human protein C, respectively.
  • the same properties as natural human arotin C include, for example, anticoagulant activity, fibrinolytic activity, amidase activity, etc., by treating the protein obtained in the present invention with alotin C-activating enzyme.
  • a protein having the same properties as the native human oral tin C obtained in the present invention is converted into the native AP C by treating it with the arotin C activating enzyme in the same manner as the native human arotin C.
  • Specific examples of the amino acid sequence of a protein having such properties include, for example, preferably viii) to xiii) of the above specific examples.
  • the protein C activator includes thrombin, thrombin-thrombomodulin complex, snake venom and the like.
  • APC activity includes anticoagulant activity that selectively degrades coagulation activation factor 5 and activation factor VIII, and inhibitors of tissue alasminogen activator And fibrinolytic activity that cleaves PAI-1 .
  • Amino acids of proteins having such properties include, for example, preferably i) to vii) and xiv ⁇ to xvi> among the above specific examples.
  • those having an amino acid sequence of i ⁇ to vii ⁇ have APC activity when secreted from cells without being treated with an APC activating enzyme, and have an amino acid sequence similar to that of natural APC. Will be the same.
  • proteins having the amino acid sequences of xiv ⁇ to i) have the same amino acid sequence even after secretion from cells, and have APC activity without treatment with an APC activating enzyme.
  • proteins having the amino acid sequences of xiv) to xvi> are less likely to be inhibited by human oral tin C inhibitor, alpha 1 antitriacin, etc., and have a longer half-life in blood compared to natural APC
  • the protein obtained by the present invention preferably has Gla.
  • a DNA sequence encoding the protein of the present invention is a protein having the properties of the present invention that is eventually produced when an alasmid containing the protein is introduced into a host and cultured. Any DNA sequence may be used, and another gene (eg, intron) other than the structural gene may be interposed between them.
  • the DN ⁇ sequence encoding a protein having an amino terminal portion of a light chain as represented by any one of (1) to ( ⁇ ) in Table 1 of the present invention is derived from the cDNA sequence of natural human protein C.
  • Acad. Sci. USA, 82, 4674-1475 describes the DNA sequence of the gene encoding protein C, in which the preapart (42 amino acids to 1 1) is described.
  • a DNA sequence encoding the protein corresponding to the above-mentioned tin C of the present invention can be assembled.
  • the DNA sequence encoding the protein corresponding to activated protein C is obtained by deleting the DNA sequence encoding the activation beartide from the DNA sequence encoding the protein corresponding to protein C. It can be easily assembled.
  • a protein corresponding to the protein C or activated aloprotein C it is not necessary to employ a natural Lys-Arg as a cleavage site;
  • the protein yield can be increased: such a cleavage site has a light chain C-terminal () facedone on the light chain side.
  • Is represented by The corresponding DNA sequence can be easily determined using, for example, AAA and CGA corresponding to Lys and Arg, respectively.
  • DNA sequence encoding the protein corresponding to Table 2 in the present invention can be represented by (natural APC light chain DNA) 1 X-Y 1 (natural APC heavy chain DNA): where X is Represents the DNA sequence of the cleavage site, LysLys,
  • Y represents a DNA sequence of the activating peptide portion, and examples thereof include the following U to 16).
  • the alepro moiety (142 amino acids to 11 amino acids) can be modified.
  • modifications include:
  • the 15th to 12th amino acids of the amino acid sequence are 1 15th Ser or Leu
  • DNA sequence encoding such an amino acid sequence include, for example,
  • non-coding regions that facilitate ribosome binding eg., ribosome binding
  • the L) NA fragment of the above sequence having a portion encoding the protein of the present invention is incorporated into an expression vector appropriately selected according to a host vector system.
  • expression vectors include vectors derived from bacterial plasmids, DNA derived from bacteriophages, and DNAs derived from animal viruses, which incorporate appropriate regulatory regions, such as adenovirus major late-stage alomotor, V40 early aroma monitor S V40 late aroma motor, mouse meta-mouth protein 1-aro motor, MMTV (mouse papilloma virus) aroma motor, RSV (Rous sarcoma virus) promoter, plasmid vector or Bovine papillae.
  • Vectors derived from viruses such as oral virus are used.
  • the integration of the DNA fragment into such a vector can be carried out in a manner known per se, for example Miura 0. et. al., J. Clin. Invest. 83-1598-1604 (19 ⁇ 9).
  • the animal cell for the host may be any animal cell other than human or human, such as CH0, C127, BHK, Cosl, Cos7, LM, NIH3T3, 293, and HeLa. CH0, BHR, 293 are also preferable for the width.
  • Transfection of the above expression type vector into these cells can also be performed by a method known per se well known in the art, for example, Spandidos DA and Wi1 kie N .., Expression of Exogenous DNA in Mamma. 1 i an Cells, Ed. Hames BD and Higgins SJ Transcription and Translation, IRL Press, Oxford, PPl-48, etc.
  • the target protein of the present invention can be recovered from the culture by culturing the thus obtained transformed cells by a conventional method under conditions suitable for each cell.
  • the method of quantifying the protein of the present invention can use the method disclosed in JP-A-61-283868. According to this method, Gla-like human protein C and Z or activated human protein C-like It is also possible to measure only a protein having an activity (hereinafter referred to as human carotin C derivative).
  • the purification of the human carotin C derivative of the present invention includes natural human protein C including a barium adsorption method and an ion exchange chromatography method. Purification method can be applied, It is particularly preferable to use affinity column chromatography using an anti-human arrotin C monoclonal antibody that recognizes the conformational change of the Gla domain due to calcium ions (see Japanese Patent Application Laid-Open No. 64-50991). This method is excellent in that it can purify only human protein C derivative having Gla and that a mild eluent called EDTA can be used.
  • the activity of the human oral tin C derivative of the present invention was previously determined by activating with a snake venom (Protac®, Amerikandiagnostica) and cleaving the synthetic substrate (PCa PC, Amerikandiagnostica). Since the human protein C derivative of the present invention has the same catalytic domain as the natural type, it can exhibit the original activities of anticoagulant activity and fibrinolysis-promoting activity with synthetic substrate cleavage activity.
  • the protein obtained according to the present invention has human-like tin C and Z or APC-like activity, and in particular, a part thereof has APC activity without treatment with an APC activating enzyme.
  • the use of the protein of the present invention eliminates problems such as removal of enzymes and virus contamination associated with the activation treatment, thereby making the supply of APC used as an anticoagulant or fibrinolysis promoter more stable. Can be done
  • the protein with the light chain C-terminal partially removed is It is more stable and more advantageous when stored as a drug.
  • Form (RF) Cleavage of DNA or DNA fragments is performed by using 4 to 10 units of restriction enzyme in a buffer solution at the temperature specified by the manufacturer. The buffer was the one attached to the restriction enzyme.
  • the DNA fragments digested with the restriction enzymes were separated by 0.8% agarose gel electrophoresis using a submarine electrophoresis tank, and an agarose gel containing the DNA fragment of interest was cut out, and GBNECLEAN (Bio 101) was cut out. Used for recovery. The method followed the attached instructions.
  • a DNA solution of 20 T or less was added to a competent cell of E. coli HM01 strain (Takara Shuzo) and placed on ice for 1 hour, then placed in a 42C water bath for 1 minute, and then placed again on ice for 5 minutes. Was. This was added to 1 ml of L-broth and cultured with shaking for 1 hour. Sprinkled in syringlate (L-broth, agar, ampicillin 5G g ml) and cultured at 37 ° C to give colonies: Small-scale preparation of alasmid DNA
  • the method (ideoxy chain termi nation) was used.
  • the reagent used for the reaction was “7-deaza 'sequen kit” from Takara Shuzo.
  • the operating procedure was in accordance with the instructions attached to the label, and the label used was 35 s — d CTP a S (400 Ci, / ol, Amajam).
  • Electrophoresis 0.3% of 6% acrylamide Thick gels were used, dried after electrophoresis, and subjected to autoradiography.
  • For the template DNA used single-stranded DNA was used after the modification of the human protein C cDNA, but in other cases, double-stranded alasmid was used after neutralization after neutralization. Was.
  • the primers for modifying cDNA and the primers for determining the nucleotide sequence were synthesized using an Applied Biosystems 380A DNA synthesizer under the conditions of “ON, AUTO”.
  • the company's “oligonucleotide purification reagent, '/ di” was used according to the attached instructions.
  • the PC8-PC1 obtained in Preliminary Example 1 was cleaved with HindU and SacII each having one cleavage site and subjected to agarose gel electrophoresis, and a small fragment of SacH-HindlE was obtained. Was collected (this is referred to as A fragment).
  • Pl] C8-PU was digested with Sacac and EcoRI and subjected to agarose gel electrophoresis. An ECGRI-Sac1 fragment upstream of SacE was recovered. This DNA fragment was further digested with one cleavage site in this fragment. After cutting with Dde I Dde I-SacII fragment was recovered by sgel electrophoresis (this is referred to as ⁇ fragment).
  • this pNAK-PCU was digested with Hindin and SacE, and subjected to agarose gel electrophoresis to recover a HindEI-SacE small fragment. (This is the 'D fragment)
  • PSV2-gpt was partially digested with Apa I and subjected to agarose gel electrophoresis.
  • the two Apa I sites in which only one site was cleaved (linear type) were recovered, and Hind II After complete digestion with agarose gel electrophoresis, the Hindi- (Apal> -Apa I fragment shown in Fig. 5 was recovered.
  • the DNA bolimerase I Klenow fragment and deoxyribonucleotide triphosphate acted on this fragment.
  • Hindi! Site and Apa I site were blunt-ended.
  • the method for producing PDX—PC 594 is the same as that described in the end of Example 1 as the method for producing the PDXXPC vector.
  • the expression vectors PDX-PCLCA14, pDX-PCLCA12, and pDX-PCLCAS for the protein lacking the carboxyl terminus of human protein C light chain were prepared according to the method shown in FIG.
  • the native human protein C expression vector pDX-PC59410 / is completely digested with the restriction enzymes HdEI and Sae ⁇ and subjected to 0.8% agarose gel electrophoresis, and the largest]) NA fragment 1 is recovered from the gel. did. 3 g of this DNA fragment 1 was dissolved in 30 lOffiM Tris-HCl H8.0 EDTA solution.
  • PDX-PC59410i was completely digested with the restriction enzymes Hindll and PstI, subjected to '0.8% agarose gel electrophoresis, and the second smallest DNA fragment 2 was recovered from the gel. 1 g of this DNA fragment 2 was dissolved in 30 ⁇ of lOmM Tris-HCl pH 8.0, ImM EDTA solution.
  • Alasmid DN ⁇ was prepared on a small scale from this clone and obtained.
  • Rasmid restriction enzyme Maza was prepared to obtain expression vectors of human oral tin C derivative corresponding to PDX-PCLCA14, PDX-PCLCA12 and pDX-PCLCAS, respectively.
  • the obtained expression vector was prepared on a large scale and used for expression.
  • the pDX / PC vector is described in Poster, DC et ai., Biochemistry, 7003-7011 (1987), and in Busby, S. et a, ature. SU, 271-273 (1985). ). And Barkaer, KL et a, in uc. Acids Res. 13, 841, 857 (1985), discussing the DNA function part of pDX / PC.
  • Amp 1 is an ampicillin resistance gene.
  • BHK-21 cells (ATCC CC10) were cultured in 30 ml of 10% FCS-eRDF using a Falcon 3025 Petri dish. Five confluent cells are detached by triasin treatment, and the cells suspended in 30 ml of PBS (-) are centrifuged at lOOOOrpm for 5 minutes at room temperature. Removed again Suspended in 30 ml of PBS (-), centrifuged at lOOOOrpm for 5 minutes at room temperature, and the supernatant was removed and suspended in 0.3 ml of PBS (-).
  • 32 ⁇ g of the expression vector was sterilized in advance by ethanol precipitation in a 1.5 ml eppendorf tube, centrifuged at HOOO rpm for 10 minutes, and the supernatant was aseptically removed. Dissolved in 2 ml. This was combined with the above-mentioned suspension of BHK cells (approximately 0.8 ml), placed in a cuvette (0.8 ml) for Viola, GENE PULSER, and mixed gently by shaking. The electoration was performed under the conditions of 1200 V, 25 JUL-1 time using Biorad “GENE PULSER”.
  • the cell suspension was immediately transferred to a Falcon 2059 tube, and the mixture was diluted with 4.2 ml of 1 FCS-eRDF-2 JUL ⁇ / ml vitamin K1 by gentle shaking and diluted. This was added to 5 pieces of Falcon 3025 Petri dishes containing 30 ml of 10% FCS-eRDF-2 g and 7 ml of vitamin K1 in an amount of 1 ml, followed by dilution. This was cultured in a COz incubator for 24 hours, washed twice with 30 ml of PBS (-) twice, added with 30 ml of a serum-free medium of ITES-eRDF-2 gzl vitamin K1 per petri dish, and further cultured for 48 hours.
  • the culture supernatant and the concentrated solution 6 At were diluted to 120 with 1% BSA-TBS, and the concentration of the human phlo- tine C derivative and the concentration of the Gla-containing human porcine C derivative were measured by ELISA.
  • the monoclonal antibody on the plate side is JTC4 (recognized by heavy weight), and JTC1 (HRP0) -labeled antibody is used as the JTC1 (for the measurement of human C-tin derivative with Gla domain recognition Gla) or JTC5 (recognition of activated peptide, for measurement of whole human C-derivative C) was used.
  • JTC4 decognized by heavy weight
  • JTC1 (HRP0) -labeled antibody is used as the JTC1 (for the measurement of human C-tin derivative with Gla domain recognition Gla) or JTC5 (recognition of activated peptide, for measurement of whole human C-derivative C) was used.
  • Table 4 shows the amount of the human C-tin derivative in the culture supernatant, and Table 5 shows the amount of the human protein derivative in the concentrate.
  • the protein pDX- by the pDX-PCLCA8 vector was used. Dilute the protein (PCA12) with the PCLCA12 vector and the protein (PCA14) with the pDX-PCLC ⁇ 14 vector in 0.1% BSA-TBS (50m Tris-H Ci pH7.4, 0.15M Nad) to 0.125, 0.25, 0 5, 1, 2 g As a solution of 160,0, add 1 Uz 'ml of Arlotac® (American Diagnostics) to 40 J3, and incubate at 37 C for 1,5 hours. And
  • PCA8, PCA12, and PCM4 among the human protein C derivatives having Gla obtained in Example 2 were diluted with 0.1% BSA-TBS (50 mM Tris-HCl pH 7.4, 0.15 M NaCl) to 0.125, 0.25 , 0.5, 1, 2 ff ZO ⁇ solution, and add 1 Uml of Arlotac (American Diagnostica) to the solution. C was kept for 1.5 hours to obtain activated human oral tin C derivative. This was diluted to 12.5, 25, 50, 100, 200 ng 50 / xi) 0.1% BSA-TBS (pH 7.4).
  • PSV2-PC1 constructed in Preparative Example 2 was cut with Hind and subjected to agar-mouth gel electrophoresis to recover the CDNA portion of human mouth tin.
  • the fragment was ligated to a replicative form of Ml3mp11 (RF) DNA previously treated with Hind and bacterial alkaline phosphatase and introduced into E. coli TG-1 to generate plaques.
  • RF Ml3mp11
  • Recombinant M13 phage was picked from this plaque and added to 2 ml of a 2 ⁇ 2 medium together with 20 jul of an overnight culture of E. coli TG-1 strain, followed by shaking culture at 37C for 5 hours.
  • This Escherichia coli in the culture solution was collected, and a rare-reactive-form (RF) DNA was prepared by the lysate lysis method, and analysis by restriction enzyme digestion revealed that human protein Cc: DNA was the reverse of the M13 gene.
  • RF rare-reactive-form
  • the human protein was prepared by using Amersham's “01 i gonuc 1 eot i de directed in vitro mutagenesis system” according to the instructions attached thereto.
  • a C-derivative cDNA was created, which is basically based on the method of F. Eckstein et al.
  • M13 phage rare religious form DNA containing human rotatin C derivative cDNA was introduced into Escherichia coli TG-1 strain to produce araq.
  • a single-stranded DNA was obtained by the method described below.Specifically, the Amersham M13 cloning and sequencing kit; 18-base (ten-strand) oligonucleotide near the modified site The nucleotide sequence was determined using, and clones with the desired modification were selected. From the cells corresponding to the stored clone, replicative form (RF) DNA of recombinant Ml3 phage was prepared by the Alkali lysis method.
  • RF replicative form
  • the pSV 2—PC1 is then cut with the same restriction enzymes.
  • Example 6 From the culture in 400 ml L-broth Alasmid was prepared by a CaCl equilibrium density gradient centrifugation method and used for expression in Example 6 as a human protein C derivative expression vector. In addition, as shown in Fig. 6 (b), using the BstEE site and the SacE site (both cut at one location)
  • the numbers 1) to 5) and 8) to 16) used here indicate the primer numbers and also the human arrotin C derivative expression vectors created using the primers. Furthermore, those numbers indicate the human arrotin C derivative protein obtained in Example 6 using the expression vector. The same applies to the expression vectors 6) and 7).
  • BHK-21 cells (ATCC CCL-10) were cultured in Falcon 3025 Petri dishes in 30 ml of 10% FCS-eRDF. Five cells of the nearly confluent petri dish were detached by trypsin treatment, and the suspension in PBS (-) 3C) ml was centrifuged at lOOOOrpm at room temperature for 5 minutes to remove the supernatant. The suspension was again suspended in 30 ml of PBS (-), centrifuged at lOOOOrpm at room temperature for 5 minutes, and the supernatant was removed and suspended in 0.3 ml of PBS (-).
  • the cell suspension was immediately transferred to a Falcon 2059 tube, and diluted with 4.2 ml of 10% FCS-eRDF-2 ug ml of vitamin K1 while gently shaking to dilute. This was added and diluted in 5 ml of Falcon 3025 Petri dishes containing 30 ml of 10% FCS-eRDF-2Mg / ml vitamin K1 in 1 ml at a time. This was cultured in a C02 incubator for 24 hours, washed twice with 30 ml of PBS (-) twice, added with 30 ml of a serum-free medium of ITES-eRDF-2 g Zml vitamin K1 per petri dish, and further cultured for 48 hours.
  • the culture supernatant was collected, and 150 ml of the culture supernatant was concentrated to about 2 ml by an ultrafiltration method using Amicon YM10 membrane. Further, concentration was performed using Amicon Centricon 10 until the concentration became about 150 JLL ⁇ . To this, 1 ml of TBS (50 mM Tris-HClH7.4, 0.15 M NaCi ⁇ was added, and the mixture was again concentrated to about] 50. Of these, 6 ju was diluted to 120 j ⁇ with 1% BSA-TBS, and the concentration of the human tarotin C derivative and the concentration of the human protein C derivative having Gla were measured by ELISA.
  • the monoclonal antibody on the plate side is JTC4
  • the PS V 2 -PCI prepared in Preparative Example 2 was digested with Hind and subjected to agarose gel electrophoresis to recover the human protein CDNA portion.
  • replica-tissue form (RF) DNA was prepared by the bacterial method and analyzed by restriction enzyme digestion.
  • Human protein C (: DNA was inserted in the opposite direction to the M13 gene). A clone was identified. Amplified DNA was prepared from recombinant M13 machines in the culture supernatant obtained from the cultivation of the lawn, using Amersham's "Uligonucleotide directed in vitro mutagenesis system". Using the template DNA and the synthetic primers shown below, the leader sequence portion of the human protein C cDNA was modified by using Amersham u Uligoniicleotide directed in vitro mtitagene sis system. i) (5 ') CTT GAC TCA GTG TTC CTG GCC CCC GAG CGT
  • This method is basically based on the method of F, Eckstein et al. 11 ⁇ 213 phage containing human cDNA with the new leader sequence obtained? ]) NA was introduced into E. coli TG-1 strain to form plaques.
  • the recombinant M13 phage in this arak was cultured at a 2 ml scale by the method described above.
  • the phage was prepared by polyethylene glycol precipitation and phenol-treated to obtain single-stranded DNA. Specifically, we followed the notebook attached to Amersham “M13 cloniag and sequencing kit”.
  • This single-stranded DNA is used as a template, and the base sequence is determined using a primer of 18 bases (ten strands) in the vicinity of the chemically modified site to select clones with the desired modification.
  • Recombinant M13 phage RFDNA was prepared from the cells corresponding to the stored clone by the Alkali lysis method: This was purified using Bio 101 “& ene clean®”, and The digested with BstEII was subjected to agarose gel electrophoresis to recover the DNA fragment containing the modified part, then PSV2-PCI was digested with Baiye and BstEE, and subjected to agarose gel electrophoresis to determine the larger fragment.
  • Alasmid was ligated with the DNA fragment containing the above-mentioned modified portion, and introduced into Escherichia coli HB101 strain.
  • Alasmid was prepared from the resulting transformant by the Alkali lysis method, and HindEi or Ba.l I was prepared. After digestion with BstEH and BstEH, analysis was performed by agarose gel electrophoresis, and those having the desired recombination were selected. For these, the nucleotide sequence near the modified site was further examined using the above-mentioned primer, and it was confirmed that correct recombination was performed.Then, this clone was cultured in 400 ml of L-Broth. From this, arasmid was prepared by the Arikari lysis method-CsCl equilibrium density gradient centrifugation and used for the expression in Example 9.
  • BHK-21 cells (ATCC CCL-10) were cultured in 30 ml of 10% FCS-eRDF using a Falcon 3025 Petri dish. The suspension in (-) 30 ml was centrifuged at lOOOOrpm at room temperature for 5 minutes, and the supernatant was removed. The suspension was again suspended in 30 ml of PBS and centrifuged at room temperature for 5 minutes at room temperature. The supernatant was removed and the suspension was suspended in 0.3 ml of PBS (-). On the other hand, 32 g of each of the expression models for the human rotatin C derivative prepared in Example 8 was sterilized by ethanol precipitation in a 1.5 ml eppendorf tube in advance, centrifuged at 10 min.
  • the culture supernatant was recovered, and 150 ml of the culture supernatant was concentrated to about 2 ml by an ultrafiltration method using Amicon YM10 membrane. Further, concentration was performed using Amicon Centricon 10 until the concentration became about 150 ⁇ .. To this, 1 ml of TBS (50 mM Tris-HCl H 7.4, 0.15 M NaCl) was added, and the mixture was again concentrated to about 150 ⁇ l.
  • TBS 50 mM Tris-HCl H 7.4, 0.15 M NaCl

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 糸田 発明の名称
ヒトプロテイン Cおよび Zまたは活性化ヒ トプロティ ン c様活性を有する蛋白
技術の背景
産業上の利用分野
本発明は、 ヒ トァ口ティン cまたは活性化ヒトァロテ ィン c様活性を有する蛋白に鬨するものである .:. さらに 詳しくは抗凝固剤または線溶促進剤と して使用し得るヒ トプロティン Cまたは活性化ヒトプロティン C様活性を 有する蛋白に閬するものである。
ここで、 本明細書において、 ァミノ酸配列は I U P A C一 I U B生化学委員会 ( C B N ) で採用された方法に より略記するものと し、 たとえば下記の略号を用いる。
Ala L—ァラニン
Arg L一アルギニン
Asn L—ァスパラギン
Asp L―ァスパラギン酸
Cys し一システ ン
Gin L一グルタミン
Glu L―グルタミン酸
Gly グリシン
His L—ヒスチジン lie し一イ ソロイ シン
Leu し一口イ シン
Ly s L―リジン
Met L一メチォニン
Phe L—フヱ二ルァラニン
Pro L一プロ リ ン
Ser Lーセリ ン'
Thr L一スレ才ニン
Trp L一 ト リプトファン
Tyr Lーチロシン
Val L-バリン
また、 D N Aの配列はそれを構成する各デォキシリボ ヌクレオチドに舍まれる塩基の種類で略記するものと し . たとえば下記の略号を用いる。
A アデニン (デォキシァデュル酸を示す。 〉
C シトシン (デォキシシチジル酸を示す。 )
G グァニン (デォキシグァニル酸を示す。 〉
T チミン (デォキシチミジル酸を示す。 )
従来技術
ァロティン Cは血漿セリンプロテア一ゼ前駆体の一種 であって、 血小板や血管内皮細胞の表面で、 トロンビン とそのレセァターであるトロンボモジユリンとの複合体 による限定分解を受けて活性化され、 セ リ ンァロテア一 ゼである活性化プロテイン C (以下 AP Cという ) に変 換される: A P Cは血液凝固系の活性化第 5因子および 活性化第 8因子を選択的に分解することによって抗凝固 活性を発揮する . この活性はァロティン Sによって増強 されることが知られている また、 A P Cは組織アラス ミノーゲンァクチベータの阻害剤である PAI-1 を切断す ることにより、 線溶促進活性をもっと考えられている。
ヒトァ口ティン Cのアミノ酸配列については既に、 Proc, Nat l. Acad. Sci. USA, 82, 467.3-4677 ( 1985)等 で明らかなように、 Gla ドメイ ンおよびェピダ一マルグ ロースファクター ( E G F ) 様ドメイ ンをアミノ末端側 に有する軽鎖 (分子量約 21, 000) と活性化ペプチドおよ び触媒ドメィンからなる重鎖 (分子量 41, 000 ) とがジ スルフィ ド結合したもの ( 2本鎖型〉 である。
具体的にはヒトァロティン Cは第 1図に示すように軽 鎖は、 ァミノ末端 Ala からカルボキシル末端の Leu まで 155 個のアミノ酸からなり、 重鎖はァミノ末端の Asp か らカルボキシル末端の Pro まで 262 個のアミノ酸からな つており、 軽鎖と重鎖は細胞中で (¾N—〉 軽鎖- Lys- Arg-重緙 (一 C O O H ) の形で生合成され、 細胞から分 泌される過程で Lys-Arg が切断され、 2本鎖化される。 軽鎖と重鎖とは、 軽鎖のアミノ末端から 141 番目の Cys と重鎖のアミノ末端から 120 番目の Cys との間でジスル フ ィ ド結合で結合している。
ヒ トプロテイ ン Cから A P Cへの変換は、 ヒ トァロテ ィ ン Cの重鎖のァミノ末端 (以下、 N末という 〉 から 1 2 番目のアミノ酸から重鎖の N末のアミ ノ酸までの活性化 ポリペアチドが除去されることによって行われる: 従つ て、 A P Cのアミノ酸配列はヒトァ口ティン Cのァミ ノ 酸配列において、 ヒトプロテイン Cのアミノ酸配列から、 重鎖の N末から 1 2番目のアミノ酸から重鎖の N末のアミ ノ酸までのすべてを除いたものである:
軽鎖については、 ァミノ末端側の構造は G i a ドメイ ン および E G F様ドメインが存在しているので重要である が、 そのカルボキシル末端側、 特に重鎖と結合している 14 1 番目の C y s 以降カルボキシル末端側のアミノ酸の活 性に及ぼす影響等に鬨して明らかではない。
ヒトァ口ティン Cが活性化される際には、 活性化ぺプ チドのカルボキシ末端側に位置する切断部位が、 活性化 酵素 (生体内にあっては前述のようにトロンビン一トロ ンボモジュリン複合体〉 の活性中心の位置するくぽみに 入り込む必要がある。 このような酵素と基質 (モトプロ ティン C ) との相互作用は、 活性中心や切断部位周辺の 立体構造に影響されると考えられる。 こう したことから ヒトァロティン Cの 1 4 1 番目の C y s 残基以降カルボキシ ル末端側のアミ ノ酸の一部または全部を欠失した改変体 においては、 立体障害の緩和により、 酵素の活性中心と 基質中の切断部位とがより容易に接近できる結果、 活性 化される速度が増大することが期待できる。 しかしなが ら、 こう した検討の報告はなく、 かかる改変体が活性を 有するか否かも不明である。
発明の開示
すなわち本発明は、 基本的に天然型のヒ 卜プロテイン
Cまたは活性型ヒトァロティン Cの構造を有する蛋白で あり、 該蛋白の軽鎖におけるァミノ末端から 141 番目〜 カルボキシル末端迄のアミ ノ酸配列が、 下記表 1の(1)
〜(δ) のいずれかで示されるアミノ酸配列であることを 特徴とする軽鎖を持ったヒ トァロティン Cまたは活性化 ヒ トァロティン C様活性を有する蛋白に鬨するものであ る。
I ¾^ヒトァロティン cの
!アミノ匿列の謹の
Iァミノ ら C 号 141 142 143 144 145 146 147 148
(1) Cys-61 -Arg-Pro-Trp-Lys-Arg-Met アミノ醒列 (2) Cys-Gly-Arg-Pro-Trp-Lys-Arg
(3) Cys-Gly-Arg-Pro-Trp-Lys
(4) C s-Gly-Arg-Pro-Trp
(5) C s-Gly-Arg-Pro
(6) Cys-Gly-Arg
(7) Cys-Gly
(8) Cys 当該蛋白は、 典型的には、 軽鎖カルボキシ末端および 重鎖ァミノ末端に一 ( ¾〉 n 一 R2— ¾一を結合して互い に連結した形状、 端的には上記記載の軽鎖と、 天然型ヒ トァロティン Cまたは活性化ヒトァロティン Cの重鎖と が下記表 3で示されるような構造で結合されて生合成さ れることができ、 細胞から分泌される過程で 2本鎖化寸 る
3
H?N ( Rt ) R2-R3- 鎖一 COOH
Rt, , ¾は Arg または Lys
n -0, 1, 2, 3, または 4
重鎖; ヒ卜ァロティン Cまたは活性化ヒト ァロティン Cの重鎖 本発明の種々のアミノ酸配列を有する蛋白は、 それぞ れ天然型ヒトァロティンまたは活性化ヒトァロティン C と同様の性質、 活性を有している
で天然型ヒトァロティン Cと同様の性質とし ϊ、 例えば、 本発明で得られた蛋白をプロティン c活性化酵 素で処理することにより、 抗凝固活性、 線溶促進活性、 ァミダ一ゼ活性等を有するようになること等が挙げられ る すなわち、 本発明で得られた天然型ヒ トプロテイン C と同様の性質を有している蛋白は、 天然型ヒ トァロティ ン Cと同じくァロティン C活性化酵素で処理することに より天然型 A P Cと同様の性質を有する蛋白に変換され る, ここでプロテイン C活性化酵素と しては、 トロンビ ン、 トロンビン一トロンボモジユリ.ン複合体、 蛇毒等が 挙げられる。 また重鎖ァミノ末端に存在する 12アミノ酸 からなるァクティベーションぺプチドをあらかじめ欠失 させておくことにより、 直接活性化ヒトプロテイン Cと
Ml様の性質、 活性を有した蛋白を発現させることもまた 可能である。
また、 A P C活性と しては、 前述したとおり、 凝固系 の活性化第 5因子および活性化第 8因子を選択的に分解 する抗凝固活性、 並びに組織プラスミノ一ゲンァクチべ —ターの阻害剤である PAI-1 と反応して PAI-1 を失活さ せることに起因する線溶促進活性等が挙げられる。
木発明にはまた、 基本的に天然型のヒトプロテイ ン C の構造を有する蛋白であり、 該蛋白のアミノ酸配列の重 鎖のァ.ミノ末端から 12番目アミノ酸から重鎖のアミノ末 端迄のアミノ酸が下記表 2で示されるアミノ酸から選ば れた組み合わせ 〈ただし、 一 3〜12までの組み合わせが 欠失、 欠失、 欠失、 Asp, Thr, Glii, Asp, G , Gl¾, Asp, Gin, Val, Asp, Pro, Ar であることを除く。 ) であることを特 徴とするヒ卜ァロティン Cおよび./または活性化ヒ トプ ロティン C様活性を有する蛋白が含まれる
\ 天然型ヒトプ πティン cの アミノ酸
jァミノ 酸配列の重鎖の
Iァミノ 末端からの番号
一 3 Asp,欠失
― Thr,欠失
一 1 Gin,欠失
1 Asp,欠失
9 Thr, Gln,欠失
3 Gin,欠失
4 Asp,欠失
5 Gin,欠失
6 G , Val,欠失
7 Asp,欠失
8 G , Pr。,欠失
9 Val, Arg,欠失
10 Asp, Arg, leu, Lys, His,欠失
11 Pro, Lys, Ar g,欠失
12 Arg
かかる本発明の蛋白のアミノ酸配列の重鎖の N末から 12番目のアミノ酸から、 重鎖の N末のアミノ酸迄の組み 合わせの具体例と しては例えば、 以下に示したものが挙 げられる。
i ) Asp-T r-Glu-Asp-GIn-Glu-Asp-Gln-Val-Asp-Lys
-Arg
i i } Asp-Thr-Glu-Asp-Gln-Glu-Asp-Gln-Val-Arg-Lys
-Arg
iii) Asp-Thr-G -Asp-Gln-Glu-Asp-Gln-Val-Leu-Lys
-Arg
i v) Asp - Thr - Glu - Asp - Gin - Glu - Asp - Gin - Vaト Asp - Pro
-Arg-Lys-Arg-Arg
v〉 Asp-Thr-Glu-Asp-Gl n-Glu-As -Gl n-Va 1 -Asp-Pro
- Arg - Hi s - Arg - Arg
v i ) Asp-Gln-Glti-Asp-Gln-Vai-Asp-Pro-Arg-Lys-Arg
-Arg
v i i ) Asp-Gl n-Va I -Asp-Pro -Arg-Lys-Arg-Arg
vi i i) Asp - Thr - G - Asp - Thr - Glu - Asp - Gin - Glu - Asp - Gin
-Va l - Asp - Pro - Arg
i x) Asp-Thr-Glu-Asp-Gln-Glu-Asp-Gln-Gli] -Asp-Gin
-Va l - Asp - Pro - Arg
x) Thr-Glu-Asp-Gln-Glu-As -Gin-Val-Asp-Pro-Arg x i } Glu-Asp-Gln-Gli3-Asp-Gln-Val-Asp-Pro-Arg xi i) Asp-Gl n-Glu-Asp-Gl n-Va I -Asp-Pro-Arg
i i i } Asp-Gl n-Va l-Asp-Pro-Arg
x i v ) Asp - Pro - Arg v) ?r o-Ar g
xv i ) Ar g
木発明の上記種々の重鎖 N末ァミノ酸配列を有する蛋 は、 それぞれ天然型ヒトプロティン Cと同様の性質ま たは AP C活性を有している。
ここで天然型ヒトァロティン Cと同様の性質としては、 例えば、 本発明で得られた蛋白をァロティン C活性化醇 素で処理することにより、 抗凝固活性、 線溶促進活性、 ァミダ一ゼ活性等を有する蛋白を生成させること等が挙 げられる
すなわち、 本発明で得られた天然型ヒトァ口ティン C と同様の性質を有している蛋白は、 天然型ヒトァロティ ン Cと同じくァロティン C活性化酵素で処理することに より天然型 AP Cに変換される このような性質を有す る蛋白のアミノ酸配列の具体例としては、 例えば、 上記 具体例のうち viii) 〜xiii) が好ましく挙げられる。 こ こでプロテイン C活性化酵素としては、 トロンビン、 ト ロンビン一トロンボモジュリン複合体、 蛇毒等が挙げら れる。
また、 A P C活性と しては、 前述したとおり、 凝固系 の活性化第 5因子および活性化第 8因子を選択的に分解 する抗凝固活性、 並びに組織アラスミノーゲンァクチべ 一ターの阻害剤である PAI-1 を切断する線溶促進活性等 が挙げられる .: このような性質を有する蛋白のアミノ酸 配列の具体例と しては、 例えば上記具体例のうち、 好ま しくは i)〜vii)、 xiv}〜xvi〉をあげることができる。 ここで i }〜 vi i }のァミノ酸配列をもつものは細胞から 分泌された時点で、 A P C活性化酵素で処理されること なく、 AP C活性を有し、 かつアミノ酸配列は天然型 A P Cと同じになる。
また xiv}〜; i)のァミノ酸配列をもつものは細胞から 分泌された後においても同様のアミノ酸配列を有し、 か つ A P C活性化酵素で処理することなく A P C活性を有 している。 更に xiv)〜xvi〉のアミノ酸配列を有する蛋白 はヒトァ口ティン Cインヒビター、 アルファ 1アンチト リアシン等に阻害されにくく、 天然 AP Cに比較して 血中半滅期が長い
更に本発明で得られる蛋白は Gla を有していることが 好ましい。
本発明において、 本発明の蛋白をコ一ドする D N A配 列とは、 それを含有するアラスミ ドを宿主に導入し、 培 養せしめたときに、 本発明の性質を有する蛋白が結果的 に発 ¾される D N A配列であればよく、 その中間に構造 遺伝子以外の他の遺伝子 (例えばィントロン) が介在し ていてもよい。
本発明の表 1の(1) 〜(δ) のいずれかで表わされるよ うな軽鎖ァミノ末端部分を有する蛋白をコードする D N Α配列は、 天然のヒ トプロティン Cの c D N A配列から 容易に組立てることができる:. 即ち Pro atl. Acad. Sci. USA, 82, 4674〜 1475にプロテイン Cをコードする 遺伝子の D N A配列が記載され、 その中にプレア口部分 (一 42アミノ酸〜一 1アミノ酸) をコードする D N A配 列領域、 軽鎖部分 ( 1アミノ酸〜 155 アミノ酸〉 をコー ドする D N A配列領域、 開裂部位 〈 156 ァミノ酸〜 157 アミノ酸) をコードする D N A配列領域、 重鎖部分 ( 15 8 アミノ酸〜 419 アミノ酸〉 をコードする A配列領 域および該重鎖部分におけるァクチべーションベアチド 部分 ( 158 アミノ酸〜 169 アミノ酸) をコードする領域 が記載されているので、 これをもとに軽鎖のアミノ末端 側を単に削除するだけでも本発明の上記ァ口ティ ン Cに 対応する蛋白をコ一ドする D N A配列を組立てることが できる。 ·
また、 活性化プロテイン Cに対応する蛋白をコードす る D N A配列は、 上記プロテイン Cに対応する蛋白をコ —ドする D N A配列から、 上記ァクチべーションベアチ ド部分をコ一ドする D N A配列部分を削除すれば簡単に 組立てることができる。
本発明における上記プロティン Cまたは活性化ァロテ イン Cに対応する蛋白を発現せしめるには、 開裂部位と して天然の Lys-Arg を採用ォる必要はない: むしろこの 部分を改変して最終的な蛋白の収率を高めることができ る: かかる鬧裂部位は、 軽鎖側に軽鎖 C末一 ( ) „ 一 R2— —の形で結合し、 重鎖 N末に— ( 〉 n - R2 - R3 一重鎖 N末の形で結合するものであり、 一般的には
■ R .1 ) U 2 - R3 Q " Ri ) n — R2— ト' ri, Ri, , ¾は前記定義の通りであり、 Qは任意 のォリゴペアチド鎖を表わし、 Pは 0または 1であ
' る
で表わされる。 これに対応する D N A配列は Lys, Argに それぞれ対応する例えば AAA, CGAを用いて容易に決定す ることができる。
一方本発明における表 2に対応する蛋白をコードする D N A配列は、 (天然型 A P Cの軽鎖 D N A ) 一 X - Y 一 (天然型 A P Cの重鎖 D N A ) で表わすことができる : ここで Xは開裂部分の D N A配列を表わし、 LysLys,
LysArg, ArgLysまたは ArgArgをコードする D N A配列で あり、 AAA と CGA との組合せ、 またはそれ以外のいずれ でもよい。 また、 Yは活性化ペプチド部分の D N A配列 を表わし、 下記 U〜16) が例示される。
1) GAC ACA GAA GAC CAA GAA GAC CAA GTA GAT AAG
CGG
2) GAC ACA GAA GAC CAA GAA GAC CAA GTA CGG AAG
CGG
) GAC ACA GAA GAC CAA GAA GAC CAA GTA CTG AAG CGG
4) GAC ACA GAA GAC CAA GAA GAC CAA GTA GAT CCG
CGG AAG CGC CGC
) GAC ACA GAA GAC CAA GAA GAC CAA GTA GAT CCG CGG CAC CGC CGC
) GAC CAA GAA GAC CAA GTA GAT CCG CGG AAG CGC CGC
7) GAC CAA GTA GAT CCG CGG AAG CGC CGC
8) GAT ACG GAG GAC ACA GAA GAC CAA GAA GAC CAA GTA GAT CCG CGG
9) GAC ACA GAA GAC CAA GAG GAT CAG GAA GAC CAA GTA GAT CCG CGG
10} ACA GAA GAC CAA GAA GAC CAA GTA GAT CCG CGG 11) GAA GAC CAA GAA GAC CAA GTA GAT CCG CGG
12) GAC CAA GAA GAC CAA GTA GAT CCG CGG
13) GAC CAA GTA GAT CCG CGG
14) GAT CCG CGG
15} CCG CGG
16) CGG
更に本発明における蛋白を発現させる場合、 前記ァレ プロ部分 (一 42アミノ酸〜一 1アミ ノ酸) を改変するこ tもできる。 かかる改変形としては、
『ヒトァロティ ン Cのプレープロ領域において、 アミ ノ酸配列の一 15番めから一 12番めのアミノ酸が 一 15番め Se r または Leu
一 14番め Ser または Aia
― 13番め Ser または Pro
— 12番め Git または Gin
から選ばれた組み合わせ (ただし一 15〜一 12までの組 合せが Ser-Ser-Ser-G であることを除く。 ) である ことを特徴とするアミノ酸配列』
が挙げられる。
かかる本発明のヒ トプロティン Cのプレーア口領域に おけるアミノ酸配列の一 15番めから— 12番めのアミノ酸 の組み合わせの具体例としては、 例えば
1) Lue-Al a-Pro-G
2) Leu-Al a-Pro-Gl n
等が挙げられる。
かかるァミノ酸配列をコードする D N A配列の具体例 と しては、 例えば
)' ) -CTG-GCC-CCC-GAG-
2' ) -CTG-GCC-CCC-CAG- 等が挙げられる。
以上の説明から明らかな通り、 本発明の蛋白を発現さ せる D N A配列の構造は、
(1) 必要に応じ、 リボソームとの結合を容易ならしめ る非コード領域 (例えば
GGGGCTGTCGCGGCAGGACGGCGAACTTGCAGTATCTCCACGACCC GCCCCTGTGCCAGTGCCTCCAGA )
(2) 天然型または改変型プレーア口領域
(3ί 本発明の蛋白の軽鎖領域
(4) 開裂部分の領域
(5) 本発明の蛋白の重鎖領域
(6) 必要に応じ 3'側非コード領域にスプライスサイ ト
( 5'側の非コード領域中においてもよい)
(7;· 必要に応じポリ Α—付加シグナル
から構成される。
本発明の蛋白をコ一ドする部分を有する上記配列の L) N A断片は、 宿主べクタ一系に応じて適当に選ばれた発 現用べクタ一に組み込まれる。 そのような発現ベクター の具体例としては、 バクテリァ由来のプラスミ ド、 バク テリオファージ由来の D N A、 動物ウィルスの D N A等 に適当な制御領域を組込んだベクタ一、 例えばアデノウ ィルス主要後期ァロモータ一、 S V40初期ァロモ一ター S V40後期ァロモーター、 マウスメタ口チォネイン 1 - ァロモーター、 MMTV (マウス乳頭腫ウィルス) のァ 口モータ一、 R S V (ラウス肉腫ウィルス) のプロモ一 ター等を組み込んだプラスミ ドベクターあるいは Bovine パピ口一マウィルス等のウィルス由来のべクタ一等が用 いられる。
前記 D N A断片のかかるベクターへの組み込みはそれ 自体既知の方法で行うことができ、 例えば Miura 0. et al. , J. Clin. Invest. 83- 1598- 1604 (19δ9)等の文献 に記載の方法によって行うことができる。
一方、 宿主用の動物細胞と してはヒトまたはヒ ト以外 の動物細胞のいずれであってもよく、 例えば CH0, C127, BHK, Cosl, Cos7, LM, NIH3T3, 293, HeLa等があげられ、 巾でも CH0, BHR, 293 が好ましい。
上記発現型ベクターのこれら細胞へのトランスフエク ションも、 また当該分野でよく知られたそれ自体公知の 方法によって行うことができ、 例えば Spandidos D. A. and Wi 1 k i e N. . , Expression of Exogenous DNA in Mamma 1 i an Cells, Ed. Hame s B. D. and Hi ggi ns S. J. Transcription and Translation, IRL Press, Oxford, PPl-48等の文献記載の方法によって行うことができる。
かく して得られる形質転換細胞を、 それぞれの細胞に 適合した条件下に常法で培養することにより、 その培養 液から目的とする本発明の蛋白を回収することができる。
本発明の蛋白の定量法は特開昭 61-283868 号公報によ つて示された方法を用いることができる この方法によ れば、 Gla をもつヒトプロテイ ン Cおよび Zまたは活性 化ヒトプロテイン C様活性を有する蛋白 (以下、 ヒトァ ロティン C誘導体という ) のみを測定することもできる , 本発明のヒ トァロティン C誘導体の精製には、 バリゥ ム吸着法、 イオン交換クロマトグラフィー法を含む天然 型ヒトプロティン Cの精製法を応用することができるが、 カルシウムイオンによる G l a ドメインのコンホメーショ ン変化を認識する抗ヒトァロティン Cモノクロ一十ル抗 休を使用したァフ ィ二ティカラムクロマトグラフィーを 用いるのが特に好ましい (特開昭 64 -8509 1号公報参照〉 . この方法は、 G l a を有するヒトプロテイン C誘導体のみ を精製できる点と、 E D T Aという温和な溶離剤が使え る点で優れた方法である
本発明のヒトァ口ティン C誘導体の活性は、 あらかじ め蛇毒 (プロタック ®、 ァメ リカンダイァグノスチカ社 製〉 で活性化して合成基質 ( P C a⑧、 ァメリカンダイァ グノスチカ社製) の切断活性で調べた。 本発明のヒトプ ロティン C誘導体は触媒ドメィンについては天然型と同 一であるので、 合成基質切断活性をもって、 本来の活性 である抗凝固活性、 線溶促進活性を表わすことができる 発明の効果
本発明で得られる蛋白は、 ヒトァ口ティン Cおよび Z または A P C様活性を有するものであり、 殊にその一部 は A P C活性化酵素で処理することなく A P C活性を有 している。
従って本発明の蛋白を用いることにより、 活性化処理 に伴う酵素の除去、 ウィルスの混入等の問題が解消され これにより抗凝固剤または線溶促進剤と して用いられる A P Cの供耠をより安定的に行うことが可能となる
また軽鎖 C末が一部削られた蛋白は、 天然のものに比 ベて安定性が高く、 薬剤と して保存する際により有利な ものとなる。
実施例
本発明の実施例では、 次の方法を用いた .
N Aの切断
1 i のアラスミ ド D N Aまたは M 13ファージのレア リカティブ . フォーム ( R F〉 D N Aまたは D N A断片 の切断は、 ΙΟ の緩衝液中、 4 〜10単位の制限酵素を 用い、 メ一カーにより指定された温度で 2時間保つこと により行った。 緩衝液は、 制限酵素に付属のものを用い た。
D Ν Α断片のァガロースゲルからの回収
制限酵素で切断した D N A断片は、 サブマリン型電気 泳動槽を用いた 0· 8 %ァガ口一スゲル電気泳動で分離し 卞 目的の D NA断片を含むァガロースゲルを切り出し、 GBNECLEAN (Bio 101社) を用いて回収した。 方法は添付 の説明書に従った。
D NA断片の結合
D N Aライゲーシヨンキッ ト (宝酒造) を用いて行つ た。 方法は、 添付の説明書に従った。
大腸菌の形質転換
大腸菌 HM01 株のコンビテントセル (宝酒造〉 に、 20 T以下の D N A溶液を加え、 1時間氷上に置いた。 次 に 42Cの水浴に 1分間つけたあと、 再び氷上に 5分間置 いた。 これを 1 mlの L一ブロスに加え、 1時間振盪培養 した後、 その一部 〈 50〜300 ϋ 〉 を、 アンヒ。シリンブ レート ( L—ブロス、 寒天 、 アンピシリン 5G g ml ) にまいてー晚 37°Cで培養し、 コロニーを作らせた: アラスミ ド D N Aの小スケール調製
アルカリ溶菌法 ( 『Molecular Cloning 』 ( Τ·
Maai at i s. Col d Spring Harbor Laboratory, 1982 ¾ P368 参照〉 による調製を行った。 必要に応じて前述の
『GENECLEAN 』 による精製を行った。
アラスミ ド D N Aの大スケール調製
アルカリ溶菌 i£ ( 『 Transcription and Translation 』 (B. D. Hames, IRL press, 1984) P8参照) および CsC 1平 衡密度勾配遠心法によって行った。 ここで、 超遠心用口 一ターは日立製 RP- 67VFバ一チカルロ一ターを用いた。 また CsClの除去は透析によらず、 T E ( lOmM Tris-H Ci PH 8.0, lin EDTA} で 4倍に希釈後、 エタノ一ル沈澱を することで代えた。
N Aの塩基配列の決定
少ィテオキシ · チェーン · タ一ミ不一ション ideoxy chain te rmi nat i on)法を用いた。 反応に用いた試薬は宝 酒造の 『7-deaza ' シークェンスキッ ト』 のものを使用 した。 操作手順はそれに添付された説明書に従った ラ ベルには35 s — d C T P a S ( 400 Ci,/ ol,アマジャム 社) を用いた。 電気泳動は 6 %ァクリルアミ ドの 0.3mm 厚のゲルを使用し、 泳動後乾燥してからォートラジォグ ラフィーにかけた。 用いたテンペレート D N Aは、 ヒ ト プロティン C cD N Aの改変操作後は一本鎖 D N Aを用 いたが、 それ以外では 2本鎖のアラスミ ドをアル力リ変 性後、 中和したものを用いた。 その際の手順は 『ベクタ — D N A』 (榊佳之、 講談社、 1986) P67 に記載の方法 によった またァライマーは、 調べたい部分の近傍の配 列 18塩基分を化学合成し、 それを精製して用いた...
D N A断片の化学合成およびその精製
cD N A改変用プライマー及び塩基配列決定用プライ マ一はアプライ ド ' バイォシステムズ社 380A型 D N A 合成装置で 『 ON, AUTO 』 の条件で合成した。 その精 製には同社製 『オリゴヌクレオチド精製力一トリ 、'/ジ』 を添付の説明書に従って使用した。
予備実施例 1
ヒトァ口ティン Cをコードする cD N Aの取得
ヒト肝細胞より、 グァニジンチオシァネ一ト法 ( J. M. Chirgwin, 『 Bi ochemi stry』 , 5294, 1979参照〉 に 従って mR N Aを抽出した。 ヒト肝細胞 2 X 108 個に 5 mlの G T C溶液 ( 6 Mグァニジニゥムィソチオシァネ一 ト、 5 ιηΜクェン酸十トリウム、 0· 1M2 —メルカアトエタ ノール、 0. 5 %N—ラウロイルザルコシン酸十ト リ ウム 〉 を加え、 ホモゲナイズした 3.8 mlの 5.7M CsCl , 0. 1M E D T A水溶液の上に重層し、 これを RPS-40T ローター (日立製) を用いて 35, OOOrpm で 時間、 25。Cで超遠心 した。 超遠心後注意深く溶液を取り除いた後、 エタノー ル約 1 mlで 3回リンスし、 1.4 mlの水に溶解後エタノー ル沈澱させた。 この沈澱を 0. 5M NaC!, 10mM Tris- H C1 (ρΗ 7.5), ImM E D TA, 0.05¾' S D Sの組成の洗浄液 0.5 mlに溶解し、 0.5 mlの Oi igo T}セルロースカラム を通した。 このカラムを上記洗浄液で洗った後、 10mM Tris- H C1 (pH 7. 5}, ImME D T A , 0.05½ S D Sの組 成の溶出液で溶出し、 約 の P(HyA+ R N Aを得た : これをもとに、 Gublerと Hoiiman の方法 ( 『Gene』 , 25: 263, 1983 参照) に徒いアマシャム社製 cD N A合成キ ットを用いて cD N Aを合成した。
5 JUL の po A+ R N Aに 50ユニットのヒト胎盤由来 RNase阻害剤 ( HPRI) の存在下 5〃 g の Ol igo (dT) 12 〜】 8を加え 100 ュニ 卜の逆転写酵素を 42°Cで 1. 5 時間 働かせて約 30%の収率で一本鎖 eD N Aを合成した。 こ の反応液に 4ュニッ トの大腸菌リボヌクレア一ゼ Hと 115 ュニットの大腸菌 D N Aポリメラーゼ I を加え 12。C で 1時間、 22でで 1時間反応させた後 70 Cで 10分間放置 して酵素を失活させた。 その後 10ュニットの T4D N Aポ リメラ一ゼを加え 3 Cで 10分間反応させて、 約 95%の収 率で 2本鎖 cD N Aを得た -, この 2本鎖 cD N Aに 20ュ 二ッ卜の EcoRI メチラーゼを 37°Cで 1時間作用させた後 EcoRI リンカ一 〈宝酒造製) を結合させた -. これに 16ュ ニッ トの EcoRI を加え 37°Cで 2時間反応させた後、 セフ アロース CL-4B カラムを通し、 純化した約 Ο. δ JUL % の c D N Aを得た。
次にこの cD N A O.4 j と A gtlOアーム 1.0 j g 〈ベクタークローニングシステムズ社製〉 とを連結した ものを用いて in vitroパッケージングを行い、 ヒト肝細 胞由来 cD N Aライブラリーを得た。 このライブラリー を大腸菌 C 600 hf I" 株に感染させ、 アラークを形成させ た。 ヒトプロテイン C遺伝子を含むクローンは、 次に示 す32 Pで標識した合成 D N A PC-1, PC-2 をプローブと したァラ一クハイプリダイゼ一ション法により選別した。
PC-1 (5' ) ATCGACGGCATCGGCAGCTT
CAGCTGCGACTGCCGCAGCG (3' }
PC-2 (5' ) CGCTGCGGCAGTCGCAGCTG
AAGCTGCCGATGCCGTCGAT (3' )
(ここで(5' )および(3' )はそれぞれ D N A配列の 5'末 端側および 3'末端側を示すものである。 )
ヒ トァロティン Cの cD N Aを含む A gt 10 ファージ からの D N Aの調製は、 Thomasと Davis の方法
( 『Jouriial of Molecular Biology』 , 91, 315, 1974 参照〉 により行った。 この D N Aを EcoRI で消化し、 ァ ガロ一スゲル電気泳動にかけ、 ヒトァ口ティン Cの cD A断片を回収した。 この D N A断片を、 予め EcoRI 処 理、 およびバクテリァのアル力リ性ホスファターゼで処 理した PUC8とライゲーシヨンすることにより PUC8-PC1を 造成した。 このヒ卜ァ口ティ ン C eD N Aの塩基配列を 調べたところ、 完全長ヒトァ口ティ ン C cD N Aと比較 してその上流部分が欠けていることがわかったため、 予 備実施例 2で述べる方法で下記の部分を補った。
( + strand)
AG CTT ATG TGG CAG CTC ACA AGC CTC CTG CTG TTC GTG GGC ACC TGG GGA ATT TCC GGC ACA CCA GCT CCT CTT GAC
(― strand)
TGA GTC AAG AGG AGC TGG TGT GCC GGA AAT TCC CCA GGT GGC CAC GAA CAG CAG GAG GCT TGT GAG CTG CCA CAT A
予備実施例 2
天然型ヒトァロティン C発現ベクターの造成
第 5図に示されるように、 予備実施例 1で得られた P C8-PC1をそれぞれ 1ケ所づつ切断部位をもつ HindUと Sac IIで切断してァガロースゲル電気泳動にかけ、 Sac H— HindlEの小断片を回収した (これを A断片とす る。 ) 。
また Pl]C8-PUを Sac ϋと EcoRI で切断してァガロース ゲル電気泳動にかけ、 Sac Eより上流側の ECGRI -Sac 1断片を回収した この D N A断片をさらに、 この断片 中 1ケ所の切断部位をもつ Dde Iで切断した後ァガロー スゲル電気泳動にかけ、 Dde I -Sac ϋ断片を回収した (これを Β断片とする )
一方、 翻訳開始点の上流から、 上記 Dde Iまでの DN A断片を上流側の末端は Hind ΠΙで切断された形で、 下流 側の末端は Dde Iで切断された形で化学合成法によ り合 成した。 (これを C断片とする。 ).
次にそれぞれ 1ケ所の HindEI , Sac II切断部位をもつァ ラスミ ド pN AKを HindMと Sac I [とで切断し、 ァガロ —スゲル電気泳動にかけることにより HindU— Sac E大 断片 (アンピシリン耐性遺伝子および大腸菌中での複製 開始点を含む〉 を回収した。 この DN A断片と上記 B断 片, C断片との 3分子ライゲーシヨンを行い、 pNAK 一 PC Uを造成した。
次にこの pN A K— P C Uを Hindinと Sac Eで切断し、 ァガロースゲル電気泳動にかけることにより、 HindEI― Sac E小断片を回収した。 (これを' D断片とする)
一方、 PSV 2— gpt を Apa Iで部分消化し、 ァガロ ースゲル電気泳動にかけ、 2ケ所の Apa Iサイ トのうち 1ケ所だけが切断されたもの ( linear型) を回収し、 さ らに Hind Πで完全消化後再びァガロースゲル電気泳動に かけ、 第 5図に示した Hindi— (Apal > -Apa I断片を 回収した。 この断片に、 DNAボリメラーゼ Iクレノウ 断片とデォキシリボヌクレオチド三リン酸を作用させて、 Hindi!サイ トおよび Apa Iサイ トを平滑末端化した、 - こ の D N A断片にリン酸化された Hind リンカ一 (宝酒造) をライゲーシヨンした後、 HindM処理を行い、 ァガ口一 スゲル電気泳動にかけ再び回収した。 この D N A断片を 分子内でライゲーシヨンしたものを大腸菌 HB101 に導入 することにより、 これを増やした。 この大腸菌より抽出 したアラスミ ド D N Aを再び H dnで切断し、 バクテリ ァのアル力リ性ホスファターゼで処理したものと、 上記 A断片および D断片と 3分子ライゲーシヨンし、 天然型 ヒトァロティン C発現べクタ一 pSV 2— PC1 を得た。
なお、 P D X— P C 594 の製造法は、 実施例 1の末尾 に P D XZ P Cベクターの製造法として引用により記載 されている内容と同一である
実施例 1
ヒトァ口ティン C誘導体発現べクタ一 PDX-PCLCA14 , PDX-PCLCA12 , PDX-PCLCA8の作製
ヒトプロテン C軽鎖カルボキシル末端を欠失させた蛋 白の発現べクタ一 PDX-PCLCA14 , pDX-PCLCA12 , pDX- PCLCASは第 2図に示す方法に従って作製した。
まず合成 D NA Aおよび合成 D N A Bとして下記 の合成 D NAを用いた。
「 PDX-PCLCA14 作製の場合]
合成 D NA Aと して下記の合成 D NA PCL1A を用 いた。
PCL1A 5' GTGTCACCCCGCAGTGAAGTT CCCTTGTAAACGAGACACAGAAGA
CCAAGAAGACCAAGTAGATCCGC 3
( L bases)
合成 D N A Bと して下記の合成 D N A PCL1B を用 いた。
PCL1B 5' GGATCTACTTGGTCTTCTTGG
TCTTCTGTGTCTCGTTTACAA GGGAACTTCACTGCGGGGTGA CACTGCA 3'
(70 bases)
[ pDX-PCLCA12 作製の場合]
合成 D N A Aと して下記の合成 D N A PCL2A を用 いた。
PCL2A V GTGTCACCCCGCAGTGAAGTT
CCCTTGTGGGAGGAAACGAGA CACAGAAGACCAAGAAGACCA AGTAGATCCGC 3'
(74 bases)
合成 D N A Bと して下記の合成 D N A PCL2B を用 いた。
PCL2B V GGATCTACTTGGTCTTCT
TGGTCTTCTGTGTCTCGTTTC CTCCCACAAGGGAACTTCACT GCGGGGTGACACTGCA 3' { 16 ases)
「i>DX-PCLCA8作製の場合]
合成 D NA Aと して下記の D N A PCUA を いた, PCL3A GTQTCACCCCGCAGTGAAGTT
CCCTTGTGGGAGGCCCTGGAA
GCGGAAACGAGACACAGAAGA CCAAGAAGACCAAGTAGATCC GC 3'
(86 ases)
合成 D NA Bとして下記の D NA PCL3B を用いた,
PCL3B 5' GGATCTACTTGGTCTTCTTGG
TCTTCTGTGTCTCGTTTCCGC TTCCAGGGCCTCCCACAA GGGAACTTCACTGCGGGG TGACACTGCA 3'
(88 bases)
合成 D NA Aを 2 ug 含む溶液 20 ϋ と合成 D NA Bを 含む溶液 20 とを混合し、 10X キナーゼ 溶液 Tris-KCi pH7.6, 0.1M gC , 50mMジチォ スレイ ト一 レ ( Dithio-threitoi)、 l mMスペルミ ジン'、 : i mM EDTA) ΙθΛ ί と、 蒸留水 48 を加え Τ4ポリヌク レオチドキナーゼ (ベーリンガ一マンハイム製) 2 ju ( 20単位) を加えて 37。Cで 30分間ィンキュベートした . その後、 反応液を 9CTCに加熱し、 室温まで徐々に冷却し て、 2本の合成 D N Aをァ二一ルさせた。 この液に 3 M 酢酸力リゥム溶液を 10 i) 加え、 さらにエタノ一ル 250 μ を加え一 7(TCで 2G分冷却後 15, 000回転 Z毎分で遠心 し、 D N Aをエタノール沈殿させた.:. 約 800 I St のエタ ノールで沈殿をリンスした後、 50 の 10mM Tris-HCI pH7.6, ImM EDTA 溶液に溶解した。 .
一方、 天然型のヒ トプロテイン C発現ベクター pDX- PC 594 10 / を制限酵素 H dEIと Sae Πとで完全消化し、 0.8 %ァガロースゲル電気泳動をおこない、 最も大きな ]) N Aフラグメント 1 をゲルから回収した。 この D NA フラグメント 1の 3 g を 30 の lOffiM Tris-HCl H 8.0 EDTA溶液に溶解した。
別に PDX-PC594 10 i を制限酵素 Hindllと Pst I とで 完全消化し、' 0.8 %ァガロースゲル電気泳動をおこない、 2番目に小さな D N Aフラグメント 2をゲルから回収し た。 この D NAフラグメント 2の l g を 30 ϋ の lOmM Tris-HCl pH8.0, ImM EDTA溶液に溶解した。
次に合成 D N A Aと合成 D NA Bとをァニールさ せた溶液 1 〃 と、 フラグメント 1の溶液 1 と、 フ ラグメント 2の溶液 1 ζ とを混合し、 宝酒造製ライゲ —シヨンキッ トの Α液 18 および Β液 3 を加え でで 45分反応させた。 反応液 5 を、 宝酒造製 HB101 コンビテントセル液】 00 に加え、 42。Cで 1分閭加温 した後 1 mlのい Broth を加え 30分間 37。Cでィンキュベー トした後 100 JJ. g mlのアンピシリンを含んだ 1· 5 %ァ ガープレートにまいて 3 Cで 18時間培養してトランスフ オームされた大腸菌クローンを得た。 このクローンから アラスミ ド D N Αを小スケール調製し、 得られたフ。ラス ミ ドの制限酵素マツァを作製して、 各々 PDX-PCLCA14 , PDX-PCLCA12 , pDX-PCLCASに相当するヒトァ口ティン C 誘導体発現ベクターを得た。
なお得られた発現ベクターは大スケール調製し、 発現 に用いた。
なお、 pDX/PCベクタ一については、 Poster, D. C. et ai. , Biochemistry , 7003-7011 ( 1987}に記載されて おり、 さらに、 Busby, S. et aに, ature. SU, 271 - 273 (1985 ) . および Barkaer, K. L. et aに, uc. Acids Res. 13, 841, 857 ( 1985 ) に pDX/PCを構成する D N A機 能部分に鬨して述べられている。
ここで Amp1" はアンピシリン耐性遺伝子である。
全体の構造については第 3図を参照。
実施例 2
ヒトプロティン C誘導体の発現
BHK-21細胞 (ATCC CCい 10)をファルコン 3025シャーレ を用い、 30mlの 10%F C S— eR D F中で培養した。 ほ ぼコンフルエンドになったシャ一レ 5枚分の細胞をトリ ァシン処理ではがし、 P B S (-) 30 mlの中に懸濁したも のを lOOOrpm 室温で 5分間遠心し、 上清を除いた 再度 30mlの P B S (-) に懸濁し、 lOOOrpm 室温で 5分間遠心 し、 上清を除いたものを 0· 3 mlの P B S (-) に懸濁した 一方、 表 4記載の各々のヒ トァロティン C誘導体発現べ クタ一 32〃g はあらかじめ 1. 5 mlエツペンドルフチュー ゾの中でエタノール沈澱することにより滅菌しておき、 HOOOrpm 10 分間遠心後、 無菌的に上清を除き、 P B S (-) 0. 2 mlに溶解した。 これを上記の B H K細胞の懸濁 液と合わせて (ほぼ 0. 8 mlとなる) バイオラ、'/ ド社 『GE NE PULSER 』 用キュベッ ト ( 0.8 ml ) に入れ、 軽く振盪 して混和した。 バイオラッ ド社 『GENE PULSER 』 を用い、 1200V, 25 JUL ? 1 回の条件でエレクト口ポレーシヨンを 行った。 すみやかに細胞懸濁液をファルコン 2059チュー ゾに移し、 4. 2 mlの 1 F C S— eR D F - 2 JUL ξ / ml ビタミン K 1を滴下しながらゆるやかに振盪し、 希釈し た。 これを 30mlの 10% F C S - eR D F - 2 g 7 mlビ タミン K 1を入れたファルコン 3025シャーレ 5枚に 1 ml づっ加え、 希釈した。 これを C Ozインキュベータ一で 24 時間培養後、 30mlの P B S (-) で 2回よく洗い、 I T E S - eR D F— 2 g z lビタミン K 1の無血清培地を シャーレ当り 30ml加え、 さらに 48時間培養した。 ( I T ]: S : 9 j g ./mlィ ンスリン、 10 g / ml トランスフエ リン、 10 M エタノールァミン、 2 X 10— δΜセレ十ィ ト、 eR D F ; 極東製薬製〉
培養上清を回収し、 アミコン社 YM10メンブレンを用い た限外 F過法により、 150 mlの培養上清を 2 ml程度まで 濃縮した。 さらにアミコン社セントリコン 10を用いて約 180 ϋ になるまで濃縮を行った · これに l mlの T B S ( 50mM Tris-H CI PH 7.4, 0.15M NaCl)を加え、 再び約 180 j il まで濃縮した。
培養上清および濃縮液 6 At を 1 %B S A— T B Sで 120 に希釈し、 E L I S A法でその中のヒトフ"ロテ ィ ン C誘導体の濃度および Gl a をもつヒ トァロティ ン C 誘導体の濃度を測定した。 プレート側のモノクロ一十ル 抗体は JTC4 (重鎮認識) を用い、 西洋ヮサビペルォキシ ダ一ゼ (HRP0) 標識抗体と して JTC1 ( Gla ドメイ ン認識 Gla をもつヒトァ口ティン C誘導体の測定用〉 または JTC5 (活性化ペプチド認識、 ヒトァ口ティン C誘導体全 体の測定用〉 を用いた。 これらのモノクロ一十ル抗体は 『Journai of Biological Chemistry 』 Wakabayashi,
261, 11097 ( 1986 ) に記载のものである。 培養上清 中のヒトァ口ティン C誘導体の量を表 4に、 濃縮液中の ヒトプロティン誘導体の量を表 5に記した。 表 4
培養上清中のヒトァロティン C誘導体量
1 発現べク夕一 ; 全体の量 Gla を有するもの
π? , ml ng. ' ml
\ PDX-PC594 150 110
; (天然型〉
pDX-PCLCA8 190 180
. DX-PCLCA12 20 20
! pDX-PCLCA14 検出限界以下 ; 検出限界以下
5
Figure imgf000035_0001
実施例 3
ヒトプロティン C誘導体の合成基質切断活性
実施例 2で得られた Gla をもつヒトプロティ C誘導 体のうち pDX-PCLCA8ベクタ一による蛋白 pDX - PCLCA12 ベクターによる蛋白(PCA12) 、 および pDX-PCLC Δ14 ベクターによる蛋白(PCA14) を 0. 1%B S A— T B S ( 50m Tris-H Ci pH7.4, 0.15M Nad ) で希釈して 0.125, 0.25, 0. 5, 1, 2 g 160 ,0 の溶液と し、 こ れに 1 Uz' mlのァロタック ® (ァメ リカン ダイァグノ スチカ社) を 40 J3 加え、 37 Cで 1, 5 時間ィ ンキュベ一 ショ ン し 。
活性化後 0. 1 ¾ B S A - T B S ( ΡΗ7. で希釈し、 各 々 12.5, 25, 50, 100, 200 ng,-' 50 ϋ と した。 希釈後 50 バ JJ のサンアルと 20 の PCa ® ( P A C活性測定用合 成基質 ; アメ リカンダイァグノスティカ社製) — C , 30 /ζϋ の 0.1 %B S A - T B S ( ΡΗ7.4).を加え、 その直後 と、 37°Cで 10分間インキュベートした後に、 405nm にお ける吸光度 ( A 405 ) を測定した。 その結果を表 6に示 寸 表 6
ヒトプ 0テイン C誘導体の合成基質切断活性 ( A40
Figure imgf000036_0001
実施例 4
ヒ卜プロティン C誘導体の抗凝固活性
実施例 2で得られた Gla をもつヒトプロテイン C誘導 体のうち PCA8, PCA12 , および PCM4 を 0.1 % B S A - TB S { 50mM Tris-HCl pH7.4, 0.15M NaCl)で希釈して 0.125, 0.25, 0.5, 1, 2 ff Z O ϋ の溶液と し、 こ れに 1 Umlのァロタック 〈アメ リカンダイァグノスチカ 社) を 40 加え、 37。Cで 1.5 時間保ち、 活性化ヒトァ 口ティン C誘導体と した。 これを希釈して、 12.5, 25, 50, 100, 200ng 50/xi) 0.1 %B SA-TB S ( pH7.4) と した。 37でに 2分間保った 100 αϋ のシスメックス - コントロール血漿 Iに、 このサンアル.と、 のシス メックス ΑΡΤΤ試薬を加えて撹拌し、 37Cに 2分間保った のち、 100 ϋ の 25mM CaCl2 を加えて撹拌し、 シスメ ックス CA-100型血液凝固分析器で APTTを測定した。 天然 型の活性化ヒトプロテイン Cと比較した結果を表 7に示 す。
tトァ Πテイン C誘導体の抗凝固活性 ( sec)
12.5 ; 25 50 100 200
天然型 3 ί 53 69 ! 95
PCA8 31 31 32 35 1 40
PCA12 31 33 45 61 165
PCA14 122 ―
: バッファ-のみ 30 - ,
実施例 5
ヒトァロティン C誘導体発現べクタ一の造成
第 6図( に示すように、 予備実施例 2で造成した PS V 2-PC1を Hind で切断し、 ァガ口一スゲル電気泳 動にかけ、 ヒトァ口ティン C cD NA部分を回収した。 この D N A断片をあらかじめ Hind およびバクテリアの アル力リ性ホスファターゼで処理した Ml 3 mp 11のレプリ 力ティブ . フォーム ( RF〉 D NAとライゲーシヨンし これを大腸菌 TG-1株に導入し、 プラークを生じさせた。 〈なお大腸菌 TG-1株は、 アマ一シャム社 「01 igoni leo- tide directed in vitro mutagenesis system 」 に舍ま れているものである。 )
このプラークから組み換え M13 ファージをよう じでと り 20ju l の大腸菌 TG-1株の一晩培養液とともに 2mlの ·2 X ΤΥ培地に加え、 5時間 37Cで振盪培養を行った。 この 培養液中の大腸菌を集め、 アル力リ溶菌法でレアリカテ イブ . フォーム ( RF〉 D NAを調製し、 制限酵素切断 による解析で、 ヒトプロテイ ン C c:D NAがM13 の遣伝 子とは逆方向に挿入されたクローンを同定した。 このク ローンを培養した時の培養上清中の組み換え M13 ファー シから、 アマシャム社 『 Oligonucleotide directed in vitro mutagenesis system』 tこ添付の手匿書^:従ってテ ンペレード D N Aを調製した。 このテンペレート D N A と第 4図に示したプライマーを用い、 アマシャム社 『 01 i gonuc 1 eot i de directed i n vitro mutagenesis system』 に添付の説明書に従って使用することによりヒ トプロテイン C誘導体 cD NAを作成 た。 これは基本 的には、 F. Eckstein らの方法に依るものである
( ucleic Acids Res. 8749, 1985 参照〉 。 得られたヒ トァロティン C誘導体 cD NAを含む M13 ファージレア リカティブ · フォーム D N Aを大腸菌 TG-1株に導入し、 ァラ一クを作らせた。 このアラーク中の組み換え M13 フ ァ一ジを前述の方法で 2mlのスケールで培養し、 その培 養上清から組み換え M13 ファ一ジをボリエチレングリコ ール沈澱により調製し、 それをフ Xノール処理すること により、 一本鎖 D NAを得た。 具体的にはアマシャム社 M13 cloning and sequencing kit;』 tこ添付のノヽンドフ" ックに徒った。 この一本鎖 D N Aをテンペレートと し、 化学合成した改変部近傍の 18塩基 (十鎖) のァライマ一 を使って塩基配列決定の操作を行い、 目的の改変がなさ れたクロ一ンを選別した。 保存しておいたそのクローン に対応する菌体からアル力リ溶菌法により組み換え Ml 3 ファージのレプリカティブ . フォーム ( R F ) D N Aを 調製した。 これを Bio 101 社 『GENECLEAN 』 で精製し、 BstEIと Sac E ( 8), 9), 10), 11), 12), 13), 14), )に または Sac I ( 1), 2} , 3), 4), 5), 16})で消化 したものをァガロースゲル電気泳動にかけ、 改変部分を 含む D N A断片を回収した。
次に pSV 2— PC1 をこれを同じ制限酵素で切断し
( Sac Iで消化したものについてはさらにパクテリァの アルカリ性ホスファターゼで処理した) 、 ァガロースゲ ル電気泳動にかけ、 大きい方の断片を回収し、 上記の改 変部分を含む D N A断片とライゲーシヨンし、 大腸菌 HB 】01 株に導入した。 得られた形質転換体からプラスミ ド をアル力リ溶菌法で調製し、 Hindinおよび組み換えに用 いた制限酵素で切断後ァガロースゲル電気泳動で解析し、 目的の組み換えがなされたものを選別した。 更に 1), 2) , 3), 4), 5), 16} については Hindinおよび BstEE処理で 正しい向きに改変部を含む断片が挿入されたクローンを 選別した。 また全てのアラスミ ドについて改変部近辺の 塩基配列を前述のァライマーを用いて調べ、 正しい組み ^えがなされていることを確認した。 このクローンを
400 ml L—ブロス中で培養したものからアル力リ溶菌法 一 CaCl平衡密度勾配遠心法でアラスミ ドを調製し、 ヒ ト プロティン C誘導体発現べクタ一と して実施例 6の発現 に供した。 また第 6図(b) に示したように、 BstEEサイ トと Sac Eサイ ト (いずれも 1ケ所切断) を利用して、
4)と 12), 13)から 6), 7)を作製した。
なお、 ここで用いた 1)〜5), 8)〜16) の番号はプライ マーの番号を示すと同時に、 そのプライマーを用いて作 成したヒトァロティン C誘導体発現ベクターを表わす。 さらにそれらの番号は、 実施例 6においてはその発現べ クタ一を用いて得たヒトァロティン C誘導体タンパクを 表わす。 これは 6), 7)の発現ベクターについても同様で ある。
実施例 6
ヒトァロティン C誘導体の発現
BHK-21細胞 (ATCC CCL-10)をファルコン 3025シャーレ を用い、 30mlの 10%F C S— eRD F中で培養した。 ほ ぼコンフルェントになったシャーレ 5枚分の細胞をトリ プシン処理ではがし、 P B S (-)3C) mlの中に懸濁したも のを lOOOrpm 室温で 5分間遠心し、 上清を除いた。 再度 30mlの P B S (-) に懸濁し、 lOOOrpm 室温で 5分間遠心 し、 上清を除いたものを 0.3 mlの P B S (-) に懸濁した。 一方、 後記表 8の各々のヒ トァロティン C誘導体発現べ クタ一 32〃g はあらかじめ 1· 5 mlエツペンドルフチュー ブの中でエタノール沈澱することにより滅菌しておき、 l ^OOOrpin 10 分間遠心後、 無菌的に上清を除き、 P B S (-) 0.2 に溶解した。 これを上記の B H K細胞の懸濁 液と合わせて 〈ほほ' 0.8 mlとなる〉 バイオラッド社 『GE NE PULSER 』 用キュベット ( 0.8 ml ) に入れ、 輊く振盪 して混和した。 バイオラッド社 『GENE PULSER 』 を用い、 1200V, 25 P 1回の条件でエレク ト口ポレーシヨンを 行った。 すみやかに細胞懸濁液をファルコン 2059チュー ブに移し、 4.2 mlの 10% F C S— eR D F - 2 u g ml ビタミン K 1を滴下しながらゆるやかに振盪し、 希釈し た。 これを 30mlの 10% F C S— eR D F - 2 M g / mlビ タミン K 1を入れたフアルコン 3025シャーレ 5枚に 1 ml づっ加え、 希釈した。 これを C02インキュベーターで 24 時間培養後、 30mlの P B S (-) で 2回よく洗い、 I T E S - eR D F— 2 g Zmlビタミン K 1の無血清培地を シャーレ当り 30ml加え、 さらに 48時間培養した。 ( I T E S : 9 g /mlイ ンスリン、 10 g /mlトランスフエ リン、 IOJ M エタノールァミン 2 X10— 8Mセレナイ ト、 eR D F ; 極東製薬製〉
培養上清を回収し、 アミコン社 YM10メンブレンを用い た限外沪過法により、 150 mlの培養上清を 2 ml程度まで 濃縮した。 さらにアミコン社セントリコン 10を用いて約 150 JLL ^ になるまで濃縮を行った。 これに 1 mlの T B S ( 50mM Tris-H Cl H 7.4, 0. 15M NaCi }を加え、 再び約 ] 50 まで濃縮した。 このうち 6 ju を 1 % B S A— T B Sで 120 j ^ に希 釈し、 E L I S A法でその中のヒトァロティン C誘導体 の漶度および Gl a をもつヒトプロテイン C誘導体の濃度 を測定した。 プレート側のモノクローナル抗体は JTC4
〈重鎖認識〉 を用い、 西洋ヮサビペル才キシダ一ゼ
( HRP0) 標識抗体と して JTC1 ( G ドメイ ン認識、 Gl a をもつヒトプロテイ ン C誘導体の測定用) または JTC5
(活性化ペプチド認識、 ヒトァ口ティン C誘導体全体の 測定用) を用いた。 これらのモノクローナル抗体は、
『Journal o f Biological Chemistry 』 Wakabayaslii, K. , Ul^ 11097 ( 1986) に記載のものである。 なお、 1) , 2) , 3), 4), 5) , 18) , 19), 20) は JTC5によって認識さ れなかった。 これらの結果から濃縮したサンプルには 3 〜18 u g ノ mlの Gla をもつヒトプロティン C誘導体が含 まれることがわかった。 また濃縮前の培養上清の一部に ついて同様に測定したところ、 表 8の値のヒトァロティ ン C誘導体が認められた。
8
Figure imgf000044_0001
実施例 7
ヒトプロティン C誘導体の合成基暂切断活性
実施例 6で得られた Gla をもつヒトプロテイン C誘導 体のうち lOOng 相当分のサンアルを 0.1%B S A— TB S ( 50mM Tris-HCl pH7.4, 0.15 NaCl) で希釈して 40 J3 と し、 これに 1 じ mlのフ。 σ夕、、 ,ク ® (アメ リカン ダイァグノスチカ社〉 を 10 ϋ 加え、 37。Cで 1時間イ ン キュベーシヨンした。 あるいは lOOng 相当分の Gla をも つヒトァロティン C誘導体を 0.1%B S A— T B Sで希釈 し 50 ϋ と した。 これらに 30 ϋ 0, 1%B S A— T B S, 2θ ζ ϋ の 4 mgZml PCa ( A P C活性測定用合成基質、 ァ メリカン ダイァグノスチカ社) を加え、 37。Cでインキ ュべ一シヨンした。 その間 5分毎に 405 nmの吸光度を東 洋測器 ETY - 型 E L I S Aアナライザーで測定した c 5 分の時点と 25分の時点での吸光度の差を表 9に示す。 こ の結果 8), 9), 10) , 11), 12), 13) は天然型ヒトァロテ イン Cと同様な挙動を示すことがわかった。 また 14), 1
5) , 16 ) は、 活性化の操作をしなくてもある程度の A P C活性をもつことが明らかになつたく 一方 1 2> , 3) , 4), 5), 6) , 7>も活性化の操作を施さなくても A P C活 性をもつことが示された。 なお、 1), 2) , 3) , 4) , 5),
6) , 7)については 200ng 相当の Gla —ヒ トプロテイ ン C 誘導体を用いている。 9 (a)
}■ r o t a c— P r o t a c—
天然型 (参考例) 0.119 0.591
8) 0.090
9) 0.073 0.605
10) 0.072 0.497
11) 0.061
12 0.090
13) 0.115 0.350
14) 0.151 0.205
15) 0.216 0.224
O O
16) 0.211 O O 、
9 (b)
Pr otac— ProtacT
天然型 (参考例〉 0.218 1.273
1) 0.349
2) 0.319 0.607
3) 0.324 0.587
5)
6) 0.799 0.879 実施例 8
新規なリーダーシークェンスを用いたプロテイ ン C発現 べクターの造成
第 7図に示すように、 予備実施例 2で造成した PS V 2 -PCI を Hind で切断し、 ァガ口一スゲル電気泳動に かけ、 ヒ トプロテイン C cD N A部分を回収した この D N A断片をあらかじめ H in dinおよびバクテリァのアル カリ性ホスファターゼで処理した Ml 3 mpllのレプリカテ イブ ' フォーム ( R F〉 D N Aとライゲーシヨンし、 こ れを大腸菌 TG-1株に導入し、 アラークを生じさせた こ のプラークから組み換え M13 ファージをよう じでと り、 20 の大腸菌 TG-1株のー晚培養液とともに 2mlの 2 X TY培地に加え、 5時間 37Cで振盪培養を行った。 この 培養液中の大腸菌を集め、 アル力リ溶.菌法でレプリカテ イブ . フォーム ( R F ) D NAを調製し、 制限酵素切断 による解析で、 ヒトプロテイ ン C (:D N AがM13 の遣伝 子とは逆方向に挿入されたクローンを同定した。 このク ローンを培養した時の培養上清中の組み換え M13 ファ一 シから、 アマシャム社 " Ul igonucleotide directed in vitro mutagenesis s y s t e m』 こ添付ク:)手 j®書 tこ従ってテ ンぺレート D N Aを調製した。 このテンペレート D N A と以下に示す合成プライマーを用い、 アマシャム社 u Uligoniicleotide directed in vitro mtitagene s i s system』 を使用することによってヒ トプロテイン C cD N Aのリーダ一シークェンス部分の改変を行った ., 合成プライマ一 i ) {5' ) CTT GAC TCA GTG TTC CTG GCC CCC GAG CGT
GCC CAC CAG (3' ;
ii ) (5' } CTT GAC TCA GTG TTC CTG GCC CCC CAG CGT
GCC CAC CAG (3' )
この方法は基本的には、 F, Eckstein らの方法による ものである。 得られた新規なリーダ一シ一クエンスをも つヒトァ口ティン C cD N Aを含んだ 1½ 13ファージ? ]) N Aを大腸菌 TG-1株に導入し、 プラークをつくらせた このアラーク中の組換え M 13ファージを前述の方法で 2 mlのスケールで培養し、 その培養上清から組換え M 13フ ァージをポリエチレングリコール沈澱により調製し、 そ れをフエノール処理することにより、 一本鎖 D N Aを得 た。 具体的にはアマシャム社 『M13 cloniag and sequencing kit』 に添付のノヽンドブックに従った。 この 一本鎖 D N Aをテンペレートと し、 化学合成した改変部 位近傍の 18塩基 (十鎖〉 のプライマ一を使って、 塩基配 列決定の操作を行ない、 目的の改変がなされたクローン を選別した; 保存しておいたそのクローンに対応する菌 体から、 アル力リ溶菌法により組換え M 13ファージ R F D N Aを調製した: これを Bio 101 社 『& ene clean®』 で精製し、 Bal ェと BstEIIとで消化したものをァガロー スゲル電気泳動にかけ、 改変部分を含む D N A断片を回 収した。 次に PS V 2 -PCI を Bai ェと BstEEとで切断 し、 ァガロースゲル電気泳動にかけ大きい方の断片を回 収し、 上記の改変部分を含む D N A断片とライグーショ ンし、 大腸菌 HB101 株に導入した, 得られた形質転換体 からアラスミ ドをアル力リ溶菌法で調製し、 HindEiある いは Ba.l I と BstEHで消化後、 ァガロースゲル電気泳動 で解析し、 目的の組換えがなされたものを選別した。 そ れらについて、 さらに改変部近辺の塩基配列を前述のァ ライマ一を用いて調べ、 正しい組換えがなされているこ とを確認した このクロ一ンを 400 mlの L-Broth 中で培 養したものから、 アル力リ溶菌法一 CsCl平衡密度勾配遠 心法でアラスミ ドを調製し、 実施例 9の発現に用いた。 実施例 9
新規なリーダーシークェンスを用いたヒトァロティン C の発現
BHK-21細胞 (ATCC CCL-10)をファルコン 3025シャーレ を用い、 30mlの 10%F C S— eRD F中で培養した ほ ぼコンフルェントになったシャーレ 5枚分の細胞をトリ プシン処理ではがし、 P B S (- )30 mlの中に懸濁したも のを lOOOrpm 室温で 5分間遠心し、 上清を除いた。 再度 30mlの P B S卜) に懸濁し、 lOOOrpm 室温で 5分間遠心 し、 上清を除いたものを 0.3 mlの P B S (-) に懸濁した。 一方、 実施例 8で作成した各々のヒ トァロティン C誘導 体発現ベクター 32 g はあらかじめ 1.5 mlエツペンドル フチューブの中でエタノール沈澱することによ り滅菌し ておき、 OOOrpm 10 分間遠心後、 無菌的に上清を除き、 P B S ί-) 0.2 mlに溶解した: これを上記の B H K細胞 の懸濁液と合わせて (ほぼ 8 mlとなる) バイオラッド 社 『GENE PULSER 』 用キュベ、'/ ト ( 0.8 ml) に入れ、 軽 く振盪して混和した。 バイオラ、、/ド社 『GENE PULSER 』 を用い、 1200V, 25 1回の条件でエレク ト口ポレー シヨンを行った。 すみやかに細胞懸濁液をファルコン 2059チューブに移し、 4.2 mlの 10% F C S— eR D F - 2 jit g mlビタミン K 1 を滴下しながらゆるやかに振 ¾ し、 希釈した。 これを 30mlの 10% F C S— eR D F - 2 g / mlビタミン K 1を入 たファ /レコン 3025シャーレ 5枚に l mlづっ加え、 希釈した。 これを C 02インキュべ 一ターで 24時間培養後、 30mlの P B S で 2回よく洗 い、 I TE S— eRD F - 2 g mlビタミン K 1の無 血清培地をシャーレ当り 30ml加え、 さらに 48時間培養し た。 ( I T E S : 9 Λί g / mlィンスリン'、 ΙΟ Χ g ト ランスフェリン、 10 M エタノールァミン 2 X 1(T8Mセ レナイ ト、 eRD F ; 極東製薬製)
培養上清を回収し、 アミコン社 YM10メンブレンを用い た限外沪過法により、 150 mlの培養上清を 2 ml程度まで 濃縮した。 さらにアミコン社セントリコン 10を用いて約 150 μ. ^ になるまで濃縮を行った。 これに 1 mlの T B S ( 50mM Tris-HCl H 7.4, 0.15M NaCl}を加え、 再び約 150 χ ί まで濃縮した
この一部を 1 % B S Α— Τ B Sで希釈し、 E L I S A 法でその中のヒ トァロティン C漶度および G をもつヒ トプロティン Cの濃度を測定した。 ァレ一ト側のモノク 口一ナル抗体は C4 (童鎖認識〉 を用い、 西洋ヮサビベ ルォキシダ一ゼ ( HRP0) 標識抗体と して JTC1 ( Gla ドメ ィ ン認識、 Gla をもつヒトァロティ ン Cの測定用〉 およ び JTC5 (活性化ペアチド認識、 ヒ トァロティン C全体の 測定用〉 を用いた。 これらのモノクロ一十ル抗体は、
|; J Λ la r n a 1 of Biological Chemistry 』 Wakabayashi, K. , 2 L. 11097 ( 1986) に記載のものである。 これらの 結果から濃縮したサンプルには 7 〜ll/xg Z'mlの Gla を もつヒトァロティン Cが含まれていることがわかった。 また濃縮前の培養上清の一部について.同様に測定したと ころ、 次表の値のヒトプロテイン C誘導体が認められた < なお表 1 ◦, 表 1 1における i), i i) の番号は、 実施 例 8において用いた合成ァライマーの番号に対応するヒ トァロティン C誘導体発現ベクターを用いて得たタンパ クを示す。
表 1 0
ヒ トァロティン Cの発現量
! 1トダ-シ-クェンス ヒトァ πティン C全体 Gla を有するもの :
I (ng/ml ) (ng/ml) ;
1 天然型 14.9 8.7 !
1
1 i ) 1 22.0 17.0
! ϋ ) 1 27.0 16.2 ! 実施例 1 〇
ヒトァロティン C誘導体の合成基質切断活性
実施例 9で得られたヒトプロティン Cのうち 1 OOrig を 0.1%B S A- T B S ( 50inM Tris-HC! pH7.4, ϋ. 15 NaCl) で希釈して 40 ϋ と し、 これに:! じ -' mlのァロタ ック ® (ァメリカン ダイァグノスチカ社) を ΙΟ Χ 加 え、 3 Cで 1時間インキュベーションした、 これに 30 iJ の 0.1%B S A B S, 20 J1 の 4 - ml PCa
( A P C活性測定用合成基質、 アメ リカン ダイァグノ スチカ社) を加え、 37°Cで 1時間インキュベーションし た後、 405 nmの吸光度を測定した。 その結果を次に示す
表 1 1
ヒトァロティン Cの合成基質切断活性
リ-ダ-シ-クェンス 合成基質切断活性
天然型 A 405 = 0.93
i ) 1.18
; π ) 1.45

Claims

言青求の範囲
1. 基本的に天然型のヒトプロティン Cまたは活性型ヒ トブ:口ティン Cの構造を有する蛋白であり、 該蛋白の 軽鎖におけるアミノ末端から 141 番目〜カルボキシル 末端のアミノ酸配列が下記表 1で示されるアミノ酸配 列であることを特徴とするヒ トプロティン Cまたは活 性化ヒトァロティン C様活性を有する蛋白。
! ¾^ヒ卜プロティン cの
アミノ隱 'Jの麵の
ミノ から 号 141 142143144145 146 147148 ί
1 (1) Cys-Gly-Arg-Pro-Trp-Lys-Arg-Met
アミノ國例
(2) Cys-Gly-Arg-Pro-Trp-Lys-Arg
(3) Cys-Gly-Arg-Pro-Trp-Lys !
(4) Cys-Gly-Arg-Pro-Trp ■
(5) Cys-Gly-Arg-Pro
(6) Cys-Giy-Arg ;
(7) Cys-Giy
(8) Cys
2. 請求項 1記載の蛋白をコードする D N A配列。
3. 当該蛋白の軽鎖をコードする D N A配列の 3'側末端 と、 重鎖をコードする D N A配列の 5'側末端とが、 Arg および..'' 'または Lys から主と してなる 2〜 個の アミノ酸からなる配列を端部に有する 2 〜20のアミ ノ 酸からなるアミノ酸配列をコードする D N A配列断片 で連結されている請求項 2記載の L) N A配列。
4. 基本的に天然型のヒトァロティン Cの構造を有ォる 蛋白であり、 該蛋白のアミノ酸配列の重鎖のアミノ末 端から 12番目アミノ酸から重鎖のアミノ末端迄のアミ ノ酸が下記表 2で示されるァミノ酸から選ばれた組み 合わせ (ただし、 一 3〜12までの組み合わせが欠失、 欠失、 欠失、 Asp, Thr, Glu, Asp, Gin, Glu, Asp, Gla, Val, Asp, Pro, Arg であることを除く。 ) あることを特徴 とするヒトプロティン Cおよび./または活性化ヒトブ ロティン C様活性を有する蛋白。
2
Figure imgf000055_0001
請求項 2または 3の D N A配列をバクテリァアラス ミ ド, バクテリオファージトランスファーベクタ一内 に有するヒ トァロティン Cまたは活性化ヒ トプロティ ン Cの発現べクタ一。
6. 哺乳類宿主細胞へ導入し得る発現べクタ一であって プロモーター、 これに続きその下流にある請求項 2, または 3の D N A配列、 並びに必要に応じこれに続き その下流にあるポリアデ二レーションシグナルを含有 し、 上記 D N A配列の転写が前記プロモータ一により 指令されるヒトァロティン Cまたは活性型ヒトァロテ イン Cの発現べクタ一。
7. 請求項 5または 6の発現べクタ一により トランスフ ェクトされている細胞。
8. 請求項 5または 6の発現ベクターにより トランスフ ェクトされている哺乳類細胞。
9. 上記細胞が C O S細胞、 B HK細胞、 ヒト肝癌細胞 HepG2 細胞、 Chang Liver 細胞、 マウス肝細胞、 C H 〇細胞、 HeLa細胞および 293 細胞からなる群から選ば れたものである請求項 7記載の細胞。
新たな ¾紙
PCT/JP1990/001471 1989-11-14 1990-11-13 Protein having activity like that of human protein c and/or activated human protein c WO1991007484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/293885 1989-11-14
JP1293885A JP2774163B2 (ja) 1989-11-14 1989-11-14 ヒトプロテインc様活性を有する蛋白

Publications (1)

Publication Number Publication Date
WO1991007484A1 true WO1991007484A1 (en) 1991-05-30

Family

ID=17800413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001471 WO1991007484A1 (en) 1989-11-14 1990-11-13 Protein having activity like that of human protein c and/or activated human protein c

Country Status (2)

Country Link
JP (1) JP2774163B2 (ja)
WO (1) WO1991007484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044190A3 (en) * 2002-11-11 2004-08-26 Maxygen Aps Zymogen-like protein c polypeptides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111690A (ja) * 1985-06-27 1987-05-22 ザイモジエネテイクス,インコ−ポレイテイド ヒト―プロテインcをコードする遺伝子
JPS6485084A (en) * 1986-10-29 1989-03-30 Zymogenetics Inc Constellation of protein c

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111690A (ja) * 1985-06-27 1987-05-22 ザイモジエネテイクス,インコ−ポレイテイド ヒト―プロテインcをコードする遺伝子
JPS6485084A (en) * 1986-10-29 1989-03-30 Zymogenetics Inc Constellation of protein c

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044190A3 (en) * 2002-11-11 2004-08-26 Maxygen Aps Zymogen-like protein c polypeptides

Also Published As

Publication number Publication date
JPH03155782A (ja) 1991-07-03
JP2774163B2 (ja) 1998-07-09

Similar Documents

Publication Publication Date Title
KR920007666B1 (ko) 변형된 섬유소 용해제의 제조방법
Latta et al. Synthesis and purification of mature human serum albumin from E. coli
JPS63503357A (ja) 新規な凝固活性タンパク質
US20070287660A1 (en) Novel clot-specific steptokinase proteins possessing altered plasminogen activation-characteristics and a process for the preparation of said proteins
JPH08502176A (ja) エンテロキナーゼのクローニングおよび使用方法
US6171842B1 (en) Chimeric serine proteases
JPH01502080A (ja) 組み換えビタミンk依存性蛋白質のガンマカルボキシル化の増強
JP2738428B2 (ja) トロンビンによるプロテインcの活性化を促進する作用を有するペプチド
CA2257118C (en) Recombinant blood-coagulation proteases
JP3490444B2 (ja) 昆虫類の唾液からのトロンビン阻害剤
WO1989001513A1 (en) Fast-acting prourokinase
WO1991007484A1 (en) Protein having activity like that of human protein c and/or activated human protein c
JPH06247998A (ja) エラスターゼ阻害活性を有する新規ペプチドおよびその製造方法
JPH05506354A (ja) 端が切り取られた軽鎖を有する活性プロテインc
JP2004520056A (ja) 可溶性ssaoの精製のための方法
JP2774156B2 (ja) ヒトプロテインcおよび/または活性化ヒトプロテインc様活性を有する蛋白
JPH07500964A (ja) 半翅目サシガメ科の動物からの新規トロンビン阻害性蛋白質
RU2426780C2 (ru) ЭКСПРЕССИОННАЯ ПЛАЗМИДНАЯ ДНК p6E-tTF, КОДИРУЮЩАЯ ВНЕКЛЕТОЧНЫЙ И ТРАНСМЕМБРАННЫЙ ДОМЕНЫ ТКАНЕВОГО ФАКТОРА ЧЕЛОВЕКА И ШТАММ E.coli BL21[DE3]/p6E-tTF-ПРОДУЦЕНТ РЕКОМБИНАНТНОГО ТКАНЕВОГО ФАКТОРА ЧЕЛОВЕКА
JPS61192288A (ja) ヒトエラスタ−ゼ2の生物工学的製造
JPH04252185A (ja) アミド化繊維素溶解酵素及びその前駆体並びにその製造方法
NZ275817A (en) Endothelin converting enzymes, preparation and use
JP2901291B2 (ja) 新規ポリペプチド及びその遺伝子
JPWO2005030956A1 (ja) OmpTプロテアーゼ変異体を用いたポリペプチドの切断方法
JPH03285684A (ja) メチオニンアミノペプチダーゼのdna配列
JPH07126297A (ja) カルモジュリン融合蛋白質

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB