WO1990014883A1 - Mikrokapseln mit einer polymeren kapselwand - Google Patents

Mikrokapseln mit einer polymeren kapselwand Download PDF

Info

Publication number
WO1990014883A1
WO1990014883A1 PCT/DE1990/000289 DE9000289W WO9014883A1 WO 1990014883 A1 WO1990014883 A1 WO 1990014883A1 DE 9000289 W DE9000289 W DE 9000289W WO 9014883 A1 WO9014883 A1 WO 9014883A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule wall
microcapsules
functions
capsule
azo
Prior art date
Application number
PCT/DE1990/000289
Other languages
English (en)
French (fr)
Inventor
Oskar Nuyken
Jochen Dauth
Brigitte Voit
Wolfgang Pekruhn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1990014883A1 publication Critical patent/WO1990014883A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/28Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
    • B41M5/287Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating using microcapsules or microspheres only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/002Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor using materials containing microcapsules; Preparing or processing such materials, e.g. by pressure; Devices or apparatus specially designed therefor

Definitions

  • the invention relates to microcapsules with a polymeric capsule wall.
  • microcapsules processes for their preparation and various possible uses are known from "Angewandte Chemie", 1975, No. 16, pages 556 to 567. According to this, microcapsules are understood to mean particles in the order of 1 to 5000 micrometers, which consist of a core and a solid capsule wall. Depending on the intended use of the microcapsules, the core contains an active substance which is isolated from the capsule environment by the capsule wall and can be released to it in a targeted manner by destroying the capsule wall or by permeation.
  • the capsule wall mainly consists of natural or synthetic polymers, the type and thickness of the capsule wall determine the outer shape of the microcapsules as spheres, grape-shaped aggregates or irregular structures on the one hand and the ability of the capsule wall to isolate and selectively release the capsule contents on the other.
  • the capsule opening can be mechanically from the outside, i.e. by shearing or crushing, or from the inside, e.g. B. by heating above the boiling point of the capsule content, and by dissolving, melting or burning the capsule wall.
  • microencapsulation includes interfacial polycondensation, in which a first monomer, dissolved in a water-immiscible solvent, is dispersed in a water-protective colloid solution with vigorous stirring; when a second monomer dissolved in water is added, the two monomers react at the solvent-water interface to form a solid polymer (polycondensate) in the form of microcapsules containing the solvent.
  • interfacial polycondensation in which a first monomer, dissolved in a water-immiscible solvent, is dispersed in a water-protective colloid solution with vigorous stirring; when a second monomer dissolved in water is added, the two monomers react at the solvent-water interface to form a solid polymer (polycondensate) in the form of microcapsules containing the solvent.
  • microcapsules A known use of microcapsules is in reaction Writing papers, for example of the "self-contained type", which are coated on one side with microcapsules containing a color former and a developer substance; where the
  • Microcapsules are destroyed by the pressure of a writing instrument, a visible marking immediately occurs by the developing color former.
  • GB-A-2 173 452 Another use of microcapsules is known from GB-A-2 173 452 in connection with an image recording method in which the microcapsules containing ink are applied to a recording medium and broken up according to the image to be recorded by a laser beam or at least made transparent to the ink should, so that the ink corresponding to the image to be recorded on the recording paper he arrives.
  • GB-A-2 173 452 does not show how this is actually achieved and which capsule wall materials could be suitable for this.
  • the object of the invention is to provide microcapsules with a thermolabile and / or photolabile capsule wall, the capsule wall of which breaks open under the action of heat and / or light.
  • microcapsules are characterized in the subclaims.
  • microcapsules according to the invention are distinguished by the fact that, owing to the thermally and / or photolabile predetermined breaking points in the capsule wall, they can be broken open specifically by heat or light in order to release the capsule contents.
  • the microcapsules are easy and safe to handle because they can be mechanically loaded and their capsule wall is impermeable to the capsule contents.
  • Another advantage is the fact that the predetermined breaking points in the form of the azo or Dioxy functions exothermic and in the case of the azo functions additionally with the release of propellant gas, namely nitrogen, so that the thermal energy required to trigger the decomposition is reduced by the heat released during thermal decomposition and the release of the capsule contents by the propellant gas is accelerated.
  • the effect of the propellant gas can also be supported by a low-boiling liquid as the capsule content.
  • a low-boiling liquid as the capsule content.
  • decomposition temperatures of about 120-125 ° C are reached, so that there is no danger of premature decomposition, for example at room temperature.
  • the decomposition temperature can be adjusted over a wide range depending on the respective neighboring groups to the azo and dioxy functions.
  • the mechanical properties of the capsule wall depend essentially on the type of polymer, here under
  • Polymer also polycondensates or polyaddition products are to be understood.
  • the ability of the microcapsules to retain the contents of the capsules in relation to the environment of the capsules is higher with crosslinked polymers than with linear polymers.
  • the type and number of predetermined breaking points in the capsule wall are decisive for the breaking open of the capsule wall, the number of predetermined breaking points being advantageously adjustable by copolymerizing the starting monomers with additional thermo- and photostable starting monomers.
  • the microcapsules according to the invention are outstandingly suitable for releasing active substances, such as, for example, medicaments, foods, pesticides, developers, hardeners, flame retardants, and much more, at the desired time by exposure to temperature and / or light.
  • the microcapsules are preferably used in thermal or laser transfer printing, in that the microcapsules containing a dye or a color former are applied either directly to the recording medium or to an ink ribbon attached to the recording medium to be printed, and by means of heat using a thermal printhead or be broken up by means of a laser through high-energy light with release of the capsule contents.
  • the color connection to the recording medium to be printed is supported by the exothermic heat and the propellant gas.
  • Solution (2) 1.4 g of 4,4'-azobis (4-cyanopentanoic acid chloride) (ACPC) are added to 4.5 g with exclusion of moisture
  • Polyvinyl alcohol (PVA), which serves as a dispersing aid and protective colloid, is dissolved in 20 ml of distilled water while stirring.
  • the Microcapsule suspension stirred for about 30 minutes.
  • the microcapsule dispersion is mixed together with silica gel as the developer, cellulose powder as a spacer and flow agent, and polyvinyl alcohol as a binder and applied to a support (film or paper).
  • the microcapsules are thermolytically broken up by thermal addressing, for example using a thermal printhead, at 120-140 ° C, whereby blue markings are generated on the carrier by the color formers emerging and developing from the addressed microcapsules.
  • the microcapsules are also broken open photolytically with the help of a laser, whereby a font width of less than two millimeters could be produced.
  • microcapsules given in Examples 2 to 6 below can be produced by varying the crosslinker component in solution (4) in the form of di-, tri- or polyfunctional amines.
  • microcapsules with a capsule wall made of the following linear polyamide are obtained
  • a large number of further microcapsules can be produced by varying the monomeric starting material in solution (2) and the crosslinking component in solution (4).
  • the monomeric starting material are the following water-insoluble symmetrical azo compounds, each with two reactive functional groups: 4,4'-azobis (4-cyanopentanoic acid halide), 4,4'-azobis (4-cyanopentanoic acid), 4,4'-azo bis - (4-cyanopentanol), 4.4 "azobis (4-cyanopentanamine) or 4,4'-azobis (4-cyanopentan isocyanate), which are dissolved to form the solution (2) in various organic water-immiscible solvents such as methylene chloride, chloroform and others.
  • Suitable crosslinker components are aromatic and aliphatic acid di-, tri- or polyhalegonides, aromatic and aliphatic di-, tri- or polyfunctional amines and alcohols as well as aromatic and aliphatic di-, tri- or polyisocyanates, so that microcapsules with capsule walls made of different azo-containing polyesters ,
  • Polyamides, polyurethanes, polycarbonates and polyureas can be obtained.
  • dyes in a solvent such as. B. generally available refills or oil / pigment suspensions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Bei Mikrokapseln mit einer polymeren Kapselwand enthält das Polymer der Kapselwand thermo- und/oder photolabile Sollbruchstellen in Form von Azofunktionen (-N=N-) oder Dioxyfunktionen (-O-O-), um durch Einwirkung von Temperatur und/oder Licht eine gezielte Freigabe des Kapselinhalts (unterschiedl. Wirksubstanzen, wie z.B. Farbstoffe, Medikamente, Entwickler, Härter, Flammschutzmittel) zu ermöglichen.

Description

Siemens Aktiengesellschaft
Mikrokapseln mit einer polymeren Kapselwand
Die Erfindung betrifft Mikrokapseln mit einer polymeren Kapselwand.
Derartige Mikrokapseln, Verfahren zu ihrer Herstellung und verschiedene Verwendungsmöglichkeiten sind aus "Angewandte Chemie", 1975, Nr. 16, Seiten 556 bis 567 bekannt. Danach sind unter Mikrokapseln Teilchen in der Größenordnung von 1 bis 5000 Mikrometern zu verstehen, die aus einem Kern und einer festen Kapselwand bestehen. Der Kern enthält entsprechend dem Verwendungszweck der Mikrokapseln eine Wirksubstanz, die durch die Kapselwand gegenüber der Kapselumgebung isoliert ist und an diese durch Zerstören der Kapselwand oder durch Permeation gezielt freigegeben werden kann. Die Kapselwand besteht vor allem aus natürlichen oder synthetischen Polymeren, deren Art und die Dicke der Kapselwand zum einen die äußere Gestalt der Mikrokapseln als Kugeln, traubenförmige Aggregate oder unregelmäßige Gebilde und zum anderen die Fähigkeit der Kapselwand zur Isolierung und gezielten Freisetzung des Kapselinhalts bestimmen. Die Kapselöffnung kann mechanisch von außen, also durch Scheren oder Zerdrücken, oder von innen, z. B. durch Erhitzen über den Siedepunkt des Kapselinhalts, sowie durch Auflösen, Schmelzen oder Verbrennen der Kapselwand erfolgen.
Für die Mikroverkapselung sind mechanisch-physikalische und chemische Verfahren bekannt. Zu den letzteren gehört die Grenzflächen-Polykondensation, bei der ein erstes Monomer, gelöst in einem mit Wasser nicht mischbaren Lösungsmittel, in einer Wasser-Schutzkolloid-Lösung unter kräftigem Rühren dispergiert wird; bei Zugabe eines zweiten in Wasser gelösten Monomers reagieren die beiden Monomere an der Grenzfläche des Lösungsmittels zum Wasser zu einem festen Polymer (Polykondensat) in Form von das Lösungsmittel beinhaltenden Mikrokapseln.
Eine bekannte Verwendung von Mikrokapseln ist die bei Reaktions Schreibpapieren beispielsweise nach dem "self-contained-Typ", die einseitig mit einen Farbbildner beinhaltenden Mikrokapseln und einer Entwicklersubstanz beschichtet sind; dort wo die
Mikrokapseln durch den Druck eines Schreibgerätes zerstört werden, tritt sofort eine sichtbare Markierung durch den sich entwickelnden Farbbildner auf.
Eine weitere Verwendung von Mikrokapseln ist aus der GB-A- 2 173 452 in Verbindung mit einem Bildaufzeichnungsverfahren bekannt, bei dem die Tinte beinhaltenden Mikrokapseln auf einem Aufzeichnungsträger aufgebracht werden und entsprechend dem aufzuzeichnenden Bild durch einen Laserstrahl aufgebrochen oder zumindest für die Tinte durchlässig gemacht werden sollen, so daß die Tinte entsprechend dem aufzuzeichnenden Bild auf das Aufzeichnungspapi er gelangt . Wi e dies tatsächli ch erreicht wird und welche Kapselwandmaterialien hierfür geeignet sein könnten, geht aus der GB-A-2 173 452 nicht hervor.
Der Erfindung liegt die Aufgabe zugrunde, Mikrokapseln mit thermolabiler und/oder photolabiler Kapselwand anzugeben, deren Kapselwand unter Wärme- und/oder Lichteinwirkung aufbricht.
Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß bei den Mikrokapseln der eingangs angegebenen Art das Polymer der Kapselwand thermo- und/oder photolabile Sollbruchstellen in Form von Azofunktionen (-N=N-) oder Dioxyfunktionen (-O-O-) enthält.
Vorteilhafte Ausführungsformen und eine bevorzugte Verwendung der Mikrokapseln sind in den Unteransprüchen gekennzeichnet.
Die erfindungsgemäßen Mikrokapseln zeichen sich dadurch aus, daß sie aufgrund der thermo- und/oder photolabilen Sollbruchstellen in der Kapselwand allein durch Wärme oder Licht gezielt aufgebrochen werden können, um den Kapselinhalt freizugeben. Darüber hinaus sind die Mikrokapseln einfach und sicher handhabbar, weil sie mechanisch belastbar sind und ihre Kapselwand für den Kapselinhalt undurchlässig ist. Ein weiterer Vorteil ist darin zu sehen, daß die Sollbruchstellen in Form der Azo- oder Dioxyfunktionen exotherm und im Falle der Azofunktionen zusätzlich unter Freigabe von Treibgas, nämlich Stickstoff zerfallen, so daß bei thermischer Zersetzung die zur Auslösung der Zersetzung erforderliche Wärmeenergie durch die frei werdende Wärme verringert wird und die Freisetzung des Kapselinhalts durch das Treibgas beschleunigt wird. Dabei kann die Wirkung des Treibgases zusätzlich durch eine leicht siedende Flüssigkeit als Kapselinhalt unterstützt werden. Für die Kapselwand-Polymere (PA1) bis (PA6) nach Anspruch 3 werden Zersetzungstemperaturen von etwa 120 - 125º C erreicht, so daß keine Gefahr aufgrund einer vorzeitigen Zersetzung beispielsweise bei Raumtemperatur besteht. Darüber hinaus ist die Zersetzungstemperatur in Abhängigkeit von den jeweiligen Nachbargruppen zu den Azo- und Dioxyfunktionen in einem größeren Bereich einstellbar.
Die mechanischen Eigenschaften der Kapselwand sind im wesentlichen von der Art des Polymers abhängig, wobei hier unter
Polymer auch Polykondensate oder Polyadditionsprodukte zu verstehen sind. So ist beispielsweise das Vermögen der Mikrokapseln, den Kapselinhalt gegenüber der Kapselumgebung zurückzuhalten, bei vernetzten Polymeren höher als bei linearen Polymeren. Ausschlaggebend für das Aufbrechen der Kapselwand sind Art und Anzahl der Sollbruchstellen in der Kapselwand, wobei die Anzahl der Sollbruchstellen in vorteilhafter Weise durch Copolymerisation der Ausgangsmonomere mit zusätzlichen thermo- und photostabilen Ausgangsmonomeren einstellbar ist. Die erfindungsgemäßen Mikrokapseln sind in hervorragender Weise geeignet, um Wirksubstanzen, wie z.B. Medikamente, Lebensmittel, Pestizide, Entwickler, Härter, Flammschutzmittel u.v.m. zum gewünschten Zeitpunkt durch Einwirkung von Temperatur und/oder Licht freizusetzen. Eine bevorzugte Verwendung finden die Mikrokapseln beim Thermo- oder Lasertransferdruck, indem die einen Farbstoff oder einen Farbbildner enthaltenden Mikrokapseln entweder direkt auf dem Aufzeichnungsträger oder auf einem an dem zu bedruckenden Aufzeichnungsträger anliegenden Farbband aufgebracht sind und mittels eines Thermodruckkopfes durch Wärme oder mittels eines Lasers durch energiereiches Licht unter Freigabe des Kapselinhaltes aufgebrochen werden. Dabei wird die Farbanbindung an den zu bedruckenden Aufzeichnungsträger durch die exotherm freiwerdende Wärme und das Treibgas unterstützt.
Im folgenden wird die Erfindung anhand von 6 Ausführungsbeispielen und-Modifikationsmöglichkeiten noch näher erläutert:
Beispiel 1
Zur Mikroverkapselung des Farbbildners Kristallviolettlacton
(KVL) werden folgende Ansätze hergestellt:
Lösung (1): 0,08 g KVL werden in 1,1 g 1,2-Dichlorethan unter
Rühren bei 50ºC gelöst.
Lösung (2): 1,4 g 4,4'-Azobis-(4-cyanopentansäurechlorid) (ACPC) werden unter Feuchtigkeitsausschluß in 4,5 g
1,2-Dichlorethan unter Rühren gelöst.
Lösung (3): 1 g niedermolekularer (M=15000 g/mol)
Polyvinylalkohol (PVA), der als Dispergierhilfsmittel und Schutzkolloid dient, werden unter Rühren in 20 ml destilliertem Wasser gelöst.
Lösung (4): 0,33 g Diethylentriamin und 0,4 g NaOH werden unter
Kühlen in 5 ml destilliertem Wasser gelöst. Die Lösungen (1) und (2) werden vereinigt und in Lösung (3) dispergiert. Die so erhaltene Emulsion wird mit der Lösung (4) bei hohen Rührgeschwindigkeiten ( 1000 U/min) langsam und unter Kühlen versetzt, wobei sich durch Grenzflächenpolykondensation Mikrokapseln mit einem Kapselinhalt aus 1,2-Dichlorethan, KVL und ACPC und einer Kapselwand aus dem folgenden vernetzten
Azopolyamid bilden:
Figure imgf000006_0001
Zur eervollständigung der Grenzflächen-Polykondensation wird die Mikrokapselsuspension ca. 30 min nachgerührt.
Zur Herstellung eines Reaktionsschreibpapiers nach dem "selfcontained-Typ" wird die Mikrokapseldispersion zusammen mit Kieselgel als Entwicklersubstanz, Zellstoffpulver als Abstandsund Fließmittel sowie Polyvinyalkohol als Binder miteinander vermischt und auf einen Träger (Folie oder Papier) aufgebracht. Im Unterschied zur herkömmlichen Markierungserzeugung durch mechanischen Druck werden die Mikrokapseln durch thermische Adressierung beispielswiese mittels eines Thermodruckkopfes thermolytisch bei 120 - 140°C aufgebrochen, wobei durch den aus den jeweils adressierten Mikrokapseln austretenden und sich entwickelnden Farbbildner blaue Markierungen auf dem Träger erzeugt werden. Ebenso werden mit Hilfe eines Lasers die Mikrokapseln photolytisch aufgebrochen, wobei eine Schriftbreite von unter zwei Millimetern erzeugt werden konnte.
Ausgehend von den in dem Beispiel 1 angegebenen Ansätzen lassen sich durch Variation der Vernetzerkomponente in der Lösung (4) in Form von di-, tri- oder mehrfunktionellen Aminen die in den folgenden Beispielen 2 bis 6 angegebenen Mikrokapseln erzeugen.
Beispiel 2:
Mit 1,2-Ethylendiamin als Vernetzerkomponente erhält man Mikrokapseln mit einer Kapselwand aus dem folgenden linearen
Polyamid:
Figure imgf000007_0001
Beispiel 3: (PA2)
Mit 1,6-Hexamethylendiamin als Vernetzerkomponente erhält man Mikrokapseln mit einer Kapselwand aus dem folgenden linearen Polyamid
Figure imgf000007_0002
Beispiel 4 :
Mit 1,4-Phenylendiamin als Vernetzerkomponente erhält man Mikrokapseln mit einer Kapselwand aus dem folgenden linearen
Polyamid:
Figure imgf000008_0001
Beispiel 5:
Mit Acetaldehydammoniak als Vernetzerkomponente erhält man
Mikrokapseln mit einer Kapselwand aus dem folgenden vernetzten Polyamid:
Figure imgf000008_0002
Beispiel 6:
Mit Hexamethylentetramin (Urotropin) als Vernetzerkomponente erhält man Mikrokapseln mit einer Kapselwand aus dem folgenden vernetzten Polyamid. f
Figure imgf000008_0003
Durch Variation des monomeren Ausgangsstoffes in Lösung (2) und der Vernetzerkomponente in Lösung (4) lassen sich eine Vielzahl weiterer Mikrokapseln erzeugen. Beispiele für den monomeren Ausgangsstoff sind die folgenden wasserunlöslichen symmetrischen Azoverbindungen mit jeweils zwei reaktiven funktioneilen Gruppen: 4,4'-Azobis-(4-cyanopentansäurehalegonide), 4,4'-Azobis- (4-cyanopentansäure), 4,4'-Azobis-(4-cyanopentanol), 4,4"-Azobis- (4-cyanopentanamin) oder 4,4'-Azobis-(4-cyanopentanisocyanat), die zur Bildung der Lösung (2) in verschiedenen organischen mit Wasser nicht mischbaren Lösungsmitteln wie z.B. Methylenchlorid, Chloroform u.a. gelöst werden. Als Vernetzerkomponenten kommen aromatische und aliphatische Säuredi-, -tri- oder -polyhalegonide, aromatische und aliphatische di-, tri- oder mehrfunktionelle Amine und Alkohole sowie aromatische und aliphatische Di-, Trioder Polyisocyanate in Betracht, so daß Mikrokapseln mit Kapselwänden aus verschiedenen azogruppenhaltigen Polyestern,
Polyamiden, Polyurethanen, Polycarbonaten und Polyharnstoffen erhalten werden. Je nach Verwendung der Mikrokapseln können in diesen außer dem in Beispiel 1 angegebenen Kristallviolettlacton als Farbbildner auch Farbstoffe in einem Lösungsmittel wie z. B. allgemein erhältliche Nachfülltuschen oder Öl-/Pigment-Suspensionen eingekapselt sein.

Claims

Patentansprüche
1. Mikrokapseln mit einer polymeren Kapselwand, d a d u r c h g e k e n n z e i c h n e t , daß das Polymer der Kapselwand thermo- und/oder photolabile Sollbruchstellen in Form von Azofunktionen (-N=N-) oder Dioxyfunktionen (-O-O-) enthält.
2. Mikrokapseln nach Anspruch 1, g e k e n n z e i c h n e t d u r c h folgende Azofunktion
Figure imgf000010_0001
oder folgende Dioxyfunktion
Figure imgf000010_0002
wobei R1 und R3 jeweils für -CN, OAc, substituiertes Aryl,
Alkyl, -Cl oder -(CF2)n-1CF3'
R2 und R4 jeweils für Alkyl, Aryl, substituiertes
Aryl oder -(CF2)n-1CF3 und
R5 für Alkylen, Arylen, -(CH2)nCONH-, -(CH2)nCOO-,
-(CH2)nNHCO-O-, -(CH2) NHCONH-, -(CH2)nO-CO-O- oder ungesättigte Kohlenwasserstoffgruppen stehen.
3. Mikrokapseln nach Anspruch 1 oder 2, g e k e n n z e i c h n e t d u r c h eines αer folgenden, die Kapselwand bildenden Polymere:
Figure imgf000010_0003
o
Figure imgf000011_0001
4. Mikrokapseln nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Anzahl der Sollbruchstellen in der Kapselwand durch Copolymerisation mit zusätzlichen thermo- und photostabilen Ausgangsmonomeren eingestellt ist.
5. Mikrokapseln nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , daß sie einen von der Kapselwand umschlossenen Farbbildner oder einen Farbstoff enthalten.
6. Verwendung von Mikrokapseln, die eine polymere Kapselwand mit thermo- und/oder photolabilen Sollbruchstellen in Form von Azofunktionen (-N=N-) oder Dioxyfunktionen (-O-O-) aufweisen und einen von der Kapselwand umschlossenen Farbbildner oder Farbstoff enthalten als farbgebendes Mittel beim Thermo- oder Lasertransferdruck.
PCT/DE1990/000289 1989-05-31 1990-04-17 Mikrokapseln mit einer polymeren kapselwand WO1990014883A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3918146A DE3918146A1 (de) 1989-05-31 1989-05-31 Mikrokapseln mit einer polymeren kapselwand
DEP3918146.4 1989-05-31

Publications (1)

Publication Number Publication Date
WO1990014883A1 true WO1990014883A1 (de) 1990-12-13

Family

ID=6382004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000289 WO1990014883A1 (de) 1989-05-31 1990-04-17 Mikrokapseln mit einer polymeren kapselwand

Country Status (3)

Country Link
JP (1) JP3115315B2 (de)
DE (1) DE3918146A1 (de)
WO (1) WO1990014883A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011299A1 (de) * 2000-03-09 2001-10-18 Huber Fa Michael Muenchen Mikrokapseltoner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516742B1 (de) * 1990-03-02 1994-08-31 Eastman Kodak Company Eine wässrige phase enthaltende mikrokapseln
EP0516712A1 (de) * 1990-03-02 1992-12-09 Eastman Kodak Company Thermo- und/oder photolabile mikrokapseln

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542260A1 (de) * 1965-03-05 1970-03-26 Keuffel & Esser Co Mit festem oder fluessigem Material gefuellte Kapseln
JPS61287442A (ja) * 1985-06-13 1986-12-17 Kanzaki Paper Mfg Co Ltd 熱崩壊性マイクロカプセル及びその製造方法
JPS63151354A (ja) * 1986-12-16 1988-06-23 Kanzaki Paper Mfg Co Ltd マイクロカプセルの改質方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766037A (en) * 1985-09-09 1988-08-23 Fuji Photo Film Co., Ltd. Photodegradable microcapsules
US4678003A (en) * 1986-10-10 1987-07-07 Griffin Beacher C Safety cap for valve on high-pressure cylinder
JPS63178841A (ja) * 1987-01-17 1988-07-22 Sumitomo Metal Mining Co Ltd 光崩壊性マイクロカプセル
DE3710183A1 (de) * 1987-03-27 1988-10-13 Siemens Ag Vorrichtung fuer laser-transferdruck
DE3730842C2 (de) * 1987-09-14 1999-02-25 Eastman Kodak Co Farbband für eine Vorrichtung für Laser-Transferdruck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542260A1 (de) * 1965-03-05 1970-03-26 Keuffel & Esser Co Mit festem oder fluessigem Material gefuellte Kapseln
JPS61287442A (ja) * 1985-06-13 1986-12-17 Kanzaki Paper Mfg Co Ltd 熱崩壊性マイクロカプセル及びその製造方法
JPS63151354A (ja) * 1986-12-16 1988-06-23 Kanzaki Paper Mfg Co Ltd マイクロカプセルの改質方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, vol. 11, No. 159 (E-423)(2606), 22 May 1987, & JP,A,61287442 (KAZAKI PAPER MFG CO LTD) 17 December 1986 *
Patent Abstracts of Japan, vol. 12, No. 421 (C-541)(3268), 8 November 1988, & JP,A, 63151354 (KAZAKI PAPER MFG CO LTD) 23 June 1988 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011299A1 (de) * 2000-03-09 2001-10-18 Huber Fa Michael Muenchen Mikrokapseltoner
DE10011299B4 (de) * 2000-03-09 2006-08-31 Michael Huber München Gmbh Mikrokapseltoner

Also Published As

Publication number Publication date
DE3918146A1 (de) 1990-12-06
JPH04505879A (ja) 1992-10-15
JP3115315B2 (ja) 2000-12-04

Similar Documents

Publication Publication Date Title
DE3226608A1 (de) Fotohaertende mikrokapseln, foto- und druckempfindliche aufzeichnungsblaetter und aufzeichnungsverfahren unter verwendung derselben
DE3503441A1 (de) Loesungsmittelbestaendiges, thermisch bedruckbares beschriftungsmaterial und verfahren zu seiner herstellung
EP0040770A1 (de) Konzentrierte Mikrokapselsuspension, ein Verfahren zu ihrer Herstellung und ihre Verwendung für Reaktionsdurchschreibepapier
WO2009071499A1 (de) Mikrokapseln mit strahlungsinduzierter freisetzung
DE3630693A1 (de) Photochemisch abbaubare mikrokapseln
US4228216A (en) Production of radiation curable microcapsular coating compositions, pressure-sensitive transfer paper and its production
DE10061225A1 (de) Wärmeempfindliche Mikrokapsel und diese enthaltendes Aufzeichnungsmedium
DE2617747C2 (de) Reaktionsdurchschreibepapiere
WO1990014883A1 (de) Mikrokapseln mit einer polymeren kapselwand
DE3232811A1 (de) Verfahren zur herstellung von mikrokapseln
EP2732803A1 (de) Thermisch öffnende stabile Kern/Schale-Mikrokapseln
DE3918141C2 (de) Mikrokapseln mit einer polymeren Kapselwand
DE2803998C2 (de)
EP0023613A2 (de) Reaktionsdurchschreibepapier
JPS63308087A (ja) 温度依存性フォトクロミック組成物
WO1991012883A1 (de) Thermo- und/oder photolabile mikrokapseln
DE2828136C2 (de)
DE2453853A1 (de) Einkapselungsverfahren
EP0516742B1 (de) Eine wässrige phase enthaltende mikrokapseln
DE10011299B4 (de) Mikrokapseltoner
DE10124125A1 (de) Bildaufzeichungszusammensetzung und Blattmaterial zur Bildaufzeichnung
EP0375847B1 (de) Beschichtungsmasse für druckempfindliche Aufzeichnungsblätter und ein damit erhältliches druckempfindliches Aufzeichnungsblatt
JP2007292961A (ja) マイクロカプセル含有フッ素系組成物及びカラーフィルタ用組成物
DE4023703A1 (de) Verbesserte mikrokapseln
DE69009971T2 (de) Drucktinte mit hohem Fettkörpergehalt, verwendbar für die Herstellung von kohlenstofffreiem chemischem Kopierpapier.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US