WO1990010684A1 - Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures - Google Patents

Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures Download PDF

Info

Publication number
WO1990010684A1
WO1990010684A1 PCT/FR1990/000162 FR9000162W WO9010684A1 WO 1990010684 A1 WO1990010684 A1 WO 1990010684A1 FR 9000162 W FR9000162 W FR 9000162W WO 9010684 A1 WO9010684 A1 WO 9010684A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mass
mercury
metal
arsenic
Prior art date
Application number
PCT/FR1990/000162
Other languages
English (en)
French (fr)
Inventor
Philippe Courty
Pierre Dufresne
Jean-Paul Boitiaux
Germain Martino
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Publication of WO1990010684A1 publication Critical patent/WO1990010684A1/fr
Priority to NO913622A priority Critical patent/NO180121C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • liquid condensates by-products of gas production can contain many trace metal compounds, generally present in the form of organometallic complexes, in which the metal forms bonds with one or more carbon atoms of the organometallic radical.
  • metal compounds are poisonous catalysts used in petroleum transformation processes. In particular, they poison the hydrotreatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Metallic compounds are found in particular in heavy cuts from the distillation of petroleum crude oil (nickel, vanadium, arsenic, mercury) or in natural gas condensates (mercury, arsenic).
  • the thermal or catalytic cracking treatments of the above hydrocarbon cuts can allow the elimination of certain metals (for example nickel, vanadium ...) ; on the other hand, certain other metals (for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Certain metals for example nickel, vanadium ...)
  • certain other metals for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Mercury also presents the risk of causing corrosion by the formation of amalgams, for example with aluminum-based alloys, in particular in the process sections operating at a temperature low enough to cause the condensation of liquid mercury (cryogenic fractionations , exchangers).
  • Prior methods are known for removing mercury or arsenic from gas phase hydrocarbons; one operates in particular in the presence of solid masses, which can be called indifferently: adsorption, capture, trapping, extraction and metal transfer masses.
  • Patent FR 2534826 describes other masses consisting of elemental sulfur and an inorganic support.
  • Patent DE 2149993 teaches the use of Group VIII metals (nickel, platinum, palladium).
  • US Patent 4,069,140 describes the use of various absorbent masses.
  • the supported iron oxide is described, the use of lead oxide is described in US Pat. No. 3,782,076 and that of copper oxide in US Patent 3,812,653.
  • the object of the invention is a process for removing mercury and possibly arsenic contained in a hydrocarbon feedstock and which remedies the defects of the previous processes.
  • Another object of the invention is to be able to remove the mercury and possibly the arsenic even in hydrocarbon feedstocks further containing significant proportions of sulfur.
  • significant proportions is meant from 0.005 to 3% by weight and in particular from 0.02 to 2% by weight.
  • a mixture of the charge and of hydrogen is passed through in contact with a catalyst which will subsequently be called arbitrarily arsenic capture mass, with catalytic properties, containing:
  • At least one metal M from the group formed by iron, cobalt, nickel, palladium and platinum - at least one metal N from the group formed by chromium, molybdenum, tungsten and uranium
  • an active phase support based on at least one porous mineral matrix, the said catalyst being followed on the path of the charge of, .or mixed with, a mass for capturing mercury, containing sulfur and / or at least one metal sulfide of at least one metal P chosen from the group formed by copper, iron and silver, and an active phase support.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide, either in the raw charge (before de-arsenification), or in the charge treated in the presence of hydrogen and of the de-arsenification mass with catalytic properties, before demercurization in the presence of the second bed.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide
  • the charge also contains arsenic, it is also eliminated.
  • the operation is preferably carried out with the charge at least partly in the liquid phase.
  • the catalyst also allows hydrodesulfurization, hydrodenitrification and, at least in part, hydrogenation of the unsaturated compounds which may be in the feed, which can prove to be advantageous when said feeds are intended for steam cracking.
  • said mass allows effective demetallation if, in addition to arsenic and mercury, vanadium and / or nickel are present.
  • Said arsenic capture mass with catalytic properties is therefore a complex solid, which, in the presence of hydrogen and under the operating conditions described below:
  • the mass of arsenic capture with catalytic properties subsequently designated as "the catalyst" used in the composition of the assembly which is the subject of the present invention therefore consists of at least one metal M chosen from the group formed pa iron, nickel, cobalt, palladium, platinum and at least one metal N chosen from the group formed by chromium, molybdenum, tungsten and uranium, these metals, in the form of oxides and / o of oxysulphides and / or sulphides, which can be used as such o preferably be deposited on at least one support from the list which follows. Under conditions of use, it is imperative that the metal M and / or the metal N are in sulphurized form for at least 50% of their totality.
  • the respective amounts of metal or metals M and of metal or metals N contained in the catalyst are usually such that the atomic ratio of metal or metals M to metal or metals N, M / N is approximately 0.3: 1 to 0, 7: 1 and preferably from about 0.3: 1 to about 0.45: 1.
  • the quantity by weight of metals contained in the finished catalyst expressed by weight of metal relative to the weight of the finished catalyst is usually, for the metal or metals N, from approximately 2 to 30% and preferably from approximately 5 to 25%, and for the metal or metals M of approximately 0.01 to 15%, more particularly of approximately 0.01 to 5% and preferably of approximately 0.05 to 3% for palladium and / or platinum; and about 0.5 to 15% and preferably about 1 to 10% in the case of non-noble metals M (Fe, Cà, Ni).
  • metals N molybdenum and / or tungsten are preferably used, and among the metals M, the non-noble metals iron, cobalt and / or nickel are preferred.
  • the following combinations of metals are used: nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, cobalt-tungsten, iron-molybdenum and iron-tungsten.
  • the most preferred combinations are nickel-molydene and cobalt-molybdenum. It is also possible to use combinations of three metals, for example nickel-cobalt-molybdenum.
  • the porous mineral matrix is chosen so that the final catalyst has the optimal pore volume characteristics.
  • This matrix usually comprises at least one of the elements of the group formed by alumina, silica, silica-alumina, magnesia, zirconia, titanium oxide, clays, aluminous cements, aluminates, for example magnesium, calcium, strontium, barium, manganese, iron, cobalt, nickel, copper and zinc aluminates, mixed aluminates, for example those comprising at least two of the metals mentioned above.
  • matrices containing alumina for example alumina and silica-alumina or alternatively titanium oxide.
  • the matrix contains silica it is preferable that the quantity of silica is at most equal to 25% by weight relative to the total weight of the matrix.
  • the matrix can also contain, in addition to at least one of the compounds mentioned above, at least one crystalline or natural zeolitic alumino-silicate (zeolite).
  • zeolite crystalline or natural zeolitic alumino-silicate
  • the amount of zeolite usually represents from 0 to 95% by weight and preferably from 1
  • mixtures of alumina and zeolite or alternatively mixtures of silica-alumina and zeolite.
  • zeolites whose atomic ratio of framework, silicon to aluminum (Si / Ai) is greater than about 5: 1.
  • zeolites with faujasite structures are used, and in particular stabilized or ultra-stabilized Y zeolites.
  • the most commonly used matrix is alumina, and usually pure or mixed transition alumina, such as Y, Y_, _, Q, is preferred.
  • Said matrix will preferably have a large surface area and a sufficient pore volume, that is to say respectively at least 50 m2 / g and at least 0.5 cm3 / g, for example 50 to 350 m2 / g and 0 , 5 to 1.2 cm3 / g.
  • the fraction of macroporous volume, consisting of all of the pores with an average diameter at least equal to 0.1 Am, may represent from 10% to 30% of the total pore volume.
  • the catalyst Before use, the catalyst can, if necessary, be treated with a gas containing hydrogen at a temperature of 50 to 500 ° C. It can also, if necessary, be presulphurized at least in part, for example according to the French SULFICAT (R) process, or else by treatment in the presence of a gas containing hydrogen sulphide and / or any other sulphurized compound.
  • a gas containing hydrogen at a temperature of 50 to 500 ° C.
  • R French SULFICAT
  • the mass of mercury capture used in the composition of the assembly which is the subject of the present invention consists of sulfur or a sulfur compound deposited on a porous mineral support or matrix chosen, for example, from the group formed by l alumina, silica-aluminas, silica, zeolites, clays, active carbon, aluminous cements, titanium oxides, zirconium oxide or among the other supports, consisting of a porous mineral matrix, cited for the catalyst.
  • a compound containing sulfur and a metal P is preferably used, where P is chosen from the group formed by copper, iron, silver and, preferably, by copper or the copper-silver association. At least 50% of the metal P is used in the form of sulphide.
  • This capture mass can be prepared according to the method recommended in US patent 4094777 of the applicant or by depositing copper oxide on an alumina then sulfurization by means of an organic polysulphide as described in the French patent application 87 / 07442 of the plaintiff.
  • the proportion of elemental sulfur, combined or not, in the capture mass is advantageously between 1 and 40% and preferably between 1 and 20% by weight.
  • the proportion of metal P combined or not in the form of sulphide will preferably be between 0.1 and 20% of the total weight of the capture mass.
  • the assembly consisting of the catalyst and the mercury capture mass can be used either in two reactors or in one.
  • reactors When two reactors are used, they can be arranged in series, the reactor containing the catalyst being advantageously placed before that containing the capture mass.
  • the catalyst and the capture mass can be arranged either in two separate beds or mixed thoroughly.
  • the volume ratio of the mass of desarsenification with catalytic properties to the mass of demercurization may vary between 1:10 and 5: 1.
  • the operating pressures will preferably be chosen from
  • 1 to 50 bars absolute more particularly from 5 to 40 bars and more advantageously from 10 to 30 bars.
  • the hydrogen flow rate expressed in liters of gaseous hydrogen (TPN) per liter of liquid charge will preferably be chosen between 1 and 1000, more particularly between 10 and 300 and more advantageously from 30 to 200.
  • the hourly volumetric speed calculated with respect to the mass of desarsenification with catalytic properties, may be
  • the demercurization mass will be operated in a temperature range which can range from 0 to 400 ° C., more advantageously from 20 to 350 ° C. and, preferably, from 40 to 330 ° C.
  • the operating pressures and the flow rate of hydrogen D will be those defined with respect to the mass of desarsenification with catalytic properties.
  • the hourly volumetric speed, calculated with respect to the mass of demercurization may be that indicated for the mass of desarsenification with catalytic properties, it being understood as indicated above, that the volume ratio of the mass of desarsenification to the mass of demercurization may vary from 1:10 to 5: 1, depending in particular on the proportions of arsenic and mercury contained in the charge. It will 'therefore obvious that the relative proportions of the two masses and therefore the volumetric hourly speeds over they may then be very different (even liquid flow but different mass volumes).
  • the charge treated in the presence of the catalyst can optionally be cooled before passing over the demercurization mass.
  • the two capture masses then being placed in a single reactor this can be operated in a temperature range which can range from 180 to 400 ° C, more advantageously 190 to 350 ° C and in a way preferred 200 to 330 ° C.
  • the invention contains 10 to 2 milligrams of mercury pa
  • HR 306 catalyst 250 cm3 of HR 306 catalyst, produced by PROCATALYSE, are loaded into a steel reactor 3 cm in diameter.
  • the catalyst is then subjected to a presulfurization treatment.
  • a hydrogen sulfide-hydrogen mixture in the volume proportions 3:97 is injected at a rate of 10 l / h.
  • the temperature rise rate is 1 ° C / min and the final level (350 ° C) is 2 hours.
  • this catalyst has a very low efficiency in retaining mercury; on the other hand, it has good effectiveness in retaining arsenic.
  • a capture mass is prepared consisting of a copper sulphide, deposited on an alumina support as described in US Patent No. 4094777 of the Applicant.
  • the mass contains 12% by weight of copper and 6% by weight of sulfur in the form of sulphide.
  • the matrix consists of transition alumina.
  • the specific surface is 70 m2 / g and the pore volume of 0.4 cm3 / g.
  • Hydrogen flow 100 liters per liter of charge, i.e.
  • the capture mass is not effective in retaining arsenic. On the other hand, it has a transient effectiveness in retaining mercury, but it drops very quickly over time.
  • Example 2 The experiment of Example 2 is repeated, but suppressing the flow of hydrogen.
  • Hydrogen flow 100 liters per liter of charge, or 50 liters per hour.
  • Hydrogen flow 100 liters per liter of charge, i.e.
  • Example 5 according to the invention.
  • the operating conditions remain identical, with the exception of the operating temperature of the HR 306 catalyst, brought to 340 ° C. and to the hydrogen flow rate, brought to 200 liters / liter of charge, ie 100 liters / hour.
  • Example 3 The first reactor used in Example 3 is now loaded with 200 cm3 of the HMC 841 catalyst, sold by PROCATALYSE.
  • This catalyst consisting of beads of diameters 1.5 to 3 mm contains 1.96% nickel and 8% molybdenum by weight; the matrix consists of transition alumina. The specific surface is 140 m2 / g and the pore volume of 0.89 cm3 / g.
  • the HMC 841 catalyst was presulphurized before loading (ex-situ sulphurization) according to the SULFICAT (R) process sold by the company EURECAT; its sulfur content is 4.8% by weight.
  • the second reactor is charged with 200 cm3 of a demercurization mass containing 8% of sulfur, 14.5% of copper and 0.2% by weight of silver, prepared according to the teaching of US Pat. No. 4,094,777, then presulfurized by contacting with an organic polysulfide according to the teaching of French patent 87-07442 of the applicant.
  • Hydrogen flow 150 liters per liter of charge, i.e.
  • the analysis of the purified liquid effluent shows that it contains only 60 ppm (weight) of sulfur and 33 ppm (weight) of nitrogen.
  • the hydrodesulfurization rate and the hydrodenitrogenation rate are therefore 95.4 and 24% respectively.
  • the effluent contains only 28% of aromatics (for
  • Example 7 0.2 liters of the copper and silver sulphide mass used in Example 7.
  • the operating temperature is equal to 220 ° C.
  • the operating pressure equal to 50 bars (absolute)
  • the flow rate is 200 liters per liter of charge, or 120 liters per hour.
  • the charge rate is 0.6 liters per hour.
  • C% rate of fixation, in mass percent, of mercury and arsenic on the assembly constituted by the catalyst and by the mass of demercurization.
  • ppb Residual concentration of arsenic and mercury, expressed in micrograms (10 gram) per kilogram (or in milligrams per ton). 901
  • C% rate of fixation, in mass percent, of mercury and arsenic on the assembly constituted by the catalyst and by the mass of demercurization.
  • ppb Residual concentration of arsenic and mercury, expressed in micrograms (10 ⁇ gram) per kilogram (or in milligrams per ton).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
PCT/FR1990/000162 1989-03-16 1990-03-09 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures WO1990010684A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO913622A NO180121C (no) 1989-03-16 1991-09-13 Fremgangsmåte for fjerning av kvikksölv og eventuelt arsen i hydrokarboner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR89/03581 1989-03-16
FR8903581A FR2644472B1 (fr) 1989-03-16 1989-03-16 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures

Publications (1)

Publication Number Publication Date
WO1990010684A1 true WO1990010684A1 (fr) 1990-09-20

Family

ID=9379843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1990/000162 WO1990010684A1 (fr) 1989-03-16 1990-03-09 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures

Country Status (12)

Country Link
EP (1) EP0463044B1 (zh)
JP (1) JP2620811B2 (zh)
CN (1) CN1024675C (zh)
AU (1) AU634763B2 (zh)
CA (1) CA2012344C (zh)
DE (1) DE69002941T2 (zh)
DZ (1) DZ1402A1 (zh)
FR (1) FR2644472B1 (zh)
MY (1) MY106411A (zh)
NO (1) NO180121C (zh)
WO (1) WO1990010684A1 (zh)
ZA (1) ZA893265B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668385A1 (fr) * 1990-10-30 1992-04-30 Inst Francais Du Petrole Procede d'elimination d'arsenic dans un gaz par passage sur une masse a base d'un support de sulfure de cuivre.
EP0484234A2 (fr) * 1990-10-30 1992-05-06 Institut Francais Du Petrole Procédé d'élimination de mercure et de l'arsenic éventuellement présent dans un fluide, en présence d'une masse de captation de mercure et/ou d'arsenic
EP0488234A1 (en) * 1990-11-28 1992-06-03 Phillips Petroleum Company Trialkyl arsine sorbents
EP0488235A1 (en) * 1990-11-28 1992-06-03 Phillips Petroleum Company Sorption of trialkyl arsines
FR2673192A1 (fr) * 1991-02-27 1992-08-28 Inst Francais Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
FR2673191A1 (fr) * 1991-02-27 1992-08-28 Inst Francais Du Petrole Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
FR2690923A1 (fr) * 1992-05-11 1993-11-12 Inst Francais Du Petrole Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
FR2698372A1 (fr) * 1992-11-24 1994-05-27 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701270A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
FR2701269A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666343B1 (fr) * 1990-08-29 1992-10-16 Inst Francais Du Petrole Procede d'elimination du mercure des installations de vapocraquage.
US6350372B1 (en) * 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
FR2803597B1 (fr) 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
JP2002241767A (ja) * 2001-02-15 2002-08-28 Idemitsu Petrochem Co Ltd 液状炭化水素からの水銀除去方法
CN100392046C (zh) * 2003-08-07 2008-06-04 上海化工研究院 低温或常温脱除液态石油烃中高沸点砷化物的脱砷剂
GB0611316D0 (en) * 2006-06-09 2006-07-19 Johnson Matthey Plc Improvements in the removal of metals from fluid streams
JP5455939B2 (ja) * 2008-03-10 2014-03-26 ビーエーエスエフ ソシエタス・ヨーロピア 炭化水素流から水銀を除去する方法
KR101796792B1 (ko) 2011-02-09 2017-11-13 에스케이이노베이션 주식회사 촉매를 이용하여 수소화 처리 반응을 통해 황 및 수은이 포함된 탄화수소 원료로부터 이들을 동시에 제거하는 방법
FR2987368B1 (fr) * 2012-02-27 2015-01-16 Axens Procede d'elimination de mercure contenu dans une charge hydrocarbure avec recycle d'hydrogene
US9387435B2 (en) * 2012-08-20 2016-07-12 Ecolab Usa Inc. Mercury sorbents
FR3007415B1 (fr) * 2013-06-21 2016-05-27 Ifp Energies Now Procede d'elimination de l'arsenic d'une charge d'hydrocarbures
CN104645927B (zh) * 2013-11-25 2018-01-16 北京三聚环保新材料股份有限公司 一种银系脱汞剂的制备方法
CN108456574A (zh) * 2018-04-12 2018-08-28 西南石油大学 一种用于湿气脱汞的脱汞剂及其制备方法
CN114073961A (zh) * 2021-12-08 2022-02-22 辽宁石油化工大学 具有脱砷性能的Cr-Cu/SiO2催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110569A (en) * 1958-02-05 1963-11-12 Socony Mobil Oil Co Inc Removal of arsenic from reformer feed
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110569A (en) * 1958-02-05 1963-11-12 Socony Mobil Oil Co Inc Removal of arsenic from reformer feed
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484234A2 (fr) * 1990-10-30 1992-05-06 Institut Francais Du Petrole Procédé d'élimination de mercure et de l'arsenic éventuellement présent dans un fluide, en présence d'une masse de captation de mercure et/ou d'arsenic
EP0487370A1 (fr) * 1990-10-30 1992-05-27 Institut Français du Pétrole Procédé d'élimination d'arsenic dans un gaz par passage sur une masse à base d'un support et de sulfure de cuivre
EP0484234B1 (fr) * 1990-10-30 1996-05-15 Institut Francais Du Petrole Procédé d'élimination de mercure et de l'arsenic éventuellement présent dans un fluide, en présence d'une masse de captation de mercure et/ou d'arsenic
FR2668385A1 (fr) * 1990-10-30 1992-04-30 Inst Francais Du Petrole Procede d'elimination d'arsenic dans un gaz par passage sur une masse a base d'un support de sulfure de cuivre.
EP0488234A1 (en) * 1990-11-28 1992-06-03 Phillips Petroleum Company Trialkyl arsine sorbents
EP0488235A1 (en) * 1990-11-28 1992-06-03 Phillips Petroleum Company Sorption of trialkyl arsines
FR2673192A1 (fr) * 1991-02-27 1992-08-28 Inst Francais Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
FR2673191A1 (fr) * 1991-02-27 1992-08-28 Inst Francais Du Petrole Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
US5421994A (en) * 1992-05-11 1995-06-06 Institut Francais Du Petrole Process for the recovery of mercury and arsenic in a hydrocarbon cut
FR2690923A1 (fr) * 1992-05-11 1993-11-12 Inst Francais Du Petrole Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
EP0570261A1 (fr) * 1992-05-11 1993-11-18 Institut Francais Du Petrole Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure
EP0599702A1 (fr) * 1992-11-24 1994-06-01 Institut Français du Pétrole Procédé d'elimination de mercure et eventuellement d'arsenic dans des hydrocarbures
US5384040A (en) * 1992-11-24 1995-01-24 Institute Francais Du Petrole Process for the elimination of mercury and possibly arsenic from hydrocarbons
FR2698372A1 (fr) * 1992-11-24 1994-05-27 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701269A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
EP0611183A1 (fr) * 1993-02-08 1994-08-17 Institut Francais Du Petrole Procédé d'élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
EP0611182A1 (fr) * 1993-02-08 1994-08-17 Institut Francais Du Petrole Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée
FR2701270A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
US5531886A (en) * 1993-02-08 1996-07-02 Institut Francals Du Petrole Process for the elimination of arsenic from hydrocarbons by passage over a presulphurated retention mass
US5601701A (en) * 1993-02-08 1997-02-11 Institut Francais Du Petrole Process for the elimination of mercury from hydrocarbons by passage over a presulphurated catalyst

Also Published As

Publication number Publication date
CA2012344A1 (fr) 1990-09-16
EP0463044A1 (fr) 1992-01-02
DZ1402A1 (fr) 2004-09-13
DE69002941D1 (de) 1993-09-30
NO913622D0 (no) 1991-09-13
NO180121C (no) 1997-02-19
EP0463044B1 (fr) 1993-08-25
CN1045596A (zh) 1990-09-26
AU5331990A (en) 1990-10-09
FR2644472B1 (fr) 1991-06-21
NO913622L (no) 1991-09-13
ZA893265B (en) 1990-04-25
DE69002941T2 (de) 1993-12-23
MY106411A (en) 1995-05-30
AU634763B2 (en) 1993-03-04
CA2012344C (fr) 2001-05-08
JP2620811B2 (ja) 1997-06-18
CN1024675C (zh) 1994-05-25
FR2644472A1 (fr) 1990-09-21
NO180121B (no) 1996-11-11
JPH02248493A (ja) 1990-10-04

Similar Documents

Publication Publication Date Title
EP0463044B1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
EP0332526B1 (fr) Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
FR2701270A1 (fr) Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
EP1369468B1 (fr) Procédé de production d'hydrocarbures à faible teneur en soufre et en azote
EP2816093A1 (fr) Procédé d'élimination de l'arsenic d'une charge d'hydrocarbures
EP1354930A1 (fr) Procédé de production d'hydocarbures à faible teneur en soufre et en mercaptans
CA2474525C (fr) Procede integre de desulfuration d'un effluent de craquage ou de vapocraquage d'hydrocarbures
FR2690923A1 (fr) Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
FR2673191A1 (fr) Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
WO2014108612A1 (fr) Procede de production d'une essence basse teneur en soufre
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
FR2701269A1 (fr) Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
EP2796196B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
EP2606969B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
FR2673192A1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees
FR3116828A1 (fr) Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
FR2788452A1 (fr) Masse de captation pour l'elimination d'arsenic dans les hydrocarbures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990904870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990904870

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990904870

Country of ref document: EP