WO1988005124A1 - Cooling and lubricating circuit of an axial engine - Google Patents

Cooling and lubricating circuit of an axial engine Download PDF

Info

Publication number
WO1988005124A1
WO1988005124A1 PCT/DE1988/000003 DE8800003W WO8805124A1 WO 1988005124 A1 WO1988005124 A1 WO 1988005124A1 DE 8800003 W DE8800003 W DE 8800003W WO 8805124 A1 WO8805124 A1 WO 8805124A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
medium
engine according
around
Prior art date
Application number
PCT/DE1988/000003
Other languages
English (en)
French (fr)
Inventor
Ludwig Elsbett
Günter Elsbett
Klaus Elsbett
Original Assignee
Elsbett L
Elsbett G
Klaus Elsbett
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elsbett L, Elsbett G, Klaus Elsbett filed Critical Elsbett L
Priority to DE8888900352T priority Critical patent/DE3861284D1/de
Publication of WO1988005124A1 publication Critical patent/WO1988005124A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/02Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis with wobble-plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil

Definitions

  • the purpose of the invention is to simplify the circuits, which should be flexible for different cooling requirements (aircraft or truck, unit or ship engine), as well as the use of a heat-insulating motor technology for cooling and lubricating axial motors.
  • the solution to the problem is that the same medium is used for cooling and lubrication, and in the arrangement of a central distributor groove, in which the various cooling and lubricating circuit combinations can be freely selected by simply repositioning cross-section locks, without component variants .
  • FIG. 1 shows one half of an axial motor which converts the oscillating movement of the pistons (13) in the cylinders (14), which are arranged axially around a wobble shaft (15), into a rotation of the wobble shaft.
  • the cylinders are covered by heads (16) and these in turn by a control housing (17), which is connected to the motor housing (34) at the same time via the bearing bracket (18).
  • the control housing on each engine side has two oil pumps (1) and (2) which are driven by the crankshaft (15). By the method described in FIG. 2, the oil either reaches the crankshaft in the direction of the arrow (via space (19)) and forms a lubricating and spray oil circuit, or it reaches ring space (20) and forms the cooling circuit.
  • Cooling circuit The oil flows from the annular space (20) into the annular spaces (21) of the individual cylinders. These annular spaces (21) serve to wash around the cylinder area, which is constantly covered by the piston crown from the spray oil (22). The oil reaches an annular collecting groove (23) in the head (16). from which it flows through a bore (24) into the control housing (17), from where it gets back into the oil container (25). The annular spaces (20) on both sides are connected by pipes (26).
  • Lubrication and spray oil circuit The oil can flow from one side of the annular space (19) to the other side through the swash shaft (15) and ensures lubrication of the base bearings.
  • Fig. 2 shows a section of the annulus
  • the bores leading to the outside or coming from the outside are: lines from pump (1) and (2) and lines (3), (4) and (11) for connections to external devices such as filters, coolers, thermostats and manometer.
  • the bores (10) lead the oil into the interior of the swash shaft (15) via space (19), and the bore (9) connects the annular space (32) to the annular space (20) on the rear of the bearing bracket ( 18).
  • the bores (38) each lead to overpressure valves.
  • the ring space is divided into ring sections by five removable locking blocks ( 5 ) , ( 6 ) , (7), (8) and (12).
  • the following arrangements are possible (blocks (5) and (8) always remain in the position shown): Arrangement 1: Pump (1) and (2) as lubricating oil pumps (with filtering and cooling). (6) is removed (connection (11) tight): oil flows via (3) to the filter and cooler to (4) and through holes (10) in the wobble shaft. Bore (9) is blocked by blocks (12) and (8) (if only one pump is used,
  • Arrangement 4 pump (1) as a lubricating oil pump with filtering and cooling, pump (2) as a cooling oil pump without filtering and cooling:
  • Arrangement 5 Pump (1) as a lubricating oil pump with filtering and cooling, pump (2) as a cooling oil pump with cooling: (7) is removed: Oil flows as cooling oil via (11) and cooler after connection (11) on the other side and bore ( 9) the other side. Oil flows as lubricating oil like arrangement 4. Combinations of these arrangements on both engine sides are, for example, a combination of arrangement 1 with 2 or 3. It is advantageous for the manufacture of the components that 100% tightness of the respective sections and circuits is not necessary with respect to one another, since it is the same Medium acts.
  • FIG. 3 shows a pendulum ring (28) via which the oil from the rotating wobble shaft (15) and the rotating support sleeve (33) find a way into which the connecting rod (29) executes a pendulum movement.
  • This pendulum ring (28) has a circumferential collecting groove on its inside, from which the oil reaches the connecting rod oil bore (36) via branch bores (35).
  • the chamfering of the bore (35) on the contact surface of the pendulum ring / connecting rod is so large that oil continues to flow even at the maximum stroke.
  • the ring (28) is secured against rotation by the pins (37), which, however, leave it enough play to compensate for the pendulum movement.
  • Fig. 4 shows a cross section through an annular space barrier (section CC): A cylindrical rotary part (12) or a cylindrical sleeve is inserted into a hole that is larger and deeper than the annular space cross section. A plate spring ( 39 ) ensures that the front end seals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

KÜHL- UND SCHMIERKREISLAUF EINES AXIALMOTORS
Zweck der Erfindung ist die Vereinfachung der Kreisläufe, die flexibel für unterschiedliche Kühlanforderungen (Flug¬ zeug- oder LKW-, Aggregats- oder Schiffsmotor) sein sollen, sowie die Anwendung einer wärmedämmenden Motorentechnologie für Kühlung und Schmierung von Axialmotoren.
Die Lösung der Aufgabe besteht darin, daß das gleiche Medium für Kühlung und Schmierung verwendet wird, und in der Anordnung einer zentralen Verteilernut, bei der die ver¬ schiedenen Kühl- und Schmierkreislauf-Kombinationen durch einfaches Umstecken von Querschnittssperren frei gewählt werden können, ohne Bauteilvarianten.
Fig. 1 zeigt eine Hälfte eines Axialmotor, der die oszillie¬ rende Bewegung der Kolben (13) in den Zylindern (14) , die axial um eine Taumelwelle (15) herum angeordnet sind, in eine Drehung der Taumelwelle umsetzt . Die Zylinder werden durch Köpfe (16) abgedeckt und diese ihrerseits von einem Steuergehäuse (17) , welches gleichzeitig über den Lagerstuhl (18) mit dem Motorgehäuse (34) verbunden ist. Das Steuerge¬ häuse auf jeder Motorseite weist zwei Ölpumpen (1 ) und (2) auf, welche von der Kurbelwelle (15) angetrieben werden. Durch in Fig. 2 beschriebenes Verfahren gelangt das Öl in Pfeilrichtung entweder in die Kurbelwelle (über Raum (19) ) und bildet einen Schmier- und Spritzölkreislauf, oder es gelangt in Ringraum (20) und bildet den Kühlkreislauf.
Kühlkreislauf : Vom Ringraum (20) fließt das Öl in die Ringräume (21 ) der einzelnen Zylinder. Diese Ringräume (21 ) dienen der Umspülung des Zylinderbereichs , der durch die Kolbenkrone vom Spritzöl (22) ständig abgedeckt ist. Das Öl gelangt in eine Ringsammeinut (23) im Kopf (16) . von der es durch eine Bohrung (24) in das Steuergehäuse (17) fließt, von wo es zurück in den Ölbehälter (25) gelangt. Die Ring¬ räume (20) auf beiden Seiten sind durch Rohre (26) verbun¬ den . Schmier- und Spritzölkreislauf: Durch die Taumelwelle (15) kann das Öl von einer Seite von Ringraum (19) auf die andere Seite fließen und gewährleistet eine Schmierung der Grundlager. Im Kurbelzapfen befinden sich Bohrungen (27) , durch die das Öl in den Raum zwischen Zapfen und einer Hülse (33) gelangt, auf der einzelne Pleuel (29) schwenkbar gelagert sind. Durch in Fig. 3 beschriebenes Verfahren gelangt das Öl durch Pendelring (28) und Pleuel (29) in den Bolzen (30) und von da in das Verbindungsstück (31) beider Kolben. Hierdurch kann allen bewegten Teilen Schmierung zugeführt werden. Durch Spritzdüsen tritt das Öl am Teil
(31) aus und kühlt und schmiert Kolben und Zylinderwand durch einen darauf gerichteten Strahl (22) . Das so durch Schmieren und Spritzen verlorene Öl sammelt sich im Gehäuse (18) und wird dem Ölbehälter (25) zugeführt.
Fig. 2 (Schnitt A-A) zeigt einen Schnitt des Ringraumes
(32) in Lagerstuhl (18) und schematisch die auf diesen Ringraum mündenden Bohrungen (Fig. 2) . Die im Steuergehäuse eingebauten Ölpumpen (1) und (2) saugen das Öl aus dem Ölbehälter und befördern es in den Ringraum (32) .
Die sternförmig nach außen führenden bzw. von außen kommen¬ den Bohrungen sind: Leitungen von Pumpe (1) und (2) und Lei¬ tungen (3) , (4) und (11 ) für Anschlüsse externer Geräte wie Filter, Kühler, Thermostat und Manometer. Die Bohrungen (10) führen das Öl ins Innere der Taumelwelle (15) über Raum (19) , und die Bohrung (9) verbindet den Ringraum (32) mit dem Ringraum (20) auf der Rückseite des Lagerstuhls (18) . Die Bohrungen (38) führen jeweils zu Überdruckventi¬ len. Der Ringraum ist durch fünf herausnehmbare Sperrklötze (5) , (6) , (7) , (8) und (12) in Ringabschnitte aufgeteilt. Folgende Anordnungen sind möglich, (Klötze (5) und (8) blei¬ ben dabei stets in der gezeigten Position) : Anordnung 1 : Pumpe (1 ) und (2) als Schmierölpumpen (mit Fil¬ terung und Kühlung) . (6) wird entfernt (An¬ schluß (11 ) dicht) : Öl fließt über (3) zum Filter und Kühler nach (4) und durch Löchern (10) in die Taumelwelle. Bohrung (9) ist durch Klötze (12) und (8) gesperrt (wird nur eine Pumpe benutzt, werden die Anschlüsse der anderen verschlossen) .
Anordnung 2: Pumpe (1 ) und (2) als Kühlölpumpe (ohne Filte¬ rung und Kühlung:
(12) , (6) und (7) werden entfernt: Öl fließt direkt nach (9) . (3) , (4) und (11 ) werden dichtgemacht (wird nur eine Pumpe benutzt, wird der Ansaug der anderen verschlossen) .
Anordnung 3: Pumpe (1 ) und (2) als Kühlölpumpe, mit Kühlung: (12) und (6) werden entfernt ((4) ist dicht): Öl fließt über (3) und Kühler nach (11 ) .
Anordnung 4: Pumpe (1 ) als Schmierölpumpe mit Filterung und Kühlung, Pumpe (2) als Kühlölpumpe ohne Filte¬ rung und Kühlung:
(12) und (7) werden entfernt ((11 ) ist dicht) : Öl fließt als Kühlöl direkt nach (9) . Öl fließt über (3) zum Filter und Kühler nach (4) und in Löchern (10) in die Taumelwelle.
Anordnung 5: Pumpe (1 ) als Schmierölpumpe mit Filterung und Kühlung, Pumpe (2) als Kühlölpumpe mit Kühlung: (7) wird entfernt: Öl fließt als Kühlöl über (11) und Kühler nach Anschluß (11 ) der anderen Seite und Bohrung (9) der anderen Seite. Öl fließt als Schmieröl wie Anordnung 4. Kombinationen dieser Anordnungen auf beiden Motorseiten sind beispielsweise Kombination der Anordnung 1 mit 2 oder 3. Es ist für die Fertigung der Bauteile von Vorteil, daß eine 100 % Dichtheit der jeweiligen Abschnitte und Kreis¬ läufe zueinander nicht erforderlich ist, da es sich um das gleiche Medium handelt .
Fig. 3 zeigt einen Pendelring (28), über den das Öl aus der drehenden Taumelwelle (15) und die sich drehende Stützhülse (33) einen Weg findet in das eine Pendelbewegung ausfüh¬ rende Pleuel (29) . Dieser Pendelring (28) hat an seiner Innenseite eine umlaufende Sammelnut, von der aus über Stichbohrungen (35) das Öl in die Pleuelölbohrung (36) ge¬ langt. Die Anfasung der Bohrung (35) an der Kontaktfläche Pendelring/Pleuel ist so groß, daß auch bei maximalem Pen¬ delausschlag noch ständig Öl fließt. Der Ring (28) ist gegen Verdrehung durch die Stifte (37) gesichert, die ihm jedoch genügend Spiel zum Ausgleich der Pendelbewegung lassen.
Fig. 4 zeigt einen Querschnitt durch eine Ringraumsperre (Schnitt C-C ) : Ein zylinderförmiges Drehteil (12) oder eine zylindrische Hülse wird in eine Bohrung gesteckt, die größer und tiefer als der Ringraumquerschnitt ist. Eine Tellerfeder (39) sorgt dafür, daß die vordere Stirnseite dichtet.

Claims

P A TE NT A N S P R Ü C H E
1. Verbrennungsmotor mit axialer Zylinderanordnung um eine Taumelwelle herum und einem taumelscheibenartigen Kurbel¬ trieb in einem Motorgehäuse, an dessen einer oder beiden Stirnseiten die die Zylinder abdeckenden Kopfe und die die Gaswechselorgane enthaltenden Kopfe angeordnet sind und die an ihrer motorabgewandten Stirnseite durch ein Steuergehause überdeckt sind, durch das die Taumelwelle geht und in dem die den Gaswechsel steuernden Bauteile untergebracht sind, dadurch gekennzeichnet, daß zum Schmieren und Kuhlen des Motors das gleiche flussige Medium benutzt werden kann und die Bauweise des Motors so ist, daß dieses Medium sowohl in das Innere der Taumel¬ welle gefuhrt werden kann und von dort aus zu allen zu schmierenden und zu kühlenden Stellen des Kurbeltriebes gelangen kann, als auch außen um die Zylinder herum und durch d e Zylinderkopfe gefuhrt werden kann.
2. Verbrennungsmotor nach Anspruch 1 , dadurch gekennzeich¬ net, daß der Kreislauf des Mediums aufgezweigt wird in einen inneren und einen äußeren Kreislauf und diese Auf- zweigung der Wege im Steuergehause erfolgt .
3. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß diese Aufzwei¬ gung der Kreisläufe bei Motoren mit Anordnung von Köpfen und Steuergehause auf beiden Motorseiten dadurch erfolgt, daß die inneren Kreisläufe beider Motorseiten zu einem verbunden sind, ebenso wie die äußeren und jeweils ein Kreislauf vom Steuergehause einer Seite ausgehen.
4. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß das gesamte Medium vor der Verteilung in einen ringförmig um die Tau¬ melwelle angeordneten Verteilerraum gefuhrt wird, in den die Zu- und Ab lußlei ungen münden, und dieser Ringraum in Abschnitte so unterteilt ist, daß eine Aufzweigung in verschiedene Wege erfolgt .
5. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß diese Aufzwei¬ gung wahlweise erfolgen kann durch Einstecken von Sperren an festgelegten Stellen des Ringraumes.
6. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß der äußere Kreislauf von jeweils einer Ringnut auf einer Motorseite versorgt wird, wobei von dieser Ringnut Stichbohrungen zu dem Ringraum um die Zylinder führen, von wo das Medium in die Köpfe eintritt und von da zurück in das Steuergehäuse fließt.
7. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß der innere Kreislauf von einem ringförmig um die Taumelwelle liegen¬ den Raum versorgt wird, von dem das Medium durch Boh¬ rungen in das Innere der Taumelwelle gelangt, von wo es über Bohrungen im Schrägzapfen in den Ringraum mindestens eines weiteren Bauteiles gelangt, das zwischen Zapfen und Kolbenbolzen angeordnet ist, von wo es durch Bohrung oder Spritzdüsen den zu schmierenden und zu kühlenden Stellen zugeführt wird .
8. Verbrennungsmotor nach einem oder mehreren der vorgenann¬ ten Ansprüche, dadurch gekennzeichnet, daß dieses Bauteil bei Motoren mit pendelnden Pleueln so ausgeführt ist, daß es ringförmig um den Taumelwellenzapfen verläuft und eine Ringsammeinut auf seiner sich um den Zapfen oder eine weitere Zwischenhülse drehenden inneren Seite auf¬ weist, von der aus Stichbohrungen auf die äußere Umfang¬ seite gehen an die Stellen, an denen die Pleuel pendeln und die gegen die Pleuel so fixiert ist, daß der Fluß des Mediums in die Pleuel nicht unterbrochen werden kann .
PCT/DE1988/000003 1987-01-02 1988-01-01 Cooling and lubricating circuit of an axial engine WO1988005124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8888900352T DE3861284D1 (de) 1987-01-02 1988-01-01 Verbrennungsmotor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3700023.3 1987-01-02
DE3700023 1987-01-02

Publications (1)

Publication Number Publication Date
WO1988005124A1 true WO1988005124A1 (en) 1988-07-14

Family

ID=6318388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000003 WO1988005124A1 (en) 1987-01-02 1988-01-01 Cooling and lubricating circuit of an axial engine

Country Status (4)

Country Link
EP (1) EP0330674B1 (de)
AU (1) AU1055688A (de)
DE (1) DE3861284D1 (de)
WO (1) WO1988005124A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066827A1 (de) * 2004-12-20 2006-06-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Trockenlaufender taumelscheibenverdichter mit einer beschichteten taumelscheibe
CH703399A1 (de) * 2010-07-02 2012-01-13 Suter Racing Technology Ag Taumelscheibenmotor.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE267317C (de) *
DE658055C (de) * 1932-06-21 1938-03-21 Spontan Ab Brennkraftmaschine mit Kuehloelkreislauf
GB520416A (en) * 1937-10-22 1940-04-23 Briggs Mfg Co Improvements in and relating to internal combustion engines having means for resiliently mounting the cylinders thereof
US2417487A (en) * 1944-03-18 1947-03-18 Edwin S Hall Cam engine
FR1297682A (fr) * 1961-08-18 1962-06-29 Clevite Corp Moteur à plateau oscillant
US3528317A (en) * 1969-04-14 1970-09-15 Clessie L Cummins Internal combustion engine
FR2301687A1 (fr) * 1975-02-21 1976-09-17 Lely Nv C Van Der Moteur ou dispositif analogue, a
FR2373678A1 (fr) * 1976-12-11 1978-07-07 Elsbett L Moteur a combustion interne, en particulier moteur diesel
DE2736023A1 (de) * 1977-08-10 1979-02-22 Klaue Hermann Taumelscheibentriekwerk, insbesondere fuer kraftfahrzeug-brennkraftmaschinen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE267317C (de) *
DE658055C (de) * 1932-06-21 1938-03-21 Spontan Ab Brennkraftmaschine mit Kuehloelkreislauf
GB520416A (en) * 1937-10-22 1940-04-23 Briggs Mfg Co Improvements in and relating to internal combustion engines having means for resiliently mounting the cylinders thereof
US2417487A (en) * 1944-03-18 1947-03-18 Edwin S Hall Cam engine
FR1297682A (fr) * 1961-08-18 1962-06-29 Clevite Corp Moteur à plateau oscillant
US3528317A (en) * 1969-04-14 1970-09-15 Clessie L Cummins Internal combustion engine
FR2301687A1 (fr) * 1975-02-21 1976-09-17 Lely Nv C Van Der Moteur ou dispositif analogue, a
FR2373678A1 (fr) * 1976-12-11 1978-07-07 Elsbett L Moteur a combustion interne, en particulier moteur diesel
DE2736023A1 (de) * 1977-08-10 1979-02-22 Klaue Hermann Taumelscheibentriekwerk, insbesondere fuer kraftfahrzeug-brennkraftmaschinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066827A1 (de) * 2004-12-20 2006-06-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Trockenlaufender taumelscheibenverdichter mit einer beschichteten taumelscheibe
CH703399A1 (de) * 2010-07-02 2012-01-13 Suter Racing Technology Ag Taumelscheibenmotor.

Also Published As

Publication number Publication date
EP0330674A1 (de) 1989-09-06
DE3861284D1 (de) 1991-01-24
AU1055688A (en) 1988-07-27
EP0330674B1 (de) 1990-12-12

Similar Documents

Publication Publication Date Title
DE60127225T2 (de) Zweiteiliger Kolben mit Ölkanälen zu den Bolzenbohrungen
DE3638000C2 (de)
EP0154939B1 (de) Ölgekühlter, zweiteiliger Gelenkkolben
DE102004048672B4 (de) Blockmontierte Kolbenspritzvorrichtung
DE10051131A1 (de) Schmierungsstruktur für eine Brennkraftmaschine
DE60013753T2 (de) Kühlring für eine zylinderbüchse in einer brennkraftmaschine
WO1988005124A1 (en) Cooling and lubricating circuit of an axial engine
DE4012475C2 (de)
DE3401998C2 (de)
EP1156198B1 (de) Kolbenkühlung für Brennkraftmaschinen
DE4342799C2 (de) Ölgekühlte Hubkolben-Brennkraftmaschine
DE10038607B4 (de) Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere hydraulische Nockenwellen-Verstelleinrichtung in Rotationskolbenbauart
DE3800006A1 (de) Kuehl- und schmierkreislauf eines axialmotors
DE102007026140A1 (de) Verbrennungsmotor mit rotierender Antriebskraftverteilung
WO2012000126A2 (de) Taumelscheibenmotor
DE3546646C2 (en) Oil-cooled internal combustion engine with two-part piston and oil baffle surfaces in the bottom part of the piston
DE4042425C2 (de) Kurbelschleifengetriebe für einen Boxermotor mit Schwungmasse und zusätzlichem Energieschwungakkumulator
DE2658194A1 (de) Pleuelstange fuer hubkolbenbrennkraftmaschinen
DE2412438A1 (de) Rotations-druckvorrichtung fuer fluide
DE19834138C1 (de) Brennkraftmaschine
CH204339A (de) Wassergekühlte Verbrennungskraftmaschine.
DE4433277A1 (de) Ölsystem einer Brennkraftmaschine
AT524449A1 (de) Brennkraftmaschine mit Ölbedarfsstellen
DE322405C (de) Einrichtung, welche gleichzeitig die Schmierung des Lagers am Kopfe der Schubstange und die Kuehlung durch Wasserumlauf im Arbeitskolben bei einer Verbrennungskraftmaschine gestattet
DE4302515C2 (de) Ölpumpe für Hubkolbenverbrennungsmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR DK FI HU JP KP KR LK MC MG MW NO RO SD SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1988900352

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988900352

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988900352

Country of ref document: EP