WO1986005470A1 - Joint driving apparatus for industrial robots - Google Patents
Joint driving apparatus for industrial robots Download PDFInfo
- Publication number
- WO1986005470A1 WO1986005470A1 PCT/JP1986/000128 JP8600128W WO8605470A1 WO 1986005470 A1 WO1986005470 A1 WO 1986005470A1 JP 8600128 W JP8600128 W JP 8600128W WO 8605470 A1 WO8605470 A1 WO 8605470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- reduction
- electric motor
- robot
- reducer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/102—Gears specially adapted therefor, e.g. reduction gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0241—One-dimensional joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
- B25J9/126—Rotary actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S475/00—Planetary gear transmission systems or components
- Y10S475/904—Particular mathematical equation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
Definitions
- the present invention relates to a joint drive device for an industrial robot, and more particularly to a joint drive device for preventing generation of resonance vibration of a robot drive system.
- a drive system for a joint such as an arm includes a high-speed, low-torque electric motor or an electric pulse motor, and the output of the motor is driven at a low speed and a high speed.
- a reduction gear that converts to torque is used.
- such a reduction gear has, for example, a large reduction ratio of about 1 to 120, and has a small backlash between gears, that is, a so-called backlash.
- it is required to be lightweight to reduce inertia.
- a harmonic gear device (trade name: Harmonic Dry) as disclosed in Japanese Patent Application Laid-Open No. 59-175896 B) and an eccentric oscillating type planetary gear reducer as disclosed in Japanese Patent Application Laid-Open No. 59-110644.
- the reduction ratio of the former is generally about 1Z80 to 1/320, and the reduction ratio of the latter is generally about 16 to 1200.
- the former has a smaller outer diameter and weight per reduction ratio than the latter, and satisfies the reduction ratio and mechanical strength required as a drive reduction gear for the joints of most mouth bot arms. ing.
- Japanese Patent Publication No. 58-2181181 proposes an electric control method that changes the speed command signal of the electric motor so as to cancel the generated vibration. Have been. However, in such a system, if the feedback gain is increased, the system becomes unstable. Because of the problem of easy shaking, it is not possible to increase the gain, and therefore it is not possible to obtain a sufficient vibration canceling effect. Also, Japanese Patent Publication No. 59-1755986 proposes a system in which a speed limiter is driven by a timing belt with a high tension and the vibration is absorbed by the belt. Have been. However, there is a risk that the timing belt will break in this method. Also, Japanese Patent Application Laid-Open No.
- 59-115189 proposes a method in which a vibration absorber composed of a spring and a weight is attached to a main shaft of a speed reducer.
- a vibration absorber composed of a spring and a weight is attached to a main shaft of a speed reducer.
- the vibration absorber is damaged by centrifugal force, and that the weight and the like must be adjusted according to the load applied to the robot.
- these have the problem that the structure becomes complicated and the number of parts increases.
- an object of the present invention is to provide a robot joint moving device having a simplified structure, in addition to a resonance preventing structure that eliminates a resonance phenomenon from a practical range.
- the inventors conducted various studies on the relationship between the resonance constant, the natural torsional frequency, the torque fluctuation, and the like of the reduction gear used in the joint drive device of the robot arm.
- the inventors tried to eliminate the torque fluctuation of the speed reducer, which caused vibration. Specifically, using an eccentric oscillating type planetary gear reducer, the teeth of the internal gear and the external gear of this reducer are subjected to high-precision finishing so as to prevent or reduce the torque fluctuation, and to reduce the torque.
- An annular groove was provided in the bearing of the eccentric input shaft, the shaft support of the torque output pin, and the like, and a rubber ring was provided in the groove so as to absorb the fluctuation even if it occurred.
- resonance in the practical range cannot be prevented, and the speed of the electric motor when resonance occurs is almost the same as when no such measures are taken. I found it.
- a reduction gear having an eccentric oscillating planetary gear reducer and a pre-stage reduction gear is disclosed in U.S. Pat. No. 4,348,918. Has been adopted. However, it is not necessary for such a traveling device to take into account the problems of the weight of the reduction gear to be used, the backlash, and the like. Therefore, a front-stage speed reducer is provided simply to facilitate changing the total reduction ratio of the speed reducer, or simply to output low-speed large torque. On the other hand, it is important to reduce the weight and backlash of the speed reducer in a robot that requires high speed, position accuracy, etc., and has low rigidity of the whole structure. Conventionally, it has not been conceived to use an eccentric oscillating type planetary gear reducer with a larger weight per reduction ratio than the harmonic gear unit, and to additionally provide a front-stage reducer that is an element that increases the weight and backlash. It was.
- the joint driving device for an industrial robot includes a first part of the robot.
- a second member of a robot rotatably supported by the first member; a gear reduction device for reducing the rotation of an electric motor integrally attached to the first member and transmitting the rotation to the second member;
- the gear reduction device comprises: a first-stage speed reducer that reduces the rotation speed of the electric motor; and a second-stage planetary gear reducer that further reduces the rotation speed of the output of the first-stage reduction device.
- the flanges support the eccentric input ⁇ .
- Either the first member or the second member and the pair of flanges Has a configuration which is characterized in that bound in the rod-like member passing bets from holes provided in the external gear.
- the gear reducer receives the output of the front-stage reducer having a reduction ratio within a predetermined range and the output of the reducer, and the gear is reduced when the difference in the number of teeth between the internal gear and the external gear is 1
- a rear-stage eccentric oscillating planetary gear reducer with a ratio of about several tenths which is built into the drive system of the robot. Can be removed from.
- the pair of flanges and the robot side in the reduction gear transmission can be integrally connected and fixed at the same time by a rod-shaped body that passes through a hole provided in the external gear, so that the structure is simple and assembly and disassembly can be facilitated. Since the space inside the reduction gear can be used effectively, the reduction gear can be reduced in size and weight. In addition, the torsional rigidity of the reduction gear increases due to the integral connection and fixing of the rod-shaped body. It can withstand heavy loads.
- FIGS. 1 to 5 are diagrams for explaining a first embodiment of a joint driving device for an industrial robot according to the present invention.
- Fig. 1 is an overall schematic explanatory diagram
- Fig. 2 is a partial sectional view of the speed reducer (3)
- FIG. 3 is a sectional view taken along the line ma-la in Fig. 2,
- FIG. 3 (b) is a cross-sectional view taken along the line in b -1 massagerin FIG. 3 (a),
- Figure 3 (c) are IE e of FIG. 3 (a) - I c sectional view taken along line,
- FIG. 4 is a diagram for explaining the performance of an embodiment and a comparative example of the joint driving device for an industrial robot according to the present invention.
- Fig. 5 is the overall configuration diagram of the experimental example according to Fig. 4,
- FIG. 6 is a sectional view of a main part showing a second embodiment of the present invention.
- FIG. 7 is a sectional view taken along the line W-VII in FIG. 6,
- FIG. 8 is a characteristic diagram showing a rotation spring constant of a general reduction gear transmission.
- Fig. 9 is an overall conceptual diagram of an industrial mouth robot using the joint drive device of the industrial robot according to the present invention.
- FIG. 10 is a sectional view of a main part of a third embodiment of the present invention used for the first joint (66) of FIG. 9,
- FIG. 11 is a sectional view of a main part of a fourth embodiment of the present invention used for the second joint (67) of FIG. 9,
- FIG. 12 is a sectional view of a main part of a fifth embodiment of the present invention.
- FIGS. 1 to 3 show a first embodiment of the present invention.
- FIG. 1 is an overall schematic view of a joint part of a mouth robot using a joint drive device of an industrial robot according to the present invention.
- Reference numeral 1 denotes an electric motor, and a flange 2 of the electric motor 1 is fixed to a cylinder 4 of a reduction gear 3.
- the cylindrical body 4 is fixed to a tip 5a of a first arm 5 as a first member.
- the rotation shaft ⁇ of the output of the electric motor 1 is connected to the input rotation shaft 8 of the reduction gear 3, the output of the reduction gear 3 is transmitted to the shaft 10, and the shaft 10 penetrates through the cylinder 11 to serve as the second member. It is assigned to the second arm 12.
- a pair of bearings 16 is interposed between the cylindrical body 13 at the end of the second arm 12 and the R cylindrical projection 15 protruding downward from the lower surface of the distal end 5 a of the first arm 5.
- the second arm 12 is rotatably supported by the first arm 5.
- a pair of bearings 17 is interposed between the inner peripheral surface of the protruding body 15 and the outer peripheral surface at the center of the cylindrical body 11.
- a pair of bearings 18 are interposed between the upper and lower inner surfaces of the cylindrical body 11 and the shaft 10, respectively. Accordingly, the speed reducer 3 reduces the rotation speed of the electric motor 1 to rotate the driven portion of the robot, that is, the second arm 12.
- the electric motor 1, the reduction gear 3, the second arm 12, and the load connected to the second arm constitute a driving system.
- the speed reducer 3 is a first-stage speed reducer 20 that reduces the rotational speed of the electric motor 1 and a second-stage reducer that is connected to the first-stage reducer 20 and further reduces the rotational speed. 21 and.
- the pre-stage speed reducer 20 is a normal parallel shaft type speed reducer, and is constituted by a spur gear.
- the rear reduction gear 21 is fixed to the fixed internal gear 28 and the internal gear 28.
- An eccentric oscillating planetary gear device having an external gear 29 that fits and an input crankshaft 30 as an eccentric input shaft that engages with the external gear 29 and oscillates the external gear 29. It is configured.
- the internal gear 28 is formed of a bin gear using the pin teeth 31, and has one more tooth than the external gear 29.
- a pair of flanges 32 for supporting the input crankshaft 30 are provided on both axial sides of the external gear 29. That is, the pair of flanges 32 includes a disk portion 33 that forms the front end of the rear reduction gear 21 and a flange portion 35a that forms the rear end.
- the flange portion 35a forms a rear end portion of a block body 35 provided by inserting a through hole 29e provided evenly on the circumference of the external gear 29, and a flange 10 of the shaft 10. It is in contact with the flange 10a.
- the pair of flanges 32 support a plurality (three in this embodiment) of input crankshafts 30 equally distributed on the circumference thereof.
- the external gear 29 has a plurality of (three in this embodiment) engagement portions 29d with the input crank shaft 30, and A through hole 29e is provided between the engaging portions 29d.
- One of the first arm 5 and the second arm 12 of the robot (in this embodiment, the flange portion 10a of the shaft 10 fixed to the second arm 12) and the pair of flanges 32 are As shown in Fig. 3) to (c), at least two bolts (in this embodiment, two bolts 46 and 48 and two pin 61) are passed through the through hole 29e provided in the external gear 29. And 63). That is, the rods 60 are arranged in the circumferential direction in the block 35, one of which is the bolt 46, and the bolt 46 is a flange 10 a fixed to the second arm 12. And the pair of flanges 32 are fastened and connected. The frictional force generated by tightening this bolt 46 is equivalent to the rated torque of speed reducer 3. It is designed to withstand 150-200% overload.
- the other small bolt 48 is used for assembling and fixing the disc portion 33 and the block 35 to each other.
- the first taper bin 61 fits into a pin hole 62 provided from the disc 33 to the front end 35b of the block 35, and positions the disc 33 and the front end 35b. I have.
- the second taper bin 63 is connected to a free-fitting hole 64 a for machining and assembling, which is provided from the disc portion 33 to the flange portion 35 a of the block body 35, and is connected to the block.
- the position of the body 35 and the flange 10a is determined by fitting into the pin hole 64b provided from the body 35 to the flange 10a.
- the shear stress of these taper bins 61 and 63 is designed to withstand an overload of 300 to 400% of the rated torque of the speed reducer 3.
- Mouth bot i.e. within the normal range of the control rotational speed of the electric motor 1 and the speed reduction ratio i 2 of the reduction ratio ii and subsequent reduction gear 21 of the front reduction gear 20, a first ⁇ over arm 5 and the second arm 12, It is selected so that resonance with the latter reduction gear 21 does not occur. That is, in the practical range of the electric motor 1, the number of revolutions per second of the pre-stage reduction gear 20 is reduced by the drive system constituted by the electric motor 1, the reduction gear 3, the second arm 12, and the food connected to the second arm 12.
- the torsional oscillation frequency (the natural torsional frequency ⁇ . The frequency in the vicinity. The same applies hereafter.)
- Select the reduction ratio i, of the pre-stage reducer 20 so that it is less than or equal to.
- the normal control rotation speed of the electric motor 1 is 0 to: LOOOrpra
- the reduction ratio i L of the front reduction gear 20 is 1/3
- the reduction ratio i 2 of the rear reduction gear 21 is 1 No. 40
- the overall reduction ratio i of the reduction gear 3 is selected to be 1Z120.
- the speed reduction ratio i, of the front speed reducer 20 is less than 1 ⁇ 5 (meaning that the denominator increases. The same applies to the following.) Or the speed reduction ratio i 2 of the rear speed reducer 21 exceeds 1 ⁇ 25 (the denominator is small. The same applies to the following), and it is difficult to obtain a total reduction ratio i of 1/120 by using a simple-structured parallel-axis reduction gear for the former reduction gear 20. Disadvantageous.
- the reduction ratio i 2 of the rear reduction gear 21 is less than 1/60 or the reduction ratio of the front reduction gear 20 exceeds 1 Z 2 to obtain a total reduction ratio i of 120, the electric motor 1 is practically used.
- the rotational speed per second of the pre-stage reduction gear 20 is the natural torsional frequency f of the drive system. (8.4 Hz) or less, so the effect of preventing resonance is small.
- the output rotation speed of the first-stage speed reducer 20 having a reduction ratio i, of 1/3 is 0 to 333 rpm, and the second-stage reduction device having a reduction ratio i 2 of 140. output speed of 21 0 ⁇ 8.3r P m and do Ri., the resonance phenomenon does not occur in this range.
- the speed reduction ratio i z harmonic gear reducer is about 1 80 at a minimum
- the total reduction ratio i is Ri Do 1/480 is also at a minimum
- 1 ⁇ : L OOOrpm electric motor for the practical region is generally required to Cannot satisfy the deceleration ratio i (approximately 1 Z 120).
- a flange fixed to the pair of flanges 32 and the second arm 12 by two tapered pins 61 and 63.
- the relative position with respect to the flange portion 10 a is determined, and the second arm 12 side and the pair of flanges 32 are integrally and simultaneously connected by one bolt 46. Therefore, the structure is simple, and assembly and disassembly are easy. Further, since the diameter of the through-hole 29 e of the external gear 29 can be made sufficiently large, the inner diameter of the bolt hole in the block 35 that freely passes through the through-hole 29 e can be increased. G 46 can be reduced.
- the connection between the reduction gear 3 and the robot side is performed by a bolt 46 that effectively utilizes the space inside the reduction gear 3, it is necessary to provide a flange or the like outside of the reduction gear 3 for connection.
- the size and weight can be reduced.
- the rod body 60 not only functions to connect the speed reduction device 3 and the robot side, but also supports the torsional rigidity generated when the speed reducer 3 is driven, so that the rod 60 is subjected to a large torsional rigidity load. Can withstand.
- the vibrations of the electric motor 1 and the pre-stage reduction gear 20 do not affect the oscillation of the drive system. This is considered to be due to the fact that these vibrations are small and are absorbed by passing through the rear stage 21.
- Planetary gear reduction refers to an eccentric oscillating type planetary gear reducer
- spur gear reduction refers to a parallel shaft type spur gear train reduction gear
- the experiment was performed according to the overall configuration diagram shown in FIG. That is, the reduction gear 52 is attached to the output shaft 51 a of the electric servomotor 51, and the inertia load corresponding to the inertia moment J of the driven part (second arm) of the robot is mounted on the output shaft 52 a of the reduction gear 52. As a result, a flywheel 53 was installed. At a position on the radius of the flywheel side 53a, an acceleration zip-up 54 using a piezoelectric element capable of measuring the acceleration and amplitude in the circumferential direction was attached. The output of this acceleration pick-up 54 is connected to the indicator 56. Is tied. The natural frequency f of the drive train consisting of the motor 51, the reduction gear 52 and the flywheel 53.
- the magnitude of the acceleration of the flywheel at that time was measured by changing the rotation speed of the electric motor.
- Figure 4 shows the measurement results.
- the horizontal axis represents the number of revolutions of the electric servomotor 51, and the vertical axis represents the circumferential acceleration (unit: G) detected by the acceleration big up 54.
- the resonance beaks are when the rotation speed of the electric motor 51 is approximately 750 rpm, approximately 500 rpm, and approximately 250 rpm, respectively. Resonance occurs in the range of 10001000 r P m. However, in the case of the embodiment using the deceleration device according to the present invention, a resonance phenomenon occurs near 1500 rpm, which is outside the practical range of the electric motor.
- the torque fluctuation characteristics of each speed reducer are estimated from such an experimental result, and the natural torsional frequency of the experimental device is estimated using the estimation. Calculating back, it becomes about 8.4 Hz when any of the reduction gears used in the experiment is incorporated. This occurs when the resonance has the lowest rigidity of the drive train, that is, when the load condition is within the range of the so-called lost motion of the reduction gear, and the lost motion spring constant ⁇ £ at that time was used in the experiment. It is considered that these two reduction gears are almost equal.
- FIG. 6 The same configuration as that of the first embodiment will be described using the same reference numerals as those of the first embodiment.
- reference numeral 40 denotes a reduction gear driven by the electric motor 1 shown in FIG. 1, and the reduction gear 40 is of a parallel shaft type connected to the rotating shaft 7 of the electric motor 1. It comprises a first-stage speed reducer 20 and a second-stage planetary gear reducer 21 connected to the first-stage speed reducer 20.
- the tip 7a of the rotating shaft 7 of the electric motor 1 is a taper shaft, and has a thread 7b at the tip.
- a connecting shaft 7c, which forms a part of the motor output ⁇ , is screwed into the screw portion 7b.
- Reference numeral 8 denotes an input rotary shaft, and a front end portion 8a is provided with a vignette 22 of a pre-stage reduction gear 20 and has a hole 8b through which the motor rotary shaft 7 penetrates, and the hole 8b has a tapered portion of the rotary shaft 7. It has an associated tapered hole.
- the input rotary shaft 8 is screwed to the tip 7 a of the rotary shaft 7 of the electric motor 1 with a nut 23.
- the tip 7 a of the rotating shaft 7 is fixed to the input rotating shaft 8 by a half-moon key 24.
- the shaft diameter of the distal end portion 8a of the input rotary shaft 8 can be made smaller than the shaft diameter of the motor rotary shaft 7, so that the number of teeth of the binion 22 is such that the gear is directly mounted on the motor rotary shaft 7.
- the predetermined reduction gear ratio can be obtained even when the commercially available electric motor 1 having a large rotating shaft diameter is used for the capacity.
- the three spur gears 25 corresponding to the binions 22 are respectively connected to three input crankshafts 30 described later.
- the planetary gear reducer 21 includes an internal gear 28 fixed to the cylindrical body 4, a pair of external gears 29 meshing with the internal gear 28, and an external gear engaged with the external gear 29. And three input crankshafts 30 as eccentric input shafts for oscillatingly rotating 29.
- the internal gear 28 is formed of a pin gear using the bin teeth 31 and has one more tooth than the external gear 29.
- Reference numeral 33 denotes a disk part.
- the disk part 33 constitutes the front end of the planetary gear reducer 21, and the input crankshafts 30 are equally arranged on the circumference and supported by bearings 34 via bearings 34. are doing.
- Reference numeral 35 denotes a block body.
- the block body 35 has an axial cylindrical hole 37 at the center thereof, and the input rotary shaft 8 is loosely fitted therein.
- a block 35 having a hole at the center of the external gear 29 and the disk 33 has a recess 36 at its rear end 35c and faces the flange 10a of the shaft 10. ing.
- the pre-stage reduction gear 20 is housed in a cavity formed by the recess 36 and the flange portion 10a.
- the input crank shafts 30 are equally arranged on the circumference of the block 35 and are supported by bearings 41 via bearings 41.
- the extension 30 a of the input crank shaft 30 projects into the recess 36 and is fixed to the spur gear 25.
- the input crankshaft 30 is pivotally supported at the center of the disk 33 and the block 35 and has a pair of cranks 42 having a phase difference of 180 at the center of the input crankshaft 30.
- Each crank portion 42 eccentrically swings the external gear 29 via a bearing 43.
- the above-described disc portion 33, the block body 35 and the collar support 44 are formed.
- the circular section 33, the block body 35 and the flange section 10a are simultaneously and integrally fixed by a plurality of bolts 46 and fixing nuts 47.
- the rod-shaped member 60 includes the aforementioned small bolt 46, the first tapered pin 61 and the first tapered pin 61. It is composed of two Taber bins 63, and a pair of flanges 32 are simultaneously and integrally connected to the flange portion 10a of the second frame 12.
- the configuration other than the above is the same as in the first embodiment.
- the rotation of the electric motor 1 is transmitted to the binion 22 of the pre-stage speed reducer 20 via the rotary shaft 7 and the input shaft 8, and is reduced by the pre-stage speed reducer 20.
- the output of the pre-stage reducer 20 is input to the crankshaft 30 of the planetary gear reducer 21 by the spur gear 25.
- an external gear 29 that is eccentrically swung by the rotation of the crankshaft 30 and an internal gear 28 that meshes with the external gear 29 and has one more tooth than the external gear 29.
- the slow rotation of the external gear 29 is transmitted to the shaft 10 from the support 44 acting as a carrier, and the arm 12 is rotated.
- the normal control rotation speed of the electric motor 1 is 0 to 1000 rpn
- the reduction ratio i of the pre-stage reduction gear 20 is 1 to 3
- the reduction ratio i 2 of the planetary gear reducer 21 is 1 to 40.
- the total reduction ratio i of the speed reducer 3 is 1 to 120
- the front-stage speed reducer 20 sets the maximum number of revolutions per second in the normal control range of the electric motor 1 (16.7 revolutions per second, equivalent to l OOOrpm) to the inherent torsional frequency of the driving system ⁇ . It has a reduction ratio it (1 3) that reduces the speed to below (5.6 revolutions per second).
- the rotational spring constant K, of the speed reducer 40 is about 37.5 kg ⁇ m / min.
- the operation and vibration characteristics of this embodiment are the same as those of the first embodiment. You.
- the industrial robot 65 includes a first joint 66, a second joint 67 connected to the first joint 66, and a first arm 83 and a second arm 68 connected to the second joint 67.
- the first joint 66 rotates the swivel 73 on the upper side of the column 71 in the direction of arrow P
- the second joint 67 moves the first arm 83 on the upper side of the bracket 81 fixed to the swivel 73 in the direction of arrow Q. It turns, and enables the three-dimensional movement of the tip 68 a of the second arm 68.
- FIG. 10 is a diagram showing a third embodiment of the present invention. The same components as those in the first embodiment will be described using the same reference numerals.
- reference numeral 70 denotes a speed reducer.
- the speed reducer 70 is provided inside the cylindrical column ⁇ as the first member in the first joint 66 of the industrial robot shown in FIG. I have.
- the speed reducer 70 includes a parallel shaft type front speed reducer 20 connected to the electric motor 1 and a rear planetary gear speed reducer 21 connected to the front speed reducer 20.
- Two external gears (29a and 29b) whose rotation phases are shifted by 180 degrees are provided.
- the flange 2 of the electric motor 1 is fixed to the column ⁇ via the cylinder 4 using a bolt 4b.
- the almost vertical rotating shaft 7 on the upper side of the electric motor 1 is fixed to the pinion 22 of the pre-stage reduction gear 20, and the three spur gears 25 that meet the pinion 22 have three input cranks described later.
- the shaft 30 is fixed to each of the extending portions 30a.
- the planetary gear reducer 21 is disposed above the pre-stage reducer 20, and has an internal gear 28 fixed to the cylinder 4 and an internal gear.
- a pair of external gears 29 a and 29 b (hereinafter, suffixed with 29) that mesh with the gear 28, and an eccentric that engages with the external gear 29 and swings and rotates the external gear 29.
- the input crankshaft 30 is supported via a bearing 34 on a disk portion 33 constituting the lower end of the planetary gear reducer 21, and the upper end of the planetary gear reducer 21 and the circumference of the external gear 29. It is pivotally supported via a bearing 41 to a block 35 inserted through a through hole provided evenly on the top.
- the block body 35 and the disk part 33 constitute a support body (carrier) 44, and a pair of flanges 32 composed of the flange part 35 a of the block body 35 and the H plate part 33.
- the bottom portion 73a of the cylindrical turning body 73 as a second member provided on the upper side of the column 71 is simultaneously and integrally fixed and fixed by the rod-shaped body 60 (only the bolt 46 is shown in the figure). I have.
- a bearing 74 is provided between the bottom 73 a and the top 71 a of the support ⁇ .
- the swivel 73 rotates with the rotation of the support 44.
- FIG. 11 is a view showing a fourth embodiment of the present invention.
- the same components as those in the first embodiment will be described using the same reference numerals.
- reference numeral 80 denotes a speed reducer
- the speed reducer 80 is used for the second joint 67 of the industrial robot shown in FIG. ⁇
- the box-shaped bracket 81 as one member is integrally fixed on the upper side of the swivel board 73 of the first joint 66 described above.
- the reduction gear 80 is composed of a parallel shaft type front reduction gear 20 connected to the electric motor 1 and a rear planetary gear reduction 21 connected to the front reduction gear 20.
- the flange 2 of the electric motor 1 is fixed to the bracket 81 with the bolt 4b, and the rotating shaft of the electric motor 1 is 7 is fixed to the pinion 22 of the front speed reducer 20, and three spur gears 25 corresponding to the pinion 22 are fixed to the extending portions 30a of three input crank shafts 30 described later, respectively.
- the front end of the input crankshaft 30 of the planetary gear reducer 21 is supported by a plate-shaped block 35 c via a bearing 41, and the other end is circular via a bearing 34. It is supported by the plate part 33.
- the plate-shaped block body 35 c and the disk part 33 constitute a pair of flanges 32.
- a sleeve 85 is provided between the concave portions 35d and 33a provided on the R circumference so as to be loosely fitted in the through-hole 29e.
- the sleeve 85 functions to position the pair of flanges 32 in the axial direction and the circumferential direction, and also functions as a bin;> the block body 35 c, the sleeve 85 and the circular section 33 Constitutes a support 44, which is connected and fixed to a bracket 81 by a bolt 46 composed of a rod-shaped body 60.
- a hole 86 on the circumference of the block body 35 c is a tool through hole for machining and assembling the pin hole 87 on the circumference of the disk part 33.
- the pin 88 fits into the pin hole 87 and positions the disc portion 33 and the bracket 81 in position.
- the internal gear 28 of the planetary gear reducer 21 is rotatably supported on the outer periphery of a support 44 via a bearing 84.
- the internal gear 28 is integrally fixed to an end 83a of a first arm 83 as a second member.
- the rotation of the electric motor 1 is transmitted to the pinion 22 of the pre-stage speed reducer 20 via the rotating shaft 7 and is reduced by the pre-stage speed reducer 20.
- the output of the front-stage speed reducer 20 is input to the input crankshaft 30 of the planetary gear reducer 21 by the spur gear 25, and then a pair of external gears 29a, 29 which are eccentrically oscillated by the rotation of the input crankshaft 30. b (hereinafter represented by 29) and this external gear 29
- the internal gear 28 having one more tooth than the meshing external gear 29 further reduces the speed, and the slow rotation of the internal gear 28 causes the second arm 83 to rotate.
- the configuration, operation, and vibration characteristics other than those described above are the same as those of the first embodiment, and the same reference numerals are given and the description is omitted.
- FIG. 12 is a view showing a fifth embodiment of the present invention, which is a partial modification of the configuration of the first embodiment described above, and has the same configuration as that of the first embodiment. The description is given with reference numerals.
- two input crankshafts 30 are used for the planetary gear reducer 21 at the subsequent stage, and a pair of flanges 32 and a flange portion 10a (not shown) are formed of the external gear 29.
- a pair of flanges 32 and a flange portion 10a (not shown) are formed of the external gear 29.
- the two first bolts 46a and 46b fix a pair of flanges 32 to the flange part 10a by screws, and the small bolt 48 is a disc part 33 and a block body 35 (not shown). For fixing the assembly.
- the first taper pin 61 positions the disc 33 and the front end 35b, and the second taper pin 63 positions the block 35 and the flange 10a. Except for the above, it is the same as the first embodiment.
- the reduction ratio of the pre-stage reduction gear refers to the maximum number of revolutions per second of the electric motor, which is equivalent to the frequency at which the resonance phenomenon starts to occur.
- torsional oscillation frequency that is, a value equivalent to a frequency slightly lower than the natural frequency of the drive system, or a value decelerating to.
- the natural torsional frequency f of the drive train There a case of 5 - 9 Hz, the maximum speed is 1000 r P m of the electric motor, the total reduction ratio i is 1 Bruno 60: about 9 to about 1 the minimum reduction ratio ii of the preceding stage when L Bruno 320 6, Subsequent reduction By setting the speed ratio i 2 to 1 ⁇ 25 to 1 ⁇ 60, the resonance phenomenon can be excluded from the practical range. Also, the natural torsional frequency f of the drive system.
- the maximum speed is 4000Rp m of the electric motor Ichita, when the total reduction ratio of 1 Bruno 125-1 / 600, preceding reduction ratio i, the about 1 Bruno 4.5 to about I 10, may be a subsequent reduction ratio i 2 of about 1 Bruno 30 to about 1 Bruno 100.
- the resonance phenomenon of the drive system of the robot can be out of the practical range, and the speed reducer has a simple structure, can be reduced in size and weight, and can withstand a large load. Can be.
- the industrial robot joint drive device of the present invention can provide a joint drive for a robot used in various applications such as industrial, mining, medical, and nuclear applications, and in particular, can provide a robot having a small and lightweight drive system without resonance vibration. , Production Applicable to robot joint drive devices for robots, precision inspections, and highly reliable operations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- General Engineering & Computer Science (AREA)
- Retarders (AREA)
- Manipulator (AREA)
Description
明 細 書 産業ロボッ トの閬節駆動装置
技 術 分 野
本発明は産業ロボッ トの関節駆動装置、 特にロボッ ト駆動系の共 振振動の発生を防止するものに関する。
背 景 技 術
産業ロボッ トにおいては、 一般に、 作業に適した出力 トルクを得 るため、 アーム等の関節部の駆動系には、 高速低トルクの電勖サ一 ボモータまたは電動パルスモータと、 この出力を低速高 トルクに変 換する減速装置とを用いている。
また、 そのような減速装置は、 例えば、 減速比 1 ノ 120程度の大 減速比を有していること、 また、 歯車間のガタ、 すなわち、 いわゆ るバック ラ ッ シュが小さいこと、 さ らに、 慣性を小さ く するため軽 量であること等が要求される。
このよう な要求を満たす従来の減速装置としては、 例えば、 曰本 国特開昭 5 9 — 1 7 5 9 8 6号公報に開示されているような調和歯 車装置 (商品名 : ハーモニッ ク ドライ ブ) および日本国特開昭 5 9 一 1 0 6 7 4 4号公報に開示されているような偏心揺動型の遊星歯 車減速機がある。 前者の減速比は一般に 1 Z 80〜 1 ノ 320程度であ り、 後者の減速比は一般に 1 6 〜 1 200程度である。 また、 前 者は後者に比し減速比当りの外径、 重量が小さ く 、 かつ、 ほとんど の口ボッ トアームの閩節部の駆動用減速装置として必要な減速比お よび機械的強度を満足している。 したがって、 ロボッ トアームの関
節部駆動用減速機のほとんどは調和歯車装置単体が適用され、 まれ に、 調和歯車装置でも得られないほどの大減速比を必要とするもの- すなわち、 小容量高速回転 (例えば、 出力が 1000ヮ ッ ト以下で回転 数が 5000rpm)型のモータをロボッ トァームの駆動に用いる場合のよ うに 1ノ 625程度の減速比を必要とするもの、 については日本国特 開昭 5 6 - 1 5 2 5 9 4号公報に開示されているように調和歯車装 置に前段減速装置を結合したものが用いられている。
しかしながら、 上述した各減速装置をロボッ 卜の関節装置に用い た場合、 減速装置に入力する電動モータ回転数が低い領域で減速装 置とロボッ トアーム等とがねじり共振を起こすという問題点があつ た。 共振現象としては、 ロボッ トアームの関節部近傍にねじり振動 が現れるこ とが多く、 その結果、 ロボッ トァームの先端位置が定ま らなく なる。 共振が生じる理由は、 電動モータの トルク伝達機構で ある上記各減速装置の剛性が低いため、 そのような減速装置を含む 駆動系 (電動モータ、 減速装置およびロボッ トアームから構成され る系) の固有ねじり振動数 ί 。 が低く なり、 したがって、 歯切の加 ェ誤差等に起因して振動する減速装置の振動周波数が、 電動モータ の低面転数域で上記固有ねじり振動数 f 。 と一致するためと考えら れていた。
このような問題点に対し、 日本国特開昭 5 8 — 2 1 1 8 8 1号公 報には、 発生した振動を打ち消すように電動モータの速度指令信号 を変化させる電気的制御方式が提案されている。 しかしながら、 こ のような方式においてはフィ ー ドバックゲイ ンを大き く すると系が 不安定となり、 特に剛性の低いロボッ ト駆動系においては、 逆に発
振し易く なるという問題を生じるため、 ゲイ ンを大き くできず、 し たがって、 充分な振動打ち消し効果を得られない。 また、 日本国特 開昭 5 9 — 1 7 5 9 8 6号公報には高張力を与えたタイ ミ ングベル トで滅速機を駆動し、 該ベル 卜で振動を吸収する方式のものが提案 されている。 しかしながら、 この方式においてはタイ ミ ングベル ト が破断するという危険がある。 また、 日本国特開昭 5 9 — 1 1 5 1 8 9号公報には減速機の主軸にばねとおもりから成る吸振器を取り 付ける方式が提案されている。 しかし、 この方式においては遠心力 により吸振器が破損したり、 ロボッ 卜の負荷荷重に対応しておもり 等を調整しなければならないという問題点がある。 さらに、 これら のものは、 構造が複雑になり、 部品数も多 く なるという問題点があ る。
そこで、 本発明は、 共振現象を実用域から外す共振防止構造にす る とともに、 その構造を簡単にしたロボッ 卜の関節躯動装置を提供 する こ とを目的とする。
発明者らは、 ロボッ トアームの閩節駆動装置に用いる減速機のば ね定数、 固有ねじり振動数、 トルク変動等と共振現象との関係、につ き種々研究を行つた。
先ず、 中立位置付近 (いわゆるロス トモーショ ン位置) の回転ば ね定数 Κ ώ (第 8図参照) の高い減速機をロボッ トアームの関節駆 動装置に用いるこ とにより ロボッ トの駆動系の固有ねじり振動数 f 0 を実用域から外すことが可能か否かについて試算した。 しかし、 減速機の中立位置付近の回転ばね定数 K £ は、 大きなものでもロボ ッ トアーム自体の回転ばね定数 K r の Ι Ζ ΙΟ Ι Ζ δであるため、
駆動系全体のばね定数 K = K · K r / ( K & + Κ τ ) は大して大 き く できず、 その結果、 駆動系の固有ねじり振動数 f 。 = 1 / 2 •J 7 (ここに、 Jは駆動系の慣性モーメ ン ト) も大して大き く できない。 したがって、 減速機の中立位置付近のばね定数 K iを高 めること、 すなわち剛性を高めることによっては、 驩動系の固有ね じり振動数 f 。 を実用域から外すことは不可能であるとの ¾論に達 し /こ o
そこで、 発明者等は、 振動発生の原因である減速機の トルク変動 を無く すことを試みた。 具体的には偏心揺動型の遊星歯車減速機を 用い、 トルク変動を驵止ないし減ずるよう、 この減速機の内歯歯車 と外歯歯車の歯に高精度の仕上げ加工を施し、 かつ、 トルク変動が 生じてもこれを吸収するよう、 偏心入力軸の軸受部ゃ トルク取出ピ ンの軸支部等に環状溝を設け、 該溝にゴムリ ングを装 した。 しか しながら、 このような対策を施しても実用域での共振を防ぐことは できず、 しかも、 共振が生じる時の電勳モータ回転数は、 そのよう な対策を施さない場合とほとんど同じであることがわかった。
このような実験結果から、 一定の機構の減速機であれば、 ほぼ一 定の トルク変動特性、 すなわち口ボッ トの駆動系に対する加振周波 数特性を有するとの結論が導かれた。 また、 斯かる結論から、 ロボ ッ ト駆勳系に組み込む減速装置の機構を変更することにより トルク 変勤特性を実用域外に置く ことができるとの仮説の下に種々の実験 行った。
これらの実験の内容および結果については後述するが、 これらの 実験結果から仮説は実証され、 下記の結論に到達した。
従来の常識では全く考えられなかった構成、 すなわち、 偏心揺動 型の遊星歯車減速機は、 内歯歯車と外歯歯車の歯数差が 1 であって、 単独でも 1 / 200 程度の減速比にできるが、 この減速比を数十分の 一程度とし、 これに所定範囲の減速比を有する前段減速比をわざわ ざ設けて歯車装置を構成し、 これをロボッ トアームの駆動系に組み 込むという構成により共振現象の生じる範囲を電動モータの実用域 から外すことができる。
なお、 偏心揺動型の遊星歯車減速機に前段減速機を設けた減速装 置は、 米国特許第 4. 348 . 918 号明細書に開示されているよう にク ロ ーラ車両の走行装置等に採用されている。 しかしながら、 そのよう な走行装置等は採用する減速機の重量、 バック ラ ッ シ等の問題をほ とんど考慮しな く ともよい。 したがって、 単に減速機の総減速比の 変更を容易にするため、 あるいは単に低速大 トルクを出力するため- 前段減速機を設けているのである。 これに対し、 高速性、 位置精度 等を要求され、 且つ、 全体構造の剛性が低いロボッ 卜においては、 減速機の重量、 バック ラ ッ シュを小さ く することが重要であるため. 関節部に、 減速比当たりの重量が調和歯車装置より大きい偏心揺動 型の遊星歯車減速機を用い、 さらに重量、 バック ラ ッ シュを増大さ せる要素となる前段減速機をわざわざ設けることは従来考えられな かったのである。
発明者らはさ らに種々研究を重ねた結果、 前記目的を達成するた め、 下記の構成を有する本発明に到達した。
発 明 の 開 示
本発明に係る産業ロボッ トの関節駆動装置は、 ロボッ トの第 1部
材と、 第 1部材に回動自在に支持されたロボッ 卜の第 2部材と、 第 1部材に一体的に取り付けられた電動モータの回転を減速して第 2 部材に伝達する歯車減速装置と、 を備え、 前記歯車減速装置が、 前 記電動モータの回転数を減速する前段減速機と、 前段減速機の出力 の回転数を更に減速する後段の遊星歯車減速機と、 から構成され、 前記遊星歯車減速機が、 前記前段減速機の出力が入力される偏心入 力軸、 偏心入力軸と係合しその回転により偏心揺動させられる外歯 歯車、 外歯歯車と嚙み合い外歯歯車の歯数より 1つ多い歯数を有す る内歯歯車および外歯歯車の両側に設けられ前記偏心入力轴を支持 する一対のフラ ンジを有する産業ロボッ 卜の関節駆動装置に.おいて 前記第 1部材および第 2部材のいずれかと前記一対のフラ ンジとを 外歯歯車に設けた孔から通す棒状体で結合したことを特徴とする構 成を有している。
上記構成の産業ロボッ トの関節駆動装置では、 その歯車減速装置 が所定範囲の減速比を有する前段減速機と、 その出力を入力し、 内 歯歯車と外歯歯車の歯数差が 1 で減速比が数十分の一程度を有する 後段の偏心揺動型遊星歯車減速機と、 を備えた構成からなり、 ロボ ッ トの駆動系に組み込まれているので、 駆動系の共振現象を実用域 から外すことができる。
また、 減速装置内の一対のフラ ンジとロボッ ト側とを外齒歯車に 設けた孔から通す棒状体で同時に一体的に結合固定できるので、 構 造が簡単で組立分解が容易にできる。 減速装置の内部の空間が有効 に活用できるので、 減速装置が小型化、 軽量化できる。 また、 棒状 体による一体的結合固定により減速機のねじり剛性が大き く なるの
で、 大きな負荷にも耐えることができる。
図面の簡単な説明
第 1図乃至第 5図は本発明に係る産業ロボッ トの関節駆動装置の 第 1実施例を説明する図であり、
第 1図はその全体概略説明図、
第 2図はその減速装置 ( 3 ) の一部断面図、
第 3図 )は第 2図の m a - l a 矢視断面図、
第 3図 (b)は第 3図 (a)の in b - 1„ 矢視断面図、
第 3図 (c)は第 3図 (a)の IE e - I c 矢視断面図、
第 4図は本発明に係る産業ロボツ 卜の関節駆動装置の実施例およ び比較例の性能を説明する図、
第 5図は第 4図に係る実験例の全体構成図、
第 6図は本発明の第 2実施例を示すその要部断面図、
第 7図は第 6図の W - VII矢視断面図、
第 8図は減速装置一般の回転ばね定数を示す特性図である。
第 9図は本発.明に係る産業ロボッ 卜の関節駆動装置を用いた産業 口ボッ トの全体概念図、
第 10図は第 9図の第 1関節 (66 ) に用いた本発明の第 3実施例の 要部断面図、
第 11図は第 9図の第 2関節 (67 ) に用いた本発明の第 4実施例の 要部断面図、
第 12図は本発明の第 5実施例の要部断面図である。
発明を実施するための最良の形態
以下、 本発明に係る産業ロボッ トの関節駆動装置を図面に基づい
て説明する。 第 1図ないし第 3図は本発明の第 1実施例を示す図で ある。
まず、 構成について説明する。 第 1図は本発明に係る産業ロボッ トの関節駆動装置を用いた口ボッ トの関節部の全体概略図である。 1 は電動モータであり、 電動モータ 1 のフラ ンジ 2 は減速装置 3 の 筒体 4 に固定されている。 筒体 4は第 1部材としての第 1 アーム 5 の先端部 5 aに固定されている。 電動モータ 1 の出力の回転軸 Ί は 減速装置 3の入力回転軸 8 に連結され、 減速装置 3 の出力は軸 10に 伝達され、 軸 10は巧筒体 11を貫通して第 2部材としての第 2 アーム 12に囿定されている。 第 2 アーム 12の端部の筒状体 13と第 1 アーム 5 の先端部 5 a の下面から下方に突出する R筒型の突出体 15との間 には一対のベアリ ング 16が介装され、 第 2 ァーム 12は第 1 アーム 5 に回動自在に支持されている。 突出体 15の内周面と円筒体 1 1の中央 部の外周面との間には一対のベアリ ング 17が介装されている。 円筒 体 1 1の上部および下部の内面と軸 10との間にはそれぞれ一対のベア リ ング 18が介装されている。 したがって、 減速装置 3 は電動モータ 1 の回転数を減速してロボッ トの被躯動部すなわち第 2 アーム .12を 回動させる。 また、 電動モータ 1 、 減速装置 3、 第 2 アーム 12およ び第 2 アームに接続された負荷は躯動系を構成する。
減速装置 3 は第 2図および第 3図に示すように、 電動モータ 1 の 回転数を減速する前段減速機 20と、 前段減速機 20に連結され、 回転 数をさ らに減速する後段減速機 21と、 から構成されている。 前段減 速機 20は通常の平行軸型減速機であり、 平歯歯車により構成されて いる。 後段減速機 21は固定している内歯歯車 28と内歯歯車 28に嚙み
合う外歯歯車 29と、 外歯歯車 29に係合して外歯歯車 29を揺動回転さ せる偏心入力軸としての入力ク ラ ンク軸 30と、 を有する偏心揺動型 の遊星歯車装置によって構成されている。 また、 内歯歯車 28はピ ン 歯 31を用いたビン歯車で構成され、 かつ外歯歯車 29の歯数より 1 つ だけ多い歯数を有している。 外歯歯車 29の軸方向両側には入カクラ ンク軸 30を支持する一対のフラ ンジ 32が設けられている。 すなわち、 一対のフ ラ ンジ 32は後段減速機 21の前端部を形成する円板部 33と、 その後端部を形成するフラ ンジ部 35 a とから構成されている。 フラ ンジ部 35 a は外歯歯車 29の円周上に等配して設けた貫通孔 29 eを遊 挿して設けられたブロ ック体 35の後端部を形成し、 かつ軸 10のフ ラ ンジ部 10 a に接している。 一対のフラ ンジ 32は、 その円周上に入力 ク ラ ンク軸 30を複数個 (この実施例では 3個) 等配支持している。 また、 外歯歯車 29は、 第 3図 (a)に示すように、 複数 (この実施例で は 3個) の入力ク ラ ンク軸 30との係合部 29 dを有し、 かつこれらの 係合部 29 d.間に貫通孔 29 eを設けている。
ロボッ 卜 の第 1 アーム 5および第 2 アーム 12のいずれか (この実 施例では第 2 アーム 12に固定された軸 10のフ ラ ンジ部 10 a ) と一対 のフ ラ ンジ 32とは、 第 3図 )〜(c)に示すように、 外歯歯車 29に設け た貫通孔 29 eから通す少な く とも 2本 (この実施例では 2本のボル ト 46および 48と 2本のピ ン 61および 63の 4本) の棒状体 60で結合し ている。 すなわち、 棒状体 60はプロ ック体 35の中に円周方向に並び そのう ち一つはボル ト 46であり、 ボル ト 46は、 第 2 アーム 12に固定 されたフ ラ ンジ部 10 a と一対のフ ラ ンジ 32とを締め付け結合してい る。 こ のボル ト 46の締め付けによ る摩擦力は減速装置 3 の定格 トル
クの 150 〜200 %の過負荷に耐えるようなされている。 他の 1つの 小ボル ト 48は、 円板部 33とプロ ック体 35を固定するための組立固定 用のものである。
また、 第 1 テーパビン 61は円板部 33からプロ ック体 35の前端部 35 bまで設けたピン孔 62に嵌合し、 円板部 33と前端部 35 b との位置決 めをしている。 また、 第 2テーパビン 63は、 円板部 33からブロ ック 体 35のフラ ンジ部 35 a まで設けた加工、 組立の時の工具通しのため の遊嵌孔 64 aに連続し、 ブロ ック体 35からフラ ンジ部 10 a まで設け られたピン孔 64 bに嵌合してプロ フク体 35とフランジ部 10 a との位 置決めをしている。 これらテーパ一ビン 61および 63のせん断応力は- 減速装置 3 の定格 トルクの 300 〜400 %の過負荷に耐えるよう にな されている。
前段減速機 20の減速比 i i と後段減速機 21の減速比 i 2 とは電動 モータ 1 の通常制御回転数の範囲内で口ボッ トすなわち、 第 1 ァー ム 5および第 2 アーム 12と、 後段減速機 21との共振が起きないよう に選択している。 すなわち、 電動モータ 1 の実用域では、 前段減速 機 20の毎秒当たり回転数が電動モータ 1、 減速装置 3、 第 2 アーム 12および第 2ァーム 12に接続された食荷から構成される駆動系のね じり発振周波数 (固有ねじり振動数 ί 。 付近の周波数をいう。 以下 同じ) 以下になるよう、 前段減速機 20の減速比 i , を選択する。 こ の実施例においては、 電勳モ一タ 1 の通常制御回転数が 0 〜: LOOOrp ra 、 前段減速機 20の減速比 i L が 1 / 3および後段減速機 21の減速 比 i 2 は 1 ノ 40であり、 減速装置 3 の全体の減速比 i は 1 Z 120に なるよう選択されている。 前記駆動系の固有ねじり振動数 f 。 は、
共振ピーク点における電動モータ 1 の回転数、 前段減速機 20の減速 比 i , および減速装置 3 に関して後述する トルク変動特性から逆算 でき、 この実施例においては約 8.4Hzである。
前段减速機 20の減速比 i , が 1 ノ 5未満 (分母が大き く なる こ と を意味する。 以下同じ) または後段減速機 21の減速比 i 2 が 1 ノ25 を超える (分母が小さ く なることを意味する。 以下同じ) と、 前段 減速機 20に構造の簡単な平行軸減速機を採用して 1 / 120の総減速 比 i を得ることは困難となるので、 設計的経済的に不利となる。 ま た、 後段減速機 21の減速比 i 2 が 1 /60未満または前段減速機 20の 減速比 が 1 Z 2を超えて 1 ノ 120の総減速比 i を得る場合は、 電動モータ 1 の実用域において、 前段減速機 20の毎秒当たり回転数 が前記駆動系の固有ねじり振動数 f 。 (8.4Hz) 近辺あるいはそれ以 上となるので、 共振を防ぐ効果が少ない。
次に、 作用について説明する。
電動モータ 1 を 0 〜 1000rpm の通常回転数で回転させると、 減速 比 i , が 1 / 3 の前段減速機 20の出力回転数は 0 〜333rpmとなり、 減速比 i 2 が 1 40の後段減速機 21の出力回転数は 0 〜8.3rPmとな り.、 この範囲では共振現象が生じない。 共振は実用域外、 すなわち 電動モータ 1 の出力回転数が 1500rpm 近辺 (このときの前段減速機 20の出力回転数は 1500rpm 1 / 3 = 500rPm近辺、 遊星歯車減速機 21の出力回転数は 1500rpm x 1 / 3 1 /40 = 12.5rpm 近辺) で生 じる。 このように共振現象が電動モータ 1 の実用域外で生じる理由 は明らかではないが、 実験結果から推定すると上記実施例のように 内歯歯車と外歯歯車の歯数差が 1 の遊星差動歯車装置は入力軸 (ク
ランク軸 30 ) の 1 回転当たり 1 の トルク変勳が生じ、 したがって、 これに減速比 i , が 1 3 の前段減速機 20を取り付けると電動モー タ 1 の回転数が実用域外である 1500rpm を中心とした付近で 1500 x
( 1ノ 3 ) 1 = 500程度の毎分当たり トルク変動が生じ、 この ト ルク変動数が駆動系の固有振動数 8. 4ヘルツ(500振勖ノ分) にほぼ 一致して共振を起こすものと考えられる。
これに対し、 内歯と外歯の歯数差が 2 の調和歯車装置の場合は、 実験結果から推定すると、 入力軸 (ウェーブジュネレータ) の 1 回 転当たり 2 の トルク変動が生じ、 したがって、 これに減速比 1 / 3 の前段減速機を取り付けると、 電動モータの回転数が 750rpm付近で
750 x 1 / 3 X 2 = 500の毎分当たり トルク変動が生じ、 駆動系の 固有振動数 f 。 が上記実施例と同様 8 . 4ヘルツ(500振動ノ毎分) で あるならば電動モータの回転数が実用域内である 750rpm付近で共振 が生じるものと考えられる。 この場合、 毎分当たり加振数がおおよ そ 500のときに共振が生じるのであるから、 調和歯車減速機に減速 比 i , = 1 ノ 6程度の前段減速機を設けることにより共振時の電動 モータの回転数を実用域外である 1500rpm を中心とする付近にまで 上げることも考えられる。 しかし、 調和歯車減速機の減速比 i z は 最小でも 1 80程であるから、 総減速比 i は最小でも 1 / 480とな り、 1 〜: L OOOrpm を実用域とする電動モータが一般に必要とする減 速比 i ( 1 Z 120 程度) を満足できないため、 実用できないことに なる。
また、 本発明の減速装置 3 においては、 2 つのテーパーピン 61お よび 63によって、 一対のフラ ンジ 32と第 2 ァーム 12に固定されたフ
ラ ンジ部 10 a との相対的配置を位置決めし、 かつ、 第 2 アーム 12側 と一対のフラ ンジ 32とは 1本のボル ト 46によって同時に一体的に結 合している。 したがって、 構造が簡単となり、 組立、 分解が容易と なる。 また、 外歯歯車 29の貫通孔 29 e の径は十分に大き く取れるの で、 貫通孔 29 e内を遊貫するプロ ック体 35内のボル ト孔の内径が大 き く でき、 ボル ト 46の本数を少く できる。 また、 減速装置 3 とロボ ッ ト側との連結が減速装置 3の内部のスペースを有効に活用したボ ル ト 46によっているので、 減速装置 3 の外側にフラ ンジ等を設けて 連結する必要がな く 、 小型軽量化ができる。 また、 棒扰体 60は、 減 速装置 3 とロボッ ト側とを連結する作用をするのみでな く 、 減速装 置 3 の駆動時に生ずるねじり剛性を支持するので、 大きなねじり剛 性の負荷にも耐えられる。
なお、 電動モータ 1 および前段減速機 20の振動は駆動系の発振に 影響を及ぼさない。 これは、 これらの振動は小さいこと、 後段部 21 を介することにより吸収されること等によるものと考えられる。
(実験例)
前述の実施例の減速装置のほかに次表の比較例 1 〜 3 に示す減速 装置について実施した振動測定試験について説明する。 前述の実施 例および比較例 1、 2 の偏心揺動型の遊星歯車減速機は、 ク ラ ンク 軸および外歯歯車の揺動によるア ンバラ ンスを防いで振動の振幅を 小さ くするため、 後述する第 2〜第 3実施例同様に外歯歯車を 2枚 としこれらを 180 度の位相差をもって組み付けたもので、 かつ、 内 歯歯車が外歯歯車の齒数より 1 つ多い歯数を有するものを用いた。 また、 調和歯車減速機は内歯歯車が外歯歯車の歯数より 2つ多い歯
数を有するものを用いた。 それぞれの減速装置の減速段数、 減速比 i , 、 i z 、 回転ばね定数 K , (第 8図参照) および慣性モーメ ン ト Jは次表に示してある。
(本頁、 以下余白)
(注 1 ) : 遊星歯車減速は偏心揺動型の遊星歯車減速機を、 平歯歯 車減速は平行軸型の平歯歯車列減速機を示す。
実験は第 5図に示す全体構成図によって実施した。 すなわち、 電 動サーボモータ 51の出力軸 51 a に減速装置 52を取付け、 減速装置 52 の出力軸 52 a にロボッ トの被駆動部 (第 2 アーム) の慣性モーメ ン ト Jに相当する慣性負荷と してフライ ホイ一ル 53が取付けられた。 フライ ホイ ール側面 53 a の半径上の位置に、 円周方向の加速度およ. び振幅を測定できる圧電素子を利用した加速度ビツクア ツプ 54を取 り付けた。 この加速度ピッ クア ップ 54の出力はィ ンジケータ 56に連
結されている。 モータ 51、 減速装置 52およびフライ ホイ ール 53から 成る駆動系の固有振動数 f 。 は約 8. 4ヘルツになるよう調整してあ る。 電動モータの回転数を変化させて、 その時のフライ ホイ ールの 加速度の大きさを測定した。 測定結果は第 4図に示す。 横軸は電動 サーボモータ 51の回転数であり、 縦軸は加速度ビックアツプ 54で検 出された円周方向の加速度 (単位 : G ) を示す。
比較例 1、 比較例 2および比較例 3においては、 共振のビークは それぞれ、 電動モータ 51の回転数が、 略 750rpm、 略 500rpmおよび略 250rpmのときであり、 電動モータ 51の通常制御回転数 0〜 1000rPm の範囲で共振が起こっている。 しかしながら、 本発明に係る滅速装 置を用いた実施例の場合には、 電動モータの実用域外である 1500rp m を中心とする近傍で共振現象が生じる。
比較例 2 と比較例 3 の対比から、 共振時における電動モータ 51の 回転数は内歯歯車と外歯歯車の歯数差が 1 の遊星歯車減速機が歯数 差 2 の調和歯車装置の 2倍となることが認められる。 また、 実施例 比較例 1および比較例 2 の対比から、 共振時における電勤モータ 51 の回転数は前段減速機の減速比 i , に比例していることが認め^れ る。
なお、 このような実験結果から前述のように各減速機の トルク変 動特性が推定され、 かかる推定を用いて実験装置の固有ねじり振動 数 。 を逆算すると、 実験で用いた減速機のいずれを組込んだ場合 も約 8 . 4 Hzとなる。 これは、 共振が駆動系の剛性が最も低い時、 即 ち、 負荷状態が減速機のいわゆるロス トモーショ ンの範囲内にある 時に生じ、 その時のロス トモーショ ンばね定数 Κ £が実験で用いた
いずれの減速機の場合もおおよそ等しいためと考えられる。
次に本発明の第 2実施例として、 前述した第 1実施例の減速装置 3を改良した場合について第 6図、 第 7図に基づいて説明する。 な お、 第 1実施例と同一構成については、 第 1実施例と同一の符号を 用いて説明する。
第 6図、 第 7図において、 40は第 1図に示した電動モータ 1 によ つて駆動される減速装置であり、 減速装置 40は電動モータ 1 の回転 軸 7 に連結された平行軸型の前段減速機 20と、 この前段減速機 20に 連結された後段の遊星歯車減速機 21と、 から構成されている。
電動モータ 1 の回転軸 7 の先端部 7 a はテーバ軸であり、 先端に ねじ部 7 bを有する。 ねじ部 7 bにはモータ出力铀の一部を構成す る連絡軸 7 cが螺合されている。 8 は入力回転軸であり、 先端部 8 aに前段減速機 20のビニォン 22が設けられると共にモータ回転軸 7 を貫通させる孔 8 bを有し、 且つ孔 8 bは回転軸 7 のテーパ部と係 合するテーパ孔部を有する。 入力回転軸 8 は電動モータ 1 の回転軸 7の先端部 7 a にナ ツ ト 23によりねじ止めされる。 回転軸 7 の先端 部 7 a は入力回転軸 8 に半月キー 24により固定されている。 このよ うな構成により入力回転軸 8 の先端部 8 aの軸径はモータ回転軸 7 の軸径より小さ く することができ、 したがって、 ビニオン 22の歯数 はモータ回転軸 7に歯車を直接装着させる場合に比べ、 少なく する ことができ、 容量の割に回転軸径の大きい市販電動モータ 1を用い る場合であっても、 所定の前段減速比を得ることができる。 ビニォ ン 22に嚙み合う 3個の平歯車 25は、 後述する 3本の入力クランク軸 30にそれぞれ結合している。
遊星歯車減速機 21は筒体 4に固定して設けられた内歯歯車 28と、 内歯歯車 28に嚙み合う一対の外歯歯車 29と、 外歯歯車 29に係合して 外歯歯車 29を揺動回転させる偏心入力軸としての 3本の入力ク ラ ン ク軸 30と、 から構成されている。 また、 内歯歯車 28はビン歯 31を用 いたピン歯車で構成され、 かつ外歯歯車 29の歯数より 1 つだけ多い 歯数を有している。 33は円板部であり、 円板部 33は遊星歯車減速機 21の前端部を構成し、 かつ、 入力ク ランク軸 30を円周上に等配しベ ァリ ング 34を介して軸支している。 35はブロ ック体であり、 ブロ ッ ク体 35はその中心部に軸方向の円筒状孔 37を有し、 入力回転軸 8が 遊嵌されている。 同様に外歯歯車 29および円板部 33の中心部にも孔 が設けられている プロ ック体 35はその後端部 35 cに凹み 36を有し 軸 10のフラ ンジ部 10 a に対向している。 凹み 36とフラ ンジ部 10 a と によつて形成された空洞内には、 前段減速機 20が収納されている。 プロ ック体 35には入カク ラ ンク軸 30を円周上に等配しべァリ ング 41 を介して軸支している。 入力ク ラ ンク軸 30の延在部 30 a は凹み 36内 に突出し、 平歯車 25に固定されている。
入力ク ランク軸 30は円板部 33とプロ ック体 35の中央部に軸支され 入カクラ ング軸 30の中央には 180 · の位相差をもつ一対のク ラ ンク 部 42を有し、 各ク ランク部 42はベアリ ング 43を介して外歯歯車 29を 偏心揺動させるようにしている。 ここで、 前述した円板部 33と、 ブ ロ ック体 35とば支持体 44を構成する。 円扳部 33、 ブロ ック体 35およ びフラ ンジ部 10 a は複数のボル ト 46および固定ナ ツ ト 47により同時 に一体的に固定されている。
また、 棒状体 60は前述のボル小 46、 第 1 テーパーピン 61および第
2 テーバービン 63から構成され、 一対のフラ ンジ 32を第 2 フ レーム 12のフラ ンジ部 10 aに同時に一体的に結合している。 前述以外の構 成は第 1実施例と同じである。
電動モータ 1 の回転は回転軸 7および入力軸 8を介して前段減速 機 20のビニオ ン 22に伝達され、 前段減速機 20で減速される。 前段減 速機 20の出力は平歯車 25により遊星歯車減速機 21のク ランク軸 30に 入力される。 次いで、 ク ラ ンク軸 30の面転により偏心揺動させられ る外歯歯車 29と、 この外歯歯車 29と嚙み合い外歯歯車 29より 1 つ多 い歯数を有する内歯歯車 28とによりさらに減速され、 外歯歯車 29の ゆつ く り した自転運動はキャ リ アと して作用する支持体 44から軸 10 に伝達されアーム 12が回動される。
本実施例においては、 電動モータ 1 の通常制御回転数は 0 〜1000 rpn, 、 前段減速機 20の減速比 i , は 1 ノ 3、 遊星歯車減速機 21の減 速比 i 2 は 1 ノ40、 減速装置 3 の総減速比 i は 1 ノ 120 、 電動モー タ 1、 減速装置 3および第 2 ァーム 12を含んで構成される駆動系の 固有ねじり振動数 f 。 は約 8. 4ヘルツである。 したがって、 電動モ ータ 1 は産業ロボツ トの駆動系の固有ねじり振動数に対応する回転 数 ( 8 . 4へルッに相当する500 1« ) を通常制御域 ( 0 〜: L OOOrpm)内 に有している。 また、 前段減速機 20は電動モータ 1 の通常制御域に おける毎秒最高回転数 (l OOOrpm に相当する毎秒 16 . 7回転) を、 躯 動系の固有ねじり振動数 ί 。 以下になるよう ( 毎秒 5 . 6 回転) に減 速する減速比 i t ( 1ノ 3 ) を有している。
減速機 40の回転ばね定数 K , は約 37 . 5 kg · m /分である。 この実 施例の場合の作用および振動特性は、 前述の第 1実施例と同様にな
る。
次に、 第 9図に示す産業ロボッ ト 65に用いた本発明に係る産業口 ボッ トの関節駆動装置の実施例を図面を用いて説明する。
第 9図において、 産業ロボッ ト 65は第 1関節 66と、 第 1関節 66に 連結する第 2関節 67と、 第 2関節 67に連結する第 1 アーム 83および 第 2 アーム 68とから構成されている。 第 1関節 66は支柱 71の上側の 旋回盤 73を矢印 P方向に回動し、 第 2関節 67は旋回盤 73に固定され たブラケ ッ ト 81の上側の第 1 アーム 83を矢印 Q方向に回動し、 第 2 ァーム 68の先端部 68 a の 3次元的移動を可能にする。
第 10図は本発明の第 3実施例を示す図であり、 前述の第 1実施例 と同一構成については、 同一符号を用いて説明する。
第 10図において、 70は減速装置であり、 減速装置 70は、 第 9図に 示す産業ロボッ 卜の第 1関節 66において、 第 1部材と しての筒状の 支柱 Πの内側に内装されている。 減速装置 70は電動モータ 1 に連結 された平行軸型の前段減速機 20と、 この前 "¾減速機 20に連結された 後段の遊星歯車減速機 21とから構成され、 遊星歯車減速機 21に回転 の位相を 180 度ずらした 2 つの外歯歯車 (29 aおよび 29 b ) を設け ている。
電動モータ 1 のフラ ンジ 2 は、 筒体 4を介して支柱 Πにボル ト 4 bを用いて固定されている。 電動モータ 1 の上側のほぼ垂直な回転 軸 7 は前段減速機 20のピニオ ン 22に固定され、 ピニオ ン 22に嚙み合 う 3偭の平歯車 25は、 後述する 3本の入力ク ラ ンク軸 30の延在部 30 aにそれぞれ固定されている。 遊星歯車減速機 21は前段減速機 20の 上側に配置され、 筒体 4に固定して設けられた内歯歯車 28と、 内歯
歯車 28に嚙み合う一対の外歯歯車 29 a 、 29 b (以下、 添字をつけな い 29で代表する) と、 外歯歯車 29に嵌合して外歯歯車 29を揺動回転 させる偏心入力軸としての 3本の入カクラ ンク軸 30と、 から構成さ れている。 入力ク ラ ンク軸 30は遊星歯車減速機 21の下端部を構成す る円板部 33にベアリ ング 34を介して軸支され、 遊星歯車減速機 21の 上端部および外歯歯車 29の円周上に等配して設けられた貫通孔内を 挿通したプロ ック体 35にベアリ ング 41を介して軸支されている。 ブ ロ ック体 35と円板部 33とは支持体 (キャ リ ア) 44を構成し、 ブロ ッ ク体 35のフラ ンジ部 35 aおよび H板部 33とからなる一対のフラ ンジ 32と、 支柱 71の上側に設けられた第 2部材としての円筒状体の旋回 盤 73の底部 73 a とは棒状体 60 (図にはボル ト 46のみを示す) により 同時に一体的に結合固定されている。 底部 73 a と支柱 Πの上部 71 a との間にはベアリ ング 74が設けられ、 支持体 (キャリ ア) 44の自転 に伴い、 旋回盤 73は回転する。 前述以外の構成、 作用および振動特 性は第 1実施例と同じであり省略する。
第 11図は本発明の第 4実施例を示す図であり、 前述の第 1実施例 と同一構成については、 同一符号を用いて説明する。
第 1 1図において、 80は減速装置であり、 減速装置 80は第 9図に示 す産業ロボッ 卜の第 2関節 67に用いたものである。 窠 1部材として の箱型のブラケ ッ ト 81は前述の第 1関節 66の旋回盤 73の上側に一体 的に固定されている。 減速装置 80は電動モータ 1 に連結された平行 軸型の前段減速機 20とこの前段減速機 20に連結された後段の遊星歯 車減速機 21とから構成されている。 電動モータ 1 のフラ ンジ 2 はブ ラケ ッ ト 81にボル ト 4 bを用いて固定され、 電動モータ 1 の回転軸
7 は前段滅速機 20のピニオ ン 22に固定され、 ピニオ ン 22 に嚙合う 3個の平歯車 25は後述する 3本の入力ク ラ ンク軸 30の延在部 30 a に それぞれ固定されている。 遊星歯車減速機 21の入カク ラ ンク軸 30の 前端部はべァリ ング 41を介して板状のブ口 ック体 35 cに軸支され、 その後端部はベアリ ング 34を介して円板部 33に軸支されている。 板 状のブロ ック体 35 cおよび円板部 33は一対のフランジ 32を構成して いる。 これらのフラ ンジ 32の対向する内側部において、 それぞれの R周上等配に設けられた凹部 35 dおよび 33 a間にはスリ ーブ 85が貫 通孔 29 e に遊嵌して設けられている。 スリ ーブ 85は一対のフラ ンジ 32の軸方向および円周方向の位置決め作用をなすとともに、 ビンの 作用もなしている ; > ブロ ック体 35 c 、 ス リ ーブ 85および円扳部 33は 支持体 44を構成し、 これらは棒状体 60からなるボル ト 46によりブラ ケ ッ ト 81に結合固定されている。 ブ α ック体 35 c の円周上の孔 86は 円板部 33の円周上のピン孔 87の加工および組立を行うための工具通 し孔である。 ピン 88はピン孔 87に嵌合し、 円板部 33とブラケ ッ ト 81 との配置を位置決めする。 遊星歯車減速機 21の内歯歯車 28は支持体 44の外周にベアリ ング 84を介して回動自在に支持されている。 内歯 歯車 28は、 第 2部材としての第 1 ァーム 83の端部 83 aに一体的に固 定されている。
電動モータ 1 の回転は回転軸 7を介して前段減速機 20のピニォン 22に伝達され、 前段減速機 20で減速される。 前段減速機 20の出力は 平歯車 25により遊星歯車減速機 21の入カク ラ ンク軸 30に入力される 次いで、 入力クランク軸 30の回転により偏心揺動させられる一対の 外歯歯車 29 a、 29 b (以下、 29で代表する) と、 この外歯歯車 29と
嚙み合い外歯歯車 29より一つ多い歯数を有する内歯歯車 28とにより さらに減速され、 内歯歯車 28のゆつ く り した自転は第 2アーム 83を 回動させる。 前述以外の構成、 作用および振動特性は第 1実施例と 同じであり、 同じ符号をつけて説明を省略する。
第 12図は本発明の第 5実施例を示す図であり、 これは、 前述の第 1実施例の構成の一部を変更したものであり、 第 1実施例と同一の 構成には同一の符号をつけて説明する。
第 5実施例においては、 後段の遊星歯車減速機 21に 2本の入カク ランク軸 30を用い、 図に示されていない一対のフラ ンジ 32およびフ ラ ンジ部 10 aが外歯歯車 29の円周上に設けた長繭形状の貫通孔 29 e を通る 5本の棒状体 60によつて、 同時に一体的に結合固定した場合 である。 2本の第 1 ボル ト 46 aおよび 46 bは一対のフラ ンジ 32をフ ラ ンジ部 10 a にねじ止め固定し、 小ボル ト 48は図示してない円板部 33とブロ ック体 35を固定するための組立固定用のものである。 第 1 テーパー ピン 61は、 円板部 33と前端部 35 b との位置決めをし、 第 2 テーパーピン 63はブロ ック体 35とフラ ンジ部 10 a との位置決めをす る。 前述以外は第 1実施例と同じである。 、 なお、 本発明においては、 前段減速機の減速比は電動モータの毎 秒当たり最高回転数を、 共振現象の生じ始めるときの振動数相当
(前述した 「ねじり発振周波数」 付近) 、 すなわち駆動系の固有振 動数より若干小さな振動数相当、 に減速する値であればよい。 例え ば駆動系の固有ねじり振動数 f 。 が 5 〜 9 Hzの場合であって、 電動 モータの最高回転数が 1000r P m、 総減速比 i が 1 ノ 60〜 : L ノ 320 の ときは前段の最小減速比 i i を約 9 〜約 1 6、 後段の減
速比 i 2 を 1 ノ 25〜 1 ノ 60とすることにより共振現象を実用域から 外すこ とができる。 また駆動系の固有ねじり振動数 f 。 が 5 〜 9 Hz の場合であって、 電動モータの回転数が最高 2000rpm 、 総減速比 i が 1 ノ110 〜 1ノ320 のときは、 前段の最小減速比 i t を約 1 /3. 7 〜約 1 /6.7 、 後段減速比 i 2 を約 1ノ 25〜約 1 /60とすること により共振現象の起きないロボッ 卜の関節装置を得る。 同様 ( f 。
= 5 〜 9 Hz) の場合であって電動モータ回転数が最高 4000rpm 、 総 減速比 i が 1 ノ 210 〜 1 ノ640 のときは、 前段の最小減速比 i ! を 約 1 /7.4 〜約 1 /13.3、 後段減速比 i 2 を約 1ノ30〜約 1 ノ60と すればよい。 また、 駆動系の固有ねじり振動数 f 。 が 10〜: L5Hzの場 合であって、 電動モータの最高回転数が lOOOrpm 、 減速比 i が 1 ノ 80〜 1 ノ 300 のときは前段の最小減速比 を 1 /1.5 〜 : 1 ノ 4 後段の減速比 i z を 1ノ 25〜 1 ノ 60とする こ とにより共振現象を実 用域から外すことができる。 同様 ( f 。 =10〜: L5Hz) の場合であつ て、 電動モ一タの最高回転数が 4000rpm 、 総減速比が 1 ノ125 〜 1 /600 のときは、 前段の減速比 i , を約 1 ノ 4.5 〜約 I 10、 後段 の減速比 i 2 を約 1 ノ 30〜約 1 ノ100 とすればよい。
以上説明したように、 本発明によれば、 ロボッ 卜の駆動系の共振 現象を実用域から外すこ とができ、 減速装置は構造が簡単で、 小型 化、 軽量化でき、 大きな負荷に耐えるようにできる。
産業上の利用可能性
本発明の産業ロボッ トの関節駆動装置は工業用、 鉱業用、 医療用 原子力用等各種用途に用いるロボッ トの関節駆動、 特に小型軽量で 共振振動のない駆動系を有するロボツ トを提供できるので、 生産ェ
程用、 精密検査用、 高信頼操作用のロボッ トの関節駆動装置に適用 できる。
Claims
26 請 求 の 範 囲
1 . ロボッ トの第 1部材と、 第 1部材に回動自在に支持されたロボ ッ トの第 2部材と、 第 1部材に一体的に取り付けられた電動モー タの回転を減速して第 2部材に伝達する歯車減速装置と、 を備え た産業ロボッ 卜の関節駆動装置において、 前記歯車減速装置 ( 3 ) 力 前記電動モータ ( 1 ) の回転数を減速する前段減速機
(20) と、 前段減速機の出力の回転数を更に減速する後段の遊星 歯車減速機 (21) と、 から構成され、 前記遊星歯車減速機が、 前 記前段減速機の出力が入力される偏心入力軸 (30) 、 偏心入力軸 と係合しその回転により偏心揺動させられる外歯歯車 (29、 29 a 29 b ) 、 外歯歯車と嚙み合い外歯歯車の歯数より 1 つ多い歯数を 有する内歯歯車 (28) および外歯歯車の両側に設けられ前記偏心 入力軸を支持する'一対のフラ ンジ (32) を有し、 前記第 1部材
( 5 ) および第 2部材 (12) のいずれかと前記一対のフラ ンジと を外齒歯車に設けた孔 (29 e ) から通す棒状体 (60) で結合した こ と耷特徵とする産業ロボ 'ン トの関節駆動装置。
2. 請求の範囲第 1 項記載の産業ロボッ 卜の閔節躯動装置において 前記偏心入力軸 (30) を前記一対のフラ ンジ (32) の円周上に複 数個等配支持し、 前記孔 (29 e ) を前記外齒歯車 (29、 29 a 、 29 b ) における前記複数の偏心入力軸との係合部間のそれぞれに設 け、 前記棒状体 (60) を前記孔のそれぞれから少な く とも 2本通 したことを特徴とする産業ロボッ 卜の関節駆動装置。
3. 請求の範囲第 2項記載の産業ロボッ トの関節躯動装置において
27 少な く とも 2本の前記棒状体 (60) を円周方向に並べ、 そのう ち 一つはボル ト (46、 46 a、 46 b、 48) であり、 他の一つは位置決 めピ ン (61、 63) であることを特徴とする産業ロボッ 卜の関節駆
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8686902014T DE3685478D1 (de) | 1985-03-18 | 1986-03-13 | Gelenkantrieb fuer industrielle roboter. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5386685 | 1985-03-18 | ||
JP60/53866 | 1985-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986005470A1 true WO1986005470A1 (en) | 1986-09-25 |
Family
ID=12954688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1986/000128 WO1986005470A1 (en) | 1985-03-18 | 1986-03-13 | Joint driving apparatus for industrial robots |
Country Status (4)
Country | Link |
---|---|
US (2) | US4846018A (ja) |
EP (1) | EP0222018B1 (ja) |
DE (1) | DE3685478D1 (ja) |
WO (1) | WO1986005470A1 (ja) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322485A (en) * | 1991-12-24 | 1994-06-21 | Sumitomo Heavy Industries Ltd. | Internally meshing planetary gear structure |
US5908372A (en) * | 1994-02-14 | 1999-06-01 | Spinea S.R.O. | Gear system |
DE69616884C5 (de) * | 1995-07-03 | 2010-07-08 | Nabtesco Corp. | Exzenter-Planetengetriebe und Verfahren zu dessen Herstellung |
US5881604A (en) * | 1996-08-09 | 1999-03-16 | Honda Giken Kogyo Kabushiki Kaisha | Industrial robot |
CN1068664C (zh) * | 1997-02-17 | 2001-07-18 | 陈勃 | 复式滚动活齿传动 |
US6029543A (en) * | 1999-02-01 | 2000-02-29 | Harmonic Drive Technologies | Piezo-electric drive arrangement for a harmonic drive transmission |
JP4020560B2 (ja) * | 2000-02-07 | 2007-12-12 | ナブテスコ株式会社 | 偏心揺動型減速機 |
JP3703685B2 (ja) * | 2000-05-15 | 2005-10-05 | ナブテスコ株式会社 | 偏心揺動型減速機及びこれを備えた産業用機械の関節 |
JP3545995B2 (ja) * | 2000-06-12 | 2004-07-21 | ファナック株式会社 | ロボットの関節構造 |
ITTO20010744A1 (it) * | 2001-07-27 | 2003-01-27 | Comau Spa | Articolazione di robot |
US9879760B2 (en) | 2002-11-25 | 2018-01-30 | Delbert Tesar | Rotary actuator with shortest force path configuration |
JP4312484B2 (ja) * | 2003-03-26 | 2009-08-12 | 住友重機械工業株式会社 | 揺動内接噛合型遊星歯車装置 |
JP4529456B2 (ja) * | 2003-11-28 | 2010-08-25 | 株式会社安川電機 | 産業用ロボットの腕機構 |
CN100451384C (zh) * | 2004-01-30 | 2009-01-14 | 纳博特斯克株式会社 | 偏心摆动型行星齿轮装置 |
JP3988768B2 (ja) * | 2004-12-16 | 2007-10-10 | セイコーエプソン株式会社 | リンク駆動機構およびこれを用いた産業用ロボット |
EP1864765B1 (en) * | 2005-03-29 | 2010-02-17 | Nabtesco Corporation | Swing part structure for industrial robot |
JP4148280B2 (ja) * | 2005-10-18 | 2008-09-10 | セイコーエプソン株式会社 | 平行リンク機構及び産業用ロボット |
JP4232795B2 (ja) * | 2005-10-19 | 2009-03-04 | セイコーエプソン株式会社 | 平行リンク機構及び産業用ロボット |
KR101343669B1 (ko) * | 2006-06-13 | 2013-12-20 | 나부테스코 가부시키가이샤 | 감속 기어 변속기 |
KR101422306B1 (ko) | 2006-09-01 | 2014-07-22 | 나부테스코 가부시키가이샤 | 감속 장치 |
WO2008101235A1 (en) * | 2007-02-16 | 2008-08-21 | Delbert Tesar | Manufacture and use of parallel eccentric electro-mechanical actuator |
CN101680511B (zh) * | 2007-05-23 | 2012-06-27 | 纳博特斯克株式会社 | 减速齿轮系统 |
JP5103444B2 (ja) * | 2009-06-26 | 2012-12-19 | 住友重機械工業株式会社 | 遊星歯車減速装置 |
CN102691752A (zh) * | 2011-03-21 | 2012-09-26 | 陈仕贤 | 复合滚动活齿传动装置及采用其进行传动的方法 |
CN102252062B (zh) * | 2011-07-21 | 2013-11-06 | 浙江恒丰泰减速机制造有限公司 | 复式精密摆线减速器 |
US10414271B2 (en) | 2013-03-01 | 2019-09-17 | Delbert Tesar | Multi-speed hub drive wheels |
US9862263B2 (en) | 2013-03-01 | 2018-01-09 | Delbert Tesar | Multi-speed hub drive wheels |
US9365105B2 (en) | 2013-10-11 | 2016-06-14 | Delbert Tesar | Gear train and clutch designs for multi-speed hub drives |
JP2015196237A (ja) * | 2014-04-03 | 2015-11-09 | ナブテスコ株式会社 | ヒューマノイドロボットの関節機構 |
US10422387B2 (en) | 2014-05-16 | 2019-09-24 | Delbert Tesar | Quick change interface for low complexity rotary actuator |
US9657813B2 (en) | 2014-06-06 | 2017-05-23 | Delbert Tesar | Modified parallel eccentric rotary actuator |
US9915319B2 (en) | 2014-09-29 | 2018-03-13 | Delbert Tesar | Compact parallel eccentric rotary actuator |
US11014658B1 (en) | 2015-01-02 | 2021-05-25 | Delbert Tesar | Driveline architecture for rotorcraft featuring active response actuators |
JP6841595B2 (ja) | 2015-12-25 | 2021-03-10 | 協同油脂株式会社 | 減速機用潤滑剤組成物及び減速機 |
TWI586907B (zh) * | 2016-04-13 | 2017-06-11 | 泰鋒精密科技股份有限公司 | 變速裝置 |
US10464413B2 (en) | 2016-06-24 | 2019-11-05 | Delbert Tesar | Electric multi-speed hub drive wheels |
JP7170389B2 (ja) | 2017-11-28 | 2022-11-14 | 住友重機械工業株式会社 | ギヤモータ |
JP6708684B2 (ja) * | 2018-03-20 | 2020-06-10 | ファナック株式会社 | 駆動モータおよび減速機を備えるロボットの関節部の構造 |
CN108406843B (zh) * | 2018-05-29 | 2021-01-26 | 安徽工程大学 | 一种机械关节的连接结构 |
KR102079456B1 (ko) * | 2018-10-11 | 2020-02-19 | 권태환 | 산업용 로봇의 결합뭉치 |
US11772260B2 (en) * | 2019-11-22 | 2023-10-03 | Samsung Electronics Co., Ltd. | Planetary gear transmission device and robot having the same |
DE102020201340A1 (de) | 2020-02-04 | 2021-08-05 | Aktiebolaget Skf | Modulare Hochgenauigkeitsgetriebeanordnung |
JP2022049228A (ja) * | 2020-09-16 | 2022-03-29 | ナブテスコ株式会社 | 減速機 |
WO2023230441A1 (en) * | 2022-05-23 | 2023-11-30 | Integrated Electric Drives, Inc. | Electric vehicle multi-speed transmission with integrated fixed reducer gear set |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55112450A (en) * | 1979-02-21 | 1980-08-30 | Teijin Seiki Co Ltd | Reduction gear |
JPS5716714Y2 (ja) * | 1979-09-13 | 1982-04-07 | ||
JPS5924283U (ja) * | 1982-08-02 | 1984-02-15 | 帝人製機株式会社 | ロボツトア−ムの回動装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3129611A (en) * | 1960-10-14 | 1964-04-21 | Lee Engineering Company | Speed reducers |
GB1420965A (en) * | 1971-12-16 | 1976-01-14 | Lohmann & Stolterfoht Ag | Multistage reduction gears |
JPS50101763A (ja) * | 1974-01-18 | 1975-08-12 | ||
DE2449773C3 (de) * | 1974-10-19 | 1978-04-20 | Alfred 5820 Gevelsberg Schmermund | Getriebe zum Umformen einer gleichförmigen Drehung in eine elliptische Drehung |
US4003272A (en) * | 1975-01-31 | 1977-01-18 | Dmitry Pavlovich Volkov | Harmonic gear reduction unit |
FR2314390A1 (fr) * | 1975-06-13 | 1977-01-07 | Sofermo | Articulation modulaire autonome pour mecanismes divers et en particulier pour robots |
US4348918A (en) * | 1979-02-21 | 1982-09-14 | Teijin Seiki Company Limited | Speed change device |
JPS56152594A (en) * | 1980-04-25 | 1981-11-26 | Meidensha Electric Mfg Co Ltd | Reduction gear for manipulator |
JPS6039518B2 (ja) * | 1980-09-30 | 1985-09-06 | ファナック株式会社 | 工業用ロボットの手首機構 |
DE3131612A1 (de) * | 1981-08-10 | 1983-02-24 | Zahnräderfabrik Renk AG, 8900 Augsburg | Getriebe zur positionierung von sonnenenergie-kollektoren |
US4518308A (en) * | 1982-03-01 | 1985-05-21 | Acrobe Technology Inc. | Manipulator apparatus |
JPS58165978A (ja) * | 1982-03-24 | 1983-10-01 | 三菱電機株式会社 | 工業用ロボツト |
JPS58211881A (ja) * | 1982-06-02 | 1983-12-09 | 松下電器産業株式会社 | 産業用ロボツト |
FR2527967B1 (fr) * | 1982-06-07 | 1985-07-19 | Merlin Gerin | Robot industriel perfectionne pilote par un automate programmable |
JPS597593A (ja) * | 1982-07-02 | 1984-01-14 | 三菱電機株式会社 | ロボツトの関節装置 |
US4610598A (en) * | 1982-08-30 | 1986-09-09 | Hitachi, Ltd. | Industrial robot |
JPS59115189A (ja) * | 1982-12-20 | 1984-07-03 | 松下電器産業株式会社 | ロボツトの関節装置 |
JPS59121255A (ja) * | 1982-12-27 | 1984-07-13 | Komatsu Ltd | 産業用ロボツトにおける減速機のバツクラツシユ除去装置 |
GB2138098A (en) * | 1983-03-18 | 1984-10-17 | Coop Goizper S | Planetary torque wrench |
JPS59175986A (ja) * | 1983-03-24 | 1984-10-05 | 松下電器産業株式会社 | 工業用ロボツト |
JPS6036192U (ja) * | 1983-08-18 | 1985-03-12 | シルバー精工株式会社 | 産業用ロボット |
US4640154A (en) * | 1983-09-09 | 1987-02-03 | Osborn Merritt A | Epicyclic power transmission |
FR2570155B1 (fr) * | 1984-09-07 | 1989-04-14 | Durand Francois | Reducteur planetaire avec deux excentriques doubles |
FR2571462A2 (fr) * | 1984-10-08 | 1986-04-11 | Durand Francois | Reducteur planetaire avec deux excentriques doubles |
DE3441332A1 (de) * | 1984-11-12 | 1986-05-22 | Forschungsinstitut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen in der Institutsgemeinschaft Stuttgart e.V., 7000 Stuttgart | Gelenkantrieb, insbesondere fuer industrieroboter |
DE3448409C2 (en) * | 1984-12-28 | 1993-01-28 | Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg, De | Modular driving unit for industrial robot |
CA1244855A (en) * | 1985-01-18 | 1988-11-15 | Kazuyuki Matsumoto | Robot arm drive apparatus of industrial robot |
US4702668A (en) * | 1985-01-24 | 1987-10-27 | Adept Technology, Inc. | Direct drive robotic system |
DE8511244U1 (de) * | 1985-04-16 | 1988-05-11 | Manutec Gesellschaft für Automatisierungs- und Handhabungssysteme mbH, 8510 Fürth | Industrieroboter mit Schwenkarm |
-
1986
- 1986-03-13 EP EP86902014A patent/EP0222018B1/en not_active Expired - Lifetime
- 1986-03-13 US US06/945,577 patent/US4846018A/en not_active Expired - Lifetime
- 1986-03-13 WO PCT/JP1986/000128 patent/WO1986005470A1/ja active IP Right Grant
- 1986-03-13 DE DE8686902014T patent/DE3685478D1/de not_active Expired - Lifetime
-
1988
- 1988-02-26 US US07/162,793 patent/US4928556A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55112450A (en) * | 1979-02-21 | 1980-08-30 | Teijin Seiki Co Ltd | Reduction gear |
JPS5716714Y2 (ja) * | 1979-09-13 | 1982-04-07 | ||
JPS5924283U (ja) * | 1982-08-02 | 1984-02-15 | 帝人製機株式会社 | ロボツトア−ムの回動装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0222018A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP0222018B1 (en) | 1992-05-27 |
DE3685478D1 (de) | 1992-07-02 |
EP0222018A4 (en) | 1987-06-19 |
US4846018A (en) | 1989-07-11 |
US4928556A (en) | 1990-05-29 |
EP0222018A1 (en) | 1987-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1986005470A1 (en) | Joint driving apparatus for industrial robots | |
JPH0429986Y2 (ja) | ||
EP0781383B1 (en) | Driving unit for an industrial robot | |
JP2561227B2 (ja) | 産業ロボットの関節駆動用減速装置 | |
JP2827166B2 (ja) | 遊星歯車減速機 | |
JP2841060B2 (ja) | 産業ロボットの関節装置 | |
JPS62218087A (ja) | 産業ロボットの関節駆動用減速装置 | |
JP2742912B2 (ja) | 産業ロボットの関節装置 | |
JP2590404B2 (ja) | 産業ロボットの関節装置 | |
JPH0513795B2 (ja) | ||
JP3046958B2 (ja) | 偏心揺動型遊星歯車減速装置 | |
JP6823752B1 (ja) | 増減速機構 | |
JPH10586A6 (ja) | 産業ロボットの関節装置 | |
JP3198112B2 (ja) | コンパクト型歯車装置 | |
JP2534231B2 (ja) | 産業ロボツトの関節駆動装置 | |
JP2561227C (ja) | ||
JP2590404C (ja) | ||
JPH1029189A (ja) | 産業ロボットの関節装置 | |
JPS6332441Y2 (ja) | ||
JP2000233392A (ja) | 産業用ロボットの動力伝達機構 | |
SU1634869A1 (ru) | Привод вращени | |
RU1771960C (ru) | Шарнир манипул тора | |
JP2020200884A (ja) | 揺動と秤動に拠る差動を用いた高い増減速比を有する直動機構やロボットにも対応した増減速機 | |
JPH02279293A (ja) | ロボット用減速機構 | |
JP2000337456A (ja) | 歯車装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1986902014 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1986902014 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1986902014 Country of ref document: EP |