WO1986004362A1 - Process for forming thin metal sulfide film - Google Patents

Process for forming thin metal sulfide film Download PDF

Info

Publication number
WO1986004362A1
WO1986004362A1 PCT/JP1986/000015 JP8600015W WO8604362A1 WO 1986004362 A1 WO1986004362 A1 WO 1986004362A1 JP 8600015 W JP8600015 W JP 8600015W WO 8604362 A1 WO8604362 A1 WO 8604362A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
thin film
forming
sulfide thin
organometallic compound
Prior art date
Application number
PCT/JP1986/000015
Other languages
English (en)
French (fr)
Inventor
Yo Hasegawa
Kazuyuki Okano
Akira Nakanishi
Hiroshi Hatase
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60006441A external-priority patent/JPH0718015B2/ja
Priority claimed from JP60006417A external-priority patent/JPH06102831B2/ja
Priority claimed from JP644485A external-priority patent/JPS61166983A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE8686900838T priority Critical patent/DE3672285D1/de
Publication of WO1986004362A1 publication Critical patent/WO1986004362A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Definitions

  • the present invention relates to a method for forming a metal sulfide thin film used for various electronic devices.
  • metal sulfides such as zinc sulfide, sulfur sulfide, aluminum sulfide, lead sulfide, and copper sulfide are widely used in the electronics field as display materials, photoconductive materials and materials in the form of thin films or crystals. It has been done. Conventionally, thin films of these compounds have been formed mainly by a technique such as vacuum evaporation or sputtering.
  • the productivity is poor and continuous operation is difficult, or a very expensive production facility 15 is required.
  • the size of the product is determined by the size of the vacuum vessel, and there is a problem that it is difficult to manufacture a large area.
  • the present invention eliminates the above-mentioned problems that occur when forming a conventional compound thin film.]
  • a metal sulfide thin film capable of effectively forming a metal sulfide thin film by a simple method. It is intended to provide a forming method.
  • Means of the present invention for solving the above problems is to form an organometallic compound layer having at least one metal-sulfur bond or metal-oxygen bond on a substrate by printing or other method, 25 Mix the above organometallic compound layer with inert gas or hydrogen sulfide • The formation of a metal sulfide thin film by thermal decomposition in an inert gas.
  • organometallic compound having at least one metal-sulfur bond therein examples include various metal melcaptides, various metal salts of thiocarboxylic acid or dithiocarboxylic acid, and the like. Methods for synthesizing these compounds are known.
  • organometallic compound having at least one metal-oxygen bond therein examples include various metal alkoxides, various metal salts of carboxylic acid or sulfonate, acetylacetonate or a compound similar thereto. Can be mentioned. Methods for synthesizing these compounds are also known.
  • the substrate on which the organometallic compound is laminated can be arbitrarily selected as long as it can withstand the thermal decomposition temperature. Normally, the thermal decomposition temperature is about 350 to 450 ° C, so even inexpensive glass plates can be used satisfactorily.
  • the above organometallic compound can be made into a uniform solution by selecting an appropriate solvent.
  • This solution is applied onto a substrate by a conventionally known printing or coating method, the solvent is removed by drying, and then pyrolysis is performed in an inert gas atmosphere or an inert gas atmosphere containing hydrogen sulfide. 3.
  • a thin film of the sulfide of the metal can be formed on the substrate.
  • the formed metal sulfide has the same crystal structure as that formed at high temperature at low formation temperature as described in the following working examples.
  • a thin film is different from a thin film formed by a conventional vapor deposition method or the like.
  • the thin film is an aggregate of small compound particles.
  • microparticle diameter is a force that changes depending on various conditions during pyrolysis; as a result of observation with a high-resolution electron microscope, there are no more than 1 oo Angstroms or several thousand Angstroms. It is a theme.
  • a metal sulfide thin film can be formed without using a vacuum vessel, which is the neck of the conventional method. Improvements can be achieved, and large-area manufacturing can be easily performed.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream.
  • Lead perylene mercaptide which is obtained by reacting perilla mercaptan with lead acetate in a water-alcohol solvent, is dissolved in a hydrocarbon-based solvent, and the spinner is used on a glass plate.] ? Apply.
  • the coated glass plate is pre-dried at about 1 003 ⁇ 4 to evaporate the solvent, and then fired in a firing furnace at 5503 ⁇ 41 hour.
  • the inside of the firing furnace is a nitrogen gas stream.
  • Cadmium mecaptide obtained by reacting lauryl mecapbutane with acetic acid solvent in water-ethanol solvent is dissolved in a hydrocarbon solvent, and spinner is placed on a glass plate.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired in a firing furnace at 550 51 hour.
  • the inside of the sintering furnace shall be a nitrogen gas stream.
  • Hydrogenated ethanol solution is saturated with hydrogen sulfide and reacted with benzoyl chloride to obtain lithium thiobenzoate (Org, Synth., IV 924 (1963)) is reacted with zinc sulfate to synthesize zinc thiobenzoate. This is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the baking furnace is a nitrogen gas stream.
  • the coated glass plate is pre-dried at about 150 ° C to evaporate the solvent, and then fired in a firing furnace at 550 ° C for 1 hour.
  • the inside of the baking furnace is a nitrogen gas stream.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace. Inside the firing furnace The section is a nitrogen gas stream containing 2 to 1 O of hydrogen sulfide. An almost transparent thin film with a thickness of 1,000 to 5,000 was formed on the fired glass plate. X-ray diffraction measurement confirmed that the film was hexagonal zinc sulfide.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the baking furnace is a nitrogen gas stream containing 2 to 1 O of hydrogen sulfide.
  • the film thickness is between 1 000 and 5000
  • Cadmium mercaptide is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired in a firing furnace at 550 51 hour.
  • the inside of the firing furnace is a nitrogen gas stream containing 2 to 1 ⁇ volume of hydrogen sulfide.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream containing 2 to 1 O of hydrogen sulfide.
  • the glass plate coated with t 2 O is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • Firing furnace interior from 2 1 is O capacity c fired glass plate and a nitrogen gas flow containing hydrogen sulphide, nearly transparent thin film is formed Contact I), by zinc sulfide X-ray diffraction measurement Was confirmed.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired in a firing furnace at 5503 ⁇ 41 hour.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 10%.
  • Example 1 2 Dissolve lead-lauryl alkoxide obtained from sodium-lauryl alkoxide and lead acetate in an alcohol-based solvent, and apply it on a glass plate by a spinner method.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 1 O.
  • X-ray diffraction measurement by lead sulfide is substantially transparent film thickness 1 000-5000 person thin film formation.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 1 O.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 1 O.
  • the coated glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired at 550 ° C. for 1 hour in a firing furnace.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 1 O capacity.
  • the fired glass plate is your] are substantially thin transparent film thickness 1 000 - 1 500 Alpha is formed), by X-ray diffraction measurement]) it was confirmed that the hexagonal sulphide zinc .
  • the applied glass plate is pre-dried at about 150 ° C. to evaporate the solvent, and then fired in a firing furnace at 5 ° C. for 1 hour.
  • the inside of the firing furnace is a nitrogen gas stream with a hydrogen sulfide concentration of 2 to 1 O capacity.
  • the method according to the present invention is also excellent in crystallinity and film formability at low temperatures.
  • the conventional hexagonal zinc sulfide generated at 1 ooo ° C or more is 5 O 0 It can be said that this method is also effective in that it can be obtained at a firing temperature of about ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)

Description

• 明 細 書
発明の名称
金属硫化物薄膜の形成方法
技術分野
5 本発明は各種ェ レク ト ロ ニクスデバイ スに使用される金属硫 化物薄膜の形成方法に関するものである。
背景技術
従来よ )、 硫化亜鉛、 硫化力 ドミ ゥ ム、 硫化鉛、 硫化銅 ¾ど の金属硫化物は薄膜あるいは結晶等の形で表示材料 ,光導電材 t o 料などとしてエレク ト ロ ニク ス分野で広く使用されて る。 こ れら化合物の薄膜は従来は主として真空蒸着あるいはスパッタ 等の手法で形成されてきた。
上記、 従来の方法は真空容器中で行われるため、 生産性が悪 く 、 連続操作が困難であるか、 あるいは非常に高額の生産設備 15 を必要とする。 また、 真空容器の大きさで製品の大きさを規定 され、 大面積の製造が困難である等の問題点を有している。
発明の開示
本発明は以上のよ うな従来の化合物薄膜形成に際して発生す る問題点を除去するものであ ]?、 簡単な方法で効果的に金属硫 20 化物薄膜を形成することができる金属硫化物薄膜の形成方法を 提供することを目的とするものである。
そして上記問題点を解決するための本発明の手段は、 金属— 硫黄結合または金属—酸素結合を少なく とも一つ内部に有する 有機金属化合物層を基板上に印刷その他の方法で形成してのち、 25 上記有機金属化合物層を、 不活性ガス中または硫化水素を混合 • した不活性ガス中で熱分解することによ 金属硫化物薄膜を形 成することである。
本発明に使用できる金属一硫黄結合を少なく とも一つ内部に 有する有機金属化合物としては、 各種金属メ ルカプチド 、 各種 チォカルボン酸またはジチォカルボン酸の各種金属塩などを挙 げることができる。 これら化合物の合成方法は公知である。
本発明に使用できる金属—酸素結合を少なくとも一つ内部に 有する有機金属化合物としては、 各種金属アルコシ ド 、 各種力 ルボ ン酸またはス ルホ ン酸の各種金属塩 , ァセチルァ セトネー トまたはそれに類似した化合物るどを挙げることができる。 こ れら化合物の合成方法も公知である。
有機金属化合物を積層する基板としては、 熱分解温度に耐え るものであれば任意に選ぶことができる。 通常熱分解温度は 3 5 0〜 4 5 0 °C程度であるため、 安価なガラ ス板でも十分使 用することができる。
上記、 有機金属化合物は適当る溶媒を選ぶことによ 、 均一 な溶液となすことができる。 この溶液を従来公知の印刷または 塗布法によ 基板上に塗布し、 溶媒を乾燥して除去したのち、 不活性ガス雰囲気中または硫化水素を混合してなる不活性ガス 雰囲気中で熱分解させることによ ] 3、 基板上に当該金属の硫化 物の薄膜を形成することができる。
生成した金属硫化物は以下の実施列にも述べる様に低い生成 温度であ がら高温で形成されたものと同様の結晶構造を有 している。
—方、 本発明にかかる金属硫化物の特徵として、 形成された 薄膜が従来の蒸着法などによ 生成された薄膜と異な ]?、 薄膜 が微少る化合物粒子の集合体であることが挙げられる。
上記微少粒子径は熱分解時の各種条件によ つても変化する力;、 高分解能電子顕微鏡で観察した結果一実施列と して 1 o oオン グス ト ロ ーム ない し、 数千オングス ト ロ ームである。
上記本発明の手段を用いることによ ]?、 従来の手法のネ ック となっている真空容器を使用せずに、 金属硫化物薄膜を形成で きるため、 薄膜の製造に際して、 生産性の向上が図られ、 かつ 大面積の製造を容易に行うことができる。
発明を実施するための最良の形態
以下実施列によ ]?説明する。
実施列 1
ラゥ リ ル メ ル カブタ ンを水一アル コ ール溶媒中酢酸亜鉛と反 応させて得られる亜鉛ラ ゥ リ ル メ ル カプチ ド( J . Am , Ch em, Soc 55 1090(1 933 )の手法による )を炭化水素溶媒に溶 かし、 ガラ ス板上にス ピナ 一方式によ ])塗布する。
塗布されたガラ ス板は、 約 1 5 0°Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内 部は、 窒素ガス気流とする。
焼成されたガラ ス板上には、 ほぼ透明で膜厚 1000〜5000A の薄膜が形成されてお i?、 X線回折測定よ 六方晶系硫化亜鉛 であることが、 また焼成した化合物の元素分析も、 Ζη 6Τ . τ (計算値 67.1 % ) , S 32.3 % (計算値 32 · 9 ) と計算 値とよく合うことが確認された。
この薄膜の断面を高分解能電子顕微鏡で観察したところ、 粒 径 2 O Oな し 1 O O Oオングス ト ロ ームの粒子の集合体であ つた。
実施例 2
ラ ゥリ ルメ ルカブタ ンを水一アルコ ール溶媒中酢酸鉛と反応 させて得られる鉛ラ ゥ リ ルメルカプチ ドを炭化水素系溶媒に溶 かし、 ガラ ス板上にス ピナ一方式によ ]?塗布する。
塗布されたガラ ス板は、 約 1 ち 0 ¾で予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 ¾ 1 時間焼成する。 焼成炉内 部は、 窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明で膜厚 1 000〜5000 A 薄膜が形成されてお 、 X線回折測定よ 硫化鉛であることが 確認された。
実施阿 3
ラ ウ リルメ ルカブタ ンを水一エタノ ール溶媒中酢酸力 ド ミ ゥ ムと反応させて得られるカ ド ミ ゥ ム メ ルカプチドを炭化水素溶 媒に溶かし、 ガラ ス板上にス ピナ 一方式によ ]Γ塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 ¾ 1 時間焼成する。
焼成炉内部は、 窒素ガス気流とする。
焼成されたガラ ス板上には、 ほぼ透明で膜厚 1 000〜5000A の薄膜が形成されてお ]? 、 X線回折測定によ 硫化力 ドミ ゥ ム であることが確認された。
実施例 4
水酸化力リ ゥム ーェタ ノ ール溶液に硫化水素を飽和させ、 塩 化べンゾィ ルと反応して得られるチォ安息香酸力リ ウム (O r g , Synth . , IV 924 ( 1 963 ) ) を齚酸亜鉛と作用させてチ ォ安息香酸亜鉛を合成する。 これを炭化水素系溶媒に溶かして ガラス板上に、 ス ピナ一方式で塗布する。
塗布されたガラス板は、 約 1 5 0 ¾で予備乾燥して溶媒を揮 散させた後、 焼成炉中で、 5 5 0 ¾ 1 時間焼成する。 焼成炉 内部は、 窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明な薄膜が形成されてお 、 X線回折測定によ 硫化亜鉛であることが確認された。 実施例 5
2—プロモ ー P —シメ ンをグ リ ニ ャ ール試薬化したものに二 硫化炭素を反応させて得られるシミ ルカル ビチォ酸のナ ト リ ゥ ム塩に塩化亜鉛を作用して合成されたシミルカルビチォ酸亜鉛 ( J . Am ,Cliem ,S oc ,51 3106 ( 1 928 ):)を炭化水素系溶媒 に溶かし、 ガラ ス板上にス ピナ一方式で塗布する。
塗布されたガラス板は、 約 1 5 0°Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中で、 5 5 0°C 1 時間焼成する。 焼成炉 内部は、 窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明 ¾薄膜が形成されてお i?、 X線回折測定によ 硫化亜鉛であることが確認された。 実施列 6
ラ ゥ リ ルメ ルカブタ ンを水一アルコール溶媒中酢酸亜鉛と反 応させて得られる亜鉛ラゥ リルメ ル力プチドを炭化水素溶媒に 溶かし、 ガラス板上にス ピナ一方式によ ])塗布する。
塗布されたガラス板は、 約 1 5 0°Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0°C 1時間焼成する。 焼成炉内 部は、 2〜 1 O容量 の硫化水素を含む窒素ガス気流とする。 焼成されたガラス板上には、 ほぼ透明で膜厚 1 000〜5000 人の薄膜が形成されてお i? 、 X線回折測定よ 六方晶系硫化亜 鉛であることが確認された。
実施例 7
鉛ラ ウ リル メルカブチ ドを炭化水素系溶媒に溶かし、 ガラス 板上にスピナ一方式によ )塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内 部は、 2〜 1 O容量 の硫化水素を含む窒素ガス気流とする。
焼成されたガラス板上には、 ほぽ透明で膜厚 1 000〜5000
Aの薄膜が形成されてお!)、 X線回折測定よ ]9硫化鉛であるこ とが確認された。
実施例 8
カ ドミ ウム メルカプチ ドを炭化水素溶媒に溶かし、 ガラス板 上にスピナ一方式によ 塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 ¾ 1 時間焼成する。
焼成炉内部は、 2〜 1 Ο容量 の硫化水素を含む窒素ガス気流 とする。
焼成されたガラス板上には、 ほぼ透明で膜厚 1 000〜5000
Αの薄膜が形成されてお 、 X線回折測定によ 硫化力 ドミ ゥ ムであることが確認された。
実施列 9
チォ安息香酸亜鉛を炭化水素系溶媒に溶かしてガラス板上に、 • スピナ一方式で塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中で、 5 5 0 °C 1 時間焼成する。 焼成炉 内部は、 2 〜 1 O容量 の硫化水素を含む窒素ガス気流とする。
5 焼成されたガラス板上には、 ほぼ透明な薄膜が形成されてお Ϊ) . X線回折測定によ ]?硫化亜鉛であることが確認された。
実 施 列 1 o
シミ ルカルビチ才酸亜鉛を炭化水素系溶媒に溶かし、 ガラス 板上にスピナ一方式で塗布する。
t O 塗布されたガラス板は、 約 1 5 0 ¾で予備乾燥して溶媒を揮' 散させた後、 焼成炉中で、 5 5 0 ¾ 1時間焼成する。 焼成炉 内部は、 2〜 1 O容量 の硫化水素を含む窒素ガス気流とする c 焼成されたガラス板上には、 ほぼ透明な薄膜が形成されてお Ϊ)、 X線回折測定によ 硫化亜鉛であることが確認された。
15 実施例 1 1
ナ ト リ ウ ムラ ウ リ ルアル コ キ シドと酢酸亜鉛から得られる亜 鉛ラ ゥ リ ルアル コ キシドをアルコ ール系溶媒に溶かし、 ガラ ス 板上にス ピナ一方式によ ])塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 0 散させた後、 焼成炉中、 5 5 0 ¾ 1 時間焼成する。 焼成炉内 部は、 硫化水素濃度 2〜 1 0 %の窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明で膜厚 1 000〜5000 人の薄膜が形成されてお 、 X線回折測定よ 六方晶系硫化亜 鉛であることが確認された。
5 実施例 1 2 ナ ト リ ウムラ ウ リ ルアルコキシドと酢酸鉛から得られる鉛ラ ゥリ ルアルコキシ ドをアル コ ール系溶媒に溶かし、 ガラ ス板上 にス ピ一ナ一方式によ ]?塗布する。
塗布されたガラス板は、 約 1 5 0 ¾で予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内部 は、 硫化水素濃度 2〜 1 O容量 の窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明で膜厚1 000〜5000 人薄膜が形成されてお] 9 、 X線回折測定よ 硫化鉛であること が確認された。
実施列 1 3
ラ ウ リルァルコールと酢酸カ ドミ ゥムから得られる力 ドミ ゥ ム ラゥ リ ルアルコ キシ ドをアルコ ール系溶媒に溶かし、 ガ ラ ス 板上にスピナ一方式によ ])塗布する。
塗布されたガラス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内部 は、 硫化水素濃度 2〜 1 O容量 の窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明の薄膜が形成されてお 、 X線回折測定よ ]3硫化カドミ ゥ ムであることが確認された。 実施网 1 4
2—ェチルへキサン酸亜鉛をアルコ ール系溶媒に溶かし、 ガ ラス板上にス ピナ一方式によ 塗布する。
塗布されたガラス板は、 約 1 5 0 ¾で予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内部 は、 硫化水素濃度 2〜 1 O容量 の窒素ガス気流とする。
焼成されたガラス板上には、 ほぽ透明で膜厚 1 000〜5000 • Aの薄膜が形成されてお]? 、 X線回折測定よ 六方晶系硫化亜 鉛であることが確認された。
実施例 1 5
亜鉛ァセチルァセト ネ一トをアルコ ール系溶媒に溶かし、 ガ ラス板上にスピナ一方式によ D塗布する。
塗布されたガラ ス板は、 約 1 5 0 °Cで予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 5 0 °C 1 時間焼成する。 焼成炉内部 は、 硫化水素濃度 2 〜 1 O容量 の窒素ガス気流とする。
焼成されたガラス板上には、 ほぼ透明で膜厚1 000〜1 500 Αの薄膜が形成されてお])、 X線回折測定よ ])六方晶系硫化亜 鉛であることが確認された。
実施冽 1 ©
ラ ウ リ ルべンゼン スルホン酸ナ ト リ ウムと酢酸亜鉛から得ら れるラ ゥ リルベンゼンスルホン酸亜鉛を炭化水素系溶媒に溶か し、 ガラス板上にスピナ一方式によ!)塗布する。
塗布されたガラス板は、 約 1 5 0 ¾で予備乾燥して溶媒を揮 散させた後、 焼成炉中、 5 S O °C 1 時間焼成する。 焼成炉内 部は、 硫化水素濃度 2 〜 1 O容量 の窒素ガス気流とする。
焼成されたガラ ス板上には、 ほぼ透明で膜厚 1 000〜5000 Aの薄膜が形成されてお 、 X線回折測定よ ]?硫化亜鉛である ことが確認された。
産業上の利用可能性
以上、 実施^から判るごとく、 本発明にかかる手法を採用す ることによ ])、 真空蒸着あるいはスパック等による製造方法と 比較して、 生産性に優れ、 非常な高額の生産設備を必要とせず. また大面積の製造が容易であるという産業上極めて有益な特徴 をもつ。
さらに、 本発明にかかる手法は低温での結晶性、 成膜性も良 好で、 硫化亜鉛の場合、 従来の手法では 1 o o o°c以上で生成 する 型六方晶系硫化亜鉛が、 5 O 0°C程度の焼成温度で得ら れるという点でも効果的な手法であるといえる。

Claims

請 求 の 範 囲
(1 ) 金属一硫黄結合を少な く とも一つ内部に有する有機金属化 合物層を基板上に形成してのち、 不活性ガス中で上記有機金属 化合物層を熱分解して金属硫化物薄膜を形成することを特徵と する金属硫化物薄膜の形成方法。
(2) 請求の範囲第 1 項において、 金属一硫黄結合を有する有機 金属化合物が金属メルカプチドであることを特徴とする金属硫 化物薄膜の形成方法。
(3) 請求の範囲第 1 項において、 金属一硫黄結合を有する有機 金属化合物が金属のチォカルボン酸塩であることを特徴とする 金属硫化物薄膜の形成方法。
(4) 請求の範囲第 1 項において、 金属一硫黄結合を有する有機 金属化合物が金属のジチォカルボン酸塩であることを特徴とす る金属硫化物薄膜の形成方法。
(5) 金属一硫黄結合を少な くとも一つ内部に有する有機金属化 合物層を基板上に形成してのち、 硫化水素を混合して ¾る不活 性ガス中で上記有機金属化合物層を熱分解して金属硫化物薄膜 を形成することを特徵とする金属硫化物薄膜の形成方法。
(6) 請求の範囲第 5項において、 金属一硫黄結合を有する有機 金属化合物が金属メルカプチ ドであることを特徴とする金属硫 化物薄膜の形成方法。
(了) 請求の範囲第 5項において、 金属一硫黄結合を有する有機 金属化合物が金属のチォカルボン酸塩であることを特徴とする 金属硫化物薄膜の形成方法。 -
(8) 請求の範囲第5項において、 金属一硫黄結合を有する有機 • 金属化合物が金属のジチォカルボン酸塩であることを特徵とす る金属硫化物薄膜の形成方法。
(9) 金属一酸素結合を少なく とも一つ内部に有する有機金属化 合物層を基板上に形成してのち、 硫化水素を混合してなる不活 5 性ガス中で上記有機金属化合物層を熱分解して形成することを 特徴とする金属硫化物薄膜の形成方法。
( 10) 請求の範囲第 9項において、 金属一酸素結合を有する有 機金属化合物が金属アルコキシ ドであることを特徵とする金属 硫化物薄膜の形成方法。
t o (1 ) 請求の範囲第9項において、 金属一酸素結合を有する有 機金属化合物が金属のカルボン酸塩であることを特徵とする金 属硫化物薄膜の形成方法。
( 12) 請求の範囲第 9項において、 金属—酸素結合を有する有 機金属化合物が金属のァセチルァセトネートまたはその誘導体
1 5 であることを特徴とする金属硫化物薄膜の形成方法。
(1 3 ) 請求の範囲第 9項において、 金属—酸素結合を有する有 機金属化合物が金属のス ルホン酸塩であることを特徴とする金 属硫化物薄膜の形成方法。 0
5
PCT/JP1986/000015 1985-01-17 1986-01-16 Process for forming thin metal sulfide film WO1986004362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8686900838T DE3672285D1 (de) 1985-01-17 1986-01-16 Verfahren zur bildung duenner metallsulfidfilme.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP60006441A JPH0718015B2 (ja) 1985-01-17 1985-01-17 硫化物薄膜の形成方法
JP60/6417 1985-01-17
JP60/6441 1985-01-17
JP60006417A JPH06102831B2 (ja) 1985-01-17 1985-01-17 金属硫化物薄膜の形成方法
JP60/6444 1985-01-17
JP644485A JPS61166983A (ja) 1985-01-17 1985-01-17 硫化物薄膜の形成方法

Publications (1)

Publication Number Publication Date
WO1986004362A1 true WO1986004362A1 (en) 1986-07-31

Family

ID=27277164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000015 WO1986004362A1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film

Country Status (4)

Country Link
US (1) US4885188A (ja)
EP (1) EP0211083B1 (ja)
DE (1) DE3672285D1 (ja)
WO (1) WO1986004362A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202152A (en) * 1991-10-25 1993-04-13 Cornell Research Foundation, Inc. Synthesis of titanium nitride films
EP0744779A3 (en) * 1995-05-17 1998-10-21 Matsushita Battery Industrial Co Ltd A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms
US5837320A (en) * 1996-02-27 1998-11-17 The University Of New Mexico Chemical vapor deposition of metal sulfide films from metal thiocarboxylate complexes with monodenate or multidentate ligands
US5744198A (en) * 1996-02-27 1998-04-28 The University Of New Mexico Method of depositing metal sulfide films from metal thiocarboxylate complexes with multidentate ligands
DE102007026626B3 (de) * 2007-06-07 2008-09-11 Siemens Ag Verfahren zum Erzeugen einer Trockenschmierstoff-Schicht

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2905574A (en) * 1956-01-04 1959-09-22 Alpha Molykote Corp Method for forming metal sulfide coatings
NL251316A (ja) * 1961-05-04
BE621339A (ja) * 1961-08-30 1900-01-01
US3313632A (en) * 1962-11-27 1967-04-11 Engelhard Ind Inc Gold-silver coordination compounds and decorating compositions containing same
US3887383A (en) * 1971-10-28 1975-06-03 Engelhard Min & Chem Gold containing compositions for producing luster films on solid substrates
US4332879A (en) * 1978-12-01 1982-06-01 Hughes Aircraft Company Process for depositing a film of controlled composition using a metallo-organic photoresist
GB2049636A (en) * 1979-05-31 1980-12-31 Vecht A Methods of Producing Thin Films
US4310182A (en) * 1979-06-15 1982-01-12 Sealed Air Corporation Internal couplings for plastic solar collectors and the like
US4418099A (en) * 1982-02-05 1983-11-29 Engelhard Corporation Non-burnished precious metal composition
US4530742A (en) * 1983-01-26 1985-07-23 Ppg Industries, Inc. Electrode and method of preparing same
NL8301652A (nl) * 1983-05-10 1984-12-03 Philips Nv Werkwijze voor het aanbrengen van magnesiumfluoridelagen en antireflectieve lagen verkregen met deze werkwijze.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0211083A4 *

Also Published As

Publication number Publication date
US4885188A (en) 1989-12-05
EP0211083A4 (en) 1987-05-13
EP0211083B1 (en) 1990-06-27
DE3672285D1 (de) 1990-08-02
EP0211083A1 (en) 1987-02-25

Similar Documents

Publication Publication Date Title
Wang et al. Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x= 1, 2) thin films
JP2615469B2 (ja) 金属硫化物薄膜の製造方法
Faraz et al. Synthesis of nanostructure manganese doped zinc oxide/polystyrene thin films with excellent stability, transparency and super-hydrophobicity
Nwanna et al. Fabrication and synthesis of SnOX thin films: a review
WO1986004362A1 (en) Process for forming thin metal sulfide film
JPH05124817A (ja) チタン酸バリウム薄膜の形成方法
JPH0346402B2 (ja)
JPH03115106A (ja) 複合酸化物の製造法
Cho et al. Hydrothermal, hydrothermal-electrochemical and electrochemical synthesis of highly crystallized barium tungstate films
Donahue et al. Sol-gel preparation of zinc sulfide using organic dithiols
JPH06102831B2 (ja) 金属硫化物薄膜の形成方法
JP3026871B2 (ja) ニオブ酸タンタル酸カリウム薄膜の製造方法
JPH0699809B2 (ja) 硫化物薄膜の形成方法
JPS61166979A (ja) 硫化物薄膜の形成方法
CN1465740A (zh) 真空镀膜硫化锌的制备方法
CN111041449B (zh) 一种特定形貌二硫化钨的制备方法
JPS61166983A (ja) 硫化物薄膜の形成方法
JPH01173041A (ja) パターン形成方法
JPH11116395A (ja) 複合チタン酸化物用前駆体粒子
JPH08183605A (ja) 塗布法による金属酸化物膜の製造方法
JPS62146274A (ja) 硫化カルシウム薄膜及びその形成方法
JPS62146272A (ja) 硫化ストロンチウム薄膜及びその形成方法
JP2012062239A (ja) チタン酸バリウムの前駆体水溶液、水溶性前駆体およびその製造方法
JP4968574B2 (ja) アルミナ膜の形成方法
JP2002249878A (ja) 酸化物薄膜の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB SE

WWE Wipo information: entry into national phase

Ref document number: 1986900838

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986900838

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986900838

Country of ref document: EP