WO1986000750A1 - Polarizable electrode and production method thereof - Google Patents

Polarizable electrode and production method thereof Download PDF

Info

Publication number
WO1986000750A1
WO1986000750A1 PCT/JP1985/000182 JP8500182W WO8600750A1 WO 1986000750 A1 WO1986000750 A1 WO 1986000750A1 JP 8500182 W JP8500182 W JP 8500182W WO 8600750 A1 WO8600750 A1 WO 8600750A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
polarizable electrode
activated carbon
carbon fiber
electric double
Prior art date
Application number
PCT/JP1985/000182
Other languages
English (en)
French (fr)
Inventor
Atsushi Nishino
Ichiro Tanahashi
Akihiko Yoshida
Yasuhiro Takeuchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14781184A external-priority patent/JPS6126209A/ja
Priority claimed from JP15514984A external-priority patent/JPS6134918A/ja
Priority claimed from JP15727184A external-priority patent/JPS6136920A/ja
Priority claimed from JP59186715A external-priority patent/JPS6164113A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE8585902107T priority Critical patent/DE3576878D1/de
Publication of WO1986000750A1 publication Critical patent/WO1986000750A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4234Metal fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a sheet-like polarizable electrode body composed of activated carbon fibers and a binding medium, a method for producing the polarizable electrode body, and an electric double layer capacitor using the polarizable electrode body. is there.
  • activated carbon powder is black! &, Io
  • a conductive material such as carbon black and a binder such as polytetrafluoroethylene are added to form a paste, which is then pressed and pressed against a current collector such as a punching metal.
  • a current collector such as a punching metal.
  • Another type has been proposed in which an activated carbon fiber cloth is provided with a conductor layer such as a metal sprayed layer on one side thereof.
  • the coating efficiency is poor, and there is also a problem of nonuniform application of the polarizable electrode body.
  • powdered activated carbon is used, it is difficult to form electrodes in a flat coin-type structure. Specifically, at the time of manufacturing the polarizable electrode body, the activated carbon powder is preliminarily mixed with the electrolyte solution.
  • the polarizable electrode body must be sufficiently dried to remove the water content.
  • the one using activated carbon fiber cloth as the polarizable electrode body is a coin type.
  • Activated carbon fiber cloth even when a phenolic cloth is used, has a remarkable strength if the specific surface area is more than 2 SOO ⁇ / ⁇ (BET method).
  • the present invention relates to a polarizable electrode made from activated carbon fiber and a binding medium, a method for producing the polarizable electrode, and a method for producing the polarizable electrode at least on one side.
  • This relates to an electric double layer capacitor basically consisting of a conductive electrode (conductive layer), a counter electrode arranged via a separator, and an electrolyte solution!
  • the polarizable electrode body has a high density, a low internal resistance, and is easy to manufacture.
  • FIG. 1 is a sectional view of a conventional polarizable electrode body
  • FIG. 2 is a sectional view of a capacitor according to an embodiment of the present invention
  • FIG. 3 is a manufacturing process of the polarizable electrode body in the embodiment of the present invention.
  • FIG. 4 is a charge curve diagram of the capacitor according to the present invention and a comparative example
  • FIG. 5 is a cross-sectional configuration diagram of a coin-type capacitor of the embodiment of the present invention
  • FIG. 6 is an embodiment of the present invention.
  • FIG. 8 is a diagram showing the impedance change characteristics of the example capacitor and the comparative example.
  • FIG. 8 is a partial cross-sectional view of the winding type capacitor according to the embodiment of the present invention. It is a top view and a sectional view of a sheet-like capacitor of an example.
  • the polarizable electrode body of the present invention has the following characteristics as compared with the conventional activated carbon fiber cloth polarizable electrode body.
  • Activated carbon fiber cloth is self-supporting, but when its specific surface area is increased to more than SOOO mV ⁇ , the strength decreases remarkably, whereas activated carbon fiber cloth has a specific surface area of more than 2000 ⁇ / ⁇ .
  • the sheet-shaped polarizable electrode body made by using the shop-shaped activated carbon fiber and the binding medium has high strength, and the specific surface area of the activated carbon fiber itself is large and crisp. Since the sheet-like shape can achieve a higher density than that of the above, it is possible to increase the accumulated charge per unit volume.
  • Activated carbon fiber cloth has good electrical conductivity in the horizontal direction. However, in the thickness direction, the continuous connection of the fibers is small, so that the electrical conductivity is smaller than that in the horizontal direction. Etc.]? Thickness direction, horizontal • The electrical conductivity in the direction is improved and the internal resistance is reduced.
  • Activated carbon fiber cloth requires many steps to adjust the electric charge accumulated in the polarizable electrode body, but the sheet-like polarizable electrode body requires a desired amount of accumulated charge in an easy step. Can be obtained.
  • FIG. 2 shows a configuration example of a representative electric double layer capacitor which is an embodiment of the present invention.
  • 3 is a sheet-like polarized electrode body! ), Having a metal conductor layer 4 on one surface thereof, and spot-welding the polarizable electrode body having the above-mentioned conductor layer to a metal case 5 and a metal sealing plate 6, respectively, to obtain stable electric power. Get a connection.
  • a gasket (8) is used to prevent short circuit between the positive and negative electrodes. It is a capacitor.
  • the polarizable electrode body is basically made of activated carbon fiber as a main component and basically made of a binding medium such as pulp.
  • a conductivity improver such as carbon fiber is added to the above components.
  • Activated carbon steel generally has different starting materials.] 9, phenolic, rayon
  • Toe-shaped phenol resin fibers are activated by carbonization with steam in a 1 000 atmosphere, and a specific surface area of about 1 O diameter is obtained.
  • Tow-shaped activated carbon fiber is obtained, and this is used in the form of a 1-5 long jiyotsu.
  • an organic electrolyte is used as the electrolyte, if the ion diameter of the electrolyte is larger than that of the aqueous electrolyte and the pore diameter of the activated carbon fiber is 2 OA or less, the electrolyte can be efficiently discharged at the interface between the electrolyte and the activated carbon fiber. A double layer can be formed.
  • Activated carbon fibers of the present invention has a high specific surface area of 500 to 3000 m 2 department, pore size rather then preferable those distributed in 2 0 ⁇ 4 0 A, the pore volume .2 ⁇ ⁇ 1 .5C0 ⁇ is preferred. A more desirable range is that the specific surface area is
  • the pore diameter is 2 O to 4 OA, and the pore volume is 0.6 to 1.5], and the ratio of the pores distributed in the diameter of 20 to 40 A to the internal surface area is 4% or more.
  • the area for forming the double layer, in which the electrolyte can easily enter the pores increases. In the activated carbon fiber having such a condition, even if the viscosity of the electrolyte increases at a low temperature, the region where the double layer is formed is not likely to decrease.
  • the binding medium for the polarizable electrode body used in the present invention may be natural fibers such as manila hemp and craft pulp which can be used in a papermaking method, or artificial fibers such as polypropylene, polyethylene and acrylic resin. It is. Use fibers with a length of 2 to 5 or more than usual, or more advanced ones. The degree of shari is usually expressed in Canadian standard values (CSF). In the binding medium in the embodiment • For pulp, a CSF value of 0 to 500 was used. In addition, asbestos-glass fibers may be mixed to increase the mechanical strength.
  • CSF Canadian standard values
  • Carbon fiber has higher electric conductivity and strength than activated carbon fiber.
  • Preferable types are vinyl, acrylonitrile (PAN), and pitch.
  • the conductive electrode (conductive layer) used in the present invention is formed on the polarizable electrode by plasma spraying, plasma spraying, electroless plating, vapor deposition, sputtering, etc. It is. A conductive paint may be applied on the polarizable electrode. Further, as the auxiliary current collector, a metal foil, particularly an aluminum etching foil, is suitable. Conductive electrode material
  • FIG. 3 shows a manufacturing process diagram of the sheet-like distributing electrode body of the present invention.
  • Raw resin W, polyacrylonitrile (PAN) resin, or lane is used as the raw material fiber W.
  • the fiber can be in the form of felt, non-woven fabric, or woven fabric, even if it is a tow fiber.
  • the fibers are activated by steam in an atmosphere of an inert gas such as nitrogen and activated carbonized (b).
  • the activated carbon fiber obtained in the carbonization activation process (b) is cut into 1 to 5 mm suitable for papermaking (c).
  • Cutting is also possible in air, but it is preferable to pulverize in water with water as a medium because the dust is scattered and the powder is too fine.
  • the cut activated carbon fiber preferably has a fiber length to fiber diameter ratio of 2 to 300 times, and more preferably 50 to 500 times.
  • the chopped activated carbon fiber thus obtained and the binding medium ⁇ are wet-mixed (d).
  • a conductivity improving agent may be added, or a mixture obtained by adding a binding medium to the binding medium may be used.
  • a dispersant polyethylene glycol is used as a dispersant, and O.O.
  • the composition ratio of the activated carbon fiber and the binding medium if the amount of the binding medium is small, the relative strength of the polarizable electrode body is reduced, but the impedance is small and the capacity density is low. A high-capacity capacitor can be obtained.
  • the resistance of the polarizable electrode body becomes large when the coupling medium reaches a point O. The internal resistance is large, which is not preferable for a capacitor.
  • the coupling medium content is 1 o% or less, the mechanical strength of the polarizable electrode body decreases, and a number of cracks occur inside the polarizable electrode body when the conductor layer is formed by plasma spraying. ] ?, easily damaged]). Therefore, it is desirable to use a fiber containing activated carbon fiber in an amount of 3 O to 9 O%, and more desirably, a material containing activated carbon fiber in an amount of 50 to SO%. It is.
  • the density of the polarizable electrode body is preferably a force capable of increasing to about O./ ⁇ , preferably 0.2 to 0.6 ⁇ . Due to the calendering process), the probability of contact between the activated carbon fibers in the polarizable electrode increases and the current path increases.] ]), A capacitor with a small I ⁇ R drop can be produced even during strong discharge. In particular, as the thickness of the polarizable electrode body increases, the current collecting ability decreases, and the density of the capacitor of the present invention is as high as possible. A thin (preferably 600 m or less) polarizable electrode body is suitable.
  • the strength of the electrode body is increased.]
  • a conductive layer is formed on the inner wall of the small hole.
  • the current collecting ability in the thickness direction can be extremely improved, the swelling of the polarizable electrode body with respect to the electrolytic solution can be prevented, and the increase in the internal resistance can be significantly reduced even after long-term use.
  • the pores should be about 1.5 to 3 diameters. A 1.5 hole pitch, about 1 ⁇ diameter basket is effective! ), Those that penetrate are more effective. .
  • Chip-shaped phenolic activated carbon fiber (1 Ofx ⁇ f>, 1-5 ml) Specific surface area measured by BET method From the mixture of manila hemp (CSF value, craft pulp (CSF value OW)) and those in which the volume of pores having a pore size of 20 to 4 mm contributes more than 4 O of the total pore volume. 0.1% by weight of polyethylene binder (dispersing agent)
  • stainless steel (SUS 444 'or SHOWMAC (trade name of Showa Denko KK)) is used for the positive electrode sealing plate 6, and stainless steel (for the negative electrode case 5).
  • SUSSO 4 was used.
  • the surface has a conductive layer of the polarizable electrode material, respectively sealing plate, and sea urchin placed by you contact between the case and the positioning of the polarizable electrode material, the electrical Ru connected o Spot welding is carried out to ensure the reliability
  • 1 mol propylene carbonate of the tetrachloride tetrachloride monoxide is used.
  • the positive electrode and the negative electrode are insulated by gasket 8 and caulking and sealing are performed.
  • the polarizable electrode body in this embodiment is circular.
  • the breakdown voltage of the calibration Pashita is 2 .0 ⁇ 2. 4 V.
  • Example 1 A sheet-shaped polarizable electrode body having a composition of 8 O: 2 O in which the weight ratio of the activated carbon fiber and the binding medium shown in Sample 1 in Table 1 was 8 O: 2 O was produced by calendering.
  • a coin-type capacitor having the same dimensions as in Example 1 was manufactured by using a material having an increased density. The configuration other than the density of the electrode body is the same as that of the first embodiment.
  • Table 2 shows the characteristics of the polarizable electrode body used in the present example and various characteristics of the capacitor manufactured using the same. Weight is 12 O / ri. As the distance from sample 1 to L4 decreases, the impedance value decreases, and the capacitor characteristics for easy strong discharge improve. Two
  • Example 1 The composition shown in Table 1 of Example 1 is replaced with the aluminum-sprayed conductor layer of Example 1 on one side of the polarizing electrode body! ), Carbon is used as conductive particles, and a conductive paint using butyl resin as a binding medium is applied by about 50 ⁇ m using a screen printing method, dried with, and dried in this example.
  • the conductor layer was used.
  • a coin-type capacitor was prototyped with the conditions of the electrolyte, case, and the like as in Example 1, the capacitance values were almost the same as in Example 1, but the impedance was The value of this example was 30 to 50% larger than that of Example 1. This is considered to be due to the fact that the metal conductor layer has stronger adhesion to the polarizable electrode body and the difference in the resistance value of the conductor itself.
  • ACF Chop-shaped phenolic activated carbon fiber
  • polypropylene The emissions' synthetic pulp as coupling medium, the weight ratio of ACFZ coupling medium is 70/30, a thickness of 2, sheet-shaped polarizable electrodes having a weight per unit area equivalent is 6 OZ 2 conventional papermaking method
  • a nickel conductive layer of 150 ⁇ 121 is formed on one surface of the electrode body by plasma spraying.
  • a non-woven fabric made of polypropylene was used for the separator, and 24 weight of potassium hydroxide was used for the electrolytic solution, to prepare coin-type capacitors similar to those in Examples 1 to 3.
  • the withstand voltage can be increased to 1.23 V or more, which is the theoretical decomposition voltage of water.
  • Capacitors with excellent discharge characteristics are possible, and the size of anions and cations is smaller than that of organic solvent-based perchlorate ions, so that ions can easily penetrate into the pores of activated carbon fibers.
  • the effective double layer forming area is expanded.
  • Table 3 shows the characteristics of the coin-type capacitor of this example.
  • the strength of the polarizable electrode body is higher in the case of using polypropylene synthetic pulp as the binding medium than in the case of using natural pulp.]? However, the resistance of the electrode body itself is large. You.
  • Natural pulp depends on electrolyte during long-term storage] :: Since the distance between activated carbon fibers increases, the internal resistance increases, making it difficult to extract the capacity. When only artificial pulp (made of polypropylene) is used in the case of natural pulp (mixture of manila hemp and craft pulp), non-aqueous solvent is used for the electrolyte.
  • the polarizable electrode body has a large resistance and a large capacity change rate.
  • -Table 4 Polypolar electrode body weight composition Capacitor characteristics Material Natural pulp Reliability test 0, Manila hemp and cougar After 1 000 hours of artificial pulp
  • Table 5 shows the properties of the various carbon fibers mixed.
  • the phenolic carbon fiber shown in Table 1 (1) is most suitable. Rayon-based carbon fibers other than those shown in Table 5 are not good in terms of carbonization yield and mechanical strength.
  • the PAN-based sample of Sample 2 has a high modulus of elasticity, poor workability in the papermaking process, and even if a prototype is produced on a capacitor, carbon fiber will be stuck and will penetrate through the separator to show Is more likely than sample ⁇ 1.
  • the pitch type of sample ⁇ 3 is also less pliable and has the same effect on the capacitor as in sample.2.
  • Polarizing electrode body ... 3 5 O thickness, weight per unit area 1) Weight 1 2 O
  • Composition is as shown in Table a? The shape is a circle of 14 ⁇ 0.
  • Conductor layer A 15 Om thick aluminum layer formed by plasma spraying. UI O Ul on
  • 'Table 7 shows the characteristics when assembled into a coin-type capacitor together with the polarizable electrode body composition. It can be seen that generally no matter what kind of carbon fiber is mixed, low impedance and low internal resistance can be achieved. In particular, a phenolic material is soft and pliable, so that it can be uniformly and easily dispersed in a sheet-like polarizable electrode body, and an excellent product can be obtained.
  • PP is polypropylene
  • PE is polyethylene
  • pulp is a mixture of manila hemp and craft pulp.
  • the numerical values of the accelerated reliability test show the percentage change in capacity after 1 OOO hours of constant application of 2.0 V at 70 atmospheres. Therefore, the one with smaller absolute value is more reliable.
  • Table 6 shows the properties of the four types of activated carbon fibers used. Since the electric double layer is formed at the interface between the activated carbon fiber and the electrolyte, a phenol-based activated carbon fiber is optimal.] Furthermore, tetraethylammonium ion ((C 2 H 5) 4 N +) artillery Dorukai on (BF 4 -) because of the form infiltration effectively double layer in the pores of the activated carbon fibers are required pore size of 2 O ⁇ 4 OA, From this aspect, a phenol type is also suitable.
  • Phenol type 70 Phenol type 20 Pulp 10 0.2 8 5.9-4.9
  • Phenoenole type 60 Phenole type 20 Pulp 20 0.24 5.2,-5.3
  • Phenole type 40 Phenole type 40 Pulp 20 0.1 6 4.2-4.0
  • Fig. 4 shows the charging curves of the conductivity improver containing no carbon fiber (comparative example) and the samples 2 and 4 shown in Table a. It can be seen that the charging time of this embodiment is shorter than that of l O.
  • the capacitor used for the measurement in FIG. 4 controls the weight of the polarizing electrode body and has the same capacitance value.
  • polarizers, @, and ⁇ are configured in proportions shown in Tables 8 and 9 to form a polarizable electrode body.
  • a to 5 O or partial ⁇ activated carbon fibers (length 2-3 Yuzuru, size '1 ⁇ ⁇ Paiarufa), ® natural Parubu (Manila mixture of hemp and Clough Toparubu) or artificial pulp (poly ethylene Len, poly pro bilene fibers)
  • ® natural Parubu Manila mixture of hemp and Clough Toparubu
  • artificial pulp poly ethylene Len, poly pro bilene fibers
  • Table 8 shows the difference in the capacitor characteristics due to the difference in the amount of addition of the powdered graphite and the electrolyte when the conductivity improver was added.
  • the capacitor is a coin type having the same shape as in the first embodiment! ),
  • the separator is a polypropylene non-woven fabric (17 haze ⁇ , ⁇ ), the thickness of the polarizing electrode is 45 O, the electrode diameter is 14 dew ⁇ , and the weight per unit area is 8 O.
  • the aluminum plasma spray layer was formed as a conductive layer for the organic electrolyte solution, and the nickel sprayed layer was formed for the aqueous electrolyte solution. Table 8]], It can be seen that all of the samples 1 to 12 show good capacitor characteristics, but the graphite content is especially about 5 to 10%, but at least about 1 or more. And the impedance is reduced, and the effect of improving the conductivity is seen.
  • the (C 2 H 5 ) 4 NBF 4 // propylene carbonate system has a withstand voltage of about 2.8 V, whereas the water system has a withstand voltage of about 1.0 OV. Also, as the amount of graphite increases, the electrical characteristics improve, but the strength of the electrode decreases, and a content of about 1 O weight is preferred. A In a reliability test with 2 V applied in an OTC atmosphere, the rate of change from the initial capacity after 1 OOO hours was smaller for the larger amount of graphite.
  • the metal of a round bar is usually 1-2 O im-4 , Chopped metal fiber (stainless steel, aluminum, nickel, etc.) with length of 1 to 1 O ⁇ , ⁇ natural pulp
  • Phenonole 70 0 Natural pulp 30 Luminium (0 2 H 5 ) 4 C 0 4 0.28 1 0.
  • Phenoenole 70 Stainless steel 10 Natural pulp 20 Aluminum (C 2 H 5 ) 4 NOi0 4 0.284 8.0 1 6.7 Carbonate
  • Phenol system 00 Stainless steel 20 Natural pulp 20 Luminium (C 2 H 5 ) 4 BF 4 r-butyl
  • the sheet-shaped polarizable electrode body of the phenol-based activated carbon fiber main component having a weight ratio of the activated carbon fiber to the binding medium of the sample ⁇ 6 shown in Table 1 of Example 1 of 8 O to 2 O was calendered. processed, increasing the density down to O. 5 ⁇ , per unit area]? of weight 1 2 O / and by further punch ring processed into the polarizable electrode material, by the like sulfo Lumpur processing] 9, 1 Fig. 5 shows an electric double-layer capacitor consisting of a metal conductor layer made of aluminum with a diameter of 1 ⁇ 0 mm at the pitch of 5 rinses. Show. The same elements as those in Fig. 2 are given the same numbers.
  • the metal conductor layer 4 is spot-welded to the metal sealing plate 6 and the metal case 5 serving as a sealing case, and are opposed to each other via a polypropylene separator 7.
  • C 2 H 5 ) 4 A 1 mol propylene carbonate solution of NBF 4 was used.
  • the positive and negative electrodes were insulated with a gasket S and sealed and sealed.
  • the size of the polarizable electrode body in this example is 6 mm diameter], and the size after sealing and sealing is 12.0 dragon diameter and 1.5 mm thick.
  • the capacity is O.12F.
  • FIGS. 6A and 6B show changes in the impedance of the present example and the comparative example, respectively.
  • ⁇ ' has an impedance value of about half that of B', 3 ⁇ 4 ', as shown in the figure.
  • This example shows little change and very good capacitor characteristics.
  • the aluminum plasma sprayed layer was formed only on one side and the inner wall of the small hole. However, even if the sprayed layer was formed on the inner wall of the small hole and on both sides, the characteristics were largely different from those of the present embodiment. Power.
  • a phenol-based activated carbon fiber having the composition of sample ⁇ 6 shown in Table 1 (weight ratio of activated carbon fiber to binding medium: SO: 2 : :) was calendered and processed to a thickness of 260%. m, and the weight per unit area was set to 12.
  • a roll-up capacitor having the configuration shown in FIG. 7 was produced.
  • the conductor layer was formed by spraying an aluminum film for about 1 OO im.
  • 1 O is a sheet-like polarizable electrode body
  • 11 is an aluminum conductor layer
  • 12 is a collector auxiliary foil, and the following two types of materials were examined.
  • Aluminum etching foil of 3 O im (2) Aluminum range of 30 m thickness.
  • the size of the sheet-shaped polarizable electrode used was 30 mm in length and 200 cm in width on the positive electrode side, and 3 O in length and 21 O in width on the negative electrode side.
  • Table 11 Winding]
  • a very high energy density and high reliability capacitor can be used.
  • the etching foil has a rougher surface and the best contact current collection with the conductor layer for the current collecting auxiliary material, and is much more reliable.
  • the one having the negative electrode side larger than the positive electrode side as in this example had higher reliability. When the electrode area is large as in the present embodiment, discharge of 100 mA or more is easy.
  • the present embodiment is a more reliable capacitor having a larger capacity.
  • the capacitance change rate in the present example is a comparison of the capacitance after applying 1 V for 2 V to the capacitor under 70 atmospheres and the initial capacitance.
  • Example 11 An electrode body having the same composition as in Example 9 with small holes was used for the cathode-side polarizable electrode body, a grid was used on the negative electrode side, and the weight ratio of Sii / Cd was 85/15 to 85/15.
  • a polar capacitor was fabricated using a pad alloy that occluded lithium.
  • the electrolytic solution was used 1 Moruburo Pile Nkabone preparative solution of L iC_ ⁇ 0 4.
  • the polarizable electrode body had a diameter of 14 mm], and a lithium doping amount of 1 O mAh was used.
  • Table 12 shows the characteristics of the capacitor of this example. Those using a non-polarizable electrode body on the negative electrode side have the disadvantage that they are vulnerable to overdischarge.
  • the voltage (operating voltage) is as high as 3. OV, the energy-density is positive, and the negative electrode is copolarized.
  • Example 12 The weight ratio between the activated carbon fiber and the binding medium of the sample ⁇ 6 in Table 1 was 8 O to 2 O, and the density was O. 5 / c ⁇ , Thickness S 300 m Of 'sheet - using preparative shaped polarizable electrode body, creating the key catcher path Sita shown in FIG. 8 a, b.
  • a ??, 22 are 30 «01 stainless steel (SU S444) power-collecting auxiliary materials]]]] 21 are SO m thick polypropylene seno, ' Is a transparent coating 'layer composed of polypropylene: 2 OO ⁇ thick and a modified polyethylene sheet-like heat-welding adhesive layered thereon. Electrolyte - The liquid was used 1 Morupuro Pile Nkabone preparative solution of (C 2 H5) 4 NC ⁇ 0 4. The capacitor of the present example has a good current collecting capability.] In addition, the strength of the polarizable electrode body is sufficiently high, and even a size of 100 ⁇ 200 mi can be assembled with sufficient workability.
  • the heat-fusible film sheet which is the adhesive used in this example, has strong adhesion to metals and other plastics, and has good organic solution resistance.
  • Table 13 shows the characteristics of the capacitor of this example. 1 The capacity reduction rate after repeated charge / discharge of OOO is small and the reliability is high.
  • the polarizable electrode body of the present invention can be used not only for an electric double layer capacitor, but also for a positive electrode of an air battery or a lithium battery, a carrier for an active material of a battery, and an electorifice chromic.
  • display • Can be used as the counter electrode to the ( ⁇ ⁇ CD) display electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

• 明 細 書
発明の名称
分極性電極体およびその製造 法。
技術分野
5 この発明は、 活性炭繊維と結合媒体から構成される シ - ト状 の分極性電極体およびその分極性電極体の製造法、 さらに分極性電極 体を用いた電気二重層キャ パ シタに関するものである。
冃 示 fe術
活性炭を利用 した分極性電極体と しては活性炭粉末に黒! &, i o カーボンブラ ック等の導電剤およびポリ 四フ ッ化エチ レン等の パイ ンダ—を加えてペース ト状にし、 これをパ ンチ ングメ タル 等の集電材に加圧圧着したものが良く知られている。 また、 別 ¾タイ ブと して、 活性炭繊維布の片面に金属の溶射層 ¾ どによ. る導電体層を設けるものが提案されている。
1 5 活性炭粉末を分極性電極体に用いたものは、 金属集電体と分 極性電極体との接着力が弱 く集電体から活性炭粉末が脱落, 剝 離した ]? 、 捲回による応力のため、 使用中に両者の接着力が弱 く る ] 、 この結果、 電気二重層キ ャ パシタの内部抵抗が徐々に 増大し、 集電性が悪く なる。 また、 活性炭粉末とバイ ンダ一よ
20 る分極性電極体を集電体に圧延口 -ルする時、 その塗布効 率が悪 く 、 かつ分極性電極体の不均一 塗布による容量ばらつ き も問題と ¾る。 さ らに粉末活性炭を用いた場合、 平板コイ ン 型構造に電極を形成するこ とが困難である。 具体的には分極性 電極体の製造時、 活性炭粉末をあらかじめ電解液と混ぜペ -ス
25 ト状にしなければ加圧成型でき るい。 したがって微量水分がキ • ャ パシタ特性に悪影響を与える有機電解液を使用する場合には、 分極性電極体を十分に乾燥し、 含有水分を除去しるければ ら い。
次に活性炭繊維布を分極性電極体に用いたものは、 コ イ ン型
5 で小型大容量のキャ.パシタを容易に作成することが可能である。
しかし ¾がら第 1 図に示すような、 活性炭繊維布 1 ·上にアルミ ニ ゥ ム等の金属集電体層 2を形成した分極性電極体では、 集電 体層近くの図中 a - a ' 方向における導電性は非常に良好であ るが、 b — b ' 方向の導電性は悪い。 した'がって封ロケ— シン i o グ時に大きる圧力で加圧し封口後も b - b ' 方向の繊維間の物 理的接触を十分にと ]?、 内部抵抗を低い状態に保持しなければ ら い。
また活性炭繊維布は、 フ エ ノ ール系のものを使用しても、 比 表面積が 2 S O O ^/^ ( B E T法 )以上に ¾ると、 強度が著しく
1 5 低下し、 形状を維持したまま集電体等の形成が極めて困難と ¾ る
発明の開示
この発明は、 活性炭繊維と結合媒体とから抄紙した分極性電 極体と 製造方法およびこの分極性電極体の少 く とも片面の
20 導電性電極(導電体層 ) と、 セパレータを介して配置した対向 電極と、 電解液とから基本的に構成される電気二重層キャ パシ タに関するものであ!)、 特に分極性電極体の密度が高く、 内部 抵抗の小さいしかも製造方法が容易であるという特徵を有して いる。
25 図面の簡単 ¾説明 第 1 図は従来例における分極性電極体の断面図、 第 2図は本 発明の一実施例のキ ャパシタの断面構成図、 第 3図は本発明の 実施例における分極性電極体の製造工程図、 第 4図は本発明に よるキ ャ パシタ と比較例の充電曲線図、 第 5図は本発明の実施 例のコィ ン型キ ャ パシタの断面構成図、 第 6図は本発明の実施 例のキャ パシタ と比較例のィ ン ピ—ダンス変化特性図、 第了図 は本発明の実施例の卷取型キ ャ パシタの一部断面構成図、 第 8 図 a, bは本発明の実施例のシー ト状 キ ャ パシタ の上面図お よび断面図である。
発明を実施するための最良の形態
この発明の具体的 内容について説明する。 本発明の分極性 電極体は、 従来の活性炭繊維布分極性電極体と比べ以下のよ う 特徴を有する。
(1 ) 活性炭繊維布はセルフサポ -テ ィ ングであるが、 その比 表面積を S O O O mV^以上にすると強度の低下が著しく る のに対し、 2 0 0 0 ^/^以上の比表面積を有するチ ョ ッ プ状 の活性炭繊維と結合媒体とを用い抄紙したシ - ト状の分極性 電極体は高強度であると ともに、 活性炭繊維自体の比表面積 が大、き く るこ と と、 布状に比べシー ト状の方が高密度化で き るため、 単位体積あた ]?の蓄積電荷を大き くすることが可 能である。
(2) 活性炭繊維布では横方向の電気伝導性は良好である。 し かし、 厚み方向は、 繊維の連続的なつなが ] が少ないため、 電気伝導度が横方向よ 小さ く るるのに対 し、 シー ト状の分 極性電極体では、 導電性改良剤の添加等によ ]?厚み方向, 横 • 方向の電気伝導度が改良され、 内部抵抗の小さるものとるる。
(3) 活性炭繊維布では、 1 O O m 厚以下の分極性電極体を 作成することが極めて困難であるのに対し、 シー ト状の分極 性電極体では、 3 O im 厚のものも容易に作成することがで
5 ¾ 。
(4) 活性炭繊維布では、 分極性電極体に蓄積される電荷を調 節するために多くの工程を要するが、 シ - ト状の分極性電極 体では、 容易る工程で所望する蓄積電荷量のものを得ること ができる。
l O 次に.、 本発明の実施例である代表的 電気二重層キャ パシタ の構成例を第 2図に示す。 第 2図において、 3 がシ— ト状の分 極性電極体であ!)、 その片側表面に金属導電体層 4を有し、 上 記導電体層を有した分極性電極体をそれぞれ金属ケ -ス 5 , 金 属封ロ板 6にスポッ ト溶接し、 安定した電気的接続を得る。 2
1 5 枚の分極性電極体をセパレ -タァを介して相対向させ、 電解液 を注入後、 正, 負極の短絡を防ぐためにガスケッ ト 8を用いか しめ封口しコ ィ ン型の電気二重層キャ パシタ とする。
さらに、 本発明の電気二重層キ ャ パシタの特徵, 製造方法に ついて詳述する。
20 (1 ) 分極性電極体
分極性電極体は、 基本的には活性炭繊維を主成分とし、 パル プ等の結合媒体からなるものを基本と し、 さらに上記成分に炭 素繊維のよ う ¾導電性改良剤を添加している。 一般に活性炭鐡 維には、 その出発原料の違いによ ]9 、 フ エノール系, レ ー ヨ ン
25 系, ポ リ アク リ ロ ニ ト リ ル ( P A N )系, ピッ チ系がある。 こ の中でも特に、 フ X ノ ール系のものが、 強度, 炭化賦活収率, 電気的特性と もに一番優れている。 本発明では、 主に、 1 o 〜
1 4 径の ト ウ状フ ヱ ノ —ル樹脂繊維を 1000 雰囲気下、 水蒸気によ 炭化賦活し、 約 1 O 径の比表面積 2300mソ 9
( B E T法 ) の ト ウ状活性炭繊維を得、 このものを 1 〜 5 長 のチ ヨ ッ ズ.状にしたものを用いる。 特に電解液に有機電解液を 使用する場合、 水溶液電解液に比べ電解質のィ オ ン径が大きく、 活性炭繊維の細孔径が 2 O A以下であると、 電解質と活性炭繊 維界面で効率良く電^二重層が形成でき ¾ く なる。 本発明の活 性炭繊維は、 500〜3000 m2 ぶの高比表面積を有し、 細孔径 が 2 0 ~ 4 0 Aに分布するものが好ま し く、 細孔容積は Ο .2〜 1 .5C0 ^ が好ま しい。 さらに好ま しい範囲は、 比表面積が
1 500〜
Figure imgf000007_0001
, 細孔径 2 O〜 4 O A, 細孔容積 O .6〜 1 .5 であ ]3 、 2 0〜 4 0 Aの径に分布する細孔の内部表 面積に寄与する割合が 4 Ο 以上あ 、 細孔に電解液の浸入が 容易とな 二重層形成面積が増大する。 このよ う ¾条件を有す る活性炭繊維は、 低温にお て電解液の粘度が上昇しても二重 層形成領域の減少がみられ ¾い。
(2) 結合媒体
本発明で用いる分極性電極体の結合媒体は、 抄紙法で使用可 能なマニラ麻, クラ フ ト パルプ等の天然繊維、 あるいはポリ プ ロ ピレン , ポ リ エチ レン , ァク リル樹脂等の人工繊維である。 通常以上の繊維の 2 〜 5 長のもの、 あるいはさ らに叨解の進 んだものを使用する。 叨解の程度は、 通常カナディ ア ンス タ ン ダー ド値 ( C S F ) で表わされる。 実施例に ける結合媒体で • は、 C S F値の 0〜 5 0 0 のパルプを用いた。 また機械的強度 を上げるためアス ペス トゃガラ ス繊維を混入しても良い。
(3) 導電性改良剤
分極性電極体の導電性を改良すると同時に電極体の補強材と
5 して、 次のよ うな導電性改良剤を使甩することができる。
① 炭素繊維, .
炭素繊維は、 活性炭繊維よ i?電気伝導性が高く、 強度も強 い。 種類と しては、 フ ヱ ノ 一ル系, アク リ ロ ニ ト リ ル ( PAN) 系, ピッチ系のものが良い。
i o ② 金属繊維
1 〜 2 0 i m 径, 長さ 1 〜 1 O謂のチップ状のス テン レス あるいは-ッケルの金属繊維。
⑤ 金属メ ツキ炭素繊維
炭素繊維に無電解メ ツキをほどこし、 柔軟性を維持しつつ、
1 5 さらに電気伝導度を高めたも の。
④ その他
黒鉛粉末, 炭素粉末, カー ボンブラ ック, 金属メ ツキ粉末 樹脂等。
(4) 導電性電極(導電体層)
20 本発明で用いる導電性電極 (導電体層)は、 プラズマ溶射, 了 一ク溶射, 無電解メ ッキ, 蒸着, スパ ッ タ リ ングなどによ ]?、 分極性電極上に形成するものである。 導電性塗料を分極性電極 上に塗布しても良い。 さらに補助集電体として、 金属箔、 特に アル ミ ニ ゥ ムのエツチング箔 どが適当である。 導電性電極材料
25 としては、 特に電気化学的に安定なアル ミ ニ ウ ム , ニ ッ ケル, ステン レスカ 良い。
次に、 分極性電極体の製造方法について述べる。 第 3図に本 発明のシー ト状の分電性電極体の製造工程図を示す'。 フ ノ ー ル樹脂, ポ リ アク リ ロ ニ ト リ ル ( P A N )樹脂, ·またはレ― ョ ンを原料繊維 Wと し、 紡糸工程 (a)をへてト 'ゥ状の繊維 (口)を得る。 るお繊維は ト ウ状繊維でる く と も フ ェ ル ト状, 不織布状, 織布 状何れの形態をも とることができ る。 上記繊維を窒素等の不活 性ガス雰囲気下での水蒸気によ )賦活し、 活性炭化する (b)。 次 に炭化賦活過程 (b)で得た活性炭繊維を抄紙に適する 1 ~ 5丽に 切断する (c)。 切断は、 空気中でも可能であるが、 粉塵が飛散し、 また微粉に ¾ すぎるので水中で水を媒体と して粉砕すること が好ま しく 、 切断にあた ]?、 微粉にる らるいよ うに、 ミキサー, ギロチンカ ッ タ ーを用いて行 ¾ う。 切斩した活性炭繊維は、 繊 維径に対する繊維長の比が 2 〜 3 0 0 0倍であることが好ま し く特に 5 0 〜 5 O O倍の比のものが最適である。 このよ うにし て得たチョ ッ プ状活性炭繊維 と結合媒体^を湿式混合する (d)。 この時導電性改良剤を添加しても良いし、 結合媒体に叨解工程 )を加えたものを使用すること もでき る。 次の抄紙工程 (e)にお いて工程を円滑に進めるため分散剤と して抄造量の 0 . 1重量 程度分散剤と してポリ エチレン才キサイ ドをまた消泡剤と して O . O 1 重量 程度の脂肪酸アミ ド、 さ らにポ リ エチ レンのエス テルからるる乳化液, 脱水促進剤を o , s重量 程度加え適当量 の水で湿式混合する (d)。 抄紙工程 (e)後、 乾燥工程 (g)後、 導電体 層形成工程 (h)に入るが、 乾燥時にエ ンボス加工, パンチング加 ェあるいほ力レンダー加工 ( f , ) を行 う と 良い。 以上の — 3— 工程を経て、 導電体層形成シー ト状分極性電極体 ができ上が る o
活性炭繊維と結合媒体の組成比を考えた場合、 結合媒体の量 が少¾く ¾ると、 分極性電極体の相対強度は低下してく るが、 ィ ン ピ—ダンスの小さるしかも容量密度の高 キャパシタが得 られる。 一方結合媒体がァ O .にも達すると分極性電極体の抵 抗が大き くな 、 内部抵抗の大き ¾キ ャ パシタに ¾ 好ま しく い。 また逆に結合媒体が1 o %以下になると、 分極性電極体 の機械的強度が低下し、 プラ ズマ溶射法で導電体層を形成時に、 分極性電極体内部に多数のき裂を生じた ]?、 容易に破損した]) する。 したがって望ま しぐは、 活性炭繊維が 3 O ~ 9 O %含有 されているものを使用すべきであ 、 さらに望ま しくは、 活性 炭繊維が 5 0 〜 S O %含有しているものを使用すべきである。
シー ト状分極性電極体の密度を高めるため力レ ンダー加工を 行い、 単位体積あた ]?の容量を増大させるとともに電極体の抵 抗を低減し、 キャ パシタの内部抵抗を低減できる。 カ レンダー 加工をあま ]?強く行う と、 分極性電極体の表面が微粉化しやす く ってしま う。 分極性電極体の密度は、 O .マ / αΛ 程度まで 増大させることができる力 好ま しくは 0.2〜0.6^ が良い。 カ レンダ—加工によ )、 分極性電極体内の活性炭織維同志の接 触する確率が増大し、 電流の通るパスが増大することによ ]?、 蓄積された二重層容量を効率良ぐ取 ])出すことが可能となるた め、 強放電時にも I · R ドロ ッ プの小さなキャ パシタができる。 特に分極性電極体の厚みが厚く なるとそれだけ集電能が低下し てしまい、 本発明のキ ャパシタではできるだけ密度が高く、 厚 みめ薄い ( 好ま しく は 6 00 m 以下 )分極性電極体が適切で る。
シー ト状分極性電極体にヱ ン ボス加工, パンチ ング加工を行 う ことによ 、 電極体の強度が増大するばか ]) でな く電極体に 導電体層を形成する時、 表面のみな らず小孔の内壁にま で導電 体層を形成する。 このよ うにすると、 厚み方向の集電能が極め て向上し、 また電解液に対する分極性電極体の膨潤も防止でき、 長期使用後も内部抵抗の増大を著しく低減するこ とができ る。 また小孔は O .5〜 3 卿径程度でよいカ' 1 .5麵 ピッ チで 1 · O 籠 径程度のものが効果的であ!)、 貫通しているものの方がよ 効 果的である。 .
次に具体的な実施例について述べる。
〔実施例 1 〕
チヨ ッ プ状のフヱ ノ ー ル系活性炭繊維 ( 1 Ofx <f> , 1〜5 ml) 比表面積が B E T法で
Figure imgf000011_0001
, 20 〜 4 Ο Αの細孔径を有する細孔の容積が全細孔容積の 4 O 以 上寄与しているものとマニラ麻 ( C S F値 , クラ フ ト パルプ ( C S F値 O W ) の混合物から ¾る結合媒体および抄 造量の O . 1 重量 のポ リ エ チ レン才キサイ ド ( 分散剤 ) ,
O .01 重量 の脂肪酸ァミ ド ( 消泡剤 ) , O .3 重量 のポリ ヱチ レンのヱステルから ¾る乳化剤, 脱水促進剤を適当量の水 で混合し、 通常の抄紙法によ ]9活性炭繊維と結合媒体を重量比 で第 1 表に示す組成のシー ト状分極性電極体を得た。 第 1 表に 示した分極性電極体の厚みはいずれも 1 O O ^m であ ]?重量は 4 0^/ 2である。 この分極性電極体の片面にプラズマ溶射法を • 用いておよそ 8 0 m のアル ミ ニ ウ ム導電体層を形成した。 こ の導電体層を有したシー ト状分極性電極体を 2枚使用し、 第2図に 示すコ ィ ン型の電気二重層キャ パシタを作成した。 本実施例の キ ャ パシタ構成は、 セパレータ 7に、 マ-ラ麻とガラ ス繊維の
5 混抄紙を用い、 正極側封口板6には、 ス テ ン レス ( SUS 444 ' またはシ ョ ーマック ( 昭和電工線商品名 ) } を用い、 負極側ケ ー ス 5にはス テ ン レス ( S U S S O 4 )を用いた。 分極性電極体 の導電体層を有している面をそれぞれ封口板, ケース と接触す るよ うに配置し、 分極性電極体の位置決めと、 電気的る接続を o 確実 ¾ものにするため、 スポ ッ ト溶接を行う。 分極性電極体 3 をセパレータ了を介して相対向させたのち、 過塩素酸テト ラェ チノレ ア ン モ ニ ゥ ムの 1 モルプロ ピレン カ ー ボネ ー ト溶液を注入 し、 ガスケ ッ ト 8で正負極を絶緣し、 かしめ封ロケ—シングす る。 本実施例での分極性電極体は円形であ ]?、 その直径は 1 4
!5 丽であ ]?、 セパ レ一タは 6 O £m の厚みで同じく直径 1 7籠の 円形であ ])、 電解液量は、 1 5 O ί 使用した。 封ロケ—シン グ後のコィ ン型電気二重層キ ャ パシタの大きさは、 直径 20丽, 高さ 1 . 6籠である。 第 1 表に組成とともにその相対的な強度, 容量値, イ ン ピーダンス値 ( 1 kHz測定値 ) を示す。 第 1 表に示 0 す試料 8は活性炭繊維布状のものであ ]?、 本実施例のよ うな
4 O / ηίと薄いものは作成不能である。 本実施例のように、 電 解液に有機電解液を使用すると、 キャ パシタの耐圧が2.0~2.4 Vとなる。
25 試料 活性炭繊維と結合媒体 分極性電極体 容 量 インピ-タ'ンス の混合重量比 い ノ fo. 活性炭繊維 結合媒体 の相対強度 (F) 〔 at 1 kHz 〕
1 3 0 70 大 0.1 2 58.2
2 40 60 大 0.1 6 4 1
5 50 50 大 0.1 5 2.4
4 6 0 40 大 0.22 1 8.2
5 70 30 中 0.28 1 α 6 ό 80 20 中 0.5 1 5.9
7 9 0 1 0 小 0.3 6 4.8
8 1 0 0 0
C実施例 2 〕 .
実施例 1 第 1 表中の試料^ 6に示す活性炭繊維と結合媒体の 重量比が 8 O : 2 Oの組成のシ— ト状分極性電極体を作製時に カ レンダ—加工し、 電極体の密度を高めたものを使用し、 実施 例 1 と同寸法のコ イ ン型キ ャ パシタ を作製した。 電極体の密度 以外の構成は、 実施例1 と同様である。 第 2表に本実施例に用 いた分極性電極体の特性と、 これらのものを使用して作製した キ ャ パシタ の諸特性を合わせて示す。 いずれも単位面積あた ] の重量は 1 2 O /riである。 試料 1 から L 4にゆ くにしたが いイ ン ピーダンス値が低下しまた強放電が容易とな キ ャ パシ タ特性が向上する。 2
Figure imgf000014_0002
〔実施例 3 〕 .
実施例 1 の第 1 表に示した組成と同様 分極性電極体の片面 に実施例 1 のアル ミ ニ ウ ム溶射導電体層の替!)にカー ボンを 導電性粒子と し、 ブチル系樹脂を結合媒体とした導電性ペイ ン トをスク リ ー ン印刷法を用いて約 5 0 〃m 塗布し、 で 乾燥し、 本実施例の導電体層と した。 電解液, ケース等の条件 を実施例 1 の場合と同様にしコ イ ン型キ ャ パシタを試作したと ころ、 容量値は実施例 1 とほぼ同じ値を得たが、 イ ン ピー ダン スは本実施例のものの方が、 実施例 1 に比べ 3 0 ~ 5 0 %大き ¾値を示した。 これは、 金属導電体層の方が、 分極性電極体と の接着が強固であることと、 導電体自身の抵抗値の相違による ためであると考えられる。
C実施例 4 〕
チョップ状のフ ノ ール系活性炭繊維 ( A C F ) (比表面積が B E T法で 1
Figure imgf000014_0001
)とポリプロ ピレ ン'製合成パルプを結合媒体と し、 A C F Z結合媒体の重量比が 70/30であり、 厚みが 2 , 単位面積当 の重量が 6 O Z 2のシー ト状分極性電極体を従来の抄紙法を用い形成し、 こ の電極体の片面にプラ ズマ溶射法で 1 5 0 ^ 121 のニ ッ ケル導電 体層を形成する。 セパレ—タにはポリ プロ ピレン製の不織布を、 電解液には 2 4重量 の水酸化カリ ゥムを使用し、 実施例 1 ~ 3 と同様なコ ィ ン型キ ャ パシタを作成した。 本実施例のよ うに 水系電解液を使用すると、 耐電圧は水の理論分解電圧である 1 . 2 3 V以上にでき ¾ぃが、 電導度が非水系のものに比べ 2桁 以上高く 、 強放電特性に優れたキャ パシタ が可能であ 、 ァニ オン , カチオンの大きさも有機溶媒系の過塩素酸イ オンに比べ 小さいため、 活性炭繊維の細孔内部にま でイ オンの浸入が容易 で、 有効な二重層形成領域が拡大する。 第 3表に本実施例のコ イ ン型キ ャ パシタの諸特性を示す。 分極性電極体の強度は、 結 合媒体と してポリ プロ ピレ ン合成パルプを使用したものの方が、 天然パルブを使用したも の よ ]?強いが、 電極体自体の抵抗値は 大き く ¾る。
第 3 表
Figure imgf000015_0001
〔実施例 5 〕
長期保存にお て、 天然パルプは電解液によ ]? 、 く分膨潤 し:活性炭繊維同志の間隔が拡大するため、 内部抵抗が増大し、 容量の引き出しが困難に ¾つてぐる。 また天然パルプ( マニラ 麻とクラ フ トパルプの混合物 ) の眷 に人工パルプ ( ポリ プロ ピレン製)のみを使用すると、 非水系溶媒を電解液に使用した
5 場合、 人工パルプの抵抗値が大き く、 良好 キ ャ パシタ特性を 満足しない。 そこで本実施例においては、 第 4表に示すよ うに 天然パルプと人工パルプを混合し、 活性炭纖維と結合媒体の重 量比をァ oZ3o と して抄紙し、 分極性電極体の強度を上げた。 第 4表中の試料 〜 5のものを実施例 1 と同様にアル ミニゥ i o ムの導電体層を形成し、 同様な電解液系でコ イ ン型キ ャ パシタ を作成し、 このキャ パシタを 7 雰囲気下で 2 . O V常時印加 し信頼性加速度試験を行い、 1 O O O時間後の容量変化率を第 4 表に示す。 天然パルプに、 叨解の進んでいる人工パルプをいく 分か混合したものの方が若干強度を.増し信頼性が向上する。 天
1 5 然パルプをま つたく用い い試料 5は、 分極性電極体の抵抗 が大き く容量変化率も大き く ¾つている。 - 第 4· 表 分極性電極体重量組成 キ ャパシタ特性 料 天然パルプ 信頼性試験 0 ,マニラ麻とクヽ 人工パルプ 1000時間後の
、 ラフ
o. トパルプ )
ゝの混合物 ノ ( F ) 容量変化率^
1 7 0 3 0 0 0.2 8 - 7. 3
2 7 0 2 5 5 (ポリプロヒ V ) 0.2 8 - 7. 1
5 7 0 2 0 1 0 (ホ プロヒ 0.2 8 - 7. 2
4 7 0 2 0 1 0 ( ホ 工 ) 0.2 8 - 7. 2
5 7 0 0 3 0 (ホ "プロヒ 0.2 8 - 1 1. 5
25 C実施例 6 〕
シ- ト状分極性電極体の電気伝導度を高 、 活性炭繊維表面 に蓄積された電荷を効率良く取!)出すために、 実施例 1 ~ 5で 述べてきた組成に各種炭素繊維を混入した。
第 5表に、 混入した各種炭素繊維の諸特性を示す。 本系のよ うに抄羝工程を含む系では、 第 5表中 ¾ 1 のフ エ ノ ール系の炭 素繊維が最も適する。 第 5表に示した以外にレ ー ヨ ン系の炭素 繊維があるが、 このものは炭化収率, 機械的強度ともに良くな い。 試料 . 2の P AN系のものは、 弾性率が高く、 抄紙工程で 作業性が悪く 、 またキ ャ パシタに試作しても炭素繊維がけば立 ち、 セパ レ—タを貫通してショ ー トする可能性が試料^ 1 に比 ベ高い。 試料^ 3のピッチ系のものも しなやかさが く、 試料 .2 と同様な影響をキャ パシタに及ぼす。
第 6表に、 種々の組成を有した分極性電極体を用い、 実施例 1 と同様 ¾コィ ン型キ ャパシタを作製した。 本実施例のキャパ シタの詳細を以下列挙する。
電解液 ( C2H5 )4NB F の 1 モルプロ ピレン力 -ボネ - ト
' ( P C )溶液、 1 5 O 。
セパレータ ポリ プロ ピレン製了 O m 厚の不織布、 1 了 丽 ø の円型。
分極性電極体…… 3 5 O 厚、 単位面積あた 1)の重量 1 2 O
^ 、 組成は第ァ表の通 j?、 形状は 1 4 丽 0 の円型。
導 電 体 層……ブラズマ溶射法による 1 5 O m 厚アルミ二 ゥ ム層。 UI O Ul o n
5
Figure imgf000018_0001
6 試料 活性炭繊維の種類 比表面積(mV^ ) 細孔容積 ) 細孔径分布(A) 繊維強度(相対値)
M
1 フ エ ノ - ル系 2500 1.2 2 0-40 強
2 レ - ヨ ン 系 60 0 0.30 20-3 0 ポリアクリロニトリノ
3 7 00 0.36 20-80
(PAN系) 弱
4 コーノレタ—ルビッチ系 630 0.33 20〜3 0 普 通
'第 7表に分極性電極体組成とともにコィ ン型キ ャ パシタ に組 んだ時の諸特性を示す。 表よ ] 一般にどのよ うな種類の炭素繊 維を混入しても低ィ ンピーダンス化, 低内部抵抗化がはかれる ことがわかる。 特にフ エ ノ ール系のものは柔らかく しるやかで あるのでシ - ト状分極性電極体中に均一に容易に分散し、 優れ ものが得られる。 第ァ表中 P Pはポ リ プロ ピレン、 P Eはポ リ エチレ ン、 パルプとはマニラ麻とクラ フ トパルプとの混合物 を示す。 また信頼性加速試験の数値は、 70 雰囲気 2 .0V常 時印加 1 OOO時間後の容量変化率をパ -セ ンテ-ジで示したも のである。 したがつて絶対値の小さ ものの方が信頼性が高い。 また第 6表には使用した 4種類の活性炭繊維の諸特性を示す。 電気二重層は、 活性炭繊維と電解質界面で形成されるため、 フ エ ノ ール系の活性炭繊維が最適であ ]?、 さらに有機溶媒中での、 テ トラェチルアンモニゥムイオン( (C2H5)4N+)やほう弗化イ オン ( BF4 - ) が活性炭繊維の細孔内に浸入し有効に二重層を形成 するには、 2 O ~ 4 O Aの細孔径が必要であるため、 この面か らもフ エ ノ ール系のものが適する。 P A N系の第 6表に示す試 料 3は細孔径分布は、 大きる径の方に分布しているが、 比表 面積を 1 OOO // 以上にすることが極めて困難であ 、 また 電気的にも抵抗値が大き く、 キ ャ パシタの分極性電極体に適す るとは言えるい。 IV) IV)
υι Ο υι ο ui 了 試料 分 極 性 電極体種類 , 重 量組成 インピーダンス 信頼性加速 容量 ( (
£. 活性炭繊維( ) 炭素繊維 ) 結合媒体 ( ) Cat 1KHZ〕
1 フエノーノレ系 80 フエノ,一ノレ系 10 パルブ 10 0. δ 2 5.1 一 .3
2 フエノーノレ系 70 フエノ—ル系 20 パルプ 10 0.2 8 5.9 - 4.9
3 フエノーノレ系 70 フエノ -ル系 20 P P 10 , パルプ 10 0.28 7.4 - 6.2
4 フエノーノレ系 60 フエノ -ル系 20 パルプ 20 0.24 6.1 一 .8
5 フエノーノレ系 6 G フエノ -ル系 20 P B 10 , PBT 10 0.2 4 7.8 ― 6.3
6 フエノーノレ系 60 フ ノ -ル系 20 パルプ 20 0.24 5.2, - 5.3
7 フエノーノレ系 50 フエノ ーノレ系 . 30 パルプ 20 0.20 4.5 ― 4.1
8 フエノーノレ系 40 フエノ -ル系 40 パルプ 20 0.1 6 4.2 - 4.0
9 : PA N'系 00 フエノ -ル系 20 パルブ 20 0.1 2 7.9 - 8.4
10 P A N系 60 P A N系 20 パルプ 20 0.1 2 7.8 - 8.2
11 : PAN糸 00 レー ヨン系 20 パルプ 20 0.1 2 7.9 - 8.3
12 レ - ヨン系 00 フエノ -ル系 20 パルプ 20 0.1 1 8.1 ― .9
13 レー ヨン系 60 PA N系 20 ノヽ。ノレブ 20 0.1 1 8.0 一 9.9
14 V-ヨン系 60 レー ヨン系 20 パルプ 20 0.1 1 8.1 - 9.8
15 ピッチ系 60 フエノ—ル系 20 パルプ 2Ό 0.1 0 8.2 - 1 0.2
16 フエノーノレ系 100 0 0 0.4 0 6.0 - .8
• 第了表中、 試料 H ~ 8のフ ノ ー ル系の活性炭繊維と炭素 繊維を用いたものが良好 キヤ パシタ特性を有していることが わかる。 また炭素繊維の含有量を増大していくにつれイ ン ピー ダンスが低下し、 内部抵抗も滅少し、 電極体の導電性が改良さ
5 れ信頼性も向上することがわかる。 さらに比較例 1 6の活性 炭繊維布と比べても本実施例のキャパシタの方が良好 特性を 示している。 第 4図に上記のようる導電性改良剤と して、 炭素 繊維を混入してい いもの (比較例 ) と第ァ表に示す試料 2, 4との充電カーブを示す。 本実施例のものの方が充電時間の短 l O かいことがわかる。 お第 4図の測定に供したキ ャパシタは、 分極性電極体の重量を制御し、 同一容量値を有するものである。 〔実施例マ 〕 分極性電極体の導電性を改良する目的で、 次の€), @, ©を 第 8表および第 9表に示す割合で分極性電極体を構成する。 @
1 5 フ エ ノ —ル系硬化ノボラ ッ ク樹脂繊維を炭化賦活して得られた 比表面積 2 2 ( B E T法による ) 、 細孔径が 20 ~ 40
Aに 5 O 以上分^する活性炭繊維 (長さ 2 ~ 3 讓, 径' 1 〇 ^ πα ) 、 ®天然パルブ ( マニラ麻とクラフ トパルブの混合物) または人工パルプ ( ポリ エチ レン, ポリ プロ ビレン繊維 ) など
20 の結合媒体、 © 2 0 0 0 Ό以上で形成された高電気伝導性の黒鉛 微粉末、 または力—ボンブラックそして、 フ エ ノ ール微粉末樹 脂にニッケルを無電解メ ッキした導電性粒子を用いた。 以上の 分極性電極の構成要素, 重量比, 結合媒体および電解液, 電解 質を第 8表および第 9表に示す。
25 t 10
Ul o Ul o (Jl
8
分 極 性 ¾ ) l¾.¾fHs 電 解 液 インピ―タ *ンス (Ω) 7f]1C 2 V 100Π賠間 fo. 容量 )
粉末黒鉛量 (重量 、 結合媒体(重:! (at 1 KHz 〕 印力 容量変化率 (%)
1 0 レブ 20 ( 0 H- ) ブロピレン力一ボネ一ト 0.03 6.8 - 2 1.5
2 0.5 ヽノレフ 19.5 U II 0.04 6.0 - 1 8.0
3 1 ゝンレフ 19 II 0.04 5.1 - 1 4.0
4 5 パノレブ 15 It II 0.63 4.5 - 1 3.0
5 1 0 レフ β 10 // II 0.04 3.2 - 1 1.3
6 20 ヽノレフ 10 // II 0.57 2.6 - 1 0.3
7 1 0 ポリエチレン 15 (02H5)4NBF4 II 0.6 4.2 - 1 6.2
8 1 0 ポリエチレン 15 (02H5)4NPP6 II 0.6 4.1 - 1 5.9
9 1 0 ポリエチレン 15 LiCi04 7·-プチルラクトン 0.6 4.3 - 1 6.0
1 Q 1 0 ポリプロヒ ン 15 K 0 H 1.2 1.3 - 1 5.0
11 1 0 ポリブロヒ ン 15 H 2SO4 1.2 1.2 . - 1 4.6
12 1 0 ポリプロヒ ン 15 NaOH 1.2 1.6 - 1 3.9
第 8表は導電性改良剤に粉末黒鉛を添加した場合の添加量お よび電解液の違いによるキ ャ パシタ特性の相違を示したも ので ある。 キ ャ パシタは実施例 1 と同様な形状を有するコィ ン型で あ!)、 セパレータはポリ プロ ピレン不織布 ( 1 7霞 ø, βθμπι ), 分極性電極'体の厚みは 4 5 O , 電極径 1 4露 ø,単位面積当 の重量は、 8 O のものを使用し、 有機電解液系のものに は、 アル ミ ニ ウ ムのプラズマ溶射層を水系電解液には、 ニ ッ ケ ルの溶射層をそれぞれ導電性層と して形成した。 第 8表よ ]?、 試料 1 〜 1 2いずれも良好 キ'ャ パシタ特性を示すことがわ かるが、 特に黒鉛量が 5 〜 1 0 %程 ¾少る く とも 1 程度以上 含有しているとイ ン ピーダンスの低下が見られ導電性改良の効 果が見られる。
(C2H5 )4NBF4/ /プロピレンカーボネート系では、 2 · 8 V程度の 耐電圧を有するのに対し、 水系のものではおよそ 1 .OVである。 また黒鉛量が多く るにしたがい電気的特性は良く るが電極 強度が低下し、 好ま しくは 1 O重量 程度の含有量が良い。 ァ O TC雰囲気下、 2 V印加した信頼性試験において 1 OOO時間 後の初期容量からの変化率も黒鉛量の多い方が小さ くなつてい
0 ο
次に粉末黒鉛の替わ に、 ®カーボンブラ ック, ®フ エ ノ ー ル微粉末樹脂に-ッケルメ ツ キした導電性粒子を用い、 第 9表 に示す分極性電極体組成で同様 ¾コィ ン型キ ヤパシタ を作成し、 その特性を測定した。 活性炭繊維量は全体の 7 Ο重量 である。 9
Figure imgf000024_0001
第 9表よ ]?、 上記導電性改良剤でも黒鉛粉末と同様な効果を 得られることがわかる。
〔実施例 8 〕
分極性電極体として、 ④第 1 O表の活性炭繊維, ®導電性改 良剤と して、 通常「 ビ ビ リ振動法」 と呼ばれる方法によ 丸棒 の金属を 1 ~ 2 O im?4, 長さ 11 O丽のチョップ状金属繊維 ( ステンレス, アル ミ ニ ウ ム, ニ ッ ケル等 ), ©天然パルプ
( マニラ麻とクラ フ ト パルブの混合物 )から ¾る結合媒体を重 量比で第 1 o表の割合で十分混合し、 できるだけ材料の比重差 による不均一が生じるいよう 条件下で抄紙する。 混入する活 性炭繊維の種類特性は実施例 6の第 6表に記載されているもの である。 この よ うにして形成したシー ト状分極性電極体にアル ミ ニ ゥ ムまたはニ ッ ケルの導電体層をいずれもブラズマ溶射法 を用い片面に 1 O O ^m 程度形成する。 本実施例で作成したキ ャパシタは、 実施例 1 〜 了 と同寸法のコィ ン型である。
Figure imgf000025_0001
1 O 分 極性 電極 体 電 解 液 ■a- M. ソ ー *ソス / U し j V h^ Jil 料 導電体層 1000 時間後の 活性炭蛾維 金属短繊維 結合 媒 体
(重量 ) 溶. 媒 (F) C at 1 KHz)' 容量変化率 ( ) iro.
ブロヒ ン
1 フエノーノレ系 70 0 天然パルプ 30 了ルミニゥム (02H5)4 C 04 0.28 1 0.
カ-ボネ-ト 6 - 7. 3 プロヒ°1/ン
2 フエノ-ル系 70 ステンレス 5 天然パルプ 25 了ルミニゥム (C2H5)4N0 04
カ-ホネ-ト 0.285 8.3 - 6.8 プロヒ ン
3 フエノーノレ系 70 ステンレス 10 天然パルプ 20 アルミニウム (C2H5)4NOi04 0.284 8.0 一 6.7 カ-ボネ-ト
プロヒ ン
4 フ; nノーノレ系 60 ステンレス 20 天然パルプ 20 アルミニウム (C2H5)4NO104 0.24 7.6 ― 6.3 カ-ホネ-ト
プロヒ ·ン
5 フエノ-ル系 40 ステンレス 30 天然パルプ 30 了ルミニゥム (02H5)4NOi04 - 6.0 カーボネート 0.15 6.5
6 フエノ-ル系 00 ステンレス 20 天然パルプ 20 了ルミニゥム (C2H5)4BF4 r -プチル
0.25 7.8
ラクトン 一 6.0
7 フエノ―ル系 60 ニッケル 20 ポリブロヒ ン 20 ニッ ケル K 0 H 0.51 4.0 _ 7.8 人工パルブ
8 P A N系 00 ステンレス 20 天然パルプ 20 了ルミニゥム プロヒ °1/ン
(G2H5)4 0 04 - 10.6 力-ホ 'ネ-ト 0.12 7.9 プロピレン
9 PA N系 60 ステンレス 20 天然パルプ 20 了ルミニゥム (C2H5)4 04
カ-ボネート 0.12 7.8 一 9.9 フ'口ピレン
10 ピッチ系 00 ステンレス 20 天然パルプ 20 T レミニゥム (C2H5)4HCi04
カ-ボネ-ト 0.10 9.0 - 11.0
第 1 O表よ ]3、 本実施例の金属短繊維を混入しても導電性が 改良されイ ン ピーダンスも低下し、 7 0 雰囲気, 2 V印加の 信頼性試験においても、 若干向上することがわかる。
〔実施例 9 〕
実施例 1の第 1表に示す試料^ 6の活性炭繊維と結合媒体の 重量比が 8 O対 2 Oの組成を有するフエ ノ —ル系活性炭繊維主' 成分のシート状分極性電極体をカレンダー加工し、 密度を O . 5 ^ にまで上げ、 単位面積あた]?の重量を 1 2 O / とし、 さらに この分極性電極体にパンチ ング加工, スルホ ール加工などによ ]9、 1 . 5濯のピッチで 1 · O丽径の/ 子しをあけたものにアルミ二 ゥ ムの金属導電体層を形成したものを構成要素とする電気二重 層キ ャ パシタを第 5図に示す。 お第 2図と同一素子には同一 番号を付す。 9は小孔で3はシー ト状分極性電極体である。 こ の構成では金属導電体層 4を金属封口板 6, 封口ケースである 金属ケース 5にスポッ ト溶接し、 ポ リ プロ ピレン製のセパレー タ 7を介して相対向させ、 電解液には、 (C 2H5 ) 4N B F 41 モルプロ ピレ ンカ ー ボネ ー ト溶液を用い、 ガスケ ッ ト S で正負 極を絶縁し、 封ロケ一シングしたものである。 本実施例におけ る分極性電極体の大きさは 6 丽径であ ]?、 封ロケ一シ ング後の 大きさは 1 2 . O龍径, 1 . 5娜厚である。 容量は O . 1 2 Fである。 本実施例の比較例として、 小孔を有してい い本実施例と同組 成の分極性電極体を使用し、 同様 キ ャ パシタを作製し.、 両者 を 7 O Ό雰囲気下で 2 V印加の状態で信頼性試験を行った。 そ の結果を第 6図に示す。 縦軸が容量値を横軸が試験時間を示す。 図中 Aが本実施例の、 Bが比較例( Aと同一組成で穴を有して い いもの ) のそれぞれ容量の変化を示す。 第 6図 Α' , B ' は それぞれ本実施例と比較例のィ ン ピ— ダンスの変化を示したも 'のである。 Α'は B 'に比べ、 イ ン ピーダンス値も半分程度と ¾ ' 、 図よ ]?本実施例のものは変化も少な く、 極めて良好なキ ヤ パシタ特性とるることがわかる。 本実施例では、 アル ミ ニ ゥ ム のプラズマ溶射層が片面と小孔の内壁のみであつたが、 溶射層 を小孔の内壁と両面に形成しても特性は本実施例のものと大差 な力 つた。
〔'実旌例 1 ο 〕 ·
第 1 表に示す試料^ 6の組成(活性炭繊維と結合媒体の重量 比が S O : 2 Ο :) を有するフ エ ノ ール系活性炭繊維を カ レン タ'—加工し、 厚みを 2 6 0 m にし単位面積あた の重量を 1 2 とし、 第 7図に示した構成を有する巻取型キ ャ パシタ を作製した。 導電体層はアル ミ - ゥムを約 1 O O im 溶射形 成した。 図中 1 Oはシ— ト状分極性電極体であ 、 1 1 はアル ミ ニゥ ム導電体層、 1 2は集電体補助箔であ 、 次の 2種類 の材料を検討した。 (1) 3 O im のアル ミ ニ ウ ムエツチング箔, (2) 3 0 m 厚のアル ミ ニ ウ ム范。 1 3はアル ミ ニ ウ ム製のケー ス、 1 4はゴム製パ ッ キング材で、 (C2H5 )4HC^04 の 1 モ ルプロ ピレン カー ボネー ト電解液を注入後かしめ部 1 5を形成 して封口する。 1 6はポ リ プロ ピレン製のセパレータである。 集電補助材を用いないも のは、 溶射アル ミ ニ ウ ム層に直接ァ ル ミ 二ゥム製リー ド 1 マ , 1 8をス ポッ ト溶接する。 アル ミ 二 ゥム箔およびエ ッ チング箔を集電補助材と した場合は、 それ それにリ― ドをかしめて接続した。 第 1 1表に集電補助材 の 使用の有無と各特性を示した。 使用したシート状分極性電極体の大 きさは、 正極側が縦3 0 鲰, 横 2 0 0 籠 、 負極側が縦 3 O 丽, 横 2 1 O龍の大きさのものを使用した。 第 1 1 表よ 巻き取]) 型のキ ャパシタにしても非常に高エネルギー密度, 高信頼性の ものができる。 また集電補助材に表面が粗で導電体層との接触 集電が一番良好 ェツチング箔が、 一段と信頼性の高いことが わかる。 さらに、 本実施例のよ うに負極側を正極側に比べ大き ぐしたものの方が高信頼性であつた。 本実施例のよ うに電極面 積が大き く ¾ると 1 O O mA 以上の放電が容易と ¾る。
Figure imgf000028_0001
比較例として試料 ¾ に活性炭繊維布にアルミ 二ゥム導電体 を形成し同様に巻き取]?型のキ ャ パシタを作成した時の特性を 示す。 本実施例の方が容量の大きる信頼性の高いキ ャ パシタで ある。 本実施例における容量変化率とは 7 0 雰囲気下でキ ヤ パシタに 2 V印加, 1 O O O時間後の容量を初期容量と比較した ものである。
〔 実施例 1 1 〕 正極側分極性電極体に実施例 9 と同様る同組成の小孔を有し た電極体を使用 し、 負極側に-ッ ケルを格子と し、 Sii/Cd の 重量比を 85/15 から ¾る リ チウムを吸蔵したゥ ッ ド合金を用 い、 有極性のキャパシタ を作製した。 電解液には、 L iC_^04 の 1 モルブロ ピレ ンカーボネー ト溶液を用いた。 分極性電極体 は、 1 4麵径のものであ ]? 、 リ チウ ムの ドー ピング量は 1 O mAhのものを用いた。 第 1 2表に本実施例のキャパシタの諸特 性を示す。 負極側に非分極性電極体を用いるものは過放電に弱 いという欠点を有しているが、 電圧 ( 使用電圧 ) が 3. OVと 高く 、 またエネルギ -密度も正, 負極共分極.性電極体を用いる. ものに比べ 2倍程度大きい。 また非分極性電極体にリ チウム金 属を用いてもキャパシタ と して作動するが、 充放電をく !)返す にしたがいリ チウムデン ドライ トが生成し、 リ チウムが脱落し てキャパシタ特性がいちじるしくそこるわれる。 さ らに リ チウ ムをアル ミ ニゥムに吸蔵させた合金を非分極性電極体に使用し ても リ チウムのみを使用する場合と比較して信頼性の良好なキ ャパシタが得られた。
第 1 2 表
Figure imgf000029_0001
〔実施例 1 2 〕 第 1 表における試料 ^ 6の活性炭繊維と結合媒体の重量比が 8 O対 2 Oの組成を有し、 密度が O。 5 /c^, 厚み力 S 300 m の 'シ - ト状分極性電極体を使用し、 第8図 a, bに示すキ ャ パ シタを作成した。 第8図 bは第8図 a を X— : X ' で切断した時 の断面を示す。 1 9は上記構成のシ- ト状分極性電極体であ ]?、 2 Oは 1 O O 'のシ - ト状分極性電極体の表面に形成された アル ミ - ゥ'ム導電体層であ ]?、 2 2は 3 0 «01 のステンレス ( SU S 444 )力 ら¾る集電補助材であ ]?、 2 1 は S O m 厚 のポリ プロ ピレン製セ ノ、 'レータ、 2 3はポ リ プロ ピレン : 2 O O μ η 厚に変性ポリ エチレン系シ- ト状熱溶着性の接着剤を重ね た透明のコーテイ ング'層である。 電解-液には、 (C2H5 )4NC^04 の 1 モルプロ ピレ ンカーボネー ト溶液を使用した。 本実施例の キ ャ パシタは、 集電能も良好であ ]?、 また分極性電極体の強度 も十分強く、 100X200 miの大きさのものでも十分作業性良く 組み立てることができる。 また本実施例で用いた接着剤である 熱融着性フ ィ ルム シー トは、 金属, 他のプラスチッ ク との接着 が強く、 耐有機溶液性も良好である。 第 1 3表に本実施例のキ ャ パ シタの諸特性を示す。 1 OOO回充放電後の容量減少率も少 ¾く信頼性も高い。
第 1 3 表
Figure imgf000030_0001
産業上の利用可能性
本発明の分極性電極体は、 前述のよ うに電気二重層キャパシ タのみならず、 空気電池またはリ チウ ム電池の正極や、 電池の 活物質の担体、 さらには、 エレク ト 口クロ ミ ックディスプレイ • ( ·Ε C D )の表示電極との対向極に使用することができる。
5
10
15
20
25

Claims

• . 請 求 の 範 囲
1 . 少なく とも活性炭繊維と結合媒体との混合物の抄造体から ¾る分極性電極体。
2. 請求の範囲第 1 項にお て、 前記抄造体は導電性物質を含む 分極性電極体。
3. 請求の範囲第 1 項にお て、 前記抄造体は表面に導電体層 を有する分極性電極体。
4. 請求の範囲第 1 項において、 前記導電性物質は、 炭素繊維, 黒鉛繊維, 金属纖維, 金属被覆炭素織維, 金属被覆樹脂繊維, 炭素粉末および黒鉛粉末の少なく とも一つである分極性電極体。
5. 請求の範囲第 1 項において、 前記抄造体の密度は 0 . 1 /^ 以上である分極性電極体。
6. 請求の範囲第 1 項において、 前記抄造体中に占める前記結 合媒体は 6 O重量 以下である分極性電極体。 . 請求の範囲第 1 項にお て、 前記抄造体は複数の貫通孔, 未貫通孔を有する分極性電極体。
8. 請求の範囲第 1 項において、 前記活性炭繊維はフ エ ノール 系, ポリアク リ ロ ニ ト リ ル系, ピッチ系, レ ー ヨ ン系の少なく とも一つから る分極性電極体。
9- 請求の範囲第 8項にお て、 前記活性炭繊維は比表面積が 1 O O O
Figure imgf000032_0001
以上のフ ヱ ノ一ル系ノボラ ッ ク樹脂繊維を炭化賦 活したものである分極性電極体。
10. 請求の範囲第 8項において、 前記活性炭繊維は比表面積が が 5 o o y^以上のポリアクリ ロニ ト リル系活性炭繊維である分5
極性電極体。 • . 11 - 請求の範囲第 1 項において、 活性炭繊維は ト ゥ状繊維を炭 化賦活したものである分極性電極体。 ' 12. 繊維を炭化賦活し活性炭锇維を得、 前記活性炭繊維を 1 〜 5歸に切断してチ ヨ ッ プ状繊維と し、 前記チ ョ ッ プ状活性炭繊
5 維と結合媒体を液体と と もに混合し、 その後抄造し、 導電体層 を形成したこ とを特徵とする分極性電極体の'製造法。
13. 請求の範囲第 1 2項において、 ト ウ状の繊維を炭化賦活し た活性炭繊維を用いた分極性電極体の製造法。
14. 請求の範囲第 1 2項において、 前記チヨ ッ プ状活性炭繊維 i o と結合媒体とを混合 *抄造されたシート状の分極性電極体を力レ ンダ 一ロ ーラ ーまたはブレスによ 高密度化し、 導電体層を形成し た分極性電極体の製造法。
15. 請求の範囲第 1 2項において、 チ ョ ッ プ状活性炭繊維と結 合媒体とを混合 ·抄造し作成されたシ— ト状の分極性電極体に O . 5
1 5 〜 3觸径の小孔を形成し、 分極性電極体の片面と穴の内壁に導 電体層を形成する分極性電極体の製造法。
16· 請求の範囲第 1 3項において、 ト ウ状の繊維を炭化した炭 素繊維と、 ト ウ状の繊維を炭化 ·賦活した活性炭繊維を切断し 1 〜 5 簡のチ ョ ッ プ状と し、 これらと繊維状結合媒体と液体と
20
を混合し抄造し、シート状の分極性電極体を得る分極性電極体の製 ia. & o
1 T. 少な く と も活性炭繊維と結合媒体の混合物の抄造体に導電 体層を形成した分極性電極と、 対向電極と、 前記分極性電極と 対向電極の間に介在させたセパ レ—タ と、 電解質を具備する電
25
気二重層キ ャ パシタ 。 一 52—
• 18. 請求の範囲第 1 7項に いて、 対向電極は少¾く とも活性 炭繊維と結合媒体の混合物の抄造体を構成要素とする電気二重 層キ ャ パシタ 。
19. 請求の範囲第 1 ァ項において、 結合媒体に天然パルプ, 合
5 成パルプの少るく とも一つを用いた電気二重層キ ャパシタ 。
20. 請求の範囲第 1 7項において、 分極性電極体に導電性物 質を混入した電気二重層キ ャ パ シタ 。
21 . 請求の範囲第 2 0項において、 分極性電極体に導電性改良 剤と して炭素繊維, 黒鉛繊維, 金属繊維, 金属被覆炭素繊維,0 金属被覆樹脂繊維, 炭素粉末および黒鉛粉末の少るく ともひと つを混入した電気二重層キ ャ パシタ 。
22. 請求の範囲第 1 7項において、 分極性電極体の密度が 0 . 1 以上である電気二重層キ ャ パシタ 。
23. 請求の範囲第 1 ァ項に いて、 結合媒体の分極性電極体に5 占める割合が重量比で 6 O w t 以下である電気二重層キヤ パシ タ 。
24. 請求の範囲第 1 7項において、 分極性電極体が貫通孔また は未貫通孔を有してお ]9、 分極性電極体の少る く とも片面と穴 の内壁部に導電体層を有している電気二重層キヤ パシタ。
0
25. 請求の範囲第 1 7項において、 分極性電極体に用 る活性 炭繊維が、 フ X ノール系, ポリ アク リ ロ - ト リ ル系, ピッチ系, レ一 ョ ン系のいずれか一つである電気二重層キ ャ パシタ。
26. 請求の範囲第 1 7項において、 分極性電極体に比表面積が 1 O O O ^ 以上のフ ヱノール系ノボラック樹脂を炭化賦活し5
て得られた活性炭繊維を用いた電気二重層キヤ パシタ 。 • 27- 請求の範囲第 1 7項にお て、 分極性電極体に比表面積が、 : Q O O mV9 以上のポリ アクリ ロニ ト リ ル系活性炭繊維を用いた 電気二重層キ ャ パシタ 。
28. 請求の範囲第 1 7項において、 対向電極と してリ チウム吸
5 蔵ゥッ ド合金または、 アルミ ニ ウム と リ チウム との合金るどの 非分極性電極体を用いた電気二重層キ ャ パシタ 。
29. 請求の範囲第 1 7項において、 導電体層が、 プラズマ溶射 またはアー ク溶射によ ]?形成された溶射金属からるる電気二重 層キャ パシタ 。 ' l O 3〇. 請求の範囲第 1 9項において、 天然パルプと して、 マニラ 麻, ク ラ フ ト パルプの少る く とも一種を用いた電気二重層キヤ パシタ。
31 . 請求の範囲第 1 9項において、 合成パルプと してポリェチ レン, ポ リ プロ ピレン , アク リ ル合成パルプのうちの少 ぐ と
1 5 も一種を用いた電気二重層キ ャ パシタ 。 ·
32. 請求の範囲第 2 1 項において、 炭素繊維, 黒銥鐡維がポリ アク リ ロ ニ ト リ ル系, ピッ チ系, フ ヱ ノ ール系, レー ヨ ン系の 少る く ともひとつから ¾る電気二重層キ ャ パシタ 。
33. 請求の範囲第 1 7項において、 活性炭繊維の長さを直径で
20 割った値が 1 O以上である電気二重層キ ャ パシタ 。
34. 請求の範囲第 1 9項において、 活性炭繊維 4 O重量パ―セ ン ト以上と、 天然パルプ, 合成パルプなどの繊維状結合媒体 6 0重量ノヽ。一 セ ン ト 下からる 、 1 〜 3丽ピッ チで 0 . 5 〜 3 職径の小孔を有している分極性電極体の少る く とも片面と、 小
25
孔の内壁に導電体層を形成し、 セパレ—タを介して分極性電極 • 体 相対向させ電解液を含浸した構成の電気二重層キヤパシタ。
35. 請求の範囲第 34項において、 活性炭繊維は 8 0重量 で ある電気二重層キャ パシタ 。
36. 請求の範囲第34項において、 小孔は 1 .5 雄ピッチで 1 .5 丽径である電気二重層キ ャ パシタ 。
PCT/JP1985/000182 1984-07-17 1985-04-10 Polarizable electrode and production method thereof WO1986000750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8585902107T DE3576878D1 (de) 1984-07-17 1985-04-10 Polarisierbarer elektrodenkoerper, verfahren zu seiner herstellung und elektrischer doppelschichtkondensator mit dem polarisierbaren elektrodenkoerper.

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP59/147811 1984-07-17
JP14781184A JPS6126209A (ja) 1984-07-17 1984-07-17 電気二重層キヤパシタ
JP59/155149 1984-07-27
JP15514984A JPS6134918A (ja) 1984-07-27 1984-07-27 電気二重層キヤパシタ
JP59/157271 1984-07-30
JP15727184A JPS6136920A (ja) 1984-07-30 1984-07-30 電気二重層キヤパシタ
JP59/186715 1984-09-06
JP59186715A JPS6164113A (ja) 1984-09-06 1984-09-06 電気二重層キャパシタ

Publications (1)

Publication Number Publication Date
WO1986000750A1 true WO1986000750A1 (en) 1986-01-30

Family

ID=27472809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000182 WO1986000750A1 (en) 1984-07-17 1985-04-10 Polarizable electrode and production method thereof

Country Status (4)

Country Link
US (1) US4737889A (ja)
EP (1) EP0187163B1 (ja)
DE (1) DE3576878D1 (ja)
WO (1) WO1986000750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149312B2 (en) 2008-07-18 2015-10-06 Suspension Othopaedic Solutions Clavicle fixation

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080963A (en) * 1989-05-24 1992-01-14 Auburn University Mixed fiber composite structures high surface area-high conductivity mixtures
CN1048892A (zh) * 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
JPH067539B2 (ja) * 1989-09-14 1994-01-26 いすゞ自動車株式会社 電気二重層コンデンサ
US5172307A (en) * 1990-03-23 1992-12-15 Nec Corporation Activated carbon/polyacene composite and process for producing the same
EP0449145B1 (en) * 1990-03-29 1998-01-28 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
US5079674A (en) * 1990-12-24 1992-01-07 Motorola, Inc. Supercapacitor electrode and method of fabrication thereof
WO1992012521A1 (en) * 1990-12-29 1992-07-23 Nauchno-Proizvodstvennoe Obiedinenie 'kvant' Capacitor with double electric layer and method of manufacture
JP3125341B2 (ja) * 1991-08-20 2001-01-15 株式会社村田製作所 積層型電気二重層コンデンサ
US5525423A (en) * 1994-06-06 1996-06-11 Memtec America Corporation Method of making multiple diameter metallic tow material
US5584109A (en) * 1994-06-22 1996-12-17 Memtec America Corp. Method of making a battery plate
US5621607A (en) * 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
US5776633A (en) * 1995-06-22 1998-07-07 Johnson Controls Technology Company Carbon/carbon composite materials and use thereof in electrochemical cells
JP3252705B2 (ja) * 1995-07-17 2002-02-04 トヨタ自動車株式会社 電気二重層キャパシタ
US5600534A (en) * 1995-10-12 1997-02-04 Zbb Technologies, Inc. Capacitor having non-conductive plastic frames
JPH10275748A (ja) * 1997-03-31 1998-10-13 Nec Corp 電気二重層コンデンサ
US6291069B1 (en) * 1997-09-01 2001-09-18 Honda Giken Kogyo Kabushiki Kaisha Activated carbon for electric double layer capacitor and method of manufacturing same
US6383427B2 (en) 1997-12-24 2002-05-07 Asahi Glass Company, Ltd. Process for producing an electric double layer capacitor electrode
US6349027B1 (en) * 1997-10-29 2002-02-19 Asahi Glass Company, Ltd. Electric double layer capacitor
US5907471A (en) * 1997-12-29 1999-05-25 Motorola, Inc. Energy storage device with electromagnetic interference shield
JP3379432B2 (ja) * 1998-05-15 2003-02-24 日本電気株式会社 電気二重層コンデンサ
US6304426B1 (en) * 1998-09-29 2001-10-16 General Electric Company Method of making an ultracapacitor electrode
US6152970A (en) * 1998-09-29 2000-11-28 General Electric Company Drying an ultracapacitor
US6222723B1 (en) 1998-12-07 2001-04-24 Joint Stock Company “Elton” Asymmetric electrochemical capacitor and method of making
US6181546B1 (en) * 1999-01-19 2001-01-30 Aktsionernoe Obschestvo Zakrytogo Tipa “Elton” Double layer capacitor
JP3796381B2 (ja) * 1999-01-26 2006-07-12 株式会社エスアイアイ・マイクロパーツ 電気二重層キャパシタ
JP2001185459A (ja) * 1999-10-15 2001-07-06 Mitsubishi Chemicals Corp 電気化学キャパシタ
US6627252B1 (en) 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
US6631074B2 (en) * 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
DE10050512A1 (de) 2000-10-11 2002-05-23 Freudenberg Carl Kg Leitfähiger Vliesstoff
US20020122985A1 (en) * 2001-01-17 2002-09-05 Takaya Sato Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor
TW505934B (en) 2001-02-01 2002-10-11 Luxon Energy Devices Corp Manufacture method of electrochemical capacitor
WO2003087470A1 (fr) * 2002-04-17 2003-10-23 Mitsubishi Rayon Co., Ltd. Papier en fibre de carbone et substrat d'electrode en fibre de carbone poreux, destine aux piles
US6643119B2 (en) 2001-11-02 2003-11-04 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP4176417B2 (ja) * 2002-08-23 2008-11-05 日本バルカー工業株式会社 補強材付き機能性シート
KR100694786B1 (ko) * 2002-11-29 2007-03-14 혼다 기켄 고교 가부시키가이샤 전기 이중층 콘덴서용 분극성 전극 및 전기 이중층콘덴서용 분극성 전극의 제조 방법 및 전기 이중층콘덴서의 제조 방법
US20040166311A1 (en) * 2003-02-25 2004-08-26 Clemson University Electrostatic spinning of aromatic polyamic acid
US7508650B1 (en) * 2003-06-03 2009-03-24 More Energy Ltd. Electrode for electrochemical capacitor
US6721170B1 (en) * 2003-06-11 2004-04-13 Evans Capacitor Company, Inc. Packaged hybrid capacitor
US20060147712A1 (en) * 2003-07-09 2006-07-06 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US7508651B2 (en) * 2003-07-09 2009-03-24 Maxwell Technologies, Inc. Dry particle based adhesive and dry film and methods of making same
US20050250011A1 (en) * 2004-04-02 2005-11-10 Maxwell Technologies, Inc. Particle packaging systems and methods
US20110165318A9 (en) * 2004-04-02 2011-07-07 Maxwell Technologies, Inc. Electrode formation by lamination of particles onto a current collector
US20100014215A1 (en) * 2004-04-02 2010-01-21 Maxwell Technologies, Inc. Recyclable dry particle based electrode and methods of making same
US7791860B2 (en) * 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7352558B2 (en) 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7342770B2 (en) * 2003-07-09 2008-03-11 Maxwell Technologies, Inc. Recyclable dry particle based adhesive electrode and methods of making same
US20070122698A1 (en) * 2004-04-02 2007-05-31 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
US7295423B1 (en) * 2003-07-09 2007-11-13 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US7920371B2 (en) * 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
US7495349B2 (en) * 2003-10-20 2009-02-24 Maxwell Technologies, Inc. Self aligning electrode
US7090946B2 (en) 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7384433B2 (en) 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination
US7227737B2 (en) * 2004-04-02 2007-06-05 Maxwell Technologies, Inc. Electrode design
US7492574B2 (en) 2005-03-14 2009-02-17 Maxwell Technologies, Inc. Coupling of cell to housing
US7440258B2 (en) * 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
JP4894282B2 (ja) * 2005-08-26 2012-03-14 パナソニック株式会社 電気二重層キャパシタ
TW200741779A (en) * 2005-12-21 2007-11-01 Showa Denko Kk Electric double layer capacitor
JP4878881B2 (ja) * 2006-03-17 2012-02-15 日本ゴア株式会社 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2007273906A (ja) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd 電気二重層キャパシタ
US8518573B2 (en) * 2006-09-29 2013-08-27 Maxwell Technologies, Inc. Low-inductive impedance, thermally decoupled, radii-modulated electrode core
US20080204973A1 (en) * 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled iron content
US20080201925A1 (en) 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US20080235944A1 (en) * 2007-03-31 2008-10-02 John Miller Method of making a corrugated electrode core terminal interface
US20080241656A1 (en) * 2007-03-31 2008-10-02 John Miller Corrugated electrode core terminal interface apparatus and article of manufacture
TWI363361B (en) * 2007-12-31 2012-05-01 Taiwan Textile Res Inst Electrode of supercapacitor and the manufacturing method thereof
US20110102972A1 (en) 2009-11-05 2011-05-05 Samsung Elctro-Mechanics Co., Ltd. Chip-type electric double layer capacitor cell and method of manufacturing the same
GB201002038D0 (en) 2010-02-09 2010-03-24 Bae Systems Plc Electrostatic capacitors
US8508916B2 (en) * 2010-10-13 2013-08-13 Cooper Technologies Company High voltage electric double layer capacitor device and methods of manufacture
WO2013019489A1 (en) * 2011-07-29 2013-02-07 The Board Of Trustees Of The University Of Illinois Three-dimensional (3d) porous electrode architecture for a microbattery
JP5886383B2 (ja) * 2014-07-25 2016-03-16 関西熱化学株式会社 吸着性能に優れた活性炭、およびその製造方法
US20170125175A1 (en) * 2015-10-30 2017-05-04 Korea Institute Of Energy Research High-voltage and high-power supercapacitor having maximum operating voltage of 3.2 v
US10186384B2 (en) * 2015-12-31 2019-01-22 Honeywell Federal Manufacturing & Technologies, Llc Carbon fiber and parylene structural capacitor
WO2017201167A1 (en) 2016-05-20 2017-11-23 Avx Corporation Electrode configuration for an ultracapacitor
EP3459097A4 (en) 2016-05-20 2020-05-06 AVX Corporation NON-AQUEOUS ELECTROLYTE FOR SUPERCAPACITOR
KR20180138564A (ko) 2016-05-20 2018-12-31 에이브이엑스 코포레이션 고온용 울트라커패시터
US11943869B2 (en) * 2020-02-04 2024-03-26 Kemet Electronics Corporation Electrically functional circuit board core material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116835A (en) * 1976-03-26 1977-09-30 Toyo Boseki Electrode
JPS5464105A (en) * 1977-10-24 1979-05-23 Toyo Boseki Production of adsorbing sheet
JPS5525916A (en) * 1978-08-11 1980-02-25 Toshiba Battery Co Ltd Button type air cell
JPS5666854A (en) * 1979-11-05 1981-06-05 Ricoh Co Ltd Electrically conductive paper support
JPS56134299A (en) * 1980-03-24 1981-10-20 Nippon Pillar Packing Carbon fiber paper
JPS58206116A (ja) * 1982-05-25 1983-12-01 松下電器産業株式会社 電気二重層キヤパシタ
JPS594114A (ja) * 1982-06-30 1984-01-10 松下電器産業株式会社 電気二重層キヤパシタ
JPS593913A (ja) * 1982-06-29 1984-01-10 松下電器産業株式会社 電気二重層キヤパシタ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891080A (en) * 1928-12-26 1932-12-13 Harold I Danziger Electrical condenser and method of making same
GB555964A (en) * 1942-02-10 1943-09-14 Plessey Co Ltd Improvements relating to electrolytic condensers
US2535690A (en) * 1947-08-02 1950-12-26 Gen Electric Fibrous dielectric compositions
US3313665A (en) * 1963-06-04 1967-04-11 American Filtrona Corp Method for making fibrous bodies
GB1033816A (en) * 1963-09-05 1966-06-22 Gen Electric Co Ltd Improvements in or relating to electrical capacitors
US3426764A (en) * 1965-10-04 1969-02-11 Eastman Kodak Co Cigarette filters of paper containing cellulose acetate fibers
US3536963A (en) * 1968-05-29 1970-10-27 Standard Oil Co Electrolytic capacitor having carbon paste electrodes
US3829327A (en) * 1972-07-03 1974-08-13 Kreha Corp Carbon paper
JPS5388400A (en) * 1977-01-13 1978-08-03 Toho Rayon Co Ltd Cigarette filter
US4352768A (en) * 1978-09-05 1982-10-05 Gte Laboratories Incorporated Fiber reinforced cathode for electrochemical cell
US4327400A (en) * 1979-01-10 1982-04-27 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
JPS593868A (ja) * 1982-06-29 1984-01-10 Pentel Kk 電極用炭素体
EP0112923B1 (en) * 1982-06-30 1990-09-19 Matsushita Electric Industrial Co., Ltd. Double electric layer capacitor
US4597028A (en) * 1983-08-08 1986-06-24 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for producing the same
US4579130A (en) * 1983-12-22 1986-04-01 Shell Oil Company Tobacco filters and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116835A (en) * 1976-03-26 1977-09-30 Toyo Boseki Electrode
JPS5464105A (en) * 1977-10-24 1979-05-23 Toyo Boseki Production of adsorbing sheet
JPS5525916A (en) * 1978-08-11 1980-02-25 Toshiba Battery Co Ltd Button type air cell
JPS5666854A (en) * 1979-11-05 1981-06-05 Ricoh Co Ltd Electrically conductive paper support
JPS56134299A (en) * 1980-03-24 1981-10-20 Nippon Pillar Packing Carbon fiber paper
JPS58206116A (ja) * 1982-05-25 1983-12-01 松下電器産業株式会社 電気二重層キヤパシタ
JPS593913A (ja) * 1982-06-29 1984-01-10 松下電器産業株式会社 電気二重層キヤパシタ
JPS594114A (ja) * 1982-06-30 1984-01-10 松下電器産業株式会社 電気二重層キヤパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0187163A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149312B2 (en) 2008-07-18 2015-10-06 Suspension Othopaedic Solutions Clavicle fixation

Also Published As

Publication number Publication date
DE3576878D1 (de) 1990-05-03
US4737889A (en) 1988-04-12
EP0187163B1 (en) 1990-03-28
EP0187163A4 (en) 1987-07-13
EP0187163A1 (en) 1986-07-16

Similar Documents

Publication Publication Date Title
WO1986000750A1 (en) Polarizable electrode and production method thereof
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
KR101988691B1 (ko) 에너지 저장장치용 전극과 그 제조방법
US7236348B2 (en) Functional sheet having reinforcing material
EP1161774A2 (en) Electrically conductive, freestanding microporous polymer sheet
JP2010121029A (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
CN110010900A (zh) 一种高倍率厚电极及其制备方法与应用
JP2001345100A (ja) リチウム二次電池負極用炭素質粒子、その製造方法、リチウム二次電池負極及びリチウム二次電池
CN113544888B (zh) 碳电极材料和氧化还原电池
JPH08250380A (ja) 分極性電極およびその製造方法
JP3638642B2 (ja) 活性炭シート及び電気二重層キャパシタ
WO2005001861A1 (ja) 電気二重層キャパシタ用電極の製造方法
KR102013173B1 (ko) 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터
JPH0340931B2 (ja)
JP2001185452A (ja) 電気二重層コンデンサおよびその製造方法
JPH08138651A (ja) 非水電解液二次電池用炭素質電極板および二次電池
JPH11340103A (ja) 活性炭素材の製造方法
CN102054979A (zh) 一种电池电极、其制备方法及电池
KR20090099980A (ko) 에너지 저장 디바이스용 나노 활물질 전극 제조방법
JPH0444407B2 (ja)
Wachtler et al. Carbon and Graphite for Electrochemical Power Sources
KR101815190B1 (ko) 전기에너지 저장소자용 전극의 제조 방법 및 이 제조 방법으로 제조된 전기에너지 저장소자용 전극
JPH0213453B2 (ja)
JPH0239513A (ja) 固体電気二重層コンデンサ
JPH0330974B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1985902107

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985902107

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985902107

Country of ref document: EP