WO1985000118A1 - Method and apparatus for separating mixed gas - Google Patents

Method and apparatus for separating mixed gas Download PDF

Info

Publication number
WO1985000118A1
WO1985000118A1 PCT/JP1984/000319 JP8400319W WO8500118A1 WO 1985000118 A1 WO1985000118 A1 WO 1985000118A1 JP 8400319 W JP8400319 W JP 8400319W WO 8500118 A1 WO8500118 A1 WO 8500118A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
pressure difference
purified
unit
Prior art date
Application number
PCT/JP1984/000319
Other languages
English (en)
French (fr)
Inventor
Masaomi Tomomura
Shunsuke Nogita
Kazuo Someya
Kohji Ohtani (Deceased)
Original Assignee
Hitachi, Ltd.
Ohtani, Misayo (Legal Representative Of Ohtani, Ko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Ohtani, Misayo (Legal Representative Of Ohtani, Ko filed Critical Hitachi, Ltd.
Priority to DE8484902376T priority Critical patent/DE3484058D1/de
Publication of WO1985000118A1 publication Critical patent/WO1985000118A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40018Pressurization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40022Production with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40067Seven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40069Eight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds

Definitions

  • the present invention relates to a method and an apparatus for separating a mixed gas.
  • the present invention uses a mixed gas containing a plurality of components as a raw material gas, and a target product by a pressure difference adsorption method in which an impurity component in the raw material gas is selectively adsorbed by an adsorbent.
  • the present invention relates to a method and an apparatus for separating a mixed gas for recovering gas.
  • the method is suitable for removing unburned components in various source gases and recovering a product gas rich in argon, hydrogen, oxygen, nitrogen, low-boiling hydrocarbons, and the like.
  • a method for separating a mixed gas by a pressure difference adsorption method and an apparatus therefor have been proposed, for example, in Japanese Patent Publication No. 42-2S164, Japanese Patent Publication No. 57-42367 or Japanese Patent Publication No. 57-50722.
  • the product gas is collected using a pressure difference adsorption unit that includes an adsorption tower filled with an adsorbent and that sequentially repeats pressure adsorption operation and pressure reduction desorption operation as basic operations.
  • a single pressure difference adsorption unit consisting of a plurality of adsorption towers is arranged, and feed gas of the same composition and the same purity is introduced in parallel into each adsorption tower.
  • the pressurization operation for increasing the pressure of the adsorption tower in order to perform the pressure adsorption operation is based on the raw material gas or the movement of the gas remaining in the adsorption tower after the pressure adsorption operation is completed.
  • the amount of product gas taken out could not be increased due to the large disturbance of the death zone due to the pressure rise in the adsorption tower.
  • the separation of the mixed gas according to the prior art described above is as follows.When argon is recovered using a raw material gas composed of 70% argon and 30% nitrogen, the argon bluntness in the product gas is at most 95%. The argon recovery was also 3% for S. Products with an argon dullness exceeding 95% in the product gas could not be recovered.
  • An object of the present invention is to provide a method and an apparatus for separating a mixed gas capable of recovering a product gas at a high degree of insensitivity. You.
  • Another object of the present invention is to recover product gas in high yield.
  • the first feature of the present invention is that pressure adsorption operation and pressure reduction
  • the feed gas sequentially to separate the raw material gas and the purified gas.
  • the adsorption operation and the desorption / desorption operation are performed sequentially, and the above purification is performed.
  • the gas is separated to recover the concentrated purified gas and the pressure is reduced.
  • the second feature of the present invention is that the raw material gas inlet and the purified gas
  • An adsorption tower having an outlet and filled with an adsorbent
  • Adsorption tower and the exhaust gas outlet connected to the adsorption tower Adsorption tower and the exhaust gas outlet connected to the adsorption tower
  • a mixed gas separation device comprising:
  • the present invention relates to various source gases containing a plurality of components and their sources.
  • Adsorbents that improperly adsorb impurity components in feed gas Adsorbents that improperly adsorb impurity components in feed gas
  • adsorbent synthetic zeolite 5 A (maximum diameter
  • Argon has almost the same adsorption selectivity as oxygen.
  • Product gas can be recovered.
  • the product gas rich in Qin can be recycled.
  • adsorbents for example, a molecular sieve that separates gas by the difference in gas adsorption rate, and air as the raw material gas are combined, the product gas rich in nitrogen is recovered.
  • OMPI I can get it.
  • Activated carbon was used as the adsorbent, and methane, ethane, and prono were used as raw material gases.
  • mixed gas of hydrocarbons such as butane and butane
  • higher boiling hydrocarbons are adsorbed and removed, and low boiling hydrocarbons such as methane or methane and ethane are removed.
  • Product gas rich in mixed gas can be collected.
  • the raw material gas is separated by the first-stage pressure difference adsorption unit, the purified gas is recovered, and the purified gas is successively introduced into the second and subsequent pressure difference adsorption units. Separation into concentrated purified gas, and the final concentrated purified gas is taken out as product gas, so the length of the adsorption zone in the adsorption tower can be shortened, and highly dull product gas can be obtained.
  • the first-stage pressure difference adsorption unit the purified gas is recovered, and the purified gas is successively introduced into the second and subsequent pressure difference adsorption units. Separation into concentrated purified gas, and the final concentrated purified gas is taken out as product gas, so the length of the adsorption zone in the adsorption tower can be shortened, and highly dull product gas can be obtained.
  • FIG. 1 is a system diagram of a mixed gas separation device when a two-stage pressure difference adsorption unit according to the present invention is used.
  • FIG. 2 is a system diagram of a mixed gas separation device when three or more pressure difference adsorption units according to the present invention are used.
  • FIGS. 3 and 4 are each a system diagram of a mixed gas separation device showing another embodiment of the present invention when a three-stage pressure difference adsorption unit is used.
  • FIG. 5 and FIG. 6 are configuration diagrams of the mixed gas separation device according to the present invention.
  • FIG. 7 is a graph showing the relationship between the argon concentration (C out) in the product gas and the argon recovery in the product according to the present invention in the case of argon and according to the conventional example. Best form
  • Fig. 1 shows the system diagram of the mixed gas separation device when the two-stage pressure difference deposition units UA and UB are introduced.
  • the pressurized raw material gas from piping 1 is supplied to the first-stage pressure difference adsorption unit UA to perform the adsorption treatment.
  • the processing gas (purified gas) from the first stage pressure difference adsorption unit U ⁇ is directly supplied to the second stage pressure difference adsorption unit UB via the pipe 2A. Purified gas is again subjected to pressure adsorption treatment and concentrated in the second-stage pressure difference adsorption unit UB After purifying the purified gas, this concentrated purified gas is
  • the first stage pressure difference adsorption unit U A The first stage pressure difference adsorption unit U A
  • the second stage pressure difference The exhaust gas flowing through the pipe 3B from the adsorption unit UB is temporarily stored along the way, and then the first stage pressure difference It was confirmed that the method of feeding the dying unit UA could optimize both the pressure reduction operation and the buck desorption operation.
  • the reservoir 4A in the exhaust gas passage of the second-stage pressure difference unit UB is a huge one.
  • the reservoir uses a container whose volume can change according to the amount of exhaust gas.
  • the pressurizing operation of the first-stage pressure difference adsorption unit UA includes (1) the operation using the exhaust gas of the second-stage pressure difference adsorption unit UB, and (2) the completion of the adsorption process. It is desirable to use a combination of three types, one based on the movement of residual gas in the tower, and the other (3) based on the source gas. In this case, the steps are usually performed in the order of (1), (2) and (3).
  • the pressurizing operation may be performed in a plurality of times.
  • the pressurizing operation using (1) is performed after the pressurizing operation using a part of the gas, and then the pressurizing operation using the remaining gas is performed (2).
  • the power pressure operation using the raw material gas is performed.
  • Part of the purified gas in the pressure adsorption operation of the pressure difference adsorption unit UA of the first stage may be used for the pressure operation of the unit UA.
  • Exhaust gas from the pressure desorption operation of the second-stage pressure difference adsorption unit UB is returned to the first-stage pressure difference adsorption unit UA
  • Fig. 2 shows a system diagram of a mixed gas separation device when three or more pressure adsorption units are used.
  • the purified gas of the first stage pressure difference adsorption unit U A is piped.
  • the concentrated purified gas of the pressure difference adsorption unit UB,... of the former stage is directly surrounded by the pressure difference units..., XIX of the latter stage via piping 2B,... respectively.
  • the concentrated purified gas in the final stage is exhausted as product gas from the piping 2 X of the pressure difference adsorption unit UX in the final stage.
  • the mixed gas separator a is effective for recovering a higher purity product gas in a high yield.
  • the exhaust gas of the plurality of pressure difference adsorption units at the subsequent stage may be conveniently used for the operation of the pressure difference adsorption unit at the stage preceding them.
  • the mixed gas separator equipped with the three-stage differential adsorption units UA, UB, and UC shown in Fig. 3 is composed of the second-stage differential pressure adsorption unit UB and the third-stage differential adsorption unit.
  • the three-stage pressure difference adsorption unit UA shown in Fig. 4,
  • the mixed gas separation device equipped with UB and UC uses the exhaust gas from the second-stage pressure difference adsorption unit U3 and the third-stage pressure difference adsorption unit UC to pipe 3B and pipe 3, respectively.
  • the pressure difference in the first stage consisting of two adsorption towers A 1 and A 2
  • Adsorption tower A 1 has switching valves 11 A 1, 12 A 1, and 13 A 1 in the lower piping, and switching valves 14 A 1, 15 A ⁇ in the upper piping.
  • OMPI Vacuum pump provided at the outlet of 8 A, piping 9 A for connecting the switching valves 13 A 1 and 13 A 2, piping 9 for connecting the lower switching valves 12 A 1, 12 2 6 A and 3 A pipes are provided to exhaust the exhaust gas from the vacuum pump 6 A to the outside of the system.
  • the adsorption tower B 1 has switching valves 1 1 B 1, L2B I, 13 B 1 in the lower piping, and switching valves 14 B 1, 15 B 1, in the upper piping.
  • Drum tower B 2 has switching valves I 2 B 2, 13 B 2 in the lower piping, and switching valves 14 B 2, I ⁇ B 2, 16 B 2 in the upper piping, respectively. .
  • the piping connecting the upper selector valve 15 B 1 and 15 B 2 7 mm, the upper selector valve 16 3 1 and 16 B 2 and the lower selector valve 13 B 1 and 13 B A pipe 8 ⁇ that communicates with 2, a pipe 9 ⁇ that communicates with the lower selector valve 12 B 1, 12 B 2, and a vacuum pump 6 ⁇ are provided at the outlet of the pipe 9 ⁇ .
  • the two-stage pressure difference adsorption unit described above consists of the first-stage pressure difference adsorption unit, the source gas supply to the dying unit, the piping 1, the first-stage pressure difference adsorption unit, and the second-stage pressure difference adsorption unit. 2 ⁇ of purified gas delivery piping that communicates with the
  • the product gas which is a concentrated purified gas, is dared from the adsorption unit.
  • Table 1 shows the pressure difference death cycle for operating the mixed gas separator shown in Fig. 5.
  • the operation is pressurization I-13 process and adsorption I process, the depressurization desorption operation is exhaust I process, the reflux pressurization operation is heating I-11 process, and the column equalization operation is equalization I process or pressurization. Each of them will be implemented in I-12 process.
  • the pressure adsorption operation is pressurization ⁇ — 2 process and adsorption H process
  • the depressurization desorption operation is the exhaust gas process
  • the pressure equalization operation between columns is equal.
  • the adsorption tower A 1 for the pressure difference adsorption unit in the L-th stage and the adsorption tower 31 for the pressure difference adsorption unit in the second stage are the following. Operate as follows.
  • the raw material gas pressurized above the atmosphere from the pipe 1 is supplied to the deposition tower A 1 via the switching valve 11 A 1 to adsorb and remove the insoluble components and switch.
  • the residual gas in the delicate tower A 1 after the adsorption I process is switched to the switching valve 15 A 1, the piping 7 A and the switching valve 15 A 2 line or the switching valve LA 1, and the piping 8 A And feed to adsorption tower A 2 via one of the lines of switching valve 13 A 2.
  • the residual gas in the adsorption tower A 1 after the pressure equalization I process is passed through the switching valve 12 A 1 and the pipe 9 A.
  • the adsorbent is regenerated by dying with the vacuum pump SA, and the gas discharged from the vacuum pump 6A is exhausted out of the system from the pipe 3A.
  • the purified gas held in the reservoir 4 A is supplied to the adsorption tower A 1 after the exhaust I process, piping 5 A, switching valve 17 A, piping 1 OA and switching valve 16 It is supplied via A 1 and the pressure in adsorption tower A 1 is increased.
  • the residual gas of the adsorption tower A2 is placed on the adsorption tower A after the pressurization I_1 step is completed, and the switching valve 15A2, piping 7A and switching valve 15A1 Or switching valve 16 A 2. Supply pressure via piping 8 A and the line of switching valve 13 A 1 to depressurize adsorption tower A 1.
  • Step 3 is to pressurize the raw material gas pressurized to above atmospheric pressure from piping 1 to adsorption tower A1 after pressurization I-12 step is completed via switching valve 11 A1 Supply and raise the pressure at the death landing tower A 1.
  • a switching valve is used to switch the purified gas from pipe 2A.
  • the residual gas in the adsorption tower B 1 after the adsorption process has been switched is the switching valve 15 B 1, piping 7 B and the switching valve 15 B 2 line or switching valve 16 B 1, piping 8 B And switching valve 1 3 B 2
  • Residual gas is transferred via switching valve 1 2 B 1 and piping 9 B
  • the adsorbent is regenerated by suction with the vacuum pump 6B, and the vacuum pump
  • the purpose is to make the purified gas discharged from the adsorption tower
  • the length of the adsorption tower can be reduced and the processing amount can be reduced accordingly.
  • the exhaust gas from the second-stage pressure differential adsorption unit can be used as a raw material for the first-stage pressure differential adsorption unit, so the loss of stray gas by the second-stage pressure differential adsorption unit Loss can be prevented.
  • the gas purity in the exhaust gas from the second-stage pressure difference adsorption unit is sufficiently higher than that of the source gas, and this exhaust gas is subjected to the first-stage pressure difference adsorption unit under vacuum.
  • the cycle is formed by using the reservoir, the adsorbent in the adsorption tower of the second-stage pressure difference adsorption unit is regenerated and the residual gas is recycled. Can be operated at different times from the pressurization I to 11 times, and the regeneration of the adsorbent can be efficiently performed by prolonging the time of the wandering ⁇ process. And the benefits of exhaust gas utilization.
  • Table 2 shows an example of a pressure-diffusion cycle formed by the improved process.
  • Adsorption to send purified gas from 14 A1 I 11 Process and sending out purified gas from changeover valve 14 A1 with switching valve 11 A1 closed and flooding of source gas stopped Adsorption I
  • a relatively high-purity purified gas can be supplied from one end of the adsorption tower and a relatively low-purity source gas can be supplied from the other end of the adsorption tower.
  • OMPI IPO helps to reduce the length of the adsorption zone of the adsorption tower.
  • a relatively high-purity concentrated purified gas can be supplied from one end of the deposition tower, and a relatively low-duty purified gas can be supplied from the other end. Helps to reduce the length of the tower's adsorption.
  • FIG. 1 Another embodiment of the apparatus for separating a mixed gas of the present invention will be described with reference to FIG.
  • the configuration of this embodiment is shown in FIG. It has a configuration in which a flow controller is added to the piping of the device shown.
  • flow controllers such as flow control valves and orifices 21, 22 A, 23 A, 24 A, 25 A, 22 A, 22
  • Each of the adsorption towers A 1, A 2, B 1, and ⁇ 2 has a cylindrical shape with an inner diameter of 38 m and a packed bed height of 1.7 m.
  • the column is filled with zeolite oA. I have.
  • the internal volumes of reservoir 4A and product tank 18 are 5 ⁇ and 2 ⁇ , respectively.
  • the composition of the source gas is argon 70. /. And nitrogen 30%, pressure 380.0 kPa, temperature 20. C.
  • Q in is the amount of raw material gas flooded per cycle (N HI 3 )
  • Q out is the amount of product gas removed per cycle (X m 3 )
  • C in is the raw material gas.
  • Cout is the purity of argon in product gas (%).
  • Figure 7 shows the relationship between the argon purity (Cout) in the product gas and the argon recovery (") by a solid line.
  • argon recovery was as high as 78% at an argon dullness of 990%.
  • the argon recovery rate was 68 even when the argon purity was as high as 99.999%. As a result, high-purity argon-rich product gas could be recovered in high yield.
  • Example B Air having a pressure of 250 kPa and a temperature of 20 was used as a source gas in the same apparatus and the same cycle as in Example A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Food-Manufacturing Devices (AREA)

Description

明 細 書
混合ガスの分離方法およびその装置 技術分野
本発明は、 複数の成分を含有する混合ガスを原料ガ スと して使用 し、 原料ガス中の不純物成分を吸着剤で 選択的に吸着する圧力差吸着法によ り 、 目的とする製 品ガスを回収する混合ガスの分離方法およびその装置 に闋する。
特に、 各種原料ガス中の不鈍物成分を除去して、 ァ ルゴン、 水素、 酸素、 窒素、 低沸点炭化水素類等に富 む製品ガスを回収する場合に好適である。
背景技術
圧力差吸着法によって混合ガスを分離する方法およ びその装置は、 例えば特公昭 42-2S164号公報、 特公 57 -42367号公報あるいは特公 57-50722号公報によ リ提案 されている。
吸着剤を充填した吸着塔を備え、 基本操作と して加 圧吸着操作および降圧脱着操作を順次く り返すこ と を 含む圧力差吸着ユニッ ト を用いて、 製品ガスを回収 し ている。 複数個の吸着塔よ り なる単一の圧力差吸着ュ ニッ ト を配置し、 それぞれの吸着塔に同じ組成で同一 純度の原料ガスを並行して導入している。
高純度の製品ガスの回収が望ま しいが、 製品ガスの 純度が高くなるにつれて吸着塔の吸着蒂長さが長く な る。 そのため一サイクル当 り の製品ガスの取り 出し量 が減少し、 製品ガスの回収率が低下していた。 特に、 高純度の製品ガスを回収する場合に回収率が大幅に低 下していた。
加圧吸着操作を行なう ために吸着塔を昇圧する加圧 操作と して, 原料ガスによるものと加圧吸着操作を終 了した吸着塔内に残留するガスの移動によるものと が 知られている しかしながら、 吸着塔の昇圧による歿 着帯の乱れが大きいため、 製品ガスの取り出し量を増 大できなかった。
上述の従来技術による混合ガスの分離は、 アルゴン 7 0 %、 窒素 3 0 %よ りなる組成の原料ガスを用いて アルゴンを回収する場合、 製品ガス中のアルゴン鈍度 はせいぜい 9 5 %で、 アルゴン回収率も S 3 %であつ た。 製品ガス中のアルゴン鈍度が 9 5 % を越えるもの は回収不可能であった。
また、 空気を原料ガスと して酸素を回収する場合、 製品ガス中の酸素鈍度は 9 4 %で、 酸素回収率は低く せいぜい 6 7 %であった》
発明の開示
本発明の 目的は、 製品ガスを高鈍度で回収し得る混 合ガスの分離方法およびその装置を提供する こ と にあ る。
本発明の他の 目的は、 製品ガスを高収率で回収し得
る混合ガスの分離方法およびその装置を提供する こ と
必る
本発明の第 1 の特徴は、 加圧吸着操作および降圧脱
着操作を順次行ない、 原料ガスを分離して精製ガスを
回収する と ともに降圧脱着操作における排気ガスを系
外に排出する第 1段の圧力差吸着サイ クル工程 ; 加圧
吸着操作および降庄脱着操作を順次行ない、 上記精製 .
ガスを分離して濃縮精製ガスを回収する と ともに降圧 .
脱着操作における排気ガスを排出する第 2段以降の圧
力差吸着サイ クル工程 ; 前記瀵縮精製ガスの最終分を
製品ガスと して回収する工程 ; よ り なる混合ガスの分
離方法にある。
本発明の第 2 の特徵は、 原料ガス導入口と精製ガス
送出口を有し、 かつ吸着剤を充填した吸着塔と、 この
吸着塔に接続された排気ガス排出手段と を備えた原料
ガス処理圧力差吸着ュニッ 卜 と ; 上記原料ガス処理圧
力差吸着ュニッ 卜からの精製ガスを導入する精製ガス
導入口 と製品ガス送出口を有し、 かつ吸着剤を充填し
た吸着塔と、 この吸着塔に接続された排気ガス排出手
段と を備えた製品ガス取り 出 し圧力差吸着ュニッ 卜 と
; からなる混合ガスの分離装置にある。
OMP1 WIPO 本発明は、 複数の成分を含む各種原料ガスとその原
料ガス中の不純物成分を違织的に吸着する吸着剤を組
み合わせるこ とによって原料ガス中の不純物成分を除
去して製品ガスを回収するものに適用 し う る。
例えば、 吸着剤である合成ゼォライ 卜 5 A (最高径
が 5 Aの合成せ 'ォライ ト) に闋してガスの扱着選択性
の比鉸钶を示すと、 水素ぐ黢素ぐ窒素ぐ一酸化炭素ぐ
炭酸ガスぐ水分の頫となる。 アルゴンは酸素とほぼ同 等の吸着選択性を有する。
したがって、 合成ゼォライ ト 5 Aと原料ガスと して
上記成分の混合ガスを組み合わせた場合、 水素に富む
製品ガスを回収できる。
また、 窒素および酸素を主成分とする空気を原料ガ スと し、 これと合成ゼォライ ト 5 Aを組み合おせた場
合、 蘐秦に富む製品ガスを回牧できる。 この場合、 酸
素とアルゴンの分離が困難なため 秦鉞度は最大で約
9 5 % となる。
窒素とアルゴンの混合ガスを原料ガスと し、 これと 合成ゼォライ ト 5 Aを組み合わせた場合、 アルゴンに 富む製品ガスを回収できる。
他の吸着剤、 例えばガスの吸着速度の差によってガ スを分離する分子ふるい力一ボンと原料ガスと しての 空気と を組み合わせた場合、 窒素に富む製品ガスを回
OMPI 収できる。
また、 吸着剤と して活性炭を用い、 原料ガスと して メ タ ン, ェタ ン, プロノ、。ン, ブタ ンな どの炭化水素類 混合ガスに適用 した場合は、 よ り沸点の高い炭化水素 類を吸着除去し、 低沸点の炭化水素、 例えば、 メ タ ン あるいはメ タ ンとェタ ンの混合ガスなどに富む製品ガ スを回収できる。
本発明によれば、 第 1段の圧力差吸着ユニッ ト によ つて原料ガスを分離し精製ガスを回収し、 この精製ガ スを第 2段以降の圧力差吸着ュニッ 卜に引き続いて導 入し分離して濃縮精製ガスと し、 最終分の濃縮精製ガ スを製品ガスと して取り 出すよ う に したので、 吸着塔 における吸着帯長さ を短く でき、 高鈍度の製品ガスが 得られた。
降圧脱着操作における排気ガスを前段の圧力差 着 ュニッ 卜の吸着塔の昇圧に いたので、 排気ガスの有 効利用および前段の圧力差吸着ュニッ 卜の吸着塔にお ける吸着帯の乱れが^小でき、 高純度の製品ガスを高 奴率で回収できる。 、
また、 原料ガス中の有効成分の損失が少ないので混 合ガスの分離を経済的に行なう こ と ができる と とも に、 回収率の向上によ リ製品ガスを製造するための電力原 単位を低減できる。 図面の箇単な説明
第 1 図は、 本発明による 2段の圧力差吸着ユニッ ト を使用した場合の混合ガス分離装置の系統図である。 第 2図は、 本発明による 3段以上の圧力差吸着ュニ ッ ト を使用した場合の混合ガス分離装置の系統図であ る。
第 3 図および第 4 図はそれぞれ、 3段の圧力差吸着 ュニッ ト を使用した場合の本発明の他の実施例を示す 混合ガス分離装置の系統図である。
第 5 図および第 6 図はそれぞれ、 本発明による混合 ガスの分離装置の構成図である。
第 7図はアルゴンの場合の本発明によるものを徒来 例によるものとの製品ガス中のアルゴン雜度 ( C out ) とアルゴン回収率 との関係を示すグラ フである 発明を実施するための最良の形態
2段の圧力差圾着ユニッ ト U A, U B を陡招 した場 合の混合ガス分離装置の系統図を第 1 図に示す。
配管 1 からの加圧された原料ガスを第 1段の圧力差 吸着ュ.二ッ ト U Aに供給して ΐΐΓ 吸着処理する。 第 1 段の圧力差吸着ユニッ ト U Αによる処理ガス (精製ガ ス) を配管 2 Aを経由 して第 2段の圧力差吸着ュニッ ト U B に直接引き続いて供給する。 第 2段の圧力差吸 着ュニッ ト U Bで精製ガスを再度加圧吸着処理し濃縮 精製ガスと したのち、 配管 2 B から この濃縮精製ガス
を製品ガスと して取り 出す。
第 1段の圧力差吸着ュニッ ト U Aの降圧脱着操作に
おける排気ガスは、 配管 3 Aを経由 して系外に排出す
る。 第 2段の圧力差吸着ユニッ ト U B の降圧脱着操作
における排気ガスは、 配管 3 B 、 リ ザ一バ 4 Aおよび
配管 5 Aを経由 して第 1段の圧力差吸着ユニッ ト U A
に帰還し、 降圧脱着操作が終了した第 1段の圧力差吸
着ュニッ 卜 U Aを搆成する吸着塔の昇圧に使用する。
真空再生方式の第 1段の圧力差吸着ュニッ トじ Aに
おいて、 吸着塔内の吸着剤の再生のためには降 脱着
操作の最終圧力を低くする こ と が望ま し い。 そのため
には、 第 1段の圧力差吸着ユニッ ト U Aの徘気ガスの
排気時間を長くする こ と が重要である。
第 1段の圧力差吸着ュニッ ト U Aの 圧吸着操作を
行う ために吸着塔を昇圧する加圧操作と しては、 第 2
段の圧力差吸着ユニット U B の上記配管 3 B, 5 A を
介しての徘気ガスによ るものに、 公知である原料ガス
によるものと、 加圧吸着操作を終了した吸着塔内に残
留するガスの移動によ るもの を組み合わせるのが望ま
しい。
第 2段の圧力差吸着ユニッ ト U B の配管 3 B からの
排気ガスによる加圧操作の時間と第 1段の圧力差吸着
O P1 ユニッ ト IJ Aの降圧脱着操作の時間を一致させること は、 一サイ クル当 り の第 1段の圧力差歿着ュニッ 卜 U Aの加圧操作の割合を過大にするか、 または一サイ クル当 り の第 2段の圧力差吸着ユニッ ト U B の降圧説 着操作の割合を過小にする ことにな り、 混合ガスの分 離効率に向上に寄与しないこ と が判明した。
混合ガス分離の効率向上のために、 第 2段の圧力差 吸着ュニッ ト U B からの配管 3 B を経由 して流れる排 気ガスをその途中で一時的に貯蔵し、 その後第 1段の 圧力差歿着ユニッ ト U Aに侯給する方法が、 如圧操作 および降圧脱着操作の両者を最適な時間にする ことが できる こ と を確認した。
第 2段の圧力差ュニッ ト U B の排気ガスの通路中に あるリ ザーバ 4 Aはこの 巨的で設け られたものである。 リザ一バは、 排気ガス量に応じて容積が変化しう る容 器を甩いるのが有利である。
リザーバを設置しないで、 加圧操作と降圧脱着搡拃 の時間を一致させないプロ セスを組むこ とは可能であ る。 その場合は第 2段の圧力差吸着ュニッ 卜!; B の真 空ポンプの吐出圧力を若干上昇させる こと になる。
本発明を実施する場合、 第 1段の圧力差吸着ュニッ 卜 U Aの加圧操作は、 (1 ) 第 2段の圧力差吸着ュニッ ト U Bの排気ガスによるもの、 (2 ) 吸着工程終了後の 塔内残留ガスの移動によるもの、 および(3 ) 原料ガス によるものの 3種類を併用するのが望ま しい。 この場 合、 通常( 1 ) , ( 2 )および( 3 )の順序で実施させる。
( 2 )の塔内残留ガスによ るものは、 複数回に分割し て加圧操作を行なわせてもよい。 この複数回分割操作 の場合、 その一部のガスによ る加圧操作を行なったの ち( 1 )による加圧操作を行なわせ、 その後( 2 )の残り のガスによ.る加圧操作および( 3 )の原料ガスによ る力口 圧操作を行なわせる。
第 1段の圧力差吸着ュニッ ト U Aの加圧吸着操作に おける精製ガスの一部を同ユニッ ト U Aの加圧操作の ために使用 してもよい。
第 2段の圧力差吸着ュニッ ト U B の降圧脱着操作の 排気ガスは、 第 1段の圧力差吸着ユニッ ト U Aへ帰還
-して同ュニッ ト U Aの吸着塔の昇圧に全量利甩する以 外に、 上記排出ガスの一部を系外に排出 し、 部分的に 利, する こ とも可能である。
圧力吸着ュニッ 卜 を 3段以上锭用 した場合の混合ガ スの分離装置の系統図を第 2 図に示す。
圧力差吸着ユニッ ト U A , ϋ Β , …, U Xにおいて、 第 1段の圧力差吸着ュニッ ト U Aの精製ガスを配管
2 Aを経由 して第 2段の圧力差吸着ュニッ U B に直 接引き続いて供給し、 第 2段以降の圧力差吸着ュニッ
OMPI ト U B, …, U Xにおいては、 前段の圧力差吸着ュニ ッ ト U B , …の濃縮精製ガスを配管 2 B , …を経由 し て後段の圧力差ユニッ ト…, XI Xにそれぞれ直接引き 繞いて供給する。 最終段の圧力差吸着ユニッ ト U Xの 配管 2 Xから最終段の濃縮精製ガスを製品ガスと して 敢リ 出す。
鏵接する 2つの圧力差歿着ユニッ トじ A, U B , …
U Xにおいて、 後段の圧力差吸着ユニッ ト U B, …,
U Xからの排気ガスを、 配管 3 13, - 3 X , リザーバ
4 A , 4 B , ' 、 および配管 5 A, 5 3 , …を経由 し て、 前段の圧力差吸着ユニッ ト U A, ϋ Β , …の加圧 工程で吸着塔の异圧のために使用する。
この混合ガス分離装 aは、 よ り高純度の製品ガスを 富収率で回収するために有効である。
本発明は、 後段の複数の圧力差级着ユニッ トの排気 ガスを、 それらよ り前段の圧力差吸着ユニッ トの加 操作に便用 してもよい。
第 3 図に示した 3段の庄 Λ差吸着ュニッ ト U A, U B , U C を備えた混合ガス分離装置は、 第 2段の圧 力差吸着ュニッ ト U B および第 3段の圧力差吸着ュニ ッ 卜 U Cの排気ガスをそれぞれ、 配管 3 B 、 リザ一バ 4 Aおよび配管 5 Aを経由、 および配管 3 C、 リザー パ 4 A a および配管 5 A a を経由 して第 1段の圧力差 吸着ュニッ ト U Aの加圧操作に使用 している。
第 4 図に示した 3段の圧力差吸着ュニッ ト U A,
U B, U C を備えた混合ガス分離装置は、 第 2段の圧 力差吸着ュニッ ト U 3 および第 3段の圧力差吸着ュニ ッ ト U Cの排気ガスをそれぞれ、 配管 3 B および配管
3 C を介して単一の リ ザーバ 4 Aに導入し、 さ ら に リ ザ一バ 4 Aから配管 5 Aを経由 して第 1段の圧力差吸 着ュニッ ト U Aの加圧操作に使 ¾ している。
本発明の一実施例である混合ガス分離方法およびそ の装置について説明する。
それぞれ 2基の扱着塔から成る圧力差歿着ュニッ ト を 2段使 ¾ した場合の混合ガス分離装匱の構成を第 5
IIに示す。
2基の吸着塔 A 1, A 2 から成る第丄 段の圧力差级
着ュニッ トの搆成について説明する。
吸着塔 A 1 は、 下部配管に切替弁 1 1 A 1 , 12 A 1 , 1 3 A 1 を、 上部配管に切替弁 1 4 A 1 , 1 5 A 丄 ,
1 6 A 1 をそれぞれ設けている。 5 着塔 A 2 は、 下
配管に切替弁 1 1 A 2, 1 2 A 2 , 1 3 A 2 を、 上部
配管に切替弁 1 4 Α 2, 1 5 A 2 , 1 6 A 2 をそれぞ
れ設けている。
さ らに、 上部切替弁 1 5 A 1 , 1 5 A 2 間を連絡す
る配管 7 A、 上部切替弁 1 6 A 1, 1 6 A 2 と下部切
OMPI 替弁 1 3 A 1, 1 3 A 2 と を連絡する配管 8 A、 下部 切替弁 1 2 A 1 , 1 2 2 と を連絡する配管 9 、 配 管 9 Aの出口部に設けられた真空ポンプ 6 A、 および 真空ポンプ 6 Aの排気ガスを系外に排気する配管 3 A を設けている。
つぎに、 2基の吸着塔 B l, B 2 から成る第 2段の 圧力差吸着ュニッ トの搆成について説明する。
吸着塔 B 1 は、 下部配管に切替弁 1 1 B 1 , L2B I , 1 3 B 1 を、 上部配管に切替弁 1 4 B 1 , 1 5 B 1 ,
1 6 B 1 をそれぞれ設けている。 鼓着塔 B 2 は、 下部 配管に切替弁 I 2 B 2 , 1 3 B 2 を、 上都 配管に切替弁 1 4 B 2, I δ B 2 , 1 6 B 2 をそれぞ れ設けている。
さ らに、 上部切替弁 1 5 B 1 , 1 5 B 2間を連絡す る配管 7 Β、 上部切替弁 1 6 3 1, 1 6 B 2 と下部切 替弁 1 3 B 1 , 1 3 B 2 とを連絡する配管 8 Β、 下部 切替弁 1 2 B 1, 1 2 B 2 と を連絡する配管 9 Β、 お よび配管 9 Β の出口部に設け ζΤれ 真空ポンプ 6 Β を 設けている。
上述した 2段の圧力差吸着ユニッ トは、 第 1段の圧 力差歿着ユニッ トへの原料ガス供給^配管 1 と、 第 1 段の圧力差吸着ュニッ 卜と第 2段の圧力差吸着ュニジ 卜 と を連絡する精製ガス送出用配管 2 Αと、 第 2段の
OMPI 圧力差吸着ュニッ 卜の降圧脱着操作における排気ガス を第 1段の圧力差ュニッ 卜に帰還させるための排気ガ ス帰還用配管 3 A、 リ ザーバ 4 A、 配管 5 A、 配管
1 O Aおよび切替弁 1 7 Aと、 および第 2段の圧力差 吸着ュニッ 卜から濃縮精製ガスである製品ガスを敢 リ
すための濃縮精製ガス送出 ¾配管 2 B 、 製品タ ン ク
1 8 および配管 1 9 を設けている。
第 1表は、 第 5 図に示した混合ガス分離装置を運転 するための圧力差歿着サイ クルのー钶を示す。
丄 表
Figure imgf000017_0001
第 1段の圧力差吸着ユニッ トに閬して、 加圧吸着操
OMPI 作は加圧 I 一 3工程および吸着 I 工程で、 降圧脱着操 作は排気 I 工程で、 還流加圧操作は加压 I 一 1工程で、 塔間均圧操作は均圧 I 工程または加圧 I 一 2工程でそ れぞれ実施される。
第 2段の圧力差吸着ユニッ トに闋して、 加圧吸着操 作は加圧 Π — 2工程および吸着 H工程で、 降圧脱着操 作は排気 Π工程で、 塔間均圧搔作は均圧 II工程または 加圧 Π — 1工程でそれぞれ実施される。
各工程は第 L段の圧力差豉着ュニッ 卜に闋しては吸 着塔 A 1 を、 第 2段の圧力差吸着ユニッ トに闋しては ¾着塔 3 1 を剝と して次のよう に操作する。
级着 I 工程は、 配管 1 からの大気 以上に加圧され た原料ガスを切替弁 1 1 A 1 を経由 して豉着塔 A 1 に . 供給して不鈍物成分を吸着除去し、 切替弁 1 4 A 1、 配管 2 Aおよび切替弁 1 1 B 1 を経由 して精製ガスを 吸着塔 B 1 に供給する。
均圧 I 工程は、 吸着 I 工程の終了した吸奢塔 A 1 の 残留ガスを切替弁 1 5 A 1 、 配管 7 Aおよび切替弁 1 5 A 2のライ ンまたは切替弁 L A 1、 配管 8 Aお よび切替弁 1 3 A 2のライ ンのいずれかを経由して吸 着塔 A 2 に供給する。
排気 I 工程は、 均圧 I 工程の終了した吸着塔 A 1 の 残留ガスを切替弁 1 2 A 1 および配管 9 Aを経由 して 真空ポンプ S Aで歿引 して吸着剤を再生 し、 真空ポン プ 6 Aの吐出ガスを配管 3 Aから系外に排気する。
加圧 I 一 1工程は、 排気 I 工程の終了 した吸着塔 A 1 に リ ザ一バ 4 Aに保有される精製ガスを配管 5 A、 切替弁 1 7 A、 配管 1 O Aおよび切替弁 1 6 A 1 を経 由 して供給し吸着塔 A 1 を昇圧する。
加圧 1一 2工程は、 加圧 I _ 1工程の終了した吸着 塔 A上 に吸着塔 A 2の残留ガスを切替弁 1 5 A 2、 配 管 7 Aおよび切替弁 1 5 A 1 の ライ ンまたは切替弁 1 6 A 2. 配管 8 Aおよび切替弁 1 3 A 1 の ラ イ ンの いずれかを経由 して供給して吸着塔 A 1 を异圧する。
加圧 I — 3工程は、 加圧 I 一 2工程の終-了 した吸着 塔 A 1 に配管 1からの大気圧以上に加圧された原料ガ スを切替弁 1 1 A 1 を経由 して供給し歿着塔 A 1 を昇 圧する。
吸着 a工程は、 配管 2 Aからの精製ガスを切替弁
1 1 B 1 を経由 し吸着塔 B 1 に供給して不純物成分を 吸着除去し、 さ らに、 切替弁 1 4 B 1 および配管 2 B を経由 して分離した濃縮精製ガスを製品ガスと して製 品タ ンク 1 8 に供給する。
均圧 Π工程は、 吸着 Π工程の終了 した吸着塔 B 1 の 残留ガスを切替弁 1 5 B 1、 配管 7 Bおよび切替弁 1 5 B 2のラ イ ンまたは切替弁 1 6 B 1、 配管 8 Bお よび切替弁 1 3 B 2のラインのいずれかを経由 して吸
着塔 B 2 に供給する。
排気 Π工程は、 均圧 Π工程の終了した吸着塔 B 1 の
残留ガスを切替弁 1 2 B 1 および配管 9 B を経由 して
真空ポンプ 6 Bで吸引して吸着剤を再生し、 真空ポン
プ 6 B の吐出ガスを配管 3 B を経由 して リザ一バ 4 A
に供給する。
加圧 H — 1工程は、 減圧 Π工程の終了した吸着塔
B 1 に吸着塔 Β 2 の残留ガスを切替弁 1 5 Β 2、 配管
7 Βおよび切替弁 1 5 Β 1 のラ イ ンまたは切替弁
1 β Β 2 , 配管 8 Β および切替弁 1 3 B'l のライ ンの
いずれかを経由して供給し、 吸着塔 Β 1 を昇圧する。
加圧 Π — 2工程は、 加圧 Π — 1工程の終了した歿着
塔 Β 1 に配,管 2 Αからの'精製ガスを切替弁 1 1 Β 1 を
経由 して洪給し吸着塔 Β 1 を昇圧する。
上記一実施例による と、 第 1段の圧力差歿着ュニッ
卜の吸着塔から排出される精製ガスの鈍度を 目的とす
る製品ガスの純度に比較してひと まず低く設定したの
で、 吸着塔の吸着蒂長さが低減できその分処理量を增
加させることができ、 精製ガスの取^ 出し量を大き く
できる。
第 1段の圧力差歿着ュニッ 卜の吸着塔から取り 出し
た精製ガスを第 2段の圧力差歿着ュニッ トの吸着塔で
Ο ΡΙ
藝ー 吸着帯長さが短い状態で濃縮して 目的と した純度を有 する濃縮精製ガスと して敢リ 出 したので、 容易に高純 度の製品ガスを得る こ と ができる。
第 2段の圧力差吸着ュニッ トの排気ガスは、 全量第 1段の圧力'差吸着ュニッ 卜の原料と して利用できるた め、 第 2段の圧力差吸着ユニッ トによる徘気ガスの損 失を防止できる。
第 2段の圧力差吸着ュニッ ト からの排気ガス中のガ ス純度は、 原料ガスに比べて十分に高い値であ り 、 こ の排気ガスを真空下の第 1段の圧力差吸着ュニッ 卜の 吸着塔の昇圧に sいる こと によ り昇圧によ る吸着塔の 着帯の乱れを最小 に抑制する こ と が可能とな り 、 55着工程における精製ガスの取り 出 し羞が増加する。
リ ザ一ノくを利用 してサイ クルを構成しているため、 第 2段圧力差吸着ュニッ 卜の吸着塔の鼓着剤の再生を 行なって残留ガスを回奴する 気 β工程と回 ¾ した排 気ガスを再利 Sする加圧 I 一 1ェ程とを異なった時間 で操作する こ と ができ、 徘気 π工程の時間を長く す る こ と によって吸着剤の再生を効率的に行ない、 また 排気ガスを十分に利用するメ リ ツ トが生じる。
また、 吸着 I 工程と加圧 Π — 2工程および吸着 Πェ 程の時間帯を調節する こ と も重要である。
本発明の他の実施例について説明する。 第 5 図に示 した混合ガス分離装置を使甩し、 前述した実施例のェ 程をさ らに改良した工程によ リ運転するものである。
第 2表は改良された工程によって搆成される圧力差 鼓着サイ クルの一例を示す。
第 2 表
Figure imgf000022_0001
Ο ΡΙ この実施例の操作方法を第 5 図の第 1 段の圧力差吸 着ユニッ トの吸着塔 A 1, A 2 および第 2段の圧力差 吸着ユニッ トの吸着塔 B l , B 2 を中心に改良された 工程についてのみ説明する 。
吸着 I 工程に閡 し、 配管 1 か らの原料ガスを切替弁
1 1 A 1 を経由 して豉着塔 A 1 に供給 し ながら切替弁
1 4 A 1 から精製ガスを送出する吸着 I 一 1 工程およ び切替弁 1 1 A 1 を閉 じ原料ガスの洪紿を停止 した钛 態で切替弁 1 4 A 1 から精製ガスを送出する吸着 I 一
2 工程の 2段 で実施させる。
これによつて、 原料ガスの圧力が一定の条件で吸着 . [ 工程の終了 し た歿着塔 Λ 丄 の残留ガス を低減 し、 結 果と して配管 3 Aから系タ に排気する ガス量を低減す る こ と ができ る 。
力 3圧 I — '2工程に関 し、 歿着塔 A 2 の残留 ガス を 切 替弁 1 5 A 2 、 配管 7 Aおよび切替弁 1 5 A 1 を経由 して ¾着塔 A 1 に洪給する加圧 I 一 2一 a 工程を行 ¾ い、 つ ぎに切替弁 1 6 A 2 、 配管 8 Aおよび切替弁
1 3 A 1 を経由 して供給する加圧 I 一 2 — b 工程を行 な う 。
これによ り 、 比較的高鈍度の精製ガス を吸着塔の一 端から、 比較的低純度の原料ガス を吸着塔の他端から 供給する こ と ができ、 第 1 段の圧力差吸着ユニッ トの
OMPI IPO 吸着塔,の吸着帯の長さの低減に役立つ。
. 吸着! [工程に関し、 配管 2 Aからの精製ガスを切替 弁 1 I B 1 を経由 して吸着塔 B 1 に供給しながら切替 弁 1 4 B 1 から濃縮精製ガスを送出する吸着 Π— 1ェ 程および切替弁 1 1 B 1 を閉 じ精製ガスの洪給を停止 した钛態で切替弁 1 4 B 1 から濃縮精製ガスを送出す る级着 Π — 2工程の 2段階で実施させる。
これによつて、 精製ガスを送出する歿着 I 工程と精 製ガスを便用する加圧 Π — 2工程おょぴ吸着 Π工程の 時間蒂を調節する 自由度が大とな り 、 よ り効果的であ る - 加圧 II一 1工程に閬し、 豉着塔 B 2の残留ガスを切 替弁 1 5 B 2、 配管 7 B および切替弁 1 5 B 丄 を経由 して吸着塔 B 1 に洪給する加圧 Π一 1一 a 工程を行な い、 つぎに切替弁 1 S B 2、 配管 8 B および切替弁 1 3 B 1 を経由 して吸着塔 B 1 に供給する加圧 Π — 1 — b工程を行なう 。
これによ り 、 比較的高純度の濃縮精製ガスを殁着塔 の一端から、 比較的低鈍度の精製ガスを他端から供給 する こと ができ、 第 2段の圧力差吸着ユニッ トの吸着 塔の吸着蒂の長さの低減に役立つ。
本発明の混合ガスの分離装置の他の実施例を第 S 図 に基づいて説明する。 この実施例の構成は、 第 5図に 示した装置の配管に流量調節器を付加した構成のもの である。
配管 1 , 2 A , 7 A , 8 A , 1 0 A , 2 B , 7 B ,
8 B の途中に流量調節弁、 オ リ フ ィ スなどの流量調節 器 2 1 , 2 2 A , 2 3 A , 2 4 A , 2 5 A , 2 2 Β ,
2 3 Β , 2 4 Β をそれぞれ設けたものである。
吸着 I 工程、 加圧 I 一 : L 工程、 加圧 I — 2工程、 加 圧 I 一 3工程、 吸着 II工程、 加圧 Π - 1 工程、 および 加圧 II 一 2工程におけるガス流量を調節する こ と によ リ 、 各工程における吸着塔内を流れるガス流速の最大 ί直を抑制し、 ¾着蒂の長さ を ^減する こ と がで垂る。
上記流量調節器の一部を省略し、 --部の工程のガス 流量を調節して運転する方法も可能である。
実施例 A '
第 .6 図に示した混合ガス分離装置を;!い、 第 2表に 示した圧力吸着サイ クルで運転した。
吸着塔 A l , A 2 , B l , Β 2 の形状はいずれも 円 筒状で内径 3 8 醒、 充填層高 1 . 7 mであ り、 塔内にゼ ォライ ト o Aを充填している。 リ ザーバ 4 Aおよび製 品タ ンク 1 8 の内容積はそれぞれ 5 β および 2 β であ る。
原料ガスの組成はアルゴン 7 0 。/。 および窒素 3 0 % であ り、 圧力 3 8 0 k P a 、 温度は 2 0 。Cである。
OMPI 排気 I 工程における到達圧力は 1 3 k P a 、 排気 Π 工程における到達庄カは 1 1 k P a であった。
これらの条件下で配管 1 9 から製品ガスを取り出し てそのアルゴン鈍度を測定し、 次式でアルゴンの回収 率 を求めた。
Q out X C out
X 1 0 0 ( % )
xn X し in
ここで、 Q inは一サイ クル当 り の原料ガスの洪給量 ( N HI3 ) 、 Q out ば一サイ クル当 り の製品ガスの取 リ 出し量 ( X m 3 ) 、 C inは原料ガス中のアルゴン鈍 度 (%) 、 Cout は製品ガス中のアルゴン純度 (%) であ 。
第 7 図に製品ガス中のアルゴン純度 ( Cout ) と ァ ルゴン回収率 ( ") の闋係を実線で示した。 点線は钹
^例によ る もの を示す。 アルゴン回 ¾率は、 アルゴン 鈍度が 9 9 %で 7 8 % と高い f直を示した。 また、 ァル ゴン純度が 99.999 % と非常に高い場合においてもァル ゴン回収率が 6 8 となった。 この結果、 高純度のァ ルゴンに富む製品ガスを高収率で回収できた。
実施例 B 実施例 Aと同一装置、 同一サイ クルで、 圧力 2 5 0 k P a , 温度 2 0での空気を原料ガスと した。
排気 I 工程における到達圧力が 1 5 k P a 、 排気 Π
ΟΜΡΙ 工程における到達圧力が 1 k P a の条件下で違転し た。
その結 '果、 製品ガス中の酸素純度が 9 5 %における 酸素の回収率は 7 3 % とな り、 特に回収率が従来に比 し大幛に向上した。

Claims

請求の範囲
1 . 加圧吸着操作および降圧脱着操作を躓次行ない、 原料ガスを分離して精製ガスを回収する と ともに降圧 脱着操作に-おける排気ガスを系外に排岀する第 1段の 圧力差 ¾着サイクル工程 ;
加圧鼓着操作および降 説着操作を鏆次行ない、 上 記精製ガスを分離して濃縮精製ガスを回 ¾する と とも に降圧脱着操作における ^気ガスを徘 Sする第 2段以 降の圧力差吸着サイ クル工程 ;
記濃縮精製ガスの最終分を製品ガスと して回奴す る工程 ;
よ り なる混合ガスの分離方法。
2 . 請求の範囲第 1項記载の方法において、 第 2段以 降の圧力差豉着サイ クル工程中に、 少なく とも一つの 圧力差吸着サイ クルの降压脱着操作における排気ガス を、 前段以前の圧力差吸着サイ クルに帰還する工程を— 含むこ と を特徵とする混合ガスの分離方法。
3 . 請求の範囲第 2項記載の方法において、 帰還する 排気ガスを一時的に貯葳する こ と を特徴とする混合ガ スの分離方法。
4 . 請求の範囲第 2項記載の方法において、 第 1段の 圧力差圾着サイ クルエ程および第 2段以降の圧力差鼓 吸着サイ クル'工程中に、 少な く と も均圧操 'ί乍工程、 必 要に応じて還流加圧操作工程を含むこ と を特徴と _する 混合ガス.の分離方法。
5 . 原料ガス導入口と精製ガス送出口を有し、 かつ吸 着剤を充填した吸着塔と、 この吸着塔に接続さ'れた排 気ガス排出手段と を備えた原料ガス処理圧力差吸着ュ ニッ ト と ;
上記原料ガス処 ·ί圧力差吸着ュニッ 卜からの精製ガ ス を導入する精製ガス導入口と製品ガス送出口を有し、 かつ歿着剤を充填した吸着塔と、 この吸着塔に接続さ れた排気ガス排出手段と を備えた製品ガス取リ 出し圧 力差扱着ユニッ ト と ;
からなる混合ガスの分離装置。
6 . 請求の範囲第 5項記載のものにおいて、 上記製品 . ガス取り 出し圧力差吸着ュニッ 卜の上記排気ガス排出 手段からの排気ガスを、 上記原料ガス処理圧力差吸着 ユニッ トの上記吸着塔に帰還させる排気ガス帰還手段 を備えたこと を特徵とする混合ガスの分離装置。
7 . 原料ガス導入口と精製ガス送出口を有し、 かつ吸 着剤を充填した吸着塔と、 こ の吸着塔に接続された排 気ガス排出手段と を備えた原料ガス処理圧力差吸着ュ ニッ 卜 と ;
上記原料ガス処理圧力差吸着ュニッ 卜からの精製ガ スを導入する精製ガス導入口と濃縮精製ガス送出口を 有し、 かつ吸着剤を充填した吸着塔と、 この吸着塔に 接続された排気ガス排出手段と を備えた精製ガス処理 圧力差吸着ユニッ トと ;
上記精製ガス処理圧力差吸着ユニッ トからの-濃縮精 製ガスを導入する濃縮精製ガス導入口と製品ガス送出 口を有し、 かつ吸着剤を充填した吸着塔と、 この吸着 塔に接続された排気ガス排出手段と を備えた製品ガス
¾リ 出し圧力差吸着ユニッ トと ; '
からなる混合ガスの分離装置。
8 . 請求の範囲第 7項記载のも のにおいて、 上記精製 ガス処理圧力差吸着ュニッ 卜の上記排気ガス排出手段 からの排気ガスを、 上記原料ガス処理圧力差 着ュ二 ッ 卜の上記吸着塔に帰還させる排気ガス帰還手段を備 えたこと を特徵とする混合ガスの分離装置。
9 . 請求の範囲第 7項記載のものにおいて、 上記製品 ガス取り 出し圧力差吸着ュニッ 卜の上記排気ガス徘出.
手段からの排出ガスを、 上記精製ガス処理圧力差吸着 ュニッ 卜の上記吸着塔にまたは上記原料ガス処理圧力 差吸着ュニッ 卜の上記吸着塔に帰還させる排気ガス帰 還手段を傭えたこ と を特徴とする混合ガスの分離装置。
10 . 請求の範 S第 7項記載のものにおいて、 複数の精 製ガス処理圧力差吸着ユニッ ト を餹え、 この精製ガス 処理圧力差吸着ュニッ トの上記排気ガス排出手段から
OMPI
"WIPO の排気ガスを、 少な く とも以前の上記精製ガス処理圧 力差吸着ュニッ 卜の上記吸着塔に帰還させる排気ガス 帰還手段を備えたこ と を特徵とする混合ガスの分離装 置。
1 1 . 原料ガス導入口と精製ガス送出口をそれぞれ有し、 かつ吸着剤を充填した複数個の吸着塔と、 これ らの吸 着塔に接続された排気ガス排出手段と、 これらの吸着 塔を切替操作する吸着塔切替操作手段と を備えた原料 ガス処理圧力差吸着ユニッ ト と ;
上記原料ガス処理圧力差吸着ュニッ 卜からの精製ガ スを導入する精製ガス導入口 と製品ガス送出口をそれ ぞれ有し、 かつ吸着剤を充填した複数個の吸着塔と、 これらの吸着塔に接続された排気ガス排気手段と、 こ れらの吸着塔を切替操作する吸着塔切替手段と を備え た製品ガス取り 出 し圧力差吸着ユニッ ト と ;
上記原料ガス処理圧力差吸着ュニッ 卜の上記吸着塔 から送出される精製ガスを上記製品ガス取り 出 し圧力 差吸着ュニッ トの上記吸着塔の上記精製ガス導入口に 導く ための上記雨圧力差吸着ュニッ ト相互を直列に接 続する接続手段と ;
からなる混合ガスの分離装置。
12 . 請求の範囲第 1 1項記載のものにおいて、 上記製 品ガス ¾リ 出し圧力差吸着ュニッ 卜の上記排気ガス徘
O PI 出手段からの排気ガスを、 上記原料ガス逃理圧力差吸 着ュニッ トの上記吸着塔に帰還させる排気ガス帰還竽 段を備えたこ と を特徵とする混合ガスの分離装置。
13 . 原料ガス導入口と精製ガス送出口をそれぞれ有し、 かつ吸着剤を充填した複数健の吸着塔と、 これ らの殁 着塔に接続された排気ガス排出手段と、 これらの吸着 塔を切替操作する歿着塔 ¾替操作手段と を備えた原料 - ガス処理圧力差扱着ユニッ ト と ;
上記原料ガス^理圧力差吸着ュニッ 卜からの精製ガ スを導入する精製ガス導入口と濃縮精製ガス送 口を それぞれ有し、 かつ歿着剤を充填した複数儘の豉着塔 と、 これ らの豉着塔に涹続された排気ガス排出手段と、 これ ら の吸着塔を切替操作する吸着塔切替手段と を備 えた精製ガス処理圧力差 ¾着ユニッ ト と ;
上記原料ガス処理圧力差歿着ュニッ 卜の上記歿着塔 から送出される精製ガスを上記精製ガス処理圧力差吸 - 着ュニッ トの上記吸着塔の上記精製ガス導入口に導く ための上記面圧力差歿着ュニッ ト相互を直列に接続す る第 1 の接続手段と ;
上記精製ガス処.理圧力差吸着ュニッ 卜からの濃縮精 製ガスを導入する濃縮精製ガス導入口と製品ガス送出 口をそれぞれ有し、 かつ吸着剤を充填した複数涸の吸 着塔と、 これらの吸着塔に接続された排気ガス排出手 段と、 これ らの吸着塔を切替操作する吸着塔切替操作 手段と を備えた製品ガス敢 り 出し圧力羞吸着ュニッ ト と J
上記精製ガス処理圧力差吸着ュニッ 卜 の上記吸着塔 から送出される濃縮精製ガスを上記製品取り 出 し圧力 差吸着ュニッ トの上記吸着塔の上記濃縮精製ガス導入 口に導く ための上記両圧力差吸着ュニッ ト相互を直列 に接続する第 2 の接続手段と ;
からなる混合ガスの分離装置。
14 . 請求の範囲第 1 3頊記载のもの において、 上記精 製ガス処理圧力差吸着ュニッ 卜の上記徘気ガス排出手' 段からの 気ガスを、 上記原料ガス処理圧力差吸着ュ ニッ トの上記吸着塔に、 または上記製品ガス取り 出 し 圧力差吸着ュニッ 卜の上記排気ガス排出手段からの徘 気ガスを上記原料ガス処理圧力差吸着ュニッ トの上記 吸着塔にまたは上記精製ガス処理圧力差吸着ュニッ 卜 の'上記吸着塔に帰還させる徘気ガス帰還手段を備えた こ と を特徴とする混合ガスの分離装置。
OMPI
■ WIPO
PCT/JP1984/000319 1983-06-29 1984-06-19 Method and apparatus for separating mixed gas WO1985000118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8484902376T DE3484058D1 (de) 1983-06-29 1984-06-19 Verfahren und vorrichtung zum trennen gemischten gases.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58/115913 1983-06-29
JP58115913A JPS607920A (ja) 1983-06-29 1983-06-29 非凝縮性混合ガスの分離方法

Publications (1)

Publication Number Publication Date
WO1985000118A1 true WO1985000118A1 (en) 1985-01-17

Family

ID=14674308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000319 WO1985000118A1 (en) 1983-06-29 1984-06-19 Method and apparatus for separating mixed gas

Country Status (6)

Country Link
US (1) US4737167A (ja)
EP (1) EP0151186B1 (ja)
JP (1) JPS607920A (ja)
KR (2) KR850000255A (ja)
DE (1) DE3484058D1 (ja)
WO (1) WO1985000118A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319303B1 (en) * 1999-10-25 2001-11-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for purifying a gas and corresponding system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562326B2 (ja) * 1987-08-07 1996-12-11 住友精化株式会社 空気から高濃度酸素を取得する方法
US4790858A (en) * 1988-01-29 1988-12-13 Air Products And Chemicals, Inc. Fractionation of multicomponent gas mixtures by pressure swing adsorption
JPH01307426A (ja) * 1988-06-06 1989-12-12 Kobe Steel Ltd 圧力スイング吸着装置
US4880443A (en) * 1988-12-22 1989-11-14 The United States Of America As Represented By The Secretary Of The Air Force Molecular sieve oxygen concentrator with secondary oxygen purifier
US4914218A (en) * 1989-02-17 1990-04-03 Ravi Kumar Adsorptive process for separating multicomponent gas mixtures
US4913709A (en) * 1989-02-17 1990-04-03 Ravi Kumar Adsorption process for recovering two high purity gas products from multicomponent gas mixtures
FR2647431B1 (fr) * 1989-05-24 1991-08-16 Air Liquide Procede et installation de production d'oxygene gazeux sous haute pression
WO1994006541A1 (en) * 1992-09-22 1994-03-31 Arbor Research Corporation System for separation of oxygen from argon/oxygen mixture
JP2634015B2 (ja) * 1993-02-25 1997-07-23 東洋エンジニアリング株式会社 アンモニア分離用の圧力スイング分離装置およびアンモニア分離方法
US5520720A (en) * 1994-11-30 1996-05-28 The Boc Group, Inc. Pressure swing adsorption process
KR100413782B1 (ko) * 1996-05-02 2004-04-17 삼성전자주식회사 음향조절필터용 광대역 반사방지막
FR2769851B1 (fr) * 1997-10-21 1999-12-17 Air Liquide Installation de separation d'un melange de gaz
CN1250321C (zh) * 2004-06-11 2006-04-12 成都天立化工科技有限公司 一种两段全回收变压吸附气体分离方法
EP2518317B1 (en) * 2009-12-24 2019-06-05 Sumitomo Seika Chemicals CO. LTD. Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus
CN103773482B (zh) * 2012-10-24 2015-09-02 中国石油化工股份有限公司 一种生产优质化工原料的加氢裂化方法
US9427693B1 (en) * 2014-10-15 2016-08-30 H.E.R.O., Inc. Process for vapor emission control
RU2607735C1 (ru) * 2015-12-02 2017-01-10 Леонид Федорович Шестиперстов Разделение многокомпонентных газовых смесей способом короткоцикловой безнагревной адсорбции с трехэтапным извлечением целевого газа высокой чистоты

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2283094A1 (fr) 1974-08-29 1976-03-26 Bergwerksverband Gmbh Procede de preparation de gaz riches en azote a partir de gaz contenant, outre l'azote, au moins de l'oxygene, tels que l'air
JPS5252181A (en) * 1975-07-17 1977-04-26 Boc Ltd Method and apparatus for separating gaseous mixtures
JPS5710076A (en) * 1980-06-18 1982-01-19 Hitachi Ltd Regenerator of adsorption tower
JPS5742367A (en) 1980-08-28 1982-03-09 Matsushita Electric Ind Co Ltd Atomizer
JPS5750722A (en) 1980-09-05 1982-03-25 Ranco Inc Snap operating switch

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944400A (en) * 1973-11-23 1976-03-16 Petrocarbon Developments Limited Method and apparatus for separating gases
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
DE2604305A1 (de) * 1976-02-04 1977-08-11 Linde Ag Verfahren zum zerlegen von gasgemischen
JPS5399091A (en) * 1977-02-10 1978-08-30 Osaka Sanso Kougiyou Kk Method of concentrating oxygen gas
US4171206A (en) * 1978-08-21 1979-10-16 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures
JPS5745320A (en) * 1980-08-31 1982-03-15 Ishikawaken Method and equipment of production for concentration- adjustable oxygen-enriched air
ES8300304A1 (es) * 1980-12-09 1982-11-01 Linde Ag Procedimiento de absorcion para descomponer por lo menos dos corrientes de gas crudo .
US4381189A (en) * 1981-10-27 1983-04-26 Union Carbide Corporation Pressure swing adsorption process and system
US4376640A (en) * 1981-12-10 1983-03-15 Calgon Corporation Repressurization of pressure swing adsorption system
US4376639A (en) * 1981-12-10 1983-03-15 Calgon Corporation Novel repressurization of pressure swing adsorption system
JPS5992907A (ja) * 1982-11-19 1984-05-29 Seitetsu Kagaku Co Ltd 高濃度アルゴンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2283094A1 (fr) 1974-08-29 1976-03-26 Bergwerksverband Gmbh Procede de preparation de gaz riches en azote a partir de gaz contenant, outre l'azote, au moins de l'oxygene, tels que l'air
JPS5252181A (en) * 1975-07-17 1977-04-26 Boc Ltd Method and apparatus for separating gaseous mixtures
JPS5710076A (en) * 1980-06-18 1982-01-19 Hitachi Ltd Regenerator of adsorption tower
JPS5742367A (en) 1980-08-28 1982-03-09 Matsushita Electric Ind Co Ltd Atomizer
JPS5750722A (en) 1980-09-05 1982-03-25 Ranco Inc Snap operating switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0151186A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319303B1 (en) * 1999-10-25 2001-11-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for purifying a gas and corresponding system

Also Published As

Publication number Publication date
US4737167A (en) 1988-04-12
KR860000975A (ko) 1986-02-22
JPH0356768B2 (ja) 1991-08-29
KR850000255A (ko) 1985-02-26
DE3484058D1 (de) 1991-03-07
KR880000803B1 (ko) 1988-05-11
EP0151186A1 (en) 1985-08-14
JPS607920A (ja) 1985-01-16
EP0151186B1 (en) 1991-01-30
EP0151186A4 (en) 1987-07-29

Similar Documents

Publication Publication Date Title
WO1985000118A1 (en) Method and apparatus for separating mixed gas
US5792239A (en) Separation of gases by pressure swing adsorption
JP2744596B2 (ja) 供給ガス混合物の比較的吸着力の弱い成分から比較的吸着力の強い成分を選択的に分離する方法
JP3232003B2 (ja) 圧力スイング式吸着法における還流
KR960004606B1 (ko) 공기로부터 고순도의 산소가스를 제조하는 방법
KR100254295B1 (ko) 단일 흡착 베드를 이용한 압력 스윙 흡착 방법
EP0681859B1 (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
JP3557323B2 (ja) 改良真空圧力スイング吸着プロセス
KR100196102B1 (ko) 진공 압력순환 흡착방법
CN112174102B (zh) 一种bog气体多级分离提取高纯氦气的装置及方法
JP5414665B2 (ja) C4オレフィン/パラフィン混合気体から高純度ブテン−1を生成する方法
EP0489555A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
KR19990044962A (ko) 진공 압력 순환 흡착 시스템 및 방법
JPH04227815A (ja) 改良された膜窒素系
JP5738415B2 (ja) 硬質オレフィンの分離のための置換脱着工程
JPH0321207B2 (ja)
JPS58109117A (ja) 炭化水素を分離するための吸着方法
JPH11239711A (ja) 吸着材床の頂部及び底部の同時排気を用いたpsa方法
CN101301999A (zh) 从空气中富集氧气的方法
JP6351721B2 (ja) ガス濃縮方法
CN111871149A (zh) 一种用于回收被吸附组分的两段式变压吸附系统及其使用方法
US20240189760A1 (en) System for recovering methane from a biogas
JPS60176901A (ja) 吸着法を使用して少なくとも水素を含む混合ガス中の水素等を濃縮・精製する方法
CN113797704A (zh) 一种低浓度瓦斯安全高效梯级提纯制天然气方法及系统
RU2607735C1 (ru) Разделение многокомпонентных газовых смесей способом короткоцикловой безнагревной адсорбции с трехэтапным извлечением целевого газа высокой чистоты

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1984902376

Country of ref document: EP

CFP Corrected version of a pamphlet front page
WWP Wipo information: published in national office

Ref document number: 1984902376

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1984902376

Country of ref document: EP