USRE45049E1 - Electron beam exposure system - Google Patents

Electron beam exposure system Download PDF

Info

Publication number
USRE45049E1
USRE45049E1 US13/343,038 US201213343038A USRE45049E US RE45049 E1 USRE45049 E1 US RE45049E1 US 201213343038 A US201213343038 A US 201213343038A US RE45049 E USRE45049 E US RE45049E
Authority
US
United States
Prior art keywords
beamlets
beamlet
array
electron
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US13/343,038
Other languages
English (en)
Inventor
Marco Jan-Jaco Wieland
Bert Jan Kampherbeek
Alexander Hendrik Vincent van Veen
Pieter Kruit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Mapper Lithopraphy IP BV
Original Assignee
Mapper Lithopraphy IP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mapper Lithopraphy IP BV filed Critical Mapper Lithopraphy IP BV
Priority to US13/343,038 priority Critical patent/USRE45049E1/en
Application granted granted Critical
Publication of USRE45049E1 publication Critical patent/USRE45049E1/en
Assigned to WITTEKAMP, J.J. reassignment WITTEKAMP, J.J. COURT APPOINTMENT (SEE DOCUMENT FOR DETAILS). Assignors: MAPPER LITHOGRAPHY B.V., MAPPER LITHOGRAPHY HOLDING B.V., MAPPER LITHOGRAPHY IP B.V.
Assigned to ASML NETHERLANDS B.V. reassignment ASML NETHERLANDS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WITTEKAMP, J.J.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06375Arrangement of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/3045Deflection calibration

Definitions

  • a conventional electron beam exposure apparatus has a throughput of about 1/100 wafer/hr. However, for lithography purposes a commercially acceptable throughput of at least a few wafers/hr is necessary. Several ideas to increase the throughput of an electron beam exposure apparatus have been proposed.
  • U.S. Pat. No. A1-5,760,410 and U.S. Pat. No. A1-6,313,476, for instance, disclose a lithography system using an electron beam having a cross section, which is modified during the transferring of a pattern to an exposure surface of a target.
  • the specific cross section or shape of the beam is established during operation by moving the emitted beam inside an aperture by using electrostatic deflection.
  • the selected aperture partially blanks and thereby shapes the electron beam.
  • the target exposure surface moves under the beam to refresh the surface. In this way a pattern is written.
  • the throughput of this system is still limited.
  • an electron beam lithography system using a plurality of electron beams by using a plurality of continuous wave (CW) emitters to generate a plurality of electron beamlets. Each beamlet is then individually shaped and blanked to create a pattern on the underlying substrate. As all these emitters have slightly different emission characteristics, homogeneity of the beamlets is a problem. This was corrected by levelling every individual beam current to a reference current. Correction values for the mismatch are extremely difficult to calculate and it takes a significant amount of time, which reduces the throughput of the system.
  • CW continuous wave
  • a system which uses one LaB 6 -source for generating one electron beam, which is subsequently, expands, collimated and split into a plurality of beamlets.
  • the target exposure surface is mechanically moved relatively to the plurality of beamlets in a first direction, the beamlets are switched on and off using blanking electrostatic deflectors and at the same time scanning deflectors sweep the beamlets which have passed the blanker array over the target exposure surface in a direction perpendicular to the first direction, thus each time creating an image.
  • electrostatic and/or magnetic lenses are used to reduce the image before it is projected on the target exposure surface.
  • At least one complete intermediate image is created, smaller than the one before.
  • the entire image has the desired dimensions, it is projected on the target exposure surface.
  • a major disadvantage of this approach is that the plurality of electron beamlets together has to pass through at least one complete crossover. In this crossover, Coulomb interactions between electron in different beamlets will disturb the image, thus reducing the resolution.
  • the area that is exposed at one time is rather small, so a lot of wafer scans are needed to expose a die: 16 scans are needed to expose one die, requiring a very high stage speed for reaching a commercially acceptable throughput.
  • a multibeam particle lithography system having an illumination system, which produces a plurality of ion sub-beams.
  • the illumination systems use either a single ion source with aperture plates for splitting a beam in sub-beams, or a plurality of sources.
  • the aperture plate is projected (demagnified) on a substrate using a multibeam optical system.
  • the system furthermore uses a deflection unit of electrostatic multipole systems, positioned after the multibeam optical system, for correcting individual imaging aberrations of a sub-beam and positioning the sub-beam during writing.
  • the publication does not disclose how each sub-beam is modulated. Furthermore, controlling individual sub-beams is a problem, and maintaining inter-sub-beam uniformity.
  • a multi-electron beam (‘probes’) lithography system having a specific ZrO/W-TFE thermal emission source with an emitter tip immersed in a magnetic field.
  • a disadvantage of such a source is its limited output. Furthermore, this source needs a crossover. The mutual homogeneity of the ‘probes’ is not further discussed. Furthermore, the intensity of the source is a problem.
  • the article furthermore in a general way mentions a writing strategy in which a stage is moved in one direction, and deflectors move the ‘probes’ concurrently through the same distance perpendicular to the direction of the stage movement.
  • a further problem, not recognised in this publication, is correction of deviation of electron beamlets from their intended positions.
  • Another objective is to improve the resolution of known electron beam exposure apparatus.
  • Yet another objective of the current invention is to improve throughput of known electron beam exposure apparatus.
  • Yet another objective of the current invention is to overcome the problems related to Coulomb interactions and the demagnification methods in the prior art.
  • Another objective of the current invention is to simplify controlling uniformity of beamlets, especially during writing.
  • the invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising:
  • said modulation array comprises:
  • substantially every beamlet blanker is aligned with an electron beamlet, in order to make it possible to individually modulate every beamlet.
  • the beamlet stop array comprises at least one plane of apertures, substantially every aperture being aligned with one beamlet, preferably with an aperture centred with respect to a beamlet. In this way, a beamlet passes an aperture when an electron beamlet is not deflected, and a beamlet is blocked or stopped when the beamlet is deflected.
  • the controller is operationally connected to said beamlet blankers.
  • the electron beam exposure apparatus is furthermore provided with measuring means for measuring the actual position of at least one of said beamlets
  • the controller is provided with memory means for storing said actual position and a desired position, a comparator for comparing the desired position and the actual position of said beamlets, and wherein the adjustor is operationally connected to the controller for receiving instructions for adjusting the control signals issued to the modulators to compensate for the measured difference between said desired position and said actual position of said electron beamlets.
  • the controller is operationally connected to the beamlet blankers, in an embodiment via the adjustor.
  • the adjustor is operationally connected to the controller for receiving instructions indicating the amount of the adjustments.
  • the amount of the adjustments can be determined based a resulting value of the above-mentioned comparator.
  • the adjustor is adapted for individually adjusting timing of each control signal. In this very easy way, correction can be accomplished.
  • the beamlet generating means comprise:
  • the electron beam exposure apparatus further comprising a second electrostatic lens array located between said beam splitting means and said beamlet blanker array to focus said plurality of electron beamlets.
  • substantially every electrostatic lens is aligned and focuses one electron beamlet.
  • the beamlet blanker array is located in the focal plane of said second electrostatic lens array.
  • the beamsplitter comprise a spatial filter, preferably an aperture array.
  • a spatial filter preferably an aperture array.
  • the splitting means can comprise a number of aperture arrays in a serial order along the path of the electron beam or plurality of beamlets, the aperture arrays having mutually aligned apertures, each next aperture array along the path from the source to the target having apertures that are smaller than the apertures of the previous aperture array. This reduces heat load.
  • the apertures of each aperture array are arranged in a hexagonal structure, which makes it possible to obtain close integration.
  • each aperture of the aperture array has an area inversely proportional to the current density based on the beamlet that is transmitted through that same aperture.
  • the beamsplitter comprises an aperture array, wherein the aperture sizes in the aperture array are adapted to create a discrete set of predetermined beamlet currents.
  • the beamsplitter comprises an electrostatic quadrupole lens array.
  • the electron beam exposure apparatus comprises a thermionic source.
  • the thermionic source is adapted for being operated in the space charge limited regime. It was found that space charge has a homogenising effect, which is favourable in this specific application. Furthermore, in certain settings, the space charge may have a negative lens effect.
  • the thermionic electron source has a spherical cathode surface.
  • the thermionic source comprises at least one extractor electrode.
  • the extractor electrode is a planar extractor electrode.
  • the extractor is located after the space charge region and provided with a positive voltage for inducing a negative lens effect. These voltages can be set at a predefined value for creating a negative lens effect for the emitted electron beam.
  • the extractor electrode has a spherical surface with through holes. All these embodiments serve to create a negative lens influence on the electron beam, thus avoiding a crossover in the electron beam.
  • the apparatus further comprises an illumination system that transforms the electron beam, emitted by said source, into a collimated electron beam before it reaches said splitting means.
  • said beamlet generator comprises an array of sources of which each source is responsible for the generation of an electron beamlet.
  • the electron beam exposure apparatus further comprising a second electrostatic lens array located between said array of sources and said beamlet blanker array to focus said plurality of electron beamlets.
  • said beamlet blanker comprise electrostatic deflectors.
  • the electron beam exposure apparatus further comprising scanning deflection means provided between the modulation array and the focusing electron optical system for deflecting the electron beamlets to scan said target exposure surface.
  • the scanning deflection means comprises electrostatic scan deflectors.
  • the electron beam exposure apparatus is further provided with actuating means for moving said electrostatic scan deflectors and said means for holding the target relatively to each other in the plane of the surface onto which the pattern is to be transferred in a direction that differs from the direction of the deflection performed by said electrostatic scan deflectors.
  • the adjustor or a time shifter are adapted for shifting a timing base of the scanning deflection means and the actuators with respect to each other.
  • the control signals of the modulators have a timing base and the actuators of the target holder have a second timing base, and there timing bases can be shifted with respect to one another. This can for instance be used to have a critical component, which has to be written on the target surface and which would lay between two beamlets, written using only one beamlet.
  • the electron beam exposure apparatus furthermore comprises an additional aperture plate between the modulation array and the focussing electron optical system, the additional aperture plate having one surface directed to and substantially parallel to the exposure surface of the target, wherein said electrostatic scan deflectors are conducting strips deposited on the side of the additional aperture plate facing the exposure surface of the target located between said blanker array and the electrostatic lens array of the focusing electron optical system.
  • the electrostatic scan deflectors are conducting strips deposited at the target exposure surface side of any of the lens plates present in the focusing electron optical system.
  • the conducting strips alternatively have a positive or negative potential.
  • these deflectors deflect the electron beamlets in such a way that a predetermined section of the beamlet is stopped by the beamlet stop array.
  • the electron beam exposure apparatus further comprises a post-reduction acceleration stage, located between the electrostatic lens array of the focusing electron optical system and said protective means, for accelerating the electrons in the plurality of transmitted electron beamlets.
  • controller it is furthermore provided with correction means to compensate for the incorrect positioning of the electron beamlets on the target exposure surface by
  • the electron beam exposure apparatus further comprising protective means to prevent particles released by impinging electrons to reach any one of the aperture arrays, lens arrays or blanker arrays, preferably located between the electrostatic lens array of the focusing electron optical system and the exposure surface of a target, preferably comprising an aperture array wherein the apertures have a size smaller than 20 ⁇ m.
  • all lens arrays, aperture arrays and blanker arrays are connected to a power supply, which, when gas is admitted into the system, creates a plasma that cleans the plates and removes all contaminants.
  • the electron beam exposure apparatus according to the present invention, the system is operated at an elevated temperature of about 200-600° C. to keep the apparatus clean.
  • the invention further relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising:
  • said extractor electrode is located after said space charge region and is provided with a positive voltage for inducing a negative lens effect to said electron beam.
  • the invention furthermore pertains to an electron beam generator for generating a plurality of electron beamlets, wherein said beamlet generator comprises at least one thermionic source, said source comprising at least one extractor electrode adapted for being operated in a space charge limited region, said source adapted for generating an electron beam, and said beamlet generator furthermore provided with a beamsplitter for splitting said electron beam up into a plurality of electron beamlets.
  • said beamlet generator comprises at least one thermionic source, said source comprising at least one extractor electrode adapted for being operated in a space charge limited region, said source adapted for generating an electron beam, and said beamlet generator furthermore provided with a beamsplitter for splitting said electron beam up into a plurality of electron beamlets.
  • the invention furthermore pertains to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising a beamlet generator for generating a plurality of electron beamlets, a plurality of modulators for modulating each electron beamlet, and a controller for providing each modulator with a control signal, said control signal having a timing base, wherein the controller is adapted for individually adjusting the timing base of a control signal with respect to the other control signals.
  • the invention further pertains to a method for transferring a pattern onto a target exposure surface with an electron beam, using an electron beam exposure apparatus described above, and to a wafer processed using the apparatus of the current invention.
  • the apparatus can furthermore be used for the production of mask, like for instance used in state-of-the-art optical lithography systems.
  • FIG. 1 shows an apparatus according to the present invention
  • FIG. 2A shows a detail of a known electron beam exposure apparatus
  • FIG. 2B shows a detail of the electron beam exposure apparatus
  • FIG. 3 shows an electron source with a spherical outer surface
  • FIG. 3A shows a source with a space charge region
  • FIG. 4 shows an embodiment of a electron beam exposure apparatus starting from the beamlets
  • FIG. 5A , 5 B show embodiments of scan deflection arrays of the current invention
  • FIG. 6A , 6 B show scan trajectories of the present invention
  • FIG. 7A-7D show adjustment of modulation timing
  • FIG. 8A , 8 B show effects of adjustment of modulation timing.
  • FIG. 1 An embodiment of the present invention is schematically shown in FIG. 1 . Electrons are emitted from a single, stable electron source 1 .
  • An illumination system focuses and collimates the emitted electron beam 5 to illuminate a desired area on an aperture plate 6 uniformly. This can for instance be established by using lenses 3 and 4 . Due to the aperture plate 6 the electron beam 5 is split in a plurality of electron beamlets, two of which 5 a and 5 b, are shown.
  • An alternative way to create a plurality of electron beamlets is to use an array of electron sources. Each electron source generates an electron beamlet, which is modulated in the same way as the one created with a combination of a single source and splitting means.
  • a single source 1 with beamsplitter 6 is preferred.
  • An array of electrostatic lenses 7 focuses each beamlet to a desired diameter.
  • a beamlet blanker array 8 is positioned in such a way that each individual beamlet coincides with an aperture in the plate of beamlet blanker array 8 .
  • the beamlet blanker array 8 comprises beamlet-blankers, for instance blanking electrostatic deflectors. When a voltage is applied on a blanking deflector an electric field across the corresponding aperture is established.
  • the passing electron beamlet for example beamlet 9 , deflects and terminates at the beamlet stop array 10 , located behind the beamlet blanker array 8 following the electron beamlet trajectory.
  • the electron beamlet When there is no voltage applied to the blanking deflector the electron beamlet will pass the beamlet stop array 10 , and reach the focusing electron optical system comprising an array of electrostatic lenses 13 . This array 13 focuses each of the transmitted beamlets 12 individually on the target exposure surface 14 .
  • scanning deflection means most often electrostatic scan deflectors, move the beamlets together in one direction over the target exposure surface 14 .
  • the scan deflectors are located on the target exposure surface side 11 a of beamlet stop array 10 , thus forming an additional scan deflection array 11 .
  • other locations are also possible.
  • the target exposure surface 14 and the scan deflectors moves relatively to one another in a direction different from the direction of the scan deflection.
  • the target is a wafer or a mask covered with a resist layer.
  • FIG. 1 A remarkable aspect of the configuration shown in FIG. 1 is that the entire image that is created by the combination of beamlet blanker array 8 and beamlet stop array 10 is not demagnified as a whole. Instead, each individual beamlet is individually focused on the target exposure surface 14 by the focusing electron optical system 13 .
  • FIGS. 2A and 2B The difference between these two approaches is shown in FIGS. 2A and 2B .
  • an entire image comprising 2 electron beamlets 5 a and 5 b is demagnified to acquire the desired resolution.
  • To demagnify an image requires at least one crossing X. In this crossing, all the electrons have to pass a small area. Coulomb interactions deteriorate the resolution at that crossing X.
  • the method shown in FIG. 2B is used.
  • two adjacent beamlets 5 a, 5 b that are projected on the target exposure surface 14 .
  • the focusing approach of the current invention does not change this distance between two beamlets. Only the cross section of each beamlet is reduced.
  • the electron source 1 of FIG. 1 typically delivers 100 A/cm 2 from an area of about 30-300 micron squared.
  • a thermionic source is used.
  • the electrons are preferably emitted in the space charge limited emission regime in order to benefit from a homogenizing effect of the space charge.
  • Examples of such a source are a LaB 6 crystal, a dispenser source comprising Barium Oxide, or a dispenser source comprising a layer of Barium or Tungsten covered with Scandium Oxide.
  • the extractor electrodes 2 usually, but not necessarily, focus the beam.
  • the illumination lenses 3 - 4 create a parallel beam of electrons 5 on the aperture array 6 .
  • the lenses 3 - 4 are optimised to limit the beam energy spread as a result of Coulomb interactions, i.e. the opening angle of the beam is made as large as possible.
  • lenses 3 - 4 are optimised to limit the beam blur created by chromatic and spherical aberration effects. For the latter it may be advantageous to use the aperture array 6 as a lens electrode, because this may create negative chromatic and spherical aberrations, resulting in a compensation of the aberrations of lenses 3 - 4 .
  • lens 4 for magnification of the pattern by slightly focusing or defocusing it.
  • the electron beam emitted from the single emitter is focussed in a small crossover x before it is expanded.
  • this crossover x there is a large energy spread due to electron-electron interactions in this crossover x.
  • the crossover x will be imaged demagnified on the target exposure surface. Due to the Coulomb interactions the desired resolution is not achieved.
  • a method to expand and collimate the expanded beam without a crossover is therefore desirable.
  • crossover in the illumination electron optics is avoided by using an electron source 1 with a spherical or a hemispherical outer surface 15 .
  • a large opening angle ⁇ is formed, which reduces the blur due to electron-electron interactions in the emitted electron beam 5 .
  • the electron beams are forming a spherical wave front, which results in a virtual crossover 16 located in the centre of the source. There are no electrons present in the virtual crossover; so disturbing electron-electron interactions are absent.
  • the electrons can be extracted with a spherical extractor that comprises large holes.
  • the main advantage of the spherical shape of the extractor is the more homogeneous field that is created.
  • crossover is avoided by extracting the electrons from the source/cathode 1 which is at a voltage Vs and has a distant planar extractor 11 .
  • the planar extractor has a positive voltage +V 1 with respect to the source 1 .
  • the combination of source and extractor now serves as a negative lens.
  • the extracted electrons passing the extractor 1 1 thus expand due to the diverging electric field.
  • a virtual crossover is created, which reduces the loss of resolution due to Coulomb interactions to a great extent.
  • a space charged region S is present as is shown in FIG. 3A .
  • the presence of this space charge enhances the negative lens effect created by the source-extractor combination.
  • V 1 By tuning V 1 it is possible to let the source 1 operate in its space charge limited emission mode.
  • the main advantage of this emission mode is the significant increase of homogeneity of the emission.
  • the increase of the total current can be limited by selecting a source with a confined emission area.
  • the aperture array 6 has apertures of typically 5-150 ⁇ m in diameter with a pitch of about 50-500 ⁇ m.
  • the apertures are preferably arranged in a hexagonal pattern.
  • the aperture array 6 splits the incoming parallel beam of electrons 5 in a plurality of electron beamlets, typically in the order of about 5,000-30,000.
  • the size of the apertures is adjusted to compensate non-uniform current density of the illumination.
  • Each aperture has an area inversely proportional to the current density based on the individual beamlets that is transmitted through that same aperture. Consequently the current in each individual beamlet is the same. If the heat load on the aperture plate becomes too large, several aperture arrays are arranged in a serial order with decreasing aperture diameters along the path of the electron beam or plurality of electron beamlets. These aperture arrays have mutually aligned apertures.
  • Another possible way to split the collimated electron beam 5 into a plurality of electron beamlets is the use of a quadrupole lens array.
  • a possible configuration of such an array is disclosed in U.S. Pat. No. 6,333,508, which document is referenced here as if fully set forth.
  • FIG. 4 shows a detail closer image of the lithography system in one of the embodiments of the present invention starting from the plurality of beamlets.
  • Condensor lens array 7 focuses each beamlet to a diameter of about 0.1-1 ⁇ m. It comprises two aligned plates with holes. The thickness of the plates is typically about 10-500 ⁇ m, while the holes are typically about 50-200 ⁇ m in diameter with a 50-500- ⁇ m pitch. Insulators (not shown), which are shielded from the beamlets, support the plates at typical distances of 1-10 millimetres from each other.
  • the modulation array comprises a beamlet blanker array 8 and a beamlet stop array 10 .
  • the typical beam diameter is about 0.1-5 ⁇ m while the typical transversal energy is in the order of a 1-20 meV.
  • Beamlet blanking means 17 are used to switch the electron beamlets on and off. They include blanking electrostatic deflectors, which comprise a number of electrodes. Preferably at least one electrode is grounded. Another electrode is connected to a circuit. Via this circuit control data are sent towards the blanking electrostatic deflectors. In this way, each blanking deflector can be controlled individually. Without the use of the beamlet blanking means 17 the electron beamlet will pass the beamlet stop array 10 through the apertures. When a voltage is applied on a blanking electrostatic deflector electrode in the beamlet blanker array 8 , the corresponding electron beamlet will be, deflected and terminate on the beamlet stop array 10 .
  • the beamlet blanker array 8 is located in the electrostatic focal plane of the electron beamlets. With the blanker array in this position, the system is less sensitive for distortions. In this embodiment, the beamlet stop array is positioned outside a focal plane of the electron beamlets.
  • the transmitted beamlets now have to be focused on the target exposure surface 14 .
  • a focusing electron optical system 13 comprising at least one array with electrostatic lenses.
  • Each individually transmitted electron beamlet is focused on the target exposure surface by a corresponding electrostatic lens.
  • the lens array comprises two or more plates 13 a and 13 b, both having a thickness of about 10-500 ⁇ m and apertures 13 c with a diameter of about 50-250 ⁇ m. The distance between two consecutive plates is somewhere between 50-800 ⁇ m and may be different from plate to plate.
  • the focusing electron optical system may also comprise a lens array of the magnetic type. It is then located between the beamlet stop array 10 and the objective lens array of the electrostatic type 13 , to further enhance the focusing properties of the electron optical system.
  • a major problem in all electron beam lithography systems patterning a wafer or a mask is contamination. It reduces the performance of the lithography system significant due to the interaction between electrons and particles in the resist layer, the resist degrades. In a polymeric resist, molecules are released due to cracking. The released resist particles travel through the vacuum and can be absorbed by any of the structures present in the system.
  • protective means are located in close proximity of the target exposure surface, i.e. between the target exposure surface and the focusing electron optical system.
  • Said protective means may be a foil or a plate. Both options are provided with apertures with a diameter smaller than 20 ⁇ m.
  • the protective means absorb the released resist particles before they can reach any of the sensitive elements in the lithography system. In some cases it is necessary to refresh the protective means after a predetermined period, e.g. after every processed wafer or mask. In the case of a protective plate the whole plate can be replaced.
  • the foil is wound around the coil winders. A small section of the foil is tightened just above the entire target exposure surface 14 . Only this section is exposed to the contaminants.
  • the protective capacity of the foil rapidly degrades due to the absorbed particles.
  • the exposed foil section then needs to be replaced. To do this the foil is transported from one coil winder to the other coil winder, thus exposing a fresh foil section to the contamination particles.
  • an additional acceleration stage is positioned between the electrostatic lens array of the focusing electron optical system 13 and the protective means. This acceleration stage adds energy to the passing electrons.
  • the beam may be accelerated additional tens of kiloelectronvolts, e.g. 50 keV.
  • the beamlets 12 that have successfully passed the beamlet stop array 10 are directed towards the desired position on the target exposure surface 14 by two means.
  • First of all actuation means move the target exposure surface 14 and the rest of the system in a certain mechanical scan direction relatively to each other.
  • scan deflection means scan the transmitted beamlets 12 electrostatically in a direction that differs from the mechanical scan direction.
  • the scan deflection means comprise electrostatic scan deflectors 18 . In FIGS. 1 and 3 these scan deflectors 18 are located on an additional aperture array 11 , and are depicted in FIG. 4 .
  • the electrostatic scan deflectors 18 are deposited on the target exposure surface side of one of the plates of the objective electrostatic lens array 13 , such that the deflection essentially occurs in the front focal plane of the objective lenses.
  • the desired result is that the deflected beamlets impinge perpendicularly on the target surface.
  • the combined deflection causes displacement of the beamlets a displacement of the beamlets at the target surface location, without changing the perpendicular axis of a beamlet with respect to the target surface.
  • the electrostatic scan deflectors 18 are located on the protective means.
  • the electrostatic scan deflectors 18 comprise scan deflection electrodes, which are arranged to deflect an assembly of electron beamlets in the same direction.
  • the scan deflection electrodes may be deposited in the form of strips 19 on a suitable plate 20 at the target exposure surface side as is shown in FIG. 5A .
  • the best yield can be established when the strips 19 are deposited close to the beamlet, thus close to the aperture 21 , since this reduces d b-sd .
  • the first assembly is scanned in one direction while the next one is scanned in the opposite direction, by putting alternating voltages on the consecutive strips 19 as is shown in FIG. 5B .
  • the first strip has for instance a positive potential, the second one a negative potential, the next one a positive etc.
  • the scan direction is denoted y.
  • One line of transmitted electron beamlets is then scanned in the ⁇ y-direction, while at the same time the next line is directed towards +y.
  • the mechanical scan can be performed in three ways.
  • the target exposure surface moves, the rest of the system moves or they both move in different directions.
  • the deflection scan is performed in a different direction compared to the mechanical scan. It is preferably perpendicular or almost perpendicular to the mechanical scan direction, because the scan deflection length ⁇ x is then larger for the same deflection scan angle ⁇ sd .
  • the first one is a triangular shaped scan trajectory ( FIG. 6A )
  • the second one a saw tooth shaped scan trajectory ( FIG. 6B ).
  • an assembly of electron beam exposure apparatuses as described above is used to expose the entire wafer at the same time.
  • the writing strategy described above is based on the assumption that the beamlet can only be switched on or off. To reduce the amount of data by less grid lines, and thus less grid cells seems a logical approach. However, the dimension control of the desired pattern suffers considerably.
  • An approach to circumvent this problem is to pattern the target exposure surface 14 with discrete dose control. Again the pattern is divided according to a rectangular grid. However, the number of grid lines is much smaller e.g. 2-5 per dimension, which results in a number of grid points of about 4-25.
  • the intensity of each grid cell is variable. The intensity is represented by a so-called gray value.
  • the values are 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 and 1 times the maximum dose.
  • the number of data required for the position of the beamlet reduces, although each cell is represented with more information due to the controlled dose variation.
  • gray scale writing can be introduced in several ways.
  • the deflection of the beams may be controlled in such a way that part of the beam passes the beamlet stop array 10 , while part of the beam continues traveling towards the target exposure surface 14 .
  • 1 ⁇ 3 or 2 ⁇ 3 of the beam can be stopped, resulting in 4 possible doses on the target exposure surface, namely 0, 1 ⁇ 3, 2 ⁇ 3 and 1 times the maximum dose, corresponding to a 2 bit gray value representation.
  • Another method to create gray levels is to deflect the beamlets in such a way that they do not move with respect to the target surface for a predetermined amount of time T, which amount of time T is longer than a minimum on/off time of the blankers. During time T, the modulator can now deposite 1, 2, 3, etc. shots on one position, thus creating gray levels.
  • Another method to create these 4 so-called gray values is to change the aperture size in the aperture array 6 . If there are for instance three aperture sizes, the original size, a size that permits half the original current to pass and apertures with an area such that only a fourth of the original current passes, the same discrete dose values as mentioned before an be created.
  • the desired dose can be deposited on the target exposure surface 14 .
  • a disadvantage of the latter method is the fact that more beamlets are needed to write one pixel.
  • Most, including aforementioned methods for discrete dose control can also be used to create more than 4 gray values, e.g. 8, 16, 32 or 64.
  • the positions of the beamlets on the target exposure surface most often do not exactly correspond with the desired positions. This is for instance due to misalignment of the different arrays with respect to each other. Additionally, manufacturing errors may also contribute to the offset of the individual beamlets.
  • To transfer the correct pattern from the controller onto the exposure surface of the target corrections have to be made. To this end, in a particular embodiment, first the position of all beamlets is measured and stored. Each position is then compared to the position the beamlet should have. The difference in position is then integrated in the pattern information that is sent to the modulation means.
  • FIGS. 7A-7D and 8 A- 8 B explain how the adjustments are implemented.
  • the beamlet scan is performed by combining two scan mechanisms: a mechanical scan and a deflection scan. All pattern data, which is sent to each beamlet, is supplied per deflection scan line.
  • the desired deflection scan width on the exposure surface of the target that is patterned, W scan is smaller than the deflection scan width the apparatus can handle, W overscan , as is shown in FIGS. 7A AND 7B .
  • the overscan ability enables a correction in the deflection scan direction.
  • the beamlet In FIG. 7A the beamlet is positioned correctly. In FIG. 7B , however, the beamlet has shifted to the right.
  • the timing By adjusting the timing in such a way that the pattern data is applied when the beamlet enters the desired area, the offset can be compensated for.
  • the adjustment in the mechanical scan direction is less precise than depicted in FIG. 7B . Since the pattern data is written per scan line, only a discrete time delay is possible, i.e. pattern generation can be postponed or accelerated per scan line. A random time delay would result in a completely new control data sequence. A calculation of such a new sequence takes a lot of time and is therefore not desirable.
  • FIG. 7C AND 7D is depicted what the consequence is.
  • FIG. 7C again the desired location of the beamlet is shown together with its first five corresponding scan lines.
  • FIG. 7D the real position of the beamlet and its trajectories is shown.
  • the desired beamlet and scan lines are also depicted with an empty circle and dashed lines, respectively. It can be seen that the first scan line in the desired situation does not cover the area that needs to be patterned by the beamlet. So the beamlet start patterning halfway the second scan line. Effectively the delay of information has taken a time period that is necessary to scan one deflection scan line.
  • FIGS. 8A and 8B show an example of how a change in the timing corrects for the initial incorrect position of a structure written by a not ideally positioned beamlet.
  • FIG. 8A depicts the situation without any timing correction.
  • the empty dot represents the beamlet at the correct position, while the filled one represents the real location of the beamlet.
  • the beamlet is scanned along the drawn line to write a pattern.
  • the line is dashed in the ideal case and solid in the real case.
  • the written structure is a single line.
  • FIG. 8B shows the situation wherein timing correction is applied. Again the theoretical and actual spots and trajectories are depicted with dashed and solid lines and dots respectively.
  • the signal sequence in the real situation is different than the theoretical pattern information, in the fact that the signal sequence in the real situation (lower curve) is sent at a different time than the same sequence is sent in the idea configuration (upper curve).
  • the single line is now written at the correct location in the deflection scan direction.
  • the pattern processing started one scan line earlier resulting in a better positioning of the single line in the mechanical scan direction as well. Note that the single line is not precisely positioned at the correct location. This is due to the slight offset between the scan lines in the ideal and the real situation.
  • the current electron beam exposure system is thus capable of dynamically adjusting the position of a scanned line using timing corrections.
  • This allows for critical components in a pattern to be written in one scan line instead of using two halves of two scan lines, which would spread the critical component over two scan lines.
  • This correction can also be done locally, i.e. the timing can be corrected over a small time window.
  • the controller should thus identify critical components, which would normally be spread over two scan lines. Subsequently, the controller should calculated a corrected timing window, and apply the corrected timing window to the timing base used for scanning an electron beamlet.
  • FIG. 7D shows the adjustment principle, which could be used for this.
  • All lens plates, aperture plates and blanker plates can be connected to a power supply, which, when gas is admitted into the system, creates a plasma.
  • the plasma cleans the plates and removes all contamination. If one plasma does not clean thorough enough, two gases may be admitted into the system in series. For instance oxygen may be admitted first to remove all hydrocarbons residing in the system. After the removal of the oxygen plasma, a second plasma, for instance comprising HF, is created to remove all present oxides.
  • Another possibility to reduce the contamination is to perform all operations at elevated temperatures, i.e. 150-400° C. A pretreatment at 1000-1500° C. may be necessary. At these temperatures hydrocarbons get no chance to condense on any of the elements in the system. Allowing a fraction of oxygen into the system can further enhance the cleaning process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)
  • X-Ray Techniques (AREA)
US13/343,038 2002-10-30 2012-01-04 Electron beam exposure system Expired - Lifetime USRE45049E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/343,038 USRE45049E1 (en) 2002-10-30 2012-01-04 Electron beam exposure system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42275802P 2002-10-30 2002-10-30
US10/699,246 US6897458B2 (en) 2002-10-30 2003-10-30 Electron beam exposure system
US11/128,512 US7091504B2 (en) 2002-10-30 2005-05-12 Electron beam exposure system
US12/189,817 USRE44240E1 (en) 2002-10-30 2008-08-12 Electron beam exposure system
US13/343,038 USRE45049E1 (en) 2002-10-30 2012-01-04 Electron beam exposure system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/128,512 Reissue US7091504B2 (en) 2002-10-30 2005-05-12 Electron beam exposure system

Publications (1)

Publication Number Publication Date
USRE45049E1 true USRE45049E1 (en) 2014-07-29

Family

ID=32230384

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/699,246 Expired - Lifetime US6897458B2 (en) 2002-10-30 2003-10-30 Electron beam exposure system
US11/128,512 Ceased US7091504B2 (en) 2002-10-30 2005-05-12 Electron beam exposure system
US12/189,817 Expired - Lifetime USRE44240E1 (en) 2002-10-30 2008-08-12 Electron beam exposure system
US13/343,038 Expired - Lifetime USRE45049E1 (en) 2002-10-30 2012-01-04 Electron beam exposure system
US13/343,036 Expired - Lifetime USRE44908E1 (en) 2002-10-30 2012-01-04 Electron beam exposure system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/699,246 Expired - Lifetime US6897458B2 (en) 2002-10-30 2003-10-30 Electron beam exposure system
US11/128,512 Ceased US7091504B2 (en) 2002-10-30 2005-05-12 Electron beam exposure system
US12/189,817 Expired - Lifetime USRE44240E1 (en) 2002-10-30 2008-08-12 Electron beam exposure system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/343,036 Expired - Lifetime USRE44908E1 (en) 2002-10-30 2012-01-04 Electron beam exposure system

Country Status (7)

Country Link
US (5) US6897458B2 (en_2)
EP (5) EP1556881B1 (en_2)
JP (2) JP5053514B2 (en_2)
KR (5) KR101077098B1 (en_2)
CN (11) CN101414129B (en_2)
AU (1) AU2003276779A1 (en_2)
WO (1) WO2004040614A2 (en_2)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053514B2 (ja) * 2002-10-30 2012-10-17 マッパー・リソグラフィー・アイピー・ビー.ブイ. 電子ビーム露光システム
EP1515359A1 (en) * 2003-09-12 2005-03-16 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Chamber with low electron stimulated desorption
JP4856073B2 (ja) * 2004-05-17 2012-01-18 マッパー・リソグラフィー・アイピー・ビー.ブイ. 荷電粒子ビーム露光システム
JP2008527750A (ja) * 2005-01-14 2008-07-24 アラディアンス インコーポレイテッド 同期ラスタ走査リソグラフィ・システム
US7737422B2 (en) * 2005-02-18 2010-06-15 Ims Nanofabrication Ag Charged-particle exposure apparatus
JP4708854B2 (ja) * 2005-05-13 2011-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5222142B2 (ja) * 2005-09-06 2013-06-26 カール・ツァイス・エスエムティー・ゲーエムベーハー 粒子光学部品
KR101367499B1 (ko) * 2005-09-16 2014-02-25 마퍼 리쏘그라피 아이피 비.브이. 리소그라피 시스템 및 투영 방법
US7883839B2 (en) * 2005-12-08 2011-02-08 University Of Houston Method and apparatus for nano-pantography
US7569834B1 (en) 2006-10-18 2009-08-04 Kla-Tencor Technologies Corporation High resolution charged particle projection lens array using magnetic elements
EP2019415B1 (en) 2007-07-24 2016-05-11 IMS Nanofabrication AG Multi-beam source
WO2009106560A1 (en) 2008-02-26 2009-09-03 Mapper Lithography Ip B.V. Projection lens arrangement
US8445869B2 (en) 2008-04-15 2013-05-21 Mapper Lithography Ip B.V. Projection lens arrangement
EP2250660A1 (en) * 2008-02-26 2010-11-17 Mapper Lithography IP B.V. Projection lens arrangement
US8890094B2 (en) 2008-02-26 2014-11-18 Mapper Lithography Ip B.V. Projection lens arrangement
KR101638766B1 (ko) 2008-04-15 2016-07-13 마퍼 리쏘그라피 아이피 비.브이. 비임렛 블랭커 배열체
US7851774B2 (en) * 2008-04-25 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for direct writing to a wafer
WO2009141428A1 (en) * 2008-05-23 2009-11-26 Mapper Lithography Ip B.V. Imaging system
KR101647768B1 (ko) 2008-06-04 2016-08-11 마퍼 리쏘그라피 아이피 비.브이. 타겟을 노출하는 방법 및 시스템
NL2003304C2 (en) * 2008-08-07 2010-09-14 Ims Nanofabrication Ag Compensation of dose inhomogeneity and image distortion.
JP5628808B2 (ja) * 2008-08-18 2014-11-19 マッパー・リソグラフィー・アイピー・ビー.ブイ. 荷電粒子ビームリソグラフィシステム及びターゲット位置決め装置
US8796644B2 (en) 2008-08-18 2014-08-05 Mapper Lithography Ip B.V. Charged particle beam lithography system and target positioning device
US20120219886A1 (en) 2011-02-28 2012-08-30 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US8057970B2 (en) 2008-09-01 2011-11-15 D2S, Inc. Method and system for forming circular patterns on a surface
US8473875B2 (en) 2010-10-13 2013-06-25 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US20140353526A1 (en) * 2008-09-01 2014-12-04 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US7901850B2 (en) 2008-09-01 2011-03-08 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US8390781B2 (en) 2008-09-23 2013-03-05 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8390786B2 (en) 2008-09-23 2013-03-05 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8395752B2 (en) 2008-09-23 2013-03-12 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8253923B1 (en) 2008-09-23 2012-08-28 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8670106B2 (en) 2008-09-23 2014-03-11 Pinebrook Imaging, Inc. Optical imaging writer system
DE102008049655A1 (de) 2008-09-30 2010-04-08 Carl Zeiss Nts Gmbh Partikelstrahlsystem und Verfahren zum Betreiben desselben
KR101687955B1 (ko) 2009-02-22 2016-12-20 마퍼 리쏘그라피 아이피 비.브이. 하전입자 리소그래피 장치 및 진공 챔버에 진공을 발생시키는 방법
JP5539406B2 (ja) 2009-02-22 2014-07-02 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフィマシン及び基板処理構成体
WO2010094719A1 (en) 2009-02-22 2010-08-26 Mapper Lithography Ip B.V. Charged particle lithography apparatus and method of generating vacuum in a vacuum chamber
TW201100973A (en) 2009-02-22 2011-01-01 Mapper Lithography Ip Bv A method and arrangement for realizing a vacuum in a vacuum chamber
CN102414621B (zh) * 2009-03-06 2014-12-10 麦克罗尼克迈达塔有限责任公司 扫掠期间剂量可变的转子光学部件成像方法及系统
TWI497557B (zh) * 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
JP5801288B2 (ja) 2009-05-20 2015-10-28 マッパー・リソグラフィー・アイピー・ビー.ブイ. リソグラフ処理のための2レベルパターンを発生する方法およびその方法を使用するパターン発生器
CN102460633B (zh) 2009-05-20 2014-12-17 迈普尔平版印刷Ip有限公司 用于光刻系统的图案数据转换器
CN102460631B (zh) * 2009-05-20 2015-03-25 迈普尔平版印刷Ip有限公司 两次扫描
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US8987679B2 (en) * 2009-10-09 2015-03-24 Mapper Lithography Ip B.V. Enhanced integrity projection lens assembly
NL2003619C2 (en) 2009-10-09 2011-04-12 Mapper Lithography Ip Bv Projection lens assembly.
KR20120098756A (ko) 2009-10-26 2012-09-05 마퍼 리쏘그라피 아이피 비.브이. 변조 디바이스 및 변조 디바이스를 이용한 하전 입자 대중-빔렛 리소그라피 시스템
US8952342B2 (en) * 2009-12-17 2015-02-10 Mapper Lithography Ip B.V. Support and positioning structure, semiconductor equipment system and method for positioning
NL1037639C2 (en) 2010-01-21 2011-07-25 Mapper Lithography Ip Bv Lithography system with lens rotation.
JP5988537B2 (ja) * 2010-06-10 2016-09-07 株式会社ニコン 荷電粒子線露光装置及びデバイス製造方法
TWI550679B (zh) 2010-10-26 2016-09-21 瑪波微影Ip公司 調整裝置和使用其之帶電粒子多重小射束微影系統
US9305747B2 (en) 2010-11-13 2016-04-05 Mapper Lithography Ip B.V. Data path for lithography apparatus
US8884255B2 (en) 2010-11-13 2014-11-11 Mapper Lithography Ip B.V. Data path for lithography apparatus
US8558196B2 (en) 2010-11-13 2013-10-15 Mapper Lithography Ip B.V. Charged particle lithography system with aperture array cooling
TWI517196B (zh) 2010-11-13 2016-01-11 瑪波微影Ip公司 具有中間腔室的帶電粒子微影系統
TWI562186B (en) 2010-11-13 2016-12-11 Mapper Lithography Ip Bv Charged particle lithography system and method for transferring a pattern onto a surface of a target and modulation device for use in a charged particle lithography system
WO2012080278A1 (en) 2010-12-14 2012-06-21 Mapper Lithography Ip B.V. Lithography system and method of processing substrates in such a lithography system
CN103429556B (zh) 2011-02-07 2016-10-26 荷兰应用自然科技研究组织Tno 化学二氧化碳气体发生器
RU2558646C2 (ru) 2011-02-16 2015-08-10 МЭППЕР ЛИТОГРАФИ АйПи Б.В. Система для магнитного экранирования
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US8362425B2 (en) * 2011-03-23 2013-01-29 Kla-Tencor Corporation Multiple-beam system for high-speed electron-beam inspection
WO2012143555A2 (en) 2011-04-22 2012-10-26 Mapper Lithography Ip B.V. Network architecture for lithography machine cluster
NL2007604C2 (en) * 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
US9176397B2 (en) 2011-04-28 2015-11-03 Mapper Lithography Ip B.V. Apparatus for transferring a substrate in a lithography system
US9328512B2 (en) 2011-05-05 2016-05-03 Eversealed Windows, Inc. Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit
JP5905209B2 (ja) * 2011-05-18 2016-04-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
NL2006868C2 (en) * 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US8698094B1 (en) * 2011-07-20 2014-04-15 Kla-Tencor Corporation Permanent magnet lens array
WO2013045636A2 (en) 2011-09-28 2013-04-04 Mapper Lithography Ip B.V. Plasma generator
US9665014B2 (en) 2012-03-08 2017-05-30 Mapper Lithography Ip B.V. Charged particle lithography system with alignment sensor and beam measurement sensor
KR102206544B1 (ko) 2012-03-20 2021-01-25 에이에스엠엘 네델란즈 비.브이. 라디칼을 운반하기 위한 배열체 및 방법
JP6128744B2 (ja) * 2012-04-04 2017-05-17 キヤノン株式会社 描画装置、描画方法、および、物品の製造方法
US9343267B2 (en) 2012-04-18 2016-05-17 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
WO2013158574A1 (en) 2012-04-18 2013-10-24 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
US20130283217A1 (en) 2012-04-18 2013-10-24 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
CN104520968B (zh) 2012-05-14 2017-07-07 迈普尔平版印刷Ip有限公司 带电粒子光刻系统和射束产生器
US10586625B2 (en) 2012-05-14 2020-03-10 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
KR101945964B1 (ko) 2012-05-14 2019-02-11 마퍼 리쏘그라피 아이피 비.브이. 하전 입자 다중-빔렛 리소그래피 시스템 및 냉각 장치 제조 방법
NL2010759C2 (en) 2012-05-14 2015-08-25 Mapper Lithography Ip Bv Modulation device and power supply arrangement.
US11348756B2 (en) 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system
NL2010760C2 (en) 2013-05-03 2014-11-04 Mapper Lithography Ip Bv Beam grid layout.
JP6212299B2 (ja) * 2013-06-26 2017-10-11 キヤノン株式会社 ブランキング装置、描画装置、および物品の製造方法
WO2015024956A1 (en) 2013-08-23 2015-02-26 Mapper Lithography Ip B.V. Drying device for use in a lithography system
JP2016510165A (ja) * 2013-11-14 2016-04-04 マッパー・リソグラフィー・アイピー・ビー.ブイ. 電極冷却装置
US8975601B1 (en) * 2013-11-25 2015-03-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for electron beam lithography
RU2689391C2 (ru) 2013-12-30 2019-05-28 АСМЛ Недерландс Б.В. Катодное устройство, электронная пушка и установка литографии, содержащая такую электронную пушку
US9460260B2 (en) 2014-02-21 2016-10-04 Mapper Lithography Ip B.V. Enhanced stitching by overlap dose and feature reduction
US9514912B2 (en) 2014-09-10 2016-12-06 Varian Semiconductor Equipment Associates, Inc. Control of ion angular distribution of ion beams with hidden deflection electrode
JP2017513036A (ja) 2014-11-14 2017-05-25 マッパー・リソグラフィー・アイピー・ビー.ブイ. 貨物固定システムおよびリソグラフィシステム内で基板を移送するための方法
DE102015202172B4 (de) 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zur teilchenoptischen Untersuchung eines Objekts
US9691588B2 (en) 2015-03-10 2017-06-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
US9484188B2 (en) 2015-03-11 2016-11-01 Mapper Lithography Ip B.V. Individual beam pattern placement verification in multiple beam lithography
TWI722855B (zh) 2015-03-24 2021-03-21 美商克萊譚克公司 用於具有改良之影像光束穩定性及詢問之帶電粒子顯微鏡之方法及系統
US10096450B2 (en) * 2015-12-28 2018-10-09 Mapper Lithography Ip B.V. Control system and method for lithography apparatus
CN108292583B (zh) * 2016-04-13 2020-03-20 Asml 荷兰有限公司 多个带电粒子束的装置
US9981293B2 (en) 2016-04-21 2018-05-29 Mapper Lithography Ip B.V. Method and system for the removal and/or avoidance of contamination in charged particle beam systems
CN106019854A (zh) * 2016-07-18 2016-10-12 无锡宏纳科技有限公司 图形可变的电子束光刻机
JP2018098268A (ja) * 2016-12-08 2018-06-21 株式会社ニューフレアテクノロジー ブランキング偏向器及びマルチ荷電粒子ビーム描画装置
EP3559752A4 (en) * 2016-12-23 2020-08-19 ASML Netherlands B.V. PRODUCTION OF UNIQUE CHIPS WITH A LITHOGRAPHY SYSTEM WITH MULTIPLE CARRIER PART JETS
TWI742223B (zh) * 2017-01-14 2021-10-11 美商克萊譚克公司 電子束系統及方法,以及掃描電子顯微鏡
US10242839B2 (en) * 2017-05-05 2019-03-26 Kla-Tencor Corporation Reduced Coulomb interactions in a multi-beam column
KR102460604B1 (ko) * 2017-09-29 2022-10-31 에이에스엠엘 네델란즈 비.브이. 하전 입자의 빔 조건을 조정하기 위한 방법 및 장치
JP2019114748A (ja) * 2017-12-26 2019-07-11 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
DE102018202428B3 (de) 2018-02-16 2019-05-09 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenmikroskop
WO2019166331A2 (en) 2018-02-27 2019-09-06 Carl Zeiss Microscopy Gmbh Charged particle beam system and method
US10438769B1 (en) * 2018-05-02 2019-10-08 Kla-Tencor Corporation Array-based characterization tool
US10811215B2 (en) 2018-05-21 2020-10-20 Carl Zeiss Multisem Gmbh Charged particle beam system
DE102018115012A1 (de) 2018-06-21 2019-12-24 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem
US10593509B2 (en) 2018-07-17 2020-03-17 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, multi-beam blanker for a charged particle beam device, and method for operating a charged particle beam device
US10483080B1 (en) * 2018-07-17 2019-11-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, multi-beam blanker for a charged particle beam device, and method for operating a charged particle beam device
DE102018007455B4 (de) 2018-09-21 2020-07-09 Carl Zeiss Multisem Gmbh Verfahren zum Detektorabgleich bei der Abbildung von Objekten mittels eines Mehrstrahl-Teilchenmikroskops, System sowie Computerprogrammprodukt
DE102018007652B4 (de) 2018-09-27 2021-03-25 Carl Zeiss Multisem Gmbh Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE102018124044B3 (de) 2018-09-28 2020-02-06 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenstrahlmikroskops und Vielstrahl-Teilchenstrahlsystem
DE102018124219A1 (de) 2018-10-01 2020-04-02 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem und Verfahren zum Betreiben eines solchen
NL2022156B1 (en) 2018-12-10 2020-07-02 Asml Netherlands Bv Plasma source control circuit
CN113272934B (zh) * 2018-12-28 2024-11-29 Asml荷兰有限公司 用于多个带电粒子束的装置
CN111477530B (zh) 2019-01-24 2023-05-05 卡尔蔡司MultiSEM有限责任公司 利用多束粒子显微镜对3d样本成像的方法
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
DE102019004124B4 (de) 2019-06-13 2024-03-21 Carl Zeiss Multisem Gmbh Teilchenstrahl-System zur azimutalen Ablenkung von Einzel-Teilchenstrahlen sowie seine Verwendung und Verfahren zur Azimut-Korrektur bei einem Teilchenstrahl-System
DE102019005362A1 (de) 2019-07-31 2021-02-04 Carl Zeiss Multisem Gmbh Verfahren zum Betreiben eines Vielzahl-Teilchenstrahlsystems unter Veränderung der numerischen Apertur, zugehöriges Computerprogrammprodukt und Vielzahl-Teilchenstrahlsystem
DE102019008249B3 (de) 2019-11-27 2020-11-19 Carl Zeiss Multisem Gmbh Teilchenstrahl-System mit einer Multistrahl-Ablenkeinrichtung und einem Strahlfänger, Verfahren zum Betreiben des Teilchenstrahl-Systems und zugehöriges Computerprogrammprodukt
EP3863040A1 (en) * 2020-02-07 2021-08-11 ASML Netherlands B.V. Charged particle manipulator device
US10937630B1 (en) 2020-04-27 2021-03-02 John Bennett Modular parallel electron lithography
DE102021200799B3 (de) 2021-01-29 2022-03-31 Carl Zeiss Multisem Gmbh Verfahren mit verbesserter Fokuseinstellung unter Berücksichtigung eines Bildebenenkipps in einem Vielzahl-Teilchenstrahlmikroskop
EP4324013A1 (en) 2021-04-16 2024-02-21 Integrated Dynamic Electron Solutions, Inc. Arbitrary electron dose waveforms for electron microscopy
KR20240022597A (ko) 2021-06-16 2024-02-20 칼 짜이스 멀티셈 게엠베하 왜곡 최적화 다중 빔 스캐닝 시스템
DE102021116969B3 (de) 2021-07-01 2022-09-22 Carl Zeiss Multisem Gmbh Verfahren zur bereichsweisen Probeninspektion mittels eines Vielstrahl-Teilchenmikroskopes, Computerprogrammprodukt und Vielstrahl-Teilchenmikroskop zur Halbleiterprobeninspektion
US12057287B2 (en) * 2022-03-30 2024-08-06 Fei Company Methods and systems for aligning a multi-beam system
JP2023150799A (ja) * 2022-03-31 2023-10-16 株式会社日立ハイテク 荷電粒子ビーム装置
US12237147B2 (en) 2023-01-31 2025-02-25 Integrated Dynamic Electron Solutions, Inc. Methods and systems for event modulated electron microscopy
US11848173B1 (en) 2023-01-31 2023-12-19 Integrated Dynamic Electron Solutions, Inc. Methods and systems for event modulated electron microscopy
CN118859638A (zh) * 2023-11-28 2024-10-29 上海集成电路材料研究院有限公司 一种电子束直写装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969362A (en) * 1997-02-25 1999-10-19 Nikon Corporation High-throughput direct-write electron-beam exposure system and method
US6014200A (en) * 1998-02-24 2000-01-11 Nikon Corporation High throughput electron beam lithography system
GB2340991A (en) 1998-08-19 2000-03-01 Ims Ionen Mikrofab Syst Multibeam particle lithography
JP2002110527A (ja) 2000-10-03 2002-04-12 Advantest Corp 電子ビーム補正方法及び電子ビーム露光装置
WO2002041372A1 (fr) 2000-11-17 2002-05-23 Advantest Corporation Systeme d'exposition a un faisceau electronique, procede d'exposition a un faisceau electronique et procede de production d'elements semi-conducteurs
WO2002043102A1 (fr) 2000-11-27 2002-05-30 Advantest Corporation Appareil de production de faisceau d'electrons et appareil d'exposition de faisceau d'electron
EP1300870A1 (en) 2001-10-05 2003-04-09 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multiple electron beam device
US20030132382A1 (en) * 2001-12-18 2003-07-17 Sogard Michael R. System and method for inspecting a mask
US6897458B2 (en) * 2002-10-30 2005-05-24 Mapper Lithography Ip B.V. Electron beam exposure system
US7161162B2 (en) * 2002-10-10 2007-01-09 Applied Materials, Inc. Electron beam pattern generator with photocathode comprising low work function cesium halide
US7741620B2 (en) * 2004-11-03 2010-06-22 Vistec Electron Beam Gmbh Multi-beam modulator for a particle beam and use of the multi-beam modulator for the maskless structuring of a substrate
US20120286173A1 (en) * 2009-05-20 2012-11-15 Mapper Lithography Ip B.V. Pattern data conversion for lithography system
US20120286168A1 (en) * 2010-11-13 2012-11-15 Mapper Lithography Ip B.V. Data path for lithography apparatus

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1100237A (en) * 1977-03-23 1981-04-28 Roger F.W. Pease Multiple electron beam exposure system
US4684848A (en) * 1983-09-26 1987-08-04 Kaufman & Robinson, Inc. Broad-beam electron source
JPS6261328A (ja) * 1985-09-12 1987-03-18 Toshiba Corp 荷電ビ−ム露光装置
US4723695A (en) * 1986-11-04 1988-02-09 Farber Hugh A Fisherman's garment and landing net scabbard
US4942339A (en) * 1988-09-27 1990-07-17 The United States Of America As Represented By The United States Department Of Energy Intense steady state electron beam generator
US4980988A (en) * 1989-06-12 1991-01-01 Peter Whitman Combination fish landing net holster and creel
KR950002578B1 (ko) * 1991-03-13 1995-03-23 후지쓰 가부시끼가이샤 전자빔 노광방법
US5384463A (en) * 1991-06-10 1995-01-24 Fujisu Limited Pattern inspection apparatus and electron beam apparatus
JP2615411B2 (ja) * 1993-12-27 1997-05-28 工業技術院長 多重電子ビーム照射装置および照射方法
JPH097538A (ja) * 1995-06-26 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 荷電ビーム描画装置
EP0794552B1 (en) * 1996-03-04 2007-11-14 Canon Kabushiki Kaisha Electron beam exposure apparatus and method, and device manufacturing method
JP3512946B2 (ja) 1996-04-26 2004-03-31 株式会社東芝 電子ビーム描画装置および電子ビーム描画方法
US5651141A (en) * 1996-05-22 1997-07-29 Schneider; Jeff D. Garment and landing net combination
US5929454A (en) 1996-06-12 1999-07-27 Canon Kabushiki Kaisha Position detection apparatus, electron beam exposure apparatus, and methods associated with them
JP4018197B2 (ja) * 1997-07-02 2007-12-05 キヤノン株式会社 電子ビーム露光方法及び電子ビーム露光装置
US6107636A (en) * 1997-02-07 2000-08-22 Canon Kabushiki Kaisha Electron beam exposure apparatus and its control method
US6194838B1 (en) * 1997-02-24 2001-02-27 International Business Machines Corporation Self stabilizing non-thermionic source for flat panel CRT displays
US6464839B1 (en) * 1997-04-14 2002-10-15 Yuan Da International Group Limited Beta-elemene, method to prepare the same and uses thereof
JPH11195590A (ja) * 1998-01-05 1999-07-21 Canon Inc マルチ電子ビーム露光方法及び装置、ならびにデバイス製造方法
JPH11195589A (ja) * 1998-01-05 1999-07-21 Canon Inc マルチ電子ビーム露光方法及び装置、ならびにデバイス製造方法
US5981962A (en) * 1998-01-09 1999-11-09 International Business Machines Corporation Distributed direct write lithography system using multiple variable shaped electron beams
JP4077933B2 (ja) * 1998-06-24 2008-04-23 キヤノン株式会社 マルチ電子ビーム露光方法及び装置、ならびにデバイス製造方法
JP3147227B2 (ja) * 1998-09-01 2001-03-19 日本電気株式会社 冷陰極電子銃
JP3241011B2 (ja) * 1998-11-20 2001-12-25 日本電気株式会社 電子線露光装置及び電子線露光用マスク
US6313476B1 (en) 1998-12-14 2001-11-06 Kabushiki Kaisha Toshiba Charged beam lithography system
US6036067A (en) * 1998-12-21 2000-03-14 Alcorn; A. Shane Carrier for fish landing net
CN1264850A (zh) * 1999-02-24 2000-08-30 日本电气株式会社 电子束曝光系统及其方法
JP4410871B2 (ja) * 1999-03-25 2010-02-03 キヤノン株式会社 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
US6333508B1 (en) 1999-10-07 2001-12-25 Lucent Technologies, Inc. Illumination system for electron beam lithography tool
AU1926501A (en) * 1999-11-23 2001-06-04 Ion Diagnostics, Inc. Electron optics for multi-beam electron beam lithography tool
WO2001075947A1 (fr) * 2000-04-04 2001-10-11 Advantest Corporation Appareil d'exposition multifaisceau comprenant une lentille elctronique multi-axiale, une lentille electronique multi-axiale pour la focalisation de faisceaux d'electrons, et procede de fabrication de dispositif semi-conducteur
KR100465117B1 (ko) 2000-04-04 2005-01-05 주식회사 아도반테스토 다축전자렌즈를 이용한 멀티빔 노광장치, 복수의 전자빔을집속하는 다축전자렌즈, 반도체소자 제조방법
WO2001075949A1 (fr) * 2000-04-04 2001-10-11 Advantest Corporation Appareil d'exposition multifaisceau comprenant une lentille electronique multiaxe, et procede de fabrication d'un dispositif a semi-conducteur
WO2001075950A1 (fr) 2000-04-04 2001-10-11 Advantest Corporation Appareil d'exposition multifaisceau comprenant une lentille electronique multiaxe, procede de fabrication de ladite lentille, et procede de fabrication d'un dispositif a semi-conducteur
JP3728217B2 (ja) * 2000-04-27 2005-12-21 キヤノン株式会社 荷電粒子線露光装置およびデバイス製造方法
JP3597757B2 (ja) 2000-06-27 2004-12-08 東芝三菱電機産業システム株式会社 無停電電源装置の並列運転システム
JP4741115B2 (ja) * 2000-08-14 2011-08-03 イーリス エルエルシー リソグラフィ投影装置およびデバイス製造方法
US6797953B2 (en) * 2001-02-23 2004-09-28 Fei Company Electron beam system using multiple electron beams
JP3940310B2 (ja) * 2002-04-04 2007-07-04 株式会社日立ハイテクノロジーズ 電子ビーム描画方法及び描画装置、並びにこれを用いた半導体製造方法
US7301263B2 (en) * 2004-05-28 2007-11-27 Applied Materials, Inc. Multiple electron beam system with electron transmission gates

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969362A (en) * 1997-02-25 1999-10-19 Nikon Corporation High-throughput direct-write electron-beam exposure system and method
US6014200A (en) * 1998-02-24 2000-01-11 Nikon Corporation High throughput electron beam lithography system
GB2340991A (en) 1998-08-19 2000-03-01 Ims Ionen Mikrofab Syst Multibeam particle lithography
JP2002110527A (ja) 2000-10-03 2002-04-12 Advantest Corp 電子ビーム補正方法及び電子ビーム露光装置
WO2002041372A1 (fr) 2000-11-17 2002-05-23 Advantest Corporation Systeme d'exposition a un faisceau electronique, procede d'exposition a un faisceau electronique et procede de production d'elements semi-conducteurs
US20030155522A1 (en) 2000-11-27 2003-08-21 Advantest Corporation Electron beam generating apparatus and electron beam exposure apparatus
WO2002043102A1 (fr) 2000-11-27 2002-05-30 Advantest Corporation Appareil de production de faisceau d'electrons et appareil d'exposition de faisceau d'electron
EP1300870A1 (en) 2001-10-05 2003-04-09 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multiple electron beam device
US20030132382A1 (en) * 2001-12-18 2003-07-17 Sogard Michael R. System and method for inspecting a mask
US7161162B2 (en) * 2002-10-10 2007-01-09 Applied Materials, Inc. Electron beam pattern generator with photocathode comprising low work function cesium halide
US6897458B2 (en) * 2002-10-30 2005-05-24 Mapper Lithography Ip B.V. Electron beam exposure system
US7741620B2 (en) * 2004-11-03 2010-06-22 Vistec Electron Beam Gmbh Multi-beam modulator for a particle beam and use of the multi-beam modulator for the maskless structuring of a substrate
US20120286173A1 (en) * 2009-05-20 2012-11-15 Mapper Lithography Ip B.V. Pattern data conversion for lithography system
US20120286168A1 (en) * 2010-11-13 2012-11-15 Mapper Lithography Ip B.V. Data path for lithography apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Microstructures for Particle Beam Control", G.W., Journal of Vacuum Science and Tech., Nov. 1, 1999, pp. 2023-2027, XP000001001.

Also Published As

Publication number Publication date
JP5053514B2 (ja) 2012-10-17
US20050211921A1 (en) 2005-09-29
EP2701178B1 (en) 2020-02-12
KR101016728B1 (ko) 2011-02-25
EP2523207A2 (en) 2012-11-14
EP2565902A3 (en) 2017-07-05
EP1556881B1 (en) 2013-08-28
USRE44240E1 (en) 2013-05-28
CN101414534A (zh) 2009-04-22
KR101061407B1 (ko) 2011-09-01
CN101414126B (zh) 2012-02-15
WO2004040614A3 (en) 2004-09-16
CN101414129A (zh) 2009-04-22
CN101414124B (zh) 2012-03-07
CN101414128B (zh) 2012-04-04
CN1708826A (zh) 2005-12-14
CN101414536A (zh) 2009-04-22
CN101414127A (zh) 2009-04-22
US6897458B2 (en) 2005-05-24
KR101077098B1 (ko) 2011-10-26
CN101414124A (zh) 2009-04-22
JP2010171452A (ja) 2010-08-05
KR20100101682A (ko) 2010-09-17
KR20050065659A (ko) 2005-06-29
KR20100103650A (ko) 2010-09-27
CN101414129B (zh) 2012-11-28
EP2565902A2 (en) 2013-03-06
EP3671804A1 (en) 2020-06-24
CN101414126A (zh) 2009-04-22
CN101414125B (zh) 2012-02-22
USRE44908E1 (en) 2014-05-27
WO2004040614A2 (en) 2004-05-13
CN101414125A (zh) 2009-04-22
AU2003276779A1 (en) 2004-05-25
CN100437882C (zh) 2008-11-26
US7091504B2 (en) 2006-08-15
EP2523207A3 (en) 2015-08-26
EP2701178A3 (en) 2017-06-28
CN101414535A (zh) 2009-04-22
CN101414128A (zh) 2009-04-22
JP2006505124A (ja) 2006-02-09
KR101119703B1 (ko) 2012-03-20
US20040141169A1 (en) 2004-07-22
JP5069331B2 (ja) 2012-11-07
CN101414533A (zh) 2009-04-22
CN101414536B (zh) 2011-01-19
KR20100101681A (ko) 2010-09-17
KR20100103651A (ko) 2010-09-27
CN101414534B (zh) 2012-10-03
EP1556881A2 (en) 2005-07-27
KR101119890B1 (ko) 2012-03-13
EP2701178A2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
USRE45049E1 (en) Electron beam exposure system
US8502176B2 (en) Imaging system
US9105439B2 (en) Projection lens arrangement
US8445869B2 (en) Projection lens arrangement
US9934943B2 (en) Beam grid layout
US7453075B2 (en) Charged particle beam exposure system
WO2009127658A1 (en) Projection lens arrangement
KR102468349B1 (ko) 멀티 빔용 애퍼처 기판 세트 및 멀티 하전 입자 빔 장치
JP2016197503A (ja) 電子ビーム装置
JP2002289517A (ja) 電子ビーム近接露光装置及び方法

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL)

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553)

Year of fee payment: 12

AS Assignment

Owner name: WITTEKAMP, J.J., NETHERLANDS

Free format text: COURT APPOINTMENT;ASSIGNORS:MAPPER LITHOGRAPHY HOLDING B.V.;MAPPER LITHOGRAPHY IP B.V.;MAPPER LITHOGRAPHY B.V.;REEL/FRAME:049104/0734

Effective date: 20181228

Owner name: ASML NETHERLANDS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WITTEKAMP, J.J.;REEL/FRAME:049296/0606

Effective date: 20190206

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY