USRE41869E1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- USRE41869E1 USRE41869E1 US12/130,782 US13078208A USRE41869E US RE41869 E1 USRE41869 E1 US RE41869E1 US 13078208 A US13078208 A US 13078208A US RE41869 E USRE41869 E US RE41869E
- Authority
- US
- United States
- Prior art keywords
- terminal
- semiconductor chip
- semiconductor
- chip
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
- H01L23/49562—Geometry of the lead-frame for devices being provided for in H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49568—Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49575—Assemblies of semiconductor devices on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L24/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L24/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L24/41—Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05553—Shape in top view being rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16245—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29294—Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/36—Structure, shape, material or disposition of the strap connectors prior to the connecting process
- H01L2224/37—Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
- H01L2224/37001—Core members of the connector
- H01L2224/37099—Material
- H01L2224/371—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/40137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/40247—Connecting the strap to a bond pad of the item
- H01L2224/40249—Connecting the strap to a bond pad of the item the bond pad protruding from the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48599—Principal constituent of the connecting portion of the wire connector being Gold (Au)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49111—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73219—Layer and TAB connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73221—Strap and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/84801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/84—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
- H01L2224/848—Bonding techniques
- H01L2224/8485—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19043—Component type being a resistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
Definitions
- the present invention relates to a semiconductor device, and specifically to a technology which effectively applies to a semiconductor device in which a plurality of semiconductor chips are encapsulated in a sealed body.
- the rear surface of a heat sink (first conductive member) is soldered on the upper surface of each semiconductor chip, and the upper surface of a second conductive member is soldered on the rear surface of each semiconductor chip. Furthermore, the rear surface of a third conductive member is soldered on the upper surface of the heat sink, and the land of the prescribed semiconductor chip has an electrical connection to a control terminal via a bonding wire.
- the semiconductor chips, heat sink, upper surface of the second conductive member, rear surface of the third conductive member, and a part of the bonding wire and control terminal are encapsulated within resin.
- an external cooling member abuts on the rear surface of the second conductive member with a plate-like insulating member interposed in order to accelerate the heat dissipation.
- MCM multi-chip-module
- MCM switching circuit used for a power-supply circuit.
- an insulated DC/DC converter is widely used for information devices such as personal computers.
- Such products are required to be highly efficient and small because central processing units (CPU) are using larger current and higher frequency.
- a DC/DC converter consists of two power MOSFETS (Metal Oxide Semiconductor Field Effect Transistor), one for control and one for synchronization, a driver IC (integrated circuit) for turning the MOSFETS on and off, and other components such as a choke coil and capacitor.
- MOSFETS Metal Oxide Semiconductor Field Effect Transistor
- driver IC integrated circuit
- other components such as a choke coil and capacitor.
- the objective of encapsulating a plurality of semiconductor chips in one package is to reduce the package area as well as reduce parasitic components such as parasitic inductances and resistances located on the circuit.
- a power-supply circuit uses large current and high frequency, parasitic components cause significant power loss. To prevent that problem, it is necessary to shorten the wiring patterns between chips, between the driver IC and MOSFETS, and between the output terminal and a load.
- a driver IC and MOSFETS are located near each other and encapsulated together, and semiconductor elements constituting a power-supply circuit are integrated in one package. This configuration allows the MCM to be mounted extremely close to the load. Therefore, it is expected that the MCM will be the most commonly used power-supply device.
- the wiring distance is shorter and parasitic inductances and resistances are significantly reduced, thereby enabling a low-loss circuit.
- wires are used for major current paths between the chips and frame to enable electrical connections. Therefore, wires make up a significant portion of all the parasitic components. As a result, there is a problem in that parasitic components such as parasitic resistances and inductances in those wires increase.
- An objective of the present invention is to provide a semiconductor device which is capable of improving the electrical characteristics.
- Another objective of the present invention is to provide a semiconductor device which is capable of improving the capability of dissipating heat.
- a semiconductor device comprises
- a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips
- the at least two semiconductor chips which are connected by the plate-like conductive member have an individual transistor circuit, and the plate-like conductive member is exposed outside the sealed body.
- a semiconductor device comprises
- a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips
- the plate-like conductive member is exposed outside the sealed body
- the connecting portion of the plate-like conductive member at which the plate-like conductive member is connected to one semiconductor chip is joined to the connecting portion at which the plate-like conductive member is connected to the other semiconductor chip, on either the principal or rear surface of the sealed body, or on the outside of the semiconductor chips inside the sealed body.
- a semiconductor device comprises
- a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips
- the plate-like conductive member is exposed on the at least either principal or rear surface of the sealed body.
- a plurality of semiconductor chips are encapsulated, wherein
- At least three conductors having different potentials are partially exposed on either the upper or rear surface of the semiconductor device, or on both surfaces.
- a plurality of semiconductor chips are connected in series by a plate-like conductor, and a plurality of semiconductor chips are connected to the same surface of the conductor, wherein
- one or more semiconductor chips are disposed upside down and encapsulated.
- control power MOSFET chip's drain terminal has an electrical connection to the input terminal, which is an external connection terminal, via a plate-like conductor, or is directly connected to a plate-like conductor which is a part of the input terminal, and similarly,
- the synchronous power MOSFET chip's source terminal has an electrical connection to the ground terminal, which is an external connection terminal, via a plate-like conductor, or is directly connected to a plate-like conductor which is a part of the ground terminal.
- control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal are individually connected to plate-like conductors, and the plate-like conductors are connected to each other by a certain conductor, or the control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal are connected to a part of a common conductor.
- the conductor has an electrical connection to the output terminal which is an external connection terminal, or is a part of the output terminal.
- a plate-like conductor which is connected to the input terminal, ground terminal and output terminal or is a part of the terminals is partially or entirely exposed outside the insulating material which encapsulates the semiconductor device.
- a common plate-like conductor is used to connect the control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal, and the synchronous power MOSFET is connected upside down to the common surface of the conductor.
- FIG. 1 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 1 of the present invention
- FIG. 2 is a cross-sectional view showing the cross-sectional structure taken substantially along the lines A—A in FIG. 1 ;
- FIG. 3 is a drawing of the rear surface showing the structure of the semiconductor device shown in FIG. 1 ;
- FIG. 4 is an outside perspective view showing the structure of the semiconductor device shown in FIG. 1 ;
- FIG. 5 is a cross-sectional view showing the structure of a semiconductor device which is an altered example according to embodiment 1 of the present invention.
- FIG. 6 is a cross-sectional view showing the structure of a semiconductor device which is an altered example according to embodiment 1 of the present invention.
- FIG. 7 is a cross-sectional view showing the structure of a semiconductor device which is an altered example according to embodiment 1 of the present invention.
- FIG. 8 is a circuit diagram showing an example of an equivalent circuit when the MCM 1 shown in FIG. 1 is mounted on the semiconductor device (non-insulated DC/DC converter);
- FIG. 9 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 2 of the present invention.
- FIG. 10 is a cross-sectional view showing the cross-sectional structure taken substantially along the lines B—B in FIG. 9 ;
- FIG. 11 is a drawing of the rear surface showing the structure of the semiconductor device shown in FIG. 9 .
- FIG. 12 is an outside perspective view showing the structure of the semiconductor device shown in FIG. 9 ;
- FIG. 13 is a cross-sectional view showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 3 of the present invention
- FIG. 14 is a cross-sectional view showing the structure of a semiconductor device which is an altered example according to embodiment 3 of the present invention.
- FIG. 15 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 4 of the present invention
- FIG. 16 is a plan view, seen through a sealed body, showing the structure of a power-supply multiple chip module which is a comparative example.
- FIG. 17 is a perspective view, seen through a sealed body, showing the inside of the semiconductor device shown in FIG. 1 .
- the number of elements is not limited to a specific number and could be more or less unless otherwise specified, or unless the number of elements is obviously limited to a specific number in principle.
- FIG. 1 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 1 of the present invention.
- FIG. 17 is a perspective view, seen through a sealed body, showing the inside of the semiconductor device shown in FIG. 1 .
- FIG. 2 is a cross-sectional view showing the cross-sectional structure taken substantially along the lines A—A in FIG. 1 .
- FIG. 3 is a drawing of the rear surface showing the structure of the semiconductor device shown in FIG. 1 .
- FIG. 4 is an outside perspective view showing the structure of the semiconductor device shown in FIG. 1 .
- FIG. 5 through 7 are cross-sectional views showing the structure of a semiconductor device which is an altered example according to embodiment 1 of the present invention.
- FIG. 8 is a circuit diagram showing an example of an equivalent circuit when the MCM 1 shown in FIG. 1 is mounted on the semiconductor device (non-insulated DC/DC converter).
- FIG. 16 is a plan view, seen through a sealed body, showing the structure of a power-supply multiple chip module which is a comparative example.
- a plurality of semiconductor chips are encapsulated in one sealed body (insulating resin for sealing) 17 .
- an MCM (multiple chip module) 1 for a non-insulated DC/DC converter is explained as one example of the above-mentioned semiconductor device.
- an MCM 1 has a non-leaded QFN (Quad Flat Non-leaded Package) structure in which a plurality of external connection terminals 11 are disposed on the peripheral edge of the rear surface 17 b of the sealed body 17 .
- QFN Quad Flat Non-leaded Package
- the MCM 1 basically consists of a plurality of semiconductor chips, a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among those semiconductor chips, a sealed body 17 which encapsulates the plural semiconductor chips, and a plurality of external connection terminals 11 disposed on the peripheral edge of the rear surface 17 b of the sealed body 17 . Furthermore, in the MCM 1 , at least two semiconductor chips connected by the plate-like conductive member have an individual transistor circuit, and the plate-like conductive member is exposed outside the sealed body 17 .
- the MCM 1 has a control power MOSFET chip 2 (first semiconductor chip), a synchronous power MOSFET chip 3 (second semiconductor chip) which has an electrical connection in series to the control power MOSFET chip 2 by a plate-like conductive member, and a driver IC chip 4 (third semiconductor chip) which turns on and off those semiconductor chips.
- the three semiconductor chips are sealed (encapsulated) in the sealed body 17 .
- the MCM 1 has two semiconductor chips (first and second semiconductor chips) each of which has a power-supply transistor circuit, and one semiconductor chip (third semiconductor chip) which has a driver circuit for controlling the two semiconductor chips.
- a control power MOSFET chip (first transistor) 2 is disposed on the input-side plate-like lead (first plate-like conductive member) 5 . That is, a terminal which functions as a drain terminal DT 1 (first output electrode) of the control power MOSFET is formed on the rear surface 2 b of the control power MOSFET chip 2 , and the input-side plate-like lead 5 which is a first plate-like conductive member is connected to the drain terminal DT 1 .
- control power MOSFET chip 2 On the principal surface 2 a of the control power MOSFET chip 2 , terminals which function as the control power MOSFET chip's source terminal (second output electrode) ST 1 and gate terminal (input electrode) GT 1 are formed, and the source terminal ST 1 located on the principal surface 2 a of the control power MOSFET chip 2 is connected to the plate-like lead for source 12 which is a second plate-like conductive member.
- a synchronous power MOSFET chip (second transistor) 3 is disposed on the output-side plate-like lead 6 . That is, a terminal which functions as a drain terminal (first output terminal) DT 2 of the synchronous power MOSFET is formed on the rear surface 3 b of the synchronous power MOSFET chip 3 , and the output-side plate-like lead 6 which is a third plate-like conductive member is connected to the drain terminal DT 2 .
- terminals which function as the synchronous power MOSFET chip's source terminal ST 2 and gate terminal (input electrode) GT 2 are formed, and the source terminal ST 2 located on the principal surface 3 a of the synchronous power MOSFET chip 3 is connected to the plate-like lead for source 13 which is a fourth plate-like conductive member.
- the MCM 1 has a ground-side plate-like lead 7 and a driver-side plate-like lead 8 , and a driver IC chip 4 is disposed on the driver-side plate-like lead 8 . That is, the driver IC chip 4 and the driver-side plate-like lead 8 are connected to each other.
- the driver IC chip 4 some terminals 9 among a plurality of terminals 9 located on the principal surface 4 a of the driver IC chip 4 are electrically connected to the power MOSFET chips' gate terminal GT 1 , source terminal ST 1 , gate terminal GT 2 and source terminal ST 2 by wires 10 , such as gold wires or thin metal wires, thereby the power MOSFETS are turned on and off.
- Other terminals 9 located on the principal surface 4 a of the driver IC chip 4 are a power supply voltage terminal, boot terminal, voltage check terminal and a control signal input terminal, and each of the terminals is connected to a corresponding external connection terminal 11 by a wire 10 .
- the input-side plate-like lead 5 , output-side plate-like lead 6 , and driver-side plate-like lead 8 are partially or entirely exposed on the rear surface 17 b of the sealed body 17 of the MCM 1 .
- Those leads function as external connection terminals that have electrical connections to the printed wiring board as well as function as heat radiating parts that dissipates heat on the printed wiring board.
- the plate-like lead for source 12 provides an electrical connection between the source terminal ST 1 of the control power MOSFET chip 2 and the output-side plate-like lead 6 .
- the plate-like lead for source 13 provides an electrical connection between the source terminal ST 2 of the synchronous power MOSFET chip 3 and the ground-side plate-like lead 7 .
- FIG. 4 shows, the plate-like lead for source 12 and the plate-like lead for source 13 are partially exposed on the upper surface 17 a of the sealed body 17 of the MCM 1 .
- drain terminals DT 1 and DT 2 located on the rear surfaces 2 b and 3 b of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 are joined to the input-side plate-like lead 5 and the output-side plate-like lead 6 , respectively, with die bonding material, such as silver paste 14 , interposed.
- source terminals ST 1 and ST 2 located on the principal surfaces 2 a and 3 a of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 are joined to the plate-like leads for source 12 and 13 , respectively, via a plurality of protruding conductive electrodes such as gold bumps 15 .
- FIGS. 2 , 5 , 6 and 7 show various types of connections between the second plate-like conductive member and the third plate-like conductive member, and between the fourth plate-like conductive member and the ground-side plate-like lead 7 .
- the plate-like lead for source 12 has an electrical connection to the output-side plate-like lead 6 via a conductor 16
- the plate-like lead for source 13 has an electrical connection to the ground-side plate-like lead 7 via a conductor 16 .
- a conductive member (second conductive member or third conductive member) which consists of a plate-like lead for source 12 , conductor 16 , and an output-side plate-like lead 6 has two bends which forms a nearly S-shape.
- the plate-like lead for source (second plate-like conductive member) 12 and the output-side plate-like lead (third plate-like conductive member) 6 it is possible to integrate the plate-like lead for source 13 and the ground-side plate-like lead 7 .
- leads are integrated by press work.
- leads are integrated by bending work.
- the plate-like lead for source 12 located on the upper-surface 17 a side of the sealed body 17 is joined and electrically connected to the output-side plate-like lead 6 located on the rear surface 17 b side of the sealed body 17 , on the outside of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 , inside the sealed body 17 .
- FIG. 8 shows an example of an equivalent circuit when the MCM 1 is mounted.
- the MCM 1 is connected by a coil 20 , capacitors 22 and 23 , load 24 and an input power source 21 by wires.
- a non-insulated DC/DC converter circuit 19 heat is mostly generated by the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 .
- one surface of the plate-like conductive member which functions as a current path is connected to a semiconductor chip and the other surface is exposed outside the sealed body 17 , thereby making it possible to increase the capability of dissipating heat.
- the plate-like conductive member exposed on the rear surface 17 b of the sealed body 17 functions as an external connection terminal and is also capable of dissipating heat on the printed wiring board where the MCM 1 is mounted.
- the plate-like conductive member exposed on the upper surface 17 a of the sealed body 17 directly dissipates heat in the ambient air or increases the heat conductivity to a heat radiating member, such as a heat radiating fin 27 (see FIGS. 13 and 14 ) or heat sink, mounted on the MCM 1 .
- heat generated by the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 is conveyed from the input-side plate-like lead 5 and the output-side plate-like lead 6 , which are exposed on the rear surface 17 b of the sealed body 17 , to the printed wiring board, thereby dissipating the heat. Furthermore, heat can be externally dissipated from the plate-like lead for source 12 and the plate-like lead for source 13 which are exposed on the upper surface 17 a of the sealed body 17 , thereby increasing the heat dissipation capability.
- the source terminal ST 1 of the control power MOSFET chip 2 is connected to the output-side plate-like lead 6 by the plate-like leads for source 12
- the source terminal ST 2 of the synchronous power MOSFET chip 3 is connected to the ground-side plate-like lead 7 by the plate-like leads for source 13 . Therefore, when compared to a multiple chip module in a comparative example, shown in FIG. 16 , which uses ordinary wire connections using wires 25 such as gold wires, the cross-sectional area of the current path can be made larger in the MCM 1 according to embodiment 1. As a result, parasitic components, such as parasitic resistances and inductances, are reduced, which makes it possible to increase the conversion efficiency.
- FIG. 9 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 2 of the present invention.
- FIG. 10 is a cross-sectional view showing the cross-sectional structure taken substantially along the lines B—B in FIG. 9 .
- FIG. 11 is a drawing of the rear surface showing the structure of the semiconductor device shown in FIG. 9 .
- FIG. 12 is an outside perspective view showing the structure of the semiconductor device shown in FIG. 9 .
- a semiconductor device is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter.
- the semiconductor device is a semiconductor package in which a control power MOSFET chip 2 , synchronous power MOSFET chip 3 and a driver IC chip 4 winch turns on and off those power MOSFET chips are encapsulated.
- FIGS. 9 and 10 show, a control power MOSFET chip 2 is disposed on an input-side plate-like lead 5 . And, terminals which function as the control power MOSFET chip's source terminal ST 1 and gate terminal GT 1 are formed on the principal surface 2 a of the control power MOSFET chip 2 . Furthermore, a terminal which functions as the control power MOSFET chip's drain terminal DT 1 is formed on the rear surface 2 b of the control power MOSFET chip 2 .
- a synchronous power MOSFET chip 3 is disposed on the ground-side plate-like lead 7 . That is, as shown in FIG. 10 , the synchronous power MOSFET chip 3 , which is a second semiconductor chip, is disposed reversely (principal and rear surfaces upside down) compared to the control power MOSFET chip 2 which is a first semiconductor chip.
- a terminal which functions as the synchronous power MOSFET chip's drain terminal DT 2 is formed on the principal surface 3 a of the synchronous power MOSFET chip 3
- terminals which function as the synchronous power MOSFET chip's source terminal ST 2 and gate terminal GT 2 are formed on the rear surface 3 b of the synchronous power MOSFET chip 3 .
- the MCM 1 for a DC/DC converter has an output-side plate-like lead 6 .
- a driver IC chip 4 is disposed on the driver-side plate-like lead 8 .
- Some of the terminals 9 located on the principal surface 4 a of the driver IC chip 4 have electrical connections to the control power MOSFET chip's 2 gate terminal GT 1 and source terminal ST 1 , and the synchronous power MOSFET chip's 3 source terminal ST 2 and gate terminal GT 2 , thereby turning on and off each power MOSFET.
- the gate terminal GT 2 is downwardly formed on the principal surface 3 a, as shown in FIG. 9 , some of the terminals 9 of the driver IC chip 4 are connected to the synchronous power MOSFET chip's 3 gate terminal GT 2 by wires 10 with a metal plate 26 interposed.
- the gate terminal GT 2 has an electrical connection to a metal plate 26 via bump electrodes, for example.
- Other terminals are a power supply voltage terminal, boot terminal, voltage check terminal, and a control signal input terminal. Each of the terminals is connected to a corresponding external connection terminal 11 by a wire 10 .
- the input-side plate-like lead 5 , output-side plate-like lead 6 , ground-side plate-like lead 7 and driver-side plate-like lead 8 are partially or entirely exposed on the rear surface 17 b of the sealed body 17 .
- those plate-like leads function as external connection terminals which have electrical connections to the printed wiring board as well as function as heat radiating parts which dissipate heat on the printed wiring board.
- the plate-like lead for source 12 provides electrical connections between the source terminal ST 1 of the control power MOSFET chip 2 and the drain terminal DT 2 of the synchronous power MOSFET chip 3 . As shown in FIG. 12 , the plate-like lead for source 12 is partially exposed on the upper surface 17 a of the sealed body 17 .
- the connecting portion of the plate-like lead for source 12 (second plate-like conductive member) at which the lead connects to the control power MOSFET chip 2 (one semiconductor chip) is joined to the connecting portion at which the lead connects to the synchronous power MOSFET chip 3 (the other semiconductor chip) on the upper surface 17 a of the sealed body 17 .
- the surface of the control power MOSFET chip 2 on which the drain terminal DT 1 is formed is pressure-bonded to the input-side plate-like lead 5 , for example, via a die bonding material such as silver paste 14 , and the source terminal ST 1 located on the opposite surface is connected to the plate-like lead for source 12 , for example, via a conductive material such as a gold bump 15 .
- the surface of the synchronous power MOSFET chip 3 on which the drain terminal DT 2 is formed is pressure-bonded to the plate-like lead for source 12 , for example, via a die bonding material such as silver paste 14 , and the source terminal ST 2 located on the opposite surface is connected to the ground-side plate-like lead 7 , for example, via a conductive material such as a gold bump 15 .
- an MCM 1 according to embodiment 2 by installing at least one semiconductor chip upside down, it is possible to make manufacturing of the plate-like lead for source 12 much easier than that of an MCM 1 according to embodiment 1. That is, as shown in FIG. 10 , it is possible to connect the source terminal ST 1 of the control power MOSFET chip 2 and the drain terminal DT 2 of the synchronous power MOSFET chip 3 onto the same surface of the plate-like lead for source 12 by using only one plate-like lead for source 12 . Therefore, it is possible to avoid the complicated manufacturing process in which a plurality of semiconductor chips are connected on the different surfaces of the plate-like lead for source 12 . As a result, it is possible to reduce the time to connect and manufacture leads. Thus, the structure of the MCM 1 can be simplified.
- the plate-like lead for source 12 can be formed by using only one plate-like lead, it is possible to make the area of the plate-like lead for source 12 larger than that of the MCM 1 according to embodiment 1. As a consequence, the heat dissipation capability can be increased and the voltage conversion efficiency can also be increased.
- FIG. 13 is a cross-sectional view showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 3 of the present invention.
- FIG. 14 is a cross-sectional view showing the structure of a semiconductor device which is an altered example according to embodiment 3 of the present invention.
- a semiconductor device is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter.
- MCM multiple chip module
- An MCM 1 shown in FIG. 13 is an MCM 1 in which a heat radiating fin 27 (heat radiating member) is mounted to the MCM 1 according to embodiment 1. That is, in an MCM 1 according to embodiment 1, two plate-like leads (plate-like leads for source 12 and 13 ) exposed on the upper surface 17 a of the sealed body 17 have different potentials, and therefore, a heat radiating member such as a heat radiating fin 27 is installed with an insulating sheet 28 interposed.
- an MCM 1 shown in FIG. 14 is an MCM 1 in which a heat radiating fin 27 (heat radiating member) is mounted to the MCM 1 according to embodiment 2.
- a heat radiating fin 27 heat radiating member
- this MCM 1 only one plate-like lead for source 12 is exposed on the upper surface 17 a of the sealed body 17 . Therefore, the plate-like lead for source 12 can be directly connected to the heat radiating fin 27 without an insulating sheet 28 interposed. Consequently, it is possible to make the heat dissipation capability higher than that of the MCM 1 shown in FIG. 13 .
- FIG. 15 is a plan view, seen through a sealed body, showing an example of the structure of a semiconductor device (multiple chip module for a non-insulated DC/DC converter) according to embodiment 4 of the present invention.
- a semiconductor device is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter.
- wires 10 are used to connect the control power MOSFET chip's 2 source terminal ST 1 and gate terminal GT 1 to the driver IC drip's 4 terminals 9 , or to connect the synchronous power MOSFET chip's 3 source terminal ST 2 and gate terminal GT 2 to the driver IC chip's 4 terminals 9 .
- metal plates (other plate-like conductive members) 29 are used for the connections of the gate drive circuits, or other connections.
- the terminal of the control power MOSFET chip 2 has an electrical connection to a corresponding terminal 9 of the driver IC chip 4 by a metal plate 29
- the terminal of the synchronous power MOSFET chip 3 also has an electrical connection to a corresponding terminal 9 of the driver IC chip 4 by a metal plate 29
- electrical connections between the terminals and metal plates 29 are provided, for example, by using gold bumps 15 .
- parasitic resistances and parasitic inductances including a gate drive circuit, other than the main current path may cause the efficiency to decrease. Therefore, by connecting the driver IC chip 4 to the electrodes of the control power MOSFET chip 2 and synchronous power MOSFET chip 3 by using metal plates 29 , it is possible to reduce the parasitic resistances and parasitic inductances compared to the situations where wire connections are used.
- the MCM 1 which is a QFN-type semiconductor device is explained.
- the MCM 1 is not intended to be limited to the QFN-type semiconductor device, and can be a semiconductor device of other structures such as a QFP (Quad Flat Package) type semiconductor device as long as a plurality of semiconductor chips are encapsulated in a sealed body.
- the number of encapsulated semiconductor chips is not intended to be limited to three, therefore, there can be four or more semiconductor chips.
- the present invention is suitable for use in a semiconductor device or electronic device.
- the present invention has a plate-like conductive member to connect terminals of two semiconductor chips, it is possible to reduce parasitic resistances and parasitic inductances compared to the situations where wire connections are used, thereby increasing the electrical characteristics of the semiconductor device. Furthermore, the above-mentioned plate-like conductive member is exposed outside the sealed body, thereby making it possible to increase the heat dissipation capability of the semiconductor device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Die Bonding (AREA)
Abstract
In the semiconductor device, a control power MOSFET chip 2 is disposed on the input-side plate-like lead 5, and the drain terminal DT1 is formed on the rear surface of the chip 2, and the source terminal ST1 and gate terminal GT1 are formed on the principal surface of the chip 2, and the source terminal ST1 is connected to the plate-like lead for source 12. Furthermore, a synchronous power MOSFET chip 3 is disposed on the output-side plate-like lead 6, and the drain terminal DT2 is formed on the rear surface of the chip 3 and the output-side plate-like lead 6 is connected to the drain terminal DT2. Furthermore, source terminal ST2 and gate terminal GT2 are formed on the principal surface of the synchronous power MOSFET chip 3, and the source terminal ST2 is connected to the plate-like lead for source 13. The plate-like leads for source 12 and 13 are exposed, and therefore, it is possible to increase the heat dissipation capability of the MCM 1.
Description
Claim of priority the present application claims priority from Japanese application serial no. 2004-020474, filed on Jan. 28, 2004, the content of which is hereby incorporated by reference into this application.
The present invention relates to a semiconductor device, and specifically to a technology which effectively applies to a semiconductor device in which a plurality of semiconductor chips are encapsulated in a sealed body.
In a conventional semiconductor device, the rear surface of a heat sink (first conductive member) is soldered on the upper surface of each semiconductor chip, and the upper surface of a second conductive member is soldered on the rear surface of each semiconductor chip. Furthermore, the rear surface of a third conductive member is soldered on the upper surface of the heat sink, and the land of the prescribed semiconductor chip has an electrical connection to a control terminal via a bonding wire. The semiconductor chips, heat sink, upper surface of the second conductive member, rear surface of the third conductive member, and a part of the bonding wire and control terminal are encapsulated within resin. Japanese Application Patent Laid-open Publication No. 2002-110893, FIG. 1.
In the above semiconductor device, an external cooling member abuts on the rear surface of the second conductive member with a plate-like insulating member interposed in order to accelerate the heat dissipation. See Japanese Application Patent Laid-open Publication No. 2003-46036, FIG. 1.
Recently, semiconductor devices have been highly integrated and the size of the device has been reduced. Especially, a semiconductor device in which a plurality of semiconductor chips are encapsulated within an insulating material is called a multi-chip-module (MCM) and is widely developed.
One application of the above-mentioned MCM is a switching circuit used for a power-supply circuit. Among those, an insulated DC/DC converter is widely used for information devices such as personal computers. Such products are required to be highly efficient and small because central processing units (CPU) are using larger current and higher frequency.
A DC/DC converter consists of two power MOSFETS (Metal Oxide Semiconductor Field Effect Transistor), one for control and one for synchronization, a driver IC (integrated circuit) for turning the MOSFETS on and off, and other components such as a choke coil and capacitor. Generally, in an MCM for a DC/DC converter, two power MOSFETS and one driver IC are encapsulated in one package.
The objective of encapsulating a plurality of semiconductor chips in one package (sealed body) is to reduce the package area as well as reduce parasitic components such as parasitic inductances and resistances located on the circuit.
Moreover, because a power-supply circuit uses large current and high frequency, parasitic components cause significant power loss. To prevent that problem, it is necessary to shorten the wiring patterns between chips, between the driver IC and MOSFETS, and between the output terminal and a load. In a power-supply MCM, a driver IC and MOSFETS are located near each other and encapsulated together, and semiconductor elements constituting a power-supply circuit are integrated in one package. This configuration allows the MCM to be mounted extremely close to the load. Therefore, it is expected that the MCM will be the most commonly used power-supply device.
That is, when compared to a conventional packaging method in which individually-packaged elements are arrayed on a printed board, in the above-mentioned MCM, the wiring distance is shorter and parasitic inductances and resistances are significantly reduced, thereby enabling a low-loss circuit.
Although, in an MCM, encapsulating a plurality of semiconductor chips in one package reduces the package area, there is a problem in that the heat dissipation capability is reduced.
Furthermore, as shown in a comparative example in FIG. 16 which the inventor of the present invention has been studying, in an MCM, wires are used for major current paths between the chips and frame to enable electrical connections. Therefore, wires make up a significant portion of all the parasitic components. As a result, there is a problem in that parasitic components such as parasitic resistances and inductances in those wires increase.
An objective of the present invention is to provide a semiconductor device which is capable of improving the electrical characteristics.
Furthermore, another objective of the present invention is to provide a semiconductor device which is capable of improving the capability of dissipating heat.
The above-mentioned and other objectives, and novel features will become more apparent as the description in this specification proceeds with reference to the accompanying drawings.
Major embodiments of the present invention disclosed in this application are briefly described as shown below:
That is, a semiconductor device according to the present invention comprises
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips,
a sealed body which encapsulates the plurality of semiconductor chips, and
a plurality of external connection terminals which have individual electrical connections to the plurality of semiconductor chips, wherein
the at least two semiconductor chips which are connected by the plate-like conductive member have an individual transistor circuit, and the plate-like conductive member is exposed outside the sealed body.
Furthermore, a semiconductor device according to the present invention comprises
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips,
a sealed body which encapsulates the plurality of semiconductor chips by resin, and
a plurality of external connection terminals which have individual electrical connections to the plurality of semiconductor chips, wherein
the plate-like conductive member is exposed outside the sealed body, and
the connecting portion of the plate-like conductive member at which the plate-like conductive member is connected to one semiconductor chip is joined to the connecting portion at which the plate-like conductive member is connected to the other semiconductor chip, on either the principal or rear surface of the sealed body, or on the outside of the semiconductor chips inside the sealed body.
Furthermore, a semiconductor device according to the present invention comprises
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among the plurality of semiconductor chips,
a sealed body which encapsulates the plurality of semiconductor chips by resin, and
a plurality of external connection terminals which have individual electrical connections to the plurality of semiconductor chips and are disposed on the peripheral edge of the rear surface of the sealed body, wherein
the plate-like conductive member is exposed on the at least either principal or rear surface of the sealed body.
Furthermore, in a semiconductor device according to the present invention, a plurality of semiconductor chips are encapsulated, wherein
major current paths between elements or between terminals and elements have electrical connections made possible by a plate-like conductor, and
at least three conductors having different potentials are partially exposed on either the upper or rear surface of the semiconductor device, or on both surfaces.
Furthermore, in a semiconductor device according to the present invention,
a plurality of semiconductor chips are connected in series by a plate-like conductor, and a plurality of semiconductor chips are connected to the same surface of the conductor, wherein
among a plurality of semiconductor chips consisting of the semiconductor device,
one or more semiconductor chips are disposed upside down and encapsulated.
For an example, in an MCM for a DC/DC converter,
the control power MOSFET chip's drain terminal has an electrical connection to the input terminal, which is an external connection terminal, via a plate-like conductor, or is directly connected to a plate-like conductor which is a part of the input terminal, and similarly,
the synchronous power MOSFET chip's source terminal has an electrical connection to the ground terminal, which is an external connection terminal, via a plate-like conductor, or is directly connected to a plate-like conductor which is a part of the ground terminal.
Furthermore, the control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal are individually connected to plate-like conductors, and the plate-like conductors are connected to each other by a certain conductor, or the control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal are connected to a part of a common conductor.
Furthermore, the conductor has an electrical connection to the output terminal which is an external connection terminal, or is a part of the output terminal.
Furthermore, a plate-like conductor which is connected to the input terminal, ground terminal and output terminal or is a part of the terminals is partially or entirely exposed outside the insulating material which encapsulates the semiconductor device.
Furthermore, a common plate-like conductor is used to connect the control power MOSFET chip's source terminal and the synchronous power MOSFET chip's drain terminal, and the synchronous power MOSFET is connected upside down to the common surface of the conductor.
FIG. 11. is a drawing of the rear surface showing the structure of the semiconductor device shown in FIG. 9.
In the following embodiments, the same or similar parts will not be repeatedly described unless specifically necessary.
Furthermore, as a matter of convenience, in the following embodiments, a plurality of separate sections or embodiments will be explained when necessary. However, those separate sections or embodiments are all related unless otherwise specified, and one section may be a part of or the whole of an altered example, or a description may be a detailed or supplementary explanation.
Moreover, in the following embodiments, when the number of elements (including the number of items, numeric value, quantity, and range) is mentioned, the number of elements is not limited to a specific number and could be more or less unless otherwise specified, or unless the number of elements is obviously limited to a specific number in principle.
Hereafter, embodiments of the present invention will be explained in detail with reference to the drawings. In all of the drawings used for explaining the embodiments, members that have the same function have been assigned the same numbers to avoid repeated explanations.
(Embodiment 1)
In a semiconductor device according to embodiment 1, shown in FIGS. 1 through 4 and 17, a plurality of semiconductor chips are encapsulated in one sealed body (insulating resin for sealing) 17. In embodiment 1, an MCM (multiple chip module) 1 for a non-insulated DC/DC converter is explained as one example of the above-mentioned semiconductor device.
Furthermore, as shown in FIG. 3 , an MCM 1 has a non-leaded QFN (Quad Flat Non-leaded Package) structure in which a plurality of external connection terminals 11 are disposed on the peripheral edge of the rear surface 17b of the sealed body 17.
The MCM 1 according to embodiment 1 basically consists of a plurality of semiconductor chips, a plate-like conductive member which has electrical connections to at least two semiconductor chips' terminals among those semiconductor chips, a sealed body 17 which encapsulates the plural semiconductor chips, and a plurality of external connection terminals 11 disposed on the peripheral edge of the rear surface 17b of the sealed body 17. Furthermore, in the MCM 1, at least two semiconductor chips connected by the plate-like conductive member have an individual transistor circuit, and the plate-like conductive member is exposed outside the sealed body 17.
Moreover, the MCM 1 has a control power MOSFET chip 2 (first semiconductor chip), a synchronous power MOSFET chip 3 (second semiconductor chip) which has an electrical connection in series to the control power MOSFET chip 2 by a plate-like conductive member, and a driver IC chip 4 (third semiconductor chip) which turns on and off those semiconductor chips. The three semiconductor chips are sealed (encapsulated) in the sealed body 17.
That is, the MCM 1 has two semiconductor chips (first and second semiconductor chips) each of which has a power-supply transistor circuit, and one semiconductor chip (third semiconductor chip) which has a driver circuit for controlling the two semiconductor chips.
The detailed structure of the MCM 1 according to embodiment 1 will be explained. As shown in FIGS. 1 and 2 , a control power MOSFET chip (first transistor) 2 is disposed on the input-side plate-like lead (first plate-like conductive member) 5. That is, a terminal which functions as a drain terminal DT1 (first output electrode) of the control power MOSFET is formed on the rear surface 2b of the control power MOSFET chip 2, and the input-side plate-like lead 5 which is a first plate-like conductive member is connected to the drain terminal DT1.
On the principal surface 2a of the control power MOSFET chip 2, terminals which function as the control power MOSFET chip's source terminal (second output electrode) ST1 and gate terminal (input electrode) GT1 are formed, and the source terminal ST1 located on the principal surface 2a of the control power MOSFET chip 2 is connected to the plate-like lead for source 12 which is a second plate-like conductive member.
Furthermore, a synchronous power MOSFET chip (second transistor) 3 is disposed on the output-side plate-like lead 6. That is, a terminal which functions as a drain terminal (first output terminal) DT2 of the synchronous power MOSFET is formed on the rear surface 3b of the synchronous power MOSFET chip 3, and the output-side plate-like lead 6 which is a third plate-like conductive member is connected to the drain terminal DT2. On the principal surface 3a of the synchronous power MOSFET chip 3, terminals which function as the synchronous power MOSFET chip's source terminal ST2 and gate terminal (input electrode) GT2 are formed, and the source terminal ST2 located on the principal surface 3a of the synchronous power MOSFET chip 3 is connected to the plate-like lead for source 13 which is a fourth plate-like conductive member.
Furthermore, the MCM 1 has a ground-side plate-like lead 7 and a driver-side plate-like lead 8, and a driver IC chip 4 is disposed on the driver-side plate-like lead 8. That is, the driver IC chip 4 and the driver-side plate-like lead 8 are connected to each other. On the driver IC chip 4, some terminals 9 among a plurality of terminals 9 located on the principal surface 4a of the driver IC chip 4 are electrically connected to the power MOSFET chips' gate terminal GT1, source terminal ST1, gate terminal GT2 and source terminal ST2 by wires 10, such as gold wires or thin metal wires, thereby the power MOSFETS are turned on and off.
As shown in FIG. 3 , the input-side plate-like lead 5, output-side plate-like lead 6, and driver-side plate-like lead 8, each of which has an installed semiconductor chip, are partially or entirely exposed on the rear surface 17b of the sealed body 17 of the MCM 1. Those leads function as external connection terminals that have electrical connections to the printed wiring board as well as function as heat radiating parts that dissipates heat on the printed wiring board.
As FIGS. 1 and 2 show, the plate-like lead for source 12 provides an electrical connection between the source terminal ST1 of the control power MOSFET chip 2 and the output-side plate-like lead 6. Similarly, the plate-like lead for source 13 provides an electrical connection between the source terminal ST2 of the synchronous power MOSFET chip 3 and the ground-side plate-like lead 7.
Moreover, as FIG. 4 shows, the plate-like lead for source 12 and the plate-like lead for source 13 are partially exposed on the upper surface 17a of the sealed body 17 of the MCM 1.
Furthermore, as FIG. 2 shows, drain terminals DT1 and DT2 located on the rear surfaces 2b and 3b of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 are joined to the input-side plate-like lead 5 and the output-side plate-like lead 6, respectively, with die bonding material, such as silver paste 14, interposed.
On the other hand, source terminals ST1 and ST2 located on the principal surfaces 2a and 3a of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 are joined to the plate-like leads for source 12 and 13, respectively, via a plurality of protruding conductive electrodes such as gold bumps 15.
It is possible to use protruding solder electrodes or paste-like conductive adhesives to join the source terminals ST1 and ST2 located on the principal surfaces 2a and 3a of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3, respectively, to the plate-like leads for source 12 and 13.
As shown in FIG. 2 , the plate-like lead for source 12 has an electrical connection to the output-side plate-like lead 6 via a conductor 16, and the plate-like lead for source 13 has an electrical connection to the ground-side plate-like lead 7 via a conductor 16. Furthermore, as shown in an altered example in FIG. 5 , it is possible to create the portions between the plate-like leads for source 12a and 13a and the connections to the output-side plate-like lead 6 and the ground-side plate-like lead 7, respectively, so that those portions become the same conductive members as the leads and then provide electrical connections by using solder 18. A conductive member (second conductive member or third conductive member) which consists of a plate-like lead for source 12, conductor 16, and an output-side plate-like lead 6 has two bends which forms a nearly S-shape.
Furthermore, as shown in altered examples in FIGS. 6 and 7 , it is possible to integrate the plate-like lead for source (second plate-like conductive member) 12 and the output-side plate-like lead (third plate-like conductive member) 6, and also integrate the plate-like lead for source 13 and the ground-side plate-like lead 7. In an altered example shown in FIG. 6 , leads are integrated by press work. In an altered example shown in FIG. 7 , leads are integrated by bending work.
Thus, in the MCM 1 according to embodiment 1, the plate-like lead for source 12 located on the upper-surface 17a side of the sealed body 17 is joined and electrically connected to the output-side plate-like lead 6 located on the rear surface 17b side of the sealed body 17, on the outside of the control power MOSFET chip 2 and the synchronous power MOSFET chip 3, inside the sealed body 17.
Next, FIG. 8 shows an example of an equivalent circuit when the MCM 1 is mounted. The MCM 1 is connected by a coil 20, capacitors 22 and 23, load 24 and an input power source 21 by wires. In a non-insulated DC/DC converter circuit 19, heat is mostly generated by the control power MOSFET chip 2 and the synchronous power MOSFET chip 3.
According to an MCM 1 of embodiment 1, one surface of the plate-like conductive member which functions as a current path is connected to a semiconductor chip and the other surface is exposed outside the sealed body 17, thereby making it possible to increase the capability of dissipating heat. The plate-like conductive member exposed on the rear surface 17b of the sealed body 17 functions as an external connection terminal and is also capable of dissipating heat on the printed wiring board where the MCM 1 is mounted. Furthermore, the plate-like conductive member exposed on the upper surface 17a of the sealed body 17 directly dissipates heat in the ambient air or increases the heat conductivity to a heat radiating member, such as a heat radiating fin 27 (see FIGS. 13 and 14 ) or heat sink, mounted on the MCM 1.
That is, heat generated by the control power MOSFET chip 2 and the synchronous power MOSFET chip 3 is conveyed from the input-side plate-like lead 5 and the output-side plate-like lead 6, which are exposed on the rear surface 17b of the sealed body 17, to the printed wiring board, thereby dissipating the heat. Furthermore, heat can be externally dissipated from the plate-like lead for source 12 and the plate-like lead for source 13 which are exposed on the upper surface 17a of the sealed body 17, thereby increasing the heat dissipation capability.
As a result, it is possible to increase the heat dissipation capability in the MCM 1. It is also possible to increase the voltage conversion efficiency of the MCM 1.
Furthermore, in an MCM 1 according to embodiment 1, the source terminal ST1 of the control power MOSFET chip 2 is connected to the output-side plate-like lead 6 by the plate-like leads for source 12, and the source terminal ST2 of the synchronous power MOSFET chip 3 is connected to the ground-side plate-like lead 7 by the plate-like leads for source 13. Therefore, when compared to a multiple chip module in a comparative example, shown in FIG. 16 , which uses ordinary wire connections using wires 25 such as gold wires, the cross-sectional area of the current path can be made larger in the MCM 1 according to embodiment 1. As a result, parasitic components, such as parasitic resistances and inductances, are reduced, which makes it possible to increase the conversion efficiency.
That is, it is possible to reduce parasitic resistances and parasitic inductances compared to the situations where wire connections are used, thereby making it possible to increase the electrical characteristics of the MCM 1.
Furthermore, it is possible to easily manufacture a reliable semiconductor device by connecting in series the current path between the first transistor's first output electrode and second output electrode to the current path between the second transistor's first output electrode and second output electrode, and mechanically integrating the first, second and third conductive members, and first and second transistors.
(Embodiment 2)
Similar to embodiment 1, a semiconductor device according to embodiment 2 is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter. The semiconductor device is a semiconductor package in which a control power MOSFET chip 2, synchronous power MOSFET chip 3 and a driver IC chip 4 winch turns on and off those power MOSFET chips are encapsulated.
The structure of the MCM 1 according to embodiment 2 will be described. As FIGS. 9 and 10 show, a control power MOSFET chip 2 is disposed on an input-side plate-like lead 5. And, terminals which function as the control power MOSFET chip's source terminal ST1 and gate terminal GT1 are formed on the principal surface 2a of the control power MOSFET chip 2. Furthermore, a terminal which functions as the control power MOSFET chip's drain terminal DT1 is formed on the rear surface 2b of the control power MOSFET chip 2.
On the other hand, what is different from embodiment 1 is that a synchronous power MOSFET chip 3 is disposed on the ground-side plate-like lead 7. That is, as shown in FIG. 10 , the synchronous power MOSFET chip 3, which is a second semiconductor chip, is disposed reversely (principal and rear surfaces upside down) compared to the control power MOSFET chip 2 which is a first semiconductor chip. Moreover, a terminal which functions as the synchronous power MOSFET chip's drain terminal DT2 is formed on the principal surface 3a of the synchronous power MOSFET chip 3, and terminals which function as the synchronous power MOSFET chip's source terminal ST2 and gate terminal GT2 are formed on the rear surface 3b of the synchronous power MOSFET chip 3.
As FIG. 9 shows, the MCM 1 for a DC/DC converter has an output-side plate-like lead 6.
Furthermore, a driver IC chip 4 is disposed on the driver-side plate-like lead 8. Some of the terminals 9 located on the principal surface 4a of the driver IC chip 4 have electrical connections to the control power MOSFET chip's 2 gate terminal GT1 and source terminal ST1, and the synchronous power MOSFET chip's 3 source terminal ST2 and gate terminal GT2, thereby turning on and off each power MOSFET. Moreover, because the gate terminal GT2 is downwardly formed on the principal surface 3a, as shown in FIG. 9 , some of the terminals 9 of the driver IC chip 4 are connected to the synchronous power MOSFET chip's 3 gate terminal GT2 by wires 10 with a metal plate 26 interposed. The gate terminal GT2 has an electrical connection to a metal plate 26 via bump electrodes, for example. Other terminals are a power supply voltage terminal, boot terminal, voltage check terminal, and a control signal input terminal. Each of the terminals is connected to a corresponding external connection terminal 11 by a wire 10.
As shown in FIG. 11 , the input-side plate-like lead 5, output-side plate-like lead 6, ground-side plate-like lead 7 and driver-side plate-like lead 8 are partially or entirely exposed on the rear surface 17b of the sealed body 17. Thus, those plate-like leads function as external connection terminals which have electrical connections to the printed wiring board as well as function as heat radiating parts which dissipate heat on the printed wiring board.
However, it is not necessary to expose all of the plate-like leads. For example, it is possible that only the output-side plate-like lead 6 is hidden.
Furthermore, the plate-like lead for source 12 provides electrical connections between the source terminal ST1 of the control power MOSFET chip 2 and the drain terminal DT2 of the synchronous power MOSFET chip 3. As shown in FIG. 12 , the plate-like lead for source 12 is partially exposed on the upper surface 17a of the sealed body 17.
Therefore, in an MCM 1 according to embodiment 2, as shown in FIG. 9 , the connecting portion of the plate-like lead for source 12 (second plate-like conductive member) at which the lead connects to the control power MOSFET chip 2 (one semiconductor chip) is joined to the connecting portion at which the lead connects to the synchronous power MOSFET chip 3 (the other semiconductor chip) on the upper surface 17a of the sealed body 17.
Moreover, the surface of the control power MOSFET chip 2 on which the drain terminal DT1 is formed is pressure-bonded to the input-side plate-like lead 5, for example, via a die bonding material such as silver paste 14, and the source terminal ST1 located on the opposite surface is connected to the plate-like lead for source 12, for example, via a conductive material such as a gold bump 15.
On the other hand, the surface of the synchronous power MOSFET chip 3 on which the drain terminal DT2 is formed is pressure-bonded to the plate-like lead for source 12, for example, via a die bonding material such as silver paste 14, and the source terminal ST2 located on the opposite surface is connected to the ground-side plate-like lead 7, for example, via a conductive material such as a gold bump 15.
In an MCM 1 according to embodiment 2, by installing at least one semiconductor chip upside down, it is possible to make manufacturing of the plate-like lead for source 12 much easier than that of an MCM 1 according to embodiment 1. That is, as shown in FIG. 10 , it is possible to connect the source terminal ST1 of the control power MOSFET chip 2 and the drain terminal DT2 of the synchronous power MOSFET chip 3 onto the same surface of the plate-like lead for source 12 by using only one plate-like lead for source 12. Therefore, it is possible to avoid the complicated manufacturing process in which a plurality of semiconductor chips are connected on the different surfaces of the plate-like lead for source 12. As a result, it is possible to reduce the time to connect and manufacture leads. Thus, the structure of the MCM 1 can be simplified.
Furthermore, because the plate-like lead for source 12 can be formed by using only one plate-like lead, it is possible to make the area of the plate-like lead for source 12 larger than that of the MCM 1 according to embodiment 1. As a consequence, the heat dissipation capability can be increased and the voltage conversion efficiency can also be increased.
(Embodiment 3)
Similar to embodiments 1 and 2, a semiconductor device according to embodiment 3 is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter. The structure which will increase the heat dissipation capability will be explained.
An MCM 1 shown in FIG. 13 is an MCM 1 in which a heat radiating fin 27 (heat radiating member) is mounted to the MCM 1 according to embodiment 1. That is, in an MCM 1 according to embodiment 1, two plate-like leads (plate-like leads for source 12 and 13) exposed on the upper surface 17a of the sealed body 17 have different potentials, and therefore, a heat radiating member such as a heat radiating fin 27 is installed with an insulating sheet 28 interposed.
Thus, by mounting a heat radiating fin 27 to the plate-like lead exposed on the upper surface 17a of the MCM 1, it is possible to increase the heat dissipation capability of the MCM 1.
Furthermore, an MCM 1 shown in FIG. 14 is an MCM 1 in which a heat radiating fin 27 (heat radiating member) is mounted to the MCM 1 according to embodiment 2. In this MCM 1, only one plate-like lead for source 12 is exposed on the upper surface 17a of the sealed body 17. Therefore, the plate-like lead for source 12 can be directly connected to the heat radiating fin 27 without an insulating sheet 28 interposed. Consequently, it is possible to make the heat dissipation capability higher than that of the MCM 1 shown in FIG. 13.
Furthermore, it is also possible to integrate the plate-like lead for source 12 and the heat radiating fin 27, thereby making it possible to increase the heat dissipation capability.
(Embodiment 4)
Similar to embodiments 1 and 2, a semiconductor device according to embodiment 4 is an MCM (multiple chip module) 1 for a non-insulated DC/DC converter. In an MCM 1 according to embodiments 1 and 2, wires 10 are used to connect the control power MOSFET chip's 2 source terminal ST1 and gate terminal GT1 to the driver IC drip's 4 terminals 9, or to connect the synchronous power MOSFET chip's 3 source terminal ST2 and gate terminal GT2 to the driver IC chip's 4 terminals 9. However, in an MCM 1 according to embodiment 4, metal plates (other plate-like conductive members) 29 are used for the connections of the gate drive circuits, or other connections.
That is, in an example shown in FIG. 15 , the terminal of the control power MOSFET chip 2 has an electrical connection to a corresponding terminal 9 of the driver IC chip 4 by a metal plate 29, and the terminal of the synchronous power MOSFET chip 3 also has an electrical connection to a corresponding terminal 9 of the driver IC chip 4 by a metal plate 29. Furthermore, electrical connections between the terminals and metal plates 29 are provided, for example, by using gold bumps 15.
In the MCM 1, when the high-speed switching is selected, parasitic resistances and parasitic inductances, including a gate drive circuit, other than the main current path may cause the efficiency to decrease. Therefore, by connecting the driver IC chip 4 to the electrodes of the control power MOSFET chip 2 and synchronous power MOSFET chip 3 by using metal plates 29, it is possible to reduce the parasitic resistances and parasitic inductances compared to the situations where wire connections are used.
Moreover, other connections that use wires 10 as shown in FIG. 15 can be replaced with metal plates 29.
As stated above, the present invention provided by the inventor has been explained in detail according to the embodiments. However, the present invention is not intended to be limited to the above-mentioned embodiments, and can be embodied in a variety of forms as long as they do not depart from the concept of the present invention.
For example, in the above embodiments 1 through 4, the MCM 1 which is a QFN-type semiconductor device is explained. However, the MCM 1 is not intended to be limited to the QFN-type semiconductor device, and can be a semiconductor device of other structures such as a QFP (Quad Flat Package) type semiconductor device as long as a plurality of semiconductor chips are encapsulated in a sealed body. Furthermore, the number of encapsulated semiconductor chips is not intended to be limited to three, therefore, there can be four or more semiconductor chips.
The present invention is suitable for use in a semiconductor device or electronic device.
A major embodiment of the present invention disclosed in this application is briefly described as shown below:
Because the present invention has a plate-like conductive member to connect terminals of two semiconductor chips, it is possible to reduce parasitic resistances and parasitic inductances compared to the situations where wire connections are used, thereby increasing the electrical characteristics of the semiconductor device. Furthermore, the above-mentioned plate-like conductive member is exposed outside the sealed body, thereby making it possible to increase the heat dissipation capability of the semiconductor device.
Claims (47)
1. A semiconductor device comprising a first transistor and a second transistor, each of which has an input electrode, first output electrode and second output electrode, wherein
the current path connecting between said first output electrode and said second output electrode of said first transistor are connected in series to the current path connecting between said first output electrode and said second output electrode of said second transistor;
either said first output electrode or said second output electrode of said first transistor is connected to a first conductive member; and
the other output electrode of said first transistor is connected to a second conductive member;
either said first output electrode or said second output electrode of said second transistor is connected to said second conductive member;
the other output electrode of said second transistor is connected to a third conductive member;
said first conductive member, said second conductive member and said third conductive member are electrically isolated from one another; and
said first conductive member, said second conductive member, said third conductive member, said first transistor and said second transistor are mechanically integrated.
2. A semiconductor device according to claim 1 , wherein said second conductive member has two or more bends.
3. A semiconductor device according to claim 1 , wherein said second conductive member is a nearly S-shape.
4. A semiconductor device according to claim 1 , wherein in said second conductive member, the surface to which an output electrode of said first transistor is connected is located on the same side of the surface to which an output electrode of said second transistor is connected.
5. A semiconductor device comprising
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a conductive plate which has electrical connections to at least two semiconductor chips' terminals among said plurality of semiconductor chips,
a sealed body which encapsulates said plurality of semiconductor chips, and
a plurality of external connection terminals which have individual electrical connections to the plurality of semiconductor chips, wherein
at least two semiconductor chips which are connected by the conductive plate have an individual transistor circuit, and the conductive plate is exposed outside said sealed body.
6. A semiconductor device according to claim 5 , wherein among said plurality of semiconductor chips, each of a first semiconductor chip and a second semiconductor chip has a power-supply transistor circuit; and
said semiconductor device further comprising
a first conductive plate which connects to a drain terminal of said first semiconductor chip,
a second conductive plate which connects to a source terminal of said first semiconductor chip,
a third conductive plate which connects to a dram terminal of said second semiconductor chip, and
a fourth conductive plate which connects to a source terminal of said second semiconductor chip, wherein
said second conductive plate has an electrical connection to said third conductive plate, and said second and third conductive plates are at least partially exposed outside said sealed body.
7. A semiconductor device according to claim 6 , wherein said second conductive plate and said third conductor plate are integrated.
8. A semiconductor device according to claim 5 , wherein
among said plurality of semiconductor chips,
each of a first semiconductor chip and a second semiconductor chip has a power-supply transistor circuit, and a third semiconductor chip has a driver circuit which controls said first and second semiconductor chips.
9. A semiconductor device according to claim 6 , wherein said second and fourth conductive plates are partially exposed on either the principal or rear surface of said sealed body, and said first and third conductive plates are partially exposed on the other surface of said sealed body.
10. A semiconductor device according to claim 9 , wherein said second conductive plate and said third conductor plate are integrated.
11. A semiconductor device according to claim 5 , wherein among said plurality of semiconductor chips,
at least one semiconductor chip is installed upside down in relation to the other semiconductor chips.
12. A semiconductor device according to claim 6 , wherein said second semiconductor chip is installed upside down in relation to said first semiconductor chip,
said second and third conductive plates are partially exposed on either the principal or rear surface of said sealed body; and
said first and fourth conductive plates are partially exposed on the other surface of said sealed body.
13. A semiconductor device according to claim 12 , wherein said second conductive plate and said third conductive plate are integrated.
14. A semiconductor device according to claim 5 , wherein a heat radiating member is installed in the exposed area of said conductive plate exposed outside said sealed body.
15. A semiconductor device comprising
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a conductive plate which has electrical connections to at least two semiconductor chips' terminals among said plurality of semiconductor chips,
a sealed body which encapsulates said plurality of semiconductor chips by resin,
a plurality of external connection terminals which have individual electrical connections to the plurality of semiconductor chips, wherein
said conductive plate is exposed outside said sealed body, and
the connecting portion of said conductive plate at which said conductive plate is connected to one semiconductor chip is joined to the connecting portion at which said conductive plate is connected to the other semiconductor chip, on either the principal or rear surface of said sealed body, or on the outside of said semiconductor chips inside said sealed body.
16. A semiconductor device according to claim 15 , wherein among said plurality of semiconductor chips,
each of a first semiconductor chip and a second semiconductor chip has a power-supply transistor circuit, and a third semiconductor chip has a driver circuit which controls said first and second semiconductor chips.
17. A semiconductor device according to claim 15 , wherein a heat radiating member is installed in the exposed area of said conductive plate exposed outside said sealed body.
18. A semiconductor device according to claim 15 , wherein said conductive plate has an electrical connection to the semiconductor chip via a plurality of gold bumps.
19. A semiconductor device according to claim 16 , wherein the terminal of said first semiconductor chip has an electrical connection to the terminal of said third semiconductor chip by said conductive plate, and the terminal of said second semiconductor chip has an electrical connection to the terminal of said third semiconductor chip by another conductive plate.
20. A semiconductor device comprising
a plurality of semiconductor chips, each of which has a terminal on its principal surface,
a conductive plate which has electrical connections to at least two semiconductor chips' terminals among said plurality of semiconductor chips,
a sealed body which encapsulates said plurality of semiconductor chips by resin,
a plurality of external connection terminals which have individual electrical connections to said plurality of semiconductor chips and are disposed on the peripheral edge of the rear surface of said sealed body, wherein
said conductive plate is exposed on the at least either principal or rear surface of said sealed body.
21. A semiconductor device according to claim 20 , wherein among said plurality of semiconductor chips,
each of a first semiconductor chip and a second semiconductor chip has a power-supply transistor circuit, and
a third semiconductor chip has a driver circuit which controls said first and second semiconductor chips.
22. A semiconductor device according to claim 20 , wherein a heat radiating member is installed in the exposed area of said conductive plate exposed outside said sealed body.
23. A semiconductor device according to claim 20 , wherein
said conductive plate has an electrical connection to the semiconductor chip via a plurality of gold bumps.
24. A semiconductor device according to claim 20 , wherein
among said plurality of semiconductor chips,
each of a first semiconductor chip and a second semiconductor chip has a power-supply transistor circuit, and
said second semiconductor chip is installed upside down compared to said first semiconductor chip; and
said semiconductor device further comprising
a first conductive plate which connects to a drain terminal of said first semiconductor chip,
a second conductive plate which connects to a source terminal of said first semiconductor chip,
a third conductive plate which connects to a drain terminal of said second semiconductor chip, and
a fourth conductive plate which connects to a source terminal of said second semiconductor chip, wherein
said second and third conductive plates are partially exposed on either the principal or rear surface of said sealed body, aid said first and fourth conductive plates are partially exposed on the other surface of said sealed body.
25. A semiconductor device formed in a single package, the semiconductor device comprising:
a first external terminal;
a second external terminal;
a third external terminal;
a first semiconductor chip formed above the first external terminal;
a second semiconductor chip formed above the second external terminal; and
a source terminal and a first terminal formed on a main surface of the first semiconductor chip;
a drain terminal formed on a rear surface of the first semiconductor chip;
a drain terminal formed on a main surface of the second semiconductor chip;
a source terminal formed on a rear surface of the second semiconductor chip;
a conductor member formed above the source terminal of the first semiconductor chip, and above the drain terminal of the second semiconductor chip and the third external terminal;
wherein the conductor member is electrically connected with the source terminal of the first semiconductor chip, the drain terminal of the second semiconductor chip and the third external terminal;
a wire is connected with the first terminal of the first semiconductor chip;
the first, second and third external terminals are formed on the rear surface of the package;
the first external terminal is electrically connected with the drain terminal of the first semiconductor chip; and
the second external terminal is the source terminal of the second semiconductor chip.
26. The semiconductor device according to claim 25 , wherein a sectional area of the conductor member is larger than that of the wire.
27. The semiconductor device according to claim 25 , wherein the first terminal of the first semiconductor chip comprises a gate terminal of the first semiconductor chip.
28. The semiconductor device according to claim 27 , which further comprises a driver chip for controlling the first and second semiconductor chips, wherein the first terminal of the first semiconductor chip is electrically connected with the driver chip.
29. The semiconductor device according to claim 25 , wherein the first terminal of the first semiconductor chip is the source terminal formed in an area where the first terminal is not connected with the conductor member.
30. The semiconductor device according to claim 25 , which further comprises a driver chip for controlling the first and second semiconductor chips, wherein the first terminal of the first semiconductor chip is the source terminal formed in an area where the first terminal is not connected with the conductor member, and the wire for electrically connecting the first terminal of the first semiconductor chip to the drive chip is connected with an area which is not connected with the conductor member.
31. The semiconductor device according to claim 25 , wherein the first terminal of the first semiconductor chip comprises a gate terminal of the first semiconductor chip; and another wire is connected with an area with which the source terminal of the first semiconductor chip and the conductor member are not connected.
32. The semiconductor device according to claim 31 , which further comprises a driver chip for controlling the first and second semiconductor chips, wherein the first terminal of the first semiconductor chip is electrically connected with the driver chip and the another wire is electrically connected with the driver chip.
33. The semiconductor device according to claim 25 , which further comprises a driver for controlling the first and second semiconductor chips, wherein a gate terminal is formed on the rear surface of the second semiconductor chip, and the gate terminal of the second semiconductor chip is electrically connected with the driver chip.
34. The semiconductor device according to claim 25 , which further comprises a driver chip for controlling the first and second semiconductor chips, wherein the first terminal of the first semiconductor chip is electrically connected with the driver chip.
35. The semiconductor device according to claim 25 , wherein the semiconductor device is adapted for use in a DC/DC converter.
36. The semiconductor device according to claim 25 , wherein the first and second semiconductor chips are power transistors.
37. A semiconductor device formed in a single package comprising:
a first semiconductor chip;
a second semiconductor chip;
a source terminal and a first terminal formed on a main surface of the first semiconductor chip;
a drain terminal formed on a rear surface of the first semiconductor chip;
a drain terminal formed on a main surface of the second semiconductor chip;
a source terminal formed on a rear surface of the second semiconductor chip;
a conductive member formed above one of the source terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip; and
the conductive member is electrically connected with the source terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip, and
a wire is connected with the first terminal of the first semiconductor surface.
38. A semiconductor device formed in a single package comprising:
a first semiconductor chip;
a second semiconductor chip;
a driver chip for controlling the first and second semiconductor chips;
a source terminal formed on a main surface of the first semiconductor chip;
a drain terminal formed on a rear surface of the first semiconductor chip;
a drain terminal formed on a main surface of the second semiconductor chip;
a source terminal formed on a rear surface of the second semiconductor chip;
a conductor member formed above the source terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip;
wherein the conductor member is electrically connected with the source terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip; and
a wire for electrically connecting the driver chip with the source terminal for the first semiconductor chip.
39. The semiconductor device according to claim 38 , wherein the wire is connected to a source area with which the conductor member of the first semiconductor chip is not connected.
40. A semiconductor device formed in a single package comprising:
a first semiconductor chip;
a second semiconductor chip;
a driver chip for controlling the first and second semiconductor chips;
a source terminal formed on a main surface of the first semiconductor chip;
a drain terminal formed on a rear surface of the first semiconductor chip;
a drain terminal formed on a main surface of the second semiconductor chip;
a source terminal formed on a rear surface of the second semiconductor chip;
a conductive member formed above one of the second terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip;
wherein the conductor member is electrically connected with the source terminal of the first semiconductor chip and the drain terminal of the second semiconductor chip, and the driver chip has a terminal for connecting the source terminal of the first semiconductor chip.
41. The semiconductor device according to claim 40 , wherein a wire for electrically connecting the gate terminal with the driver chip is connected to a source terminal area with which the conductor member is not connected.
42. The semiconductor device according to claim 40 , wherein the gate terminal is connected to the main surface of the first semiconductor chip, and the gate terminal is electrically connected with the wire.
43. The semiconductor device according to claim 40 , wherein the gate terminal is formed on the rear surface of the second semiconductor chip, and the gate terminal of the second semiconductor chip is electrically connected with the terminal of the driver chip.
44. The semiconductor device according to claim 40 , wherein a sectional area of the conductor member is larger than that of the wire.
45. A semiconductor device formed in a single package, the semiconductor device comprising:
a first external terminal;
a second external terminal;
a third external terminal;
a first semiconductor chip formed above the first external terminal;
a second semiconductor chip formed above the second external terminal; and
a driver chip for controlling the first and second semiconductor chips; wherein
a source terminal is formed on a main surface of the first semiconductor chip;
a drain terminal is formed on a rear surface of the first semiconductor chip;
a drain terminal is formed on a main surface of the second semiconductor chip;
a source terminal and gate terminal are formed on a rear surface of the second semiconductor chip;
a single conductive member is formed above the source terminal of the first semiconductor chip, the drain terminal of the second semiconductor chip, and the third external terminal;
the conductive member is electrically connected to the source terminal of the first semiconductor chip, the drain terminal of the second semiconductor chip, and the third external terminal of the first semiconductor;
the first terminal is formed on the main surface of the driver chip;
a wire is electrically connected with the first terminal of the driver chip and with the gate terminal of the second semiconductor chip;
the first, second, and third external terminals are formed on the rear surface of the package;
the first external terminal is electrically connected with the drain terminal of the first semiconductor chip; and
the second external terminal is electrically connected with the source terminal of the second semiconductor chip.
46. The semiconductor device according to claim 25 , wherein the gate terminal is formed on the main surface of the first semiconductor chip;
the second terminal is formed on the driver chip; and
the wire is electrically connected with the second terminal of the driver chip and the gate terminal of the first semiconductor chip.
47. The semiconductor device according to claim 45 , wherein the gate terminal is formed on the main surface of the first semiconductor chip;
the second terminal is formed on the driver chip; and
the wire is electrically connected with the second terminal of the driver chip and the gate terminal of the first semiconductor chip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/130,782 USRE41869E1 (en) | 2004-01-28 | 2008-05-30 | Semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-020474 | 2004-01-28 | ||
JP2004020474A JP2005217072A (en) | 2004-01-28 | 2004-01-28 | Semiconductor device |
US11/041,200 US7145224B2 (en) | 2004-01-28 | 2005-01-25 | Semiconductor device |
US12/130,782 USRE41869E1 (en) | 2004-01-28 | 2008-05-30 | Semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/041,200 Reissue US7145224B2 (en) | 2004-01-28 | 2005-01-25 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41869E1 true USRE41869E1 (en) | 2010-10-26 |
Family
ID=34792612
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/041,200 Active US7145224B2 (en) | 2004-01-28 | 2005-01-25 | Semiconductor device |
US12/130,782 Active USRE41869E1 (en) | 2004-01-28 | 2008-05-30 | Semiconductor device |
US12/821,999 Active USRE43663E1 (en) | 2004-01-28 | 2010-06-23 | Semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/041,200 Active US7145224B2 (en) | 2004-01-28 | 2005-01-25 | Semiconductor device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/821,999 Active USRE43663E1 (en) | 2004-01-28 | 2010-06-23 | Semiconductor device |
Country Status (4)
Country | Link |
---|---|
US (3) | US7145224B2 (en) |
JP (1) | JP2005217072A (en) |
KR (5) | KR101100838B1 (en) |
CN (2) | CN100521196C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100270992A1 (en) * | 2009-04-28 | 2010-10-28 | Renesas Electronics Corporation | Semiconductor device |
US20110278655A1 (en) * | 2006-05-30 | 2011-11-17 | Renesas Electronics Corporation | Semiconductor Device with Circuit for Reduced Parasitic Inductance |
US20130113108A1 (en) * | 2011-11-07 | 2013-05-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | System in package process flow |
US20130113115A1 (en) * | 2011-11-07 | 2013-05-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | System in package process flow |
US20140264819A1 (en) * | 2013-03-14 | 2014-09-18 | Toyota Jidosha Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US9401319B2 (en) | 2011-06-09 | 2016-07-26 | Mitsubishi Electric Corporation | Semiconductor device |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7501702B2 (en) * | 2004-06-24 | 2009-03-10 | Fairchild Semiconductor Corporation | Integrated transistor module and method of fabricating same |
JP2006049341A (en) | 2004-07-30 | 2006-02-16 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP2006073655A (en) * | 2004-08-31 | 2006-03-16 | Toshiba Corp | Semiconductor module |
JP2007116012A (en) * | 2005-10-24 | 2007-05-10 | Renesas Technology Corp | Semiconductor device and power supply using same |
JP4899481B2 (en) * | 2006-01-10 | 2012-03-21 | サンケン電気株式会社 | Manufacturing method of resin-encapsulated semiconductor device having a heat radiator exposed outside |
US7868432B2 (en) * | 2006-02-13 | 2011-01-11 | Fairchild Semiconductor Corporation | Multi-chip module for battery power control |
JP4875380B2 (en) | 2006-02-24 | 2012-02-15 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
DE102006012781B4 (en) * | 2006-03-17 | 2016-06-16 | Infineon Technologies Ag | Multichip module with improved system carrier and method for its production |
JP4916745B2 (en) | 2006-03-28 | 2012-04-18 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US7768075B2 (en) | 2006-04-06 | 2010-08-03 | Fairchild Semiconductor Corporation | Semiconductor die packages using thin dies and metal substrates |
US7618896B2 (en) | 2006-04-24 | 2009-11-17 | Fairchild Semiconductor Corporation | Semiconductor die package including multiple dies and a common node structure |
DE102006021959B4 (en) * | 2006-05-10 | 2011-12-29 | Infineon Technologies Ag | Power semiconductor device and method for its production |
TWI452662B (en) * | 2006-05-19 | 2014-09-11 | Fairchild Semiconductor | Dual side cooling integrated power device package and module and methods of manufacture |
US7663211B2 (en) * | 2006-05-19 | 2010-02-16 | Fairchild Semiconductor Corporation | Dual side cooling integrated power device package and module with a clip attached to a leadframe in the package and the module and methods of manufacture |
JP5191689B2 (en) * | 2006-05-30 | 2013-05-08 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP5165214B2 (en) * | 2006-06-26 | 2013-03-21 | オンセミコンダクター・トレーディング・リミテッド | Semiconductor device |
JP5261636B2 (en) * | 2006-10-27 | 2013-08-14 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Semiconductor device |
US20080180921A1 (en) * | 2007-01-31 | 2008-07-31 | Cyntec Co., Ltd. | Electronic package structure |
JP2008218688A (en) * | 2007-03-05 | 2008-09-18 | Denso Corp | Semiconductor device |
US7872350B2 (en) * | 2007-04-10 | 2011-01-18 | Qimonda Ag | Multi-chip module |
JP5272191B2 (en) * | 2007-08-31 | 2013-08-28 | 三菱電機株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US8067825B2 (en) * | 2007-09-28 | 2011-11-29 | Stats Chippac Ltd. | Integrated circuit package system with multiple die |
US7800219B2 (en) * | 2008-01-02 | 2010-09-21 | Fairchild Semiconductor Corporation | High-power semiconductor die packages with integrated heat-sink capability and methods of manufacturing the same |
US8642394B2 (en) | 2008-01-28 | 2014-02-04 | Infineon Technologies Ag | Method of manufacturing electronic device on leadframe |
JP2009200338A (en) * | 2008-02-22 | 2009-09-03 | Renesas Technology Corp | Method for manufacturing semiconductor device |
US8507320B2 (en) * | 2008-03-18 | 2013-08-13 | Infineon Technologies Ag | Electronic device including a carrier and a semiconductor chip attached to the carrier and manufacturing thereof |
US8138587B2 (en) | 2008-09-30 | 2012-03-20 | Infineon Technologies Ag | Device including two mounting surfaces |
US7898067B2 (en) * | 2008-10-31 | 2011-03-01 | Fairchild Semiconductor Corporaton | Pre-molded, clip-bonded multi-die semiconductor package |
TW201044547A (en) * | 2009-04-02 | 2010-12-16 | Koninkl Philips Electronics Nv | An integrated circuit system with a thermally isolating frame construction and method for producing such integrated circuit system |
JP2011023587A (en) * | 2009-07-16 | 2011-02-03 | Shinko Electric Ind Co Ltd | Semiconductor device |
CN102484109B (en) * | 2009-08-03 | 2014-12-10 | 株式会社安川电机 | Power Converter |
US20110075392A1 (en) * | 2009-09-29 | 2011-03-31 | Astec International Limited | Assemblies and Methods for Directly Connecting Integrated Circuits to Electrically Conductive Sheets |
JP5126278B2 (en) * | 2010-02-04 | 2013-01-23 | 株式会社デンソー | Semiconductor device and manufacturing method thereof |
JP2011187809A (en) * | 2010-03-10 | 2011-09-22 | Renesas Electronics Corp | Semiconductor device and multilayer wiring board |
JP5655339B2 (en) * | 2010-03-26 | 2015-01-21 | サンケン電気株式会社 | Semiconductor device |
JP5099243B2 (en) * | 2010-04-14 | 2012-12-19 | 株式会社デンソー | Semiconductor module |
CN103996628A (en) * | 2010-04-16 | 2014-08-20 | 万国半导体有限公司 | Method for manufacturing double-lead-frame multi-chip common packaging body |
JP5253455B2 (en) | 2010-06-01 | 2013-07-31 | 三菱電機株式会社 | Power semiconductor device |
DE102010030838A1 (en) * | 2010-07-02 | 2012-01-05 | Robert Bosch Gmbh | Semiconductor component with improved heat dissipation |
JP5709299B2 (en) * | 2010-09-29 | 2015-04-30 | ローム株式会社 | Semiconductor power module and manufacturing method thereof |
US8587101B2 (en) | 2010-12-13 | 2013-11-19 | International Rectifier Corporation | Multi-chip module (MCM) power quad flat no-lead (PQFN) semiconductor package utilizing a leadframe for electrical interconnections |
US9620954B2 (en) | 2010-12-13 | 2017-04-11 | Infineon Technologies Americas Corp. | Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values |
US9711437B2 (en) | 2010-12-13 | 2017-07-18 | Infineon Technologies Americas Corp. | Semiconductor package having multi-phase power inverter with internal temperature sensor |
US9659845B2 (en) | 2010-12-13 | 2017-05-23 | Infineon Technologies Americas Corp. | Power quad flat no-lead (PQFN) package in a single shunt inverter circuit |
US8497573B2 (en) | 2011-01-03 | 2013-07-30 | International Rectifier Corporation | High power semiconductor package with conductive clip on multiple transistors |
CN102593108B (en) * | 2011-01-18 | 2014-08-20 | 台达电子工业股份有限公司 | Power semiconductor packaging structure and manufacturing method thereof |
US20120200281A1 (en) * | 2011-02-07 | 2012-08-09 | Texas Instruments Incorporated | Three-Dimensional Power Supply Module Having Reduced Switch Node Ringing |
JP5936310B2 (en) * | 2011-03-17 | 2016-06-22 | 三菱電機株式会社 | Power semiconductor module and its mounting structure |
EP2701192B1 (en) * | 2011-04-18 | 2017-11-01 | Mitsubishi Electric Corporation | Semiconductor device, inverter device provided with semiconductor device, and in-vehicle rotating electrical machine provided with semiconductor device and inverter device |
JP5947537B2 (en) * | 2011-04-19 | 2016-07-06 | トヨタ自動車株式会社 | Semiconductor device and manufacturing method thereof |
JP5431406B2 (en) * | 2011-04-22 | 2014-03-05 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP5254398B2 (en) * | 2011-04-22 | 2013-08-07 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US8614503B2 (en) * | 2011-05-19 | 2013-12-24 | International Rectifier Corporation | Common drain exposed conductive clip for high power semiconductor packages |
US8344464B2 (en) | 2011-05-19 | 2013-01-01 | International Rectifier Corporation | Multi-transistor exposed conductive clip for high power semiconductor packages |
US8531016B2 (en) * | 2011-05-19 | 2013-09-10 | International Rectifier Corporation | Thermally enhanced semiconductor package with exposed parallel conductive clip |
US8723311B2 (en) * | 2011-06-30 | 2014-05-13 | Stmicroelectronics S.R.L. | Half-bridge electronic device with common heat sink on mounting surface |
ITMI20111219A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | SYSTEM WITH SHARED HEAT SINK |
ITMI20111218A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | HIGH SPEED POWER DEVICE? OF SWITCHING |
ITMI20111217A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | CONTAINER / SINK SYSTEM FOR ELECTRONIC COMPONENT |
ITMI20111214A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | POWER REDUCED THICKNESS DEVICE |
ITMI20111213A1 (en) * | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | SEMI-BRIDGE ELECTRONIC DEVICE WITH COMMON AUXILIARY HEAT SINK |
ITMI20111208A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | SYSTEM WITH STABILIZED HEAT SINK |
ITMI20111216A1 (en) | 2011-06-30 | 2012-12-31 | St Microelectronics Srl | ELECTRONIC POWER DEVICE WITH HIGH HEAT DISSIPATION AND STABILITY? |
DE102011088250A1 (en) * | 2011-12-12 | 2013-06-13 | Robert Bosch Gmbh | Power module for an electric drive |
DE102011089740B4 (en) * | 2011-12-23 | 2017-01-19 | Conti Temic Microelectronic Gmbh | power module |
JP5787784B2 (en) * | 2012-02-15 | 2015-09-30 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US8916968B2 (en) | 2012-03-27 | 2014-12-23 | Infineon Technologies Ag | Multichip power semiconductor device |
US8847385B2 (en) * | 2012-03-27 | 2014-09-30 | Infineon Technologies Ag | Chip arrangement, a method for forming a chip arrangement, a chip package, a method for forming a chip package |
US9589872B2 (en) * | 2012-03-28 | 2017-03-07 | Infineon Technologies Americas Corp. | Integrated dual power converter package having internal driver IC |
JP5924110B2 (en) * | 2012-05-11 | 2016-05-25 | 株式会社ソシオネクスト | Semiconductor device, semiconductor device module, and semiconductor device manufacturing method |
EP2851951B1 (en) * | 2012-05-15 | 2019-11-13 | Panasonic Intellectual Property Management Co., Ltd. | Method for manufacturing semiconductor device and semiconductor device |
JP5924164B2 (en) * | 2012-07-06 | 2016-05-25 | 株式会社豊田自動織機 | Semiconductor device |
US9018744B2 (en) | 2012-09-25 | 2015-04-28 | Infineon Technologies Ag | Semiconductor device having a clip contact |
JP5970316B2 (en) * | 2012-09-26 | 2016-08-17 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
JP6165525B2 (en) * | 2012-10-31 | 2017-07-19 | 株式会社東芝 | Semiconductor power conversion device and manufacturing method thereof |
US9171837B2 (en) | 2012-12-17 | 2015-10-27 | Nxp B.V. | Cascode circuit |
JP5487290B2 (en) * | 2012-12-21 | 2014-05-07 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
JP5966921B2 (en) * | 2012-12-28 | 2016-08-10 | トヨタ自動車株式会社 | Manufacturing method of semiconductor module |
KR101984831B1 (en) | 2013-01-31 | 2019-05-31 | 삼성전자 주식회사 | Semiconductor package |
JP5493021B2 (en) * | 2013-03-08 | 2014-05-14 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US9041170B2 (en) | 2013-04-02 | 2015-05-26 | Infineon Technologies Austria Ag | Multi-level semiconductor package |
WO2014202282A1 (en) * | 2013-06-20 | 2014-12-24 | Conti Temic Microelectronic Gmbh | Circuit board |
US8884420B1 (en) * | 2013-07-12 | 2014-11-11 | Infineon Technologies Austria Ag | Multichip device |
DE102013217802B4 (en) * | 2013-09-05 | 2020-01-09 | Infineon Technologies Ag | SEMICONDUCTOR ARRANGEMENT, METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT AND METHOD FOR OPERATING A SEMICONDUCTOR ARRANGEMENT |
JP2015056563A (en) * | 2013-09-12 | 2015-03-23 | 株式会社東芝 | Semiconductor device and method of manufacturing the same |
US10109592B2 (en) * | 2013-11-26 | 2018-10-23 | Infineon Technologies Ag | Semiconductor chip with electrically conducting layer |
CN104681525B (en) * | 2013-11-27 | 2017-09-08 | 万国半导体股份有限公司 | A kind of encapsulating structure and its method for packing of multi-chip lamination |
US9704787B2 (en) * | 2014-10-16 | 2017-07-11 | Infineon Technologies Americas Corp. | Compact single-die power semiconductor package |
US9437516B2 (en) * | 2014-01-07 | 2016-09-06 | Infineon Technologies Austria Ag | Chip-embedded packages with backside die connection |
US9837380B2 (en) | 2014-01-28 | 2017-12-05 | Infineon Technologies Austria Ag | Semiconductor device having multiple contact clips |
JP6228490B2 (en) * | 2014-03-04 | 2017-11-08 | ローム株式会社 | Semiconductor device and manufacturing method of semiconductor device |
KR101555301B1 (en) * | 2014-05-13 | 2015-09-23 | 페어차일드코리아반도체 주식회사 | Semiconductor package |
US9431327B2 (en) * | 2014-05-30 | 2016-08-30 | Delta Electronics, Inc. | Semiconductor device |
DE102014114933B4 (en) | 2014-10-15 | 2021-08-12 | Infineon Technologies Austria Ag | Semiconductor component |
JP6152842B2 (en) * | 2014-11-04 | 2017-06-28 | トヨタ自動車株式会社 | Semiconductor device and manufacturing method thereof |
US9780018B2 (en) * | 2014-12-16 | 2017-10-03 | Infineon Technologies Americas Corp. | Power semiconductor package having reduced form factor and increased current carrying capability |
CN105551982A (en) * | 2015-12-24 | 2016-05-04 | 江苏长电科技股份有限公司 | Multi-chip upright tile sandwich package structure and technique therefor |
CN105405833A (en) * | 2015-12-24 | 2016-03-16 | 江苏长电科技股份有限公司 | Multi-chip multi-overlap flat-paved sandwich encapsulation structure and technological process thereof |
CN105405831A (en) * | 2015-12-24 | 2016-03-16 | 江苏长电科技股份有限公司 | Frame exposed multi-chip forward-assembled flat-paved sandwich encapsulation structure and technological process thereof |
CN105448881A (en) * | 2015-12-24 | 2016-03-30 | 江苏长电科技股份有限公司 | Framework exposed multi-core multi-lapping, tiling and core-sandwiching packaging structure and technological method thereof |
CN105633051A (en) * | 2015-12-24 | 2016-06-01 | 江苏长电科技股份有限公司 | Multi-chip multi-matching tiled sandwiched core package structure with partial framework exposed and process method of structure |
CN105405832A (en) * | 2015-12-24 | 2016-03-16 | 江苏长电科技股份有限公司 | Part frame exposed multi-chip flat-paved sandwich encapsulation structure and technological process thereof |
CN105448882A (en) * | 2015-12-24 | 2016-03-30 | 江苏长电科技股份有限公司 | Exposed-frame multi-chip single-lap tiled sandwiched core package structure and production method thereof |
CN105609425A (en) * | 2015-12-24 | 2016-05-25 | 江苏长电科技股份有限公司 | Multi-chip and single-lap flat sandwich package structure with partially exposed frames and technique for multi-chip and single-lap flat sandwich package structure |
CN105448880A (en) * | 2015-12-24 | 2016-03-30 | 江苏长电科技股份有限公司 | Multi-core single-lapping, tiling and core-sandwiching packaging structure and technological method thereof |
DE102016107792B4 (en) | 2016-04-27 | 2022-01-27 | Infineon Technologies Ag | Pack and semi-finished product with a vertical connection between support and bracket and method of making a pack and a batch of packs |
US9773753B1 (en) * | 2016-11-18 | 2017-09-26 | Advanced Semiconductor Engineering, Inc. | Semiconductor devices and methods of manufacturing the same |
EP3555914B1 (en) * | 2016-12-16 | 2021-02-03 | ABB Schweiz AG | Power semiconductor module with low gate path inductance |
DE102017202345A1 (en) | 2017-02-14 | 2018-08-16 | Infineon Technologies Ag | LADDER FRAME, SEMICONDUCTOR HOUSING COMPRISING A LADDER FRAME AND METHOD FOR MAKING A SEMICONDUCTOR HOUSING |
US11587856B2 (en) | 2017-03-15 | 2023-02-21 | Abb Schweiz Ag | Solid state switching device |
US10262928B2 (en) * | 2017-03-23 | 2019-04-16 | Rohm Co., Ltd. | Semiconductor device |
CN110462825B (en) * | 2017-03-29 | 2023-07-11 | 日本电产株式会社 | Semiconductor packaging device and manufacturing method thereof |
DE102017107327B4 (en) | 2017-04-05 | 2024-03-21 | Infineon Technologies Austria Ag | Field effect semiconductor component and method for its production |
US10727151B2 (en) * | 2017-05-25 | 2020-07-28 | Infineon Technologies Ag | Semiconductor chip package having a cooling surface and method of manufacturing a semiconductor package |
KR102153159B1 (en) * | 2017-06-12 | 2020-09-08 | 매그나칩 반도체 유한회사 | Multi-Chip Package of Power Semiconductor |
DE102017127089B4 (en) * | 2017-11-17 | 2022-05-25 | Infineon Technologies Austria Ag | Multi-die package and power converters |
JP7131903B2 (en) * | 2017-12-08 | 2022-09-06 | ローム株式会社 | semiconductor package |
US10784213B2 (en) | 2018-01-26 | 2020-09-22 | Hong Kong Applied Science and Technology Research Institute Company Limited | Power device package |
CN112368829B (en) * | 2018-07-04 | 2024-05-14 | 新电元工业株式会社 | Electronic module |
JP7119666B2 (en) * | 2018-07-09 | 2022-08-17 | 株式会社アイシン | Switching element unit and switching element module |
WO2020032871A1 (en) * | 2018-08-08 | 2020-02-13 | Agency For Science, Technology And Research | Semiconductor package and method of forming the same |
US20200194347A1 (en) * | 2018-12-18 | 2020-06-18 | Alpha And Omega Semiconductor (Cayman) Ltd. | Semiconductor package and method of making the same |
US11316438B2 (en) | 2019-01-07 | 2022-04-26 | Delta Eletronics (Shanghai) Co., Ltd. | Power supply module and manufacture method for same |
CN111415909B (en) * | 2019-01-07 | 2022-08-05 | 台达电子企业管理(上海)有限公司 | Multi-chip packaged power module |
US11676756B2 (en) | 2019-01-07 | 2023-06-13 | Delta Electronics (Shanghai) Co., Ltd. | Coupled inductor and power supply module |
CN111415908B (en) | 2019-01-07 | 2022-02-22 | 台达电子企业管理(上海)有限公司 | Power module, chip embedded type packaging module and preparation method |
CN110349940B (en) * | 2019-06-27 | 2020-11-17 | 深圳第三代半导体研究院 | Chip packaging structure and manufacturing method thereof |
CN110676235A (en) * | 2019-10-25 | 2020-01-10 | 成都赛力康电气有限公司 | Novel power MOS module structure convenient to expand |
JP7416638B2 (en) * | 2020-02-05 | 2024-01-17 | ローム株式会社 | Semiconductor device and semiconductor device manufacturing method |
TWI727861B (en) * | 2020-07-23 | 2021-05-11 | 朋程科技股份有限公司 | Chip packaging structure and method of manufacturing the same |
JP7337034B2 (en) * | 2020-09-15 | 2023-09-01 | 三菱電機株式会社 | Semiconductor packages and semiconductor devices |
CN113345871B (en) * | 2021-04-25 | 2022-09-13 | 华中科技大学 | Low parasitic inductance series power module |
CN116884932A (en) * | 2023-09-06 | 2023-10-13 | 深圳智芯微电子科技有限公司 | Chip packaging structure |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062714A (en) | 1992-06-19 | 1994-01-11 | Takeuchi Seiko Kk | Bearing for linear motion |
JPH06291223A (en) | 1992-04-09 | 1994-10-18 | Fuji Electric Co Ltd | Semiconductor device |
JP2001291823A (en) | 2000-04-05 | 2001-10-19 | Toshiba Digital Media Engineering Corp | Semiconductor device |
US20010033477A1 (en) | 2000-04-19 | 2001-10-25 | Seiji Inoue | Coolant cooled type semiconductor device |
JP2001308263A (en) | 2000-04-19 | 2001-11-02 | Denso Corp | Semiconductor switching module and semiconductor device using it |
JP2001320005A (en) | 2000-05-10 | 2001-11-16 | Denso Corp | Double-sided cooling semiconductor device by means of coolant |
JP2001352023A (en) | 2000-06-08 | 2001-12-21 | Denso Corp | Refrigerant cooling double-faced cooling semiconductor device |
JP2002026215A (en) | 2000-06-30 | 2002-01-25 | Denso Corp | Cooling fluid cooling type semiconductor device |
US20020027276A1 (en) * | 2000-09-04 | 2002-03-07 | Noriaki Sakamoto | Circuit device and method of manufacturing the same |
JP2002083915A (en) | 2000-06-29 | 2002-03-22 | Denso Corp | Power semiconductor device |
JP2002110893A (en) | 2000-10-04 | 2002-04-12 | Denso Corp | Semiconductor device |
US20020195704A1 (en) | 2001-06-21 | 2002-12-26 | Vincent Chan | Multi-die module and method thereof |
JP2003046036A (en) | 2001-08-01 | 2003-02-14 | Denso Corp | Semiconductor device |
US20030132530A1 (en) | 1999-11-24 | 2003-07-17 | Takanori Teshima | Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure |
WO2004008532A2 (en) | 2002-07-15 | 2004-01-22 | International Rectifier Corporation | High power mcm package |
US6891265B2 (en) * | 1999-11-24 | 2005-05-10 | Denso Corporation | Semiconductor device having radiation structure |
US6917103B2 (en) * | 2001-12-27 | 2005-07-12 | Denso Corporation | Molded semiconductor power device having heat sinks exposed on one surface |
US6963133B2 (en) * | 2001-04-25 | 2005-11-08 | Denso Corporation | Semiconductor device and method for manufacturing semiconductor device |
US7400002B2 (en) * | 1999-01-28 | 2008-07-15 | Renesas Technology Corp. | MOSFET package |
US7586180B2 (en) * | 2003-07-31 | 2009-09-08 | Renesas Technology Corp. | Semiconductor packaging device comprising a semiconductor chip including a MOSFET |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100335481B1 (en) * | 1999-09-13 | 2002-05-04 | 김덕중 | Power device having multi-chip package structure |
US6707671B2 (en) * | 2001-05-31 | 2004-03-16 | Matsushita Electric Industrial Co., Ltd. | Power module and method of manufacturing the same |
JP3809168B2 (en) * | 2004-02-03 | 2006-08-16 | 株式会社東芝 | Semiconductor module |
DE102004047358B3 (en) * | 2004-09-29 | 2005-11-03 | Infineon Technologies Ag | Integrated circuit arrangement with a power component and a drive circuit in two semiconductor bodies |
-
2004
- 2004-01-28 JP JP2004020474A patent/JP2005217072A/en active Pending
- 2004-12-29 CN CNB2004101048396A patent/CN100521196C/en not_active Expired - Fee Related
- 2004-12-29 CN CN2009101415364A patent/CN101567367B/en not_active Expired - Fee Related
-
2005
- 2005-01-25 US US11/041,200 patent/US7145224B2/en active Active
- 2005-01-27 KR KR1020050007393A patent/KR101100838B1/en active IP Right Grant
-
2008
- 2008-05-30 US US12/130,782 patent/USRE41869E1/en active Active
-
2010
- 2010-01-26 KR KR1020100006821A patent/KR101168972B1/en active IP Right Grant
- 2010-01-26 KR KR1020100006824A patent/KR101168973B1/en active IP Right Grant
- 2010-06-23 US US12/821,999 patent/USRE43663E1/en active Active
-
2011
- 2011-12-23 KR KR1020110141519A patent/KR101127195B1/en active IP Right Grant
- 2011-12-23 KR KR1020110141384A patent/KR101127199B1/en active IP Right Grant
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06291223A (en) | 1992-04-09 | 1994-10-18 | Fuji Electric Co Ltd | Semiconductor device |
JPH062714A (en) | 1992-06-19 | 1994-01-11 | Takeuchi Seiko Kk | Bearing for linear motion |
US7400002B2 (en) * | 1999-01-28 | 2008-07-15 | Renesas Technology Corp. | MOSFET package |
US20030132530A1 (en) | 1999-11-24 | 2003-07-17 | Takanori Teshima | Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure |
US6960825B2 (en) * | 1999-11-24 | 2005-11-01 | Denso Corporation | Semiconductor device having radiation structure |
US6891265B2 (en) * | 1999-11-24 | 2005-05-10 | Denso Corporation | Semiconductor device having radiation structure |
US6693350B2 (en) * | 1999-11-24 | 2004-02-17 | Denso Corporation | Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure |
JP2001291823A (en) | 2000-04-05 | 2001-10-19 | Toshiba Digital Media Engineering Corp | Semiconductor device |
US20010033477A1 (en) | 2000-04-19 | 2001-10-25 | Seiji Inoue | Coolant cooled type semiconductor device |
JP2001308263A (en) | 2000-04-19 | 2001-11-02 | Denso Corp | Semiconductor switching module and semiconductor device using it |
JP2001320005A (en) | 2000-05-10 | 2001-11-16 | Denso Corp | Double-sided cooling semiconductor device by means of coolant |
JP2001352023A (en) | 2000-06-08 | 2001-12-21 | Denso Corp | Refrigerant cooling double-faced cooling semiconductor device |
JP2002083915A (en) | 2000-06-29 | 2002-03-22 | Denso Corp | Power semiconductor device |
JP2002026215A (en) | 2000-06-30 | 2002-01-25 | Denso Corp | Cooling fluid cooling type semiconductor device |
US20020027276A1 (en) * | 2000-09-04 | 2002-03-07 | Noriaki Sakamoto | Circuit device and method of manufacturing the same |
JP2002110893A (en) | 2000-10-04 | 2002-04-12 | Denso Corp | Semiconductor device |
US6963133B2 (en) * | 2001-04-25 | 2005-11-08 | Denso Corporation | Semiconductor device and method for manufacturing semiconductor device |
US20020195704A1 (en) | 2001-06-21 | 2002-12-26 | Vincent Chan | Multi-die module and method thereof |
JP2003046036A (en) | 2001-08-01 | 2003-02-14 | Denso Corp | Semiconductor device |
US6917103B2 (en) * | 2001-12-27 | 2005-07-12 | Denso Corporation | Molded semiconductor power device having heat sinks exposed on one surface |
WO2004008532A2 (en) | 2002-07-15 | 2004-01-22 | International Rectifier Corporation | High power mcm package |
US7586180B2 (en) * | 2003-07-31 | 2009-09-08 | Renesas Technology Corp. | Semiconductor packaging device comprising a semiconductor chip including a MOSFET |
Non-Patent Citations (5)
Title |
---|
Explanation on an Accelerated Examination of JP 2007-287544; pp. 1-38. |
Explanation on an Accelerated Examination of JP 2007-318290; pp. 1-38. |
First Notice of rejection: Chinese Pat. Appln. 2004-101048396; Apr. 20, 2007; pp. 1-8, pp. 1-2. |
Notice of Rejection: JP Pat. Appln. 2004-020474; mailed May 8, 2007; pp. 1-2. |
Notice of Rejection: JP Pat. Appln. 2004-020474; mailed Sep. 4, 2007; pp. ,, 1-4. |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110278655A1 (en) * | 2006-05-30 | 2011-11-17 | Renesas Electronics Corporation | Semiconductor Device with Circuit for Reduced Parasitic Inductance |
US20100270992A1 (en) * | 2009-04-28 | 2010-10-28 | Renesas Electronics Corporation | Semiconductor device |
US9401319B2 (en) | 2011-06-09 | 2016-07-26 | Mitsubishi Electric Corporation | Semiconductor device |
US20130113108A1 (en) * | 2011-11-07 | 2013-05-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | System in package process flow |
US20130113115A1 (en) * | 2011-11-07 | 2013-05-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | System in package process flow |
US9881898B2 (en) * | 2011-11-07 | 2018-01-30 | Taiwan Semiconductor Manufacturing Co.,Ltd. | System in package process flow |
US10163877B2 (en) * | 2011-11-07 | 2018-12-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | System in package process flow |
US20140264819A1 (en) * | 2013-03-14 | 2014-09-18 | Toyota Jidosha Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US9006784B2 (en) * | 2013-03-14 | 2015-04-14 | Toyota Jidosha Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20100028606A (en) | 2010-03-12 |
US7145224B2 (en) | 2006-12-05 |
CN101567367B (en) | 2011-07-20 |
CN100521196C (en) | 2009-07-29 |
KR101127199B1 (en) | 2012-03-29 |
KR20100028605A (en) | 2010-03-12 |
US20050161785A1 (en) | 2005-07-28 |
KR20120008481A (en) | 2012-01-30 |
KR101168973B1 (en) | 2012-07-27 |
CN101567367A (en) | 2009-10-28 |
CN1649146A (en) | 2005-08-03 |
KR20050077759A (en) | 2005-08-03 |
KR101100838B1 (en) | 2012-01-02 |
KR101168972B1 (en) | 2012-07-27 |
USRE43663E1 (en) | 2012-09-18 |
KR20120008480A (en) | 2012-01-30 |
JP2005217072A (en) | 2005-08-11 |
KR101127195B1 (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41869E1 (en) | Semiconductor device | |
US7109577B2 (en) | Semiconductor device and power supply system | |
US8148815B2 (en) | Stacked field effect transistor configurations | |
US7776658B2 (en) | Compact co-packaged semiconductor dies with elevation-adaptive interconnection plates | |
US8044520B2 (en) | Semiconductor device | |
US7095099B2 (en) | Low profile package having multiple die | |
US20120228696A1 (en) | Stacked die power converter | |
US20030098468A1 (en) | Multi-chip module semiconductor devices | |
JP4250191B2 (en) | Semiconductor device for DC / DC converter | |
EP1079434A2 (en) | Power device packaging structure | |
JP4705945B2 (en) | Semiconductor device | |
JP4250193B2 (en) | Semiconductor device for DC / DC converter | |
JP4800290B2 (en) | Semiconductor device | |
JP2011181970A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN Free format text: MERGER;ASSIGNOR:RENESAS TECHNOLOGY CORP.;REEL/FRAME:025008/0362 Effective date: 20100401 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |