US9019778B2 - Semiconductor apparatus - Google Patents
Semiconductor apparatus Download PDFInfo
- Publication number
- US9019778B2 US9019778B2 US13/723,653 US201213723653A US9019778B2 US 9019778 B2 US9019778 B2 US 9019778B2 US 201213723653 A US201213723653 A US 201213723653A US 9019778 B2 US9019778 B2 US 9019778B2
- Authority
- US
- United States
- Prior art keywords
- data
- output
- semiconductor apparatus
- channels
- pad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/1201—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/48—Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
Definitions
- the present invention generally relates to a semiconductor apparatus, and more particularly, to a three-dimensional (3D) semiconductor apparatus including a plurality of chips stacked therein.
- a 3D semiconductor apparatus including a plurality of chips stacked and packaged therein has been developed.
- the 3D semiconductor apparatus including two or more chips stacked in a vertical direction may exhibit a maximum integration degree in the same space.
- various methods may be applied.
- a plurality of chips having the same structure are stacked and connected through wires such as metal lines so as to operate as one semiconductor.
- TSV through-silicon via
- FIG. 1 schematically illustrates a memory chip 10 forming a conventional semiconductor apparatus.
- the memory chip 10 includes a memory area 11 , a data input/output block 12 , a data transmission/reception unit 13 , a plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1, a test pad 14 , and a test data transmission/reception unit 15 .
- the memory area 11 includes a plurality of memory cells.
- the data input/output block 12 is configured to perform a data input/output operation for the memory area 11 through a data input/output line GIO.
- the data input/output block 12 is connected to the data transmission/reception unit 13 and the test pad 14 .
- the data input/output block 12 is connected to the data transmission/reception unit 13 and configured to receive data inputted through the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 or output data outputted from the data input/output block 12 to the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1, during a normal operation. Furthermore, the data input/output block 12 is configured to receive data TDQ ⁇ 0:m> from the test pad 14 and the test data transmission/reception unit 15 or output data to the test data transmission/reception unit 15 and the test pad 14 , during a test operation.
- the conventional semiconductor apparatus does not use the data transmission/reception unit 13 , but uses the test data transmission/reception unit 15 to perform the test operation. Therefore, the conventional semiconductor apparatus could not verify whether or not a defect occurs in the data transmission/reception unit 13 .
- a semiconductor apparatus capable of performing a test for all circuits forming a memory chip regardless of operations modes of the semiconductor apparatus is described herein.
- a semiconductor apparatus includes a memory chip which includes: a memory area; a data input/output block configured to communicate with the memory area; and a data transmission/reception block configured to connect one of a plurality of channels and a pad to the data input/output block, wherein the plurality of channels are configured to input and output normal data to and from another chip, and the pad is configured to input and output test data.
- a semiconductor apparatus includes a memory chip which includes: a pad configured to input and output test data; a plurality of channels configured to input and output normal data when the memory chip is stacked with another chip, and be floated when the memory chip is not stacked with another chip; a data transmission and reception block configured to receive the test data from the pad during a test operation, and receive the normal data through the plurality of channels during a normal operation; and a data input/output block configured to receive data transmitted from the data transmission/reception block and communicate with a memory area.
- a semiconductor apparatus includes a memory chip which includes: a data input/output block configured to communicate with a memory area; a data transmission/reception unit configured to communicate with the data input/output block through one end thereof; and a path selection unit configured to selectively couple the other end of the data transmission/reception unit with one of a pad and a plurality of channels in response to a control signal.
- FIG. 1 schematically illustrates a memory chip forming a conventional semiconductor apparatus
- FIG. 2 illustrates the configuration of a semiconductor apparatus according to an embodiment
- FIG. 3 illustrates the detailed configuration of the semiconductor apparatus of FIG. 2 .
- FIG. 2 illustrates the configuration of a semiconductor apparatus 1 according to an embodiment.
- the semiconductor apparatus 1 may include a memory chip C 1 .
- the memory chip C 1 may be fabricated and tested on a wafer. Furthermore, the memory chip C 1 may be diced and then stacked with another chip so as to construct a stacked semiconductor apparatus.
- the memory chip C 1 may include a memory area 11 , a data input/output block 100 , a data transmission/reception block 200 , a plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1, and a pad 300 .
- the memory area 11 may include a plurality of memory cell arrays to store data.
- the memory area 11 may include a plurality of banks and a plurality of mats, for example. Each of the banks and the mats corresponds to a group of memory cell arrays.
- the data input/output block 100 may be coupled with the memory area 11 , and configured to communicate with the memory area 11 .
- the data input/output block 100 may transmit data to the memory area 11 such that the data may be stored in the memory area 11 , during a write operation.
- the data input/output block 100 may receive data stored in the memory area 11 and output the received data, during a read operation. Therefore, the data input/output block 100 corresponds to a circuit to perform a data input/output operation of the memory area 11 , and may include input/output circuits such as a write driver and a read sense amplifier which are not illustrated.
- the data input/output block 100 may communicate with the memory area 11 through a data input/output line GIO.
- the data input/output line GIO may include a plurality of data lines GIO corresponding to the IO number of the memory chip C 1 , and the data input/output line GIO and the data input/output block 100 may input and output a plurality of parallel data.
- the data transmission/reception block 200 may be coupled with the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1, the pad 300 , and the data input/output block 100 .
- the data transmission/reception block 200 couples one of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the pad 300 to the data input/output block 100 .
- the data transmission/reception block 200 couples one of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the pad 300 to the data input/output block 100 depending on operation modes.
- the data transmission/reception block 200 couples the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 to the data input/output block 100 during a normal operation, and couples the pad 300 to the data input/output block 100 during a test operation.
- the data transmission/reception block 200 may selectively couple one of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the pad 300 to the data input/output block 100 in response to a control signal EN.
- the data transmission/reception block 200 may include a path selection unit 210 and a data transmission/reception unit 220 .
- the path selection unit 210 is configured to select one of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the pad 300 as a data path in response to the control signal EN.
- the data transmission/reception unit 220 may be coupled with the path selection unit 210 .
- the data transmission/reception 220 transmits data inputted through the path selection unit 210 to the data input/output block 100 , or outputs data inputted through the data input/output block 100 to the path selection unit 210 .
- the control signal EN may include any signals for distinguishing the test operation and the normal operation. For example, a test mode signal may be used. However, the control signal EN is not limited thereto, but a stack enable signal generated when the memory chip C 1 is stacked may be used.
- the data transmission/reception unit 220 may receive data inputted through the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and transmit the received data to the data input/output block 100 . Furthermore, the data transmission/reception unit 220 may receive data stored in the memory area 11 from the data input/output block 100 and output the received data to the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1.
- the data transmission/reception unit 220 may receive data inputted through the pad 300 and transmit the received data to the data input/output block 100 . Furthermore, the data transmission/reception unit 220 may receive data stored in the memory area 11 from the data input/output block 100 and output the received data to the pad 300 .
- the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 serve as data paths to transmit normal data.
- the plurality of channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 are coupled with the chip so as to receive normal data from the chip or transmit normal data to the chip.
- One ends of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 are coupled with the data transmission/reception block 200 .
- the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 are floated. Therefore, when a test operation for the memory chip C 1 is performed on a wafer, the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 are not utilized as data paths.
- the other ends of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 may form an electrical connection with the chip through connection elements such as through vias.
- the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 are utilized as data paths for transmitting normal data.
- the pad 300 may include a test pad.
- the pad 300 may be coupled with the data transmission/reception block 200 , and input and output the test data TDQ ⁇ 0:m> to and from a controller, a test device, or a self test circuit.
- the pad 300 is provided to perform a test on the memory chip C 1 when the memory chip C 1 is on a wafer.
- the path selection unit 210 couples the pad 300 and the data transmission/reception unit 220 in response to the control signal EN. Therefore, the test data TDQ ⁇ 0:m> may be inputted to the data input/output block 100 through the pad 300 and the data transmission/reception unit 220 .
- the data input/output block 100 performs a data input/output operation for the memory area 11 , and data outputted through the data input/output block 100 may be outputted through the data transmission/reception unit 220 and the pad 300 .
- the path selection unit 210 couples the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the data transmission/reception unit 220 in response to the control signal EN. Therefore, normal data may be inputted to the data input/output block 100 through the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the data transmission/reception unit 220 .
- the data input/output block 100 performs a data input/output operation for the memory area 11 , and data outputted through the data input/output block 100 may be outputted through the data transmission/reception unit 220 and the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1.
- the test data TDQ ⁇ 0:m> and normal data may be inputted or outputted through the data transmission/reception unit 220 , the data input/output block 100 , and the memory area 11 . That is, the test data TDQ ⁇ 0:m> and the normal data pass through all circuit paths. Therefore, during the test operation for the memory chip C 1 , the test is performed through all circuits provided in the memory chip C 1 . Therefore, it is possible to verify whether or not each of the circuits has a defect.
- FIG. 3 illustrates the detailed configuration of the semiconductor apparatus 1 of FIG. 2 .
- the data input/output block 100 may include a plurality of input/output circuits (IO circuits). Each of the input/output circuits may include a write driver and a read sense amplifier to perform write and read operations of the memory chip C 1 , as described above.
- the data input/output block 100 may include a plurality of input/output circuits corresponding to the number of the data input/output lines GIO.
- the data transmission/reception unit 220 may include a plurality of receivers RX and transmitters TX.
- the data transmission/reception unit 220 may include a plurality of receivers RX and transmitters TX corresponding to the number of the input/output circuits.
- One ends of the receivers RX and the transmitters TX forming the data transmission/reception unit 220 are coupled with the input/output circuits.
- the other ends of the receivers RX and the transmitters TX are coupled with the path selection unit 210 .
- the receivers RX buffer data inputted through the pad 300 and the channels DQ0, DQ1, DQ2, . . .
- DQn ⁇ 2, and DQn ⁇ 1 and output the buffered data to the input/output circuits
- the path selection unit 210 couples one of the pad 300 and the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 to the data transmission/reception unit 220 in response to the control signal EN.
- the path selection unit 210 may include a plurality of switches SW responding to the control signal EN.
- the switches SW are coupled with the other ends of the receivers RX and the transmitters TX forming the data transmission/reception unit 220 , respectively.
- Each of the switches SW couples the pad 300 to the data transmission/reception unit 220 when turned on in response to the control signal EN, and cuts off the connection between the pad 300 and the data transmission/reception unit 220 when turned off in response to the control signal EN. That is, when the switches SW are turned off, the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 may be coupled with the data transmission/reception unit 220 .
- the memory chip C 1 When the memory chip C 1 is stacked with another chip C 2 , the memory chip C 1 may be electrically connected to the chip C 2 through connection elements such as through vias 30 , 31 , 32 , . . . , 3 n ⁇ 2 , and 3 n ⁇ 1 . Therefore, when the memory chip C 1 is on a wafer, the floated other ends of the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 form electrical connections with channels of the chip C 2 . Therefore, normal data may be transmitted from the memory chip C 1 to the chip C 2 or from the chip C 2 to the first memory chip C 1 through the channels DQ0, DQ1, DQ2, . . . , DQn ⁇ 2, and DQn ⁇ 1 and the through vias 30 , 31 , 32 , 3 n ⁇ 2 , and 3 n ⁇ 1 .
- connection elements such as through vias 30 , 31 , 32 , . .
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Dram (AREA)
- Tests Of Electronic Circuits (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120086683A KR101919415B1 (ko) | 2012-08-08 | 2012-08-08 | 반도체 장치 |
KR10-2012-0086683 | 2012-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140043884A1 US20140043884A1 (en) | 2014-02-13 |
US9019778B2 true US9019778B2 (en) | 2015-04-28 |
Family
ID=50050163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/723,653 Active 2033-12-12 US9019778B2 (en) | 2012-08-08 | 2012-12-21 | Semiconductor apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US9019778B2 (ko) |
KR (1) | KR101919415B1 (ko) |
CN (1) | CN103578564B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160364309A1 (en) * | 2015-06-12 | 2016-12-15 | SK Hynix Inc. | Input/output (i/o) line test device and method for controlling the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160119582A (ko) * | 2015-04-06 | 2016-10-14 | 에스케이하이닉스 주식회사 | 메모리 장치 및 이의 동작 방법 |
KR20180138472A (ko) * | 2017-06-21 | 2018-12-31 | 에스케이하이닉스 주식회사 | 테스트 회로를 포함하는 반도체 장치 |
KR102476201B1 (ko) * | 2018-07-24 | 2022-12-12 | 에스케이하이닉스 주식회사 | 메모리 장치 및 그의 테스트 회로 |
CN113192541B (zh) * | 2020-01-14 | 2024-06-07 | 长鑫存储技术(上海)有限公司 | 集成电路结构和存储器 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5604710A (en) * | 1994-05-20 | 1997-02-18 | Mitsubishi Denki Kabushiki Kaisha | Arrangement of power supply and data input/output pads in semiconductor memory device |
US5808960A (en) * | 1996-01-19 | 1998-09-15 | Sgs-Thomson Microelectronics, Inc. | Circuit and method for tracking the start of a write to a memory cell |
US5930187A (en) * | 1996-10-31 | 1999-07-27 | Kabushiki Kaisha Toshiba | One-chip LSI including a general memory and a logic |
US6166989A (en) * | 1998-07-28 | 2000-12-26 | Mitsubishi Denki Kabushiki Kaisha | Clock synchronous type semiconductor memory device that can switch word configuration |
US6216240B1 (en) * | 1997-06-26 | 2001-04-10 | Samsung Electronics Co., Ltd. | Merged memory and logic (MML) integrated circuits including memory test controlling circuits and methods |
US20030043664A1 (en) * | 2001-08-28 | 2003-03-06 | Mitsubishi Denki Kabushiki Kaisha | Test circuit device capable of identifying error in stored data at memory cell level and semiconductor integrated circuit device including the same |
US20040013016A1 (en) * | 2002-07-19 | 2004-01-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor circuit device capable of accurately testing embedded memory |
US20070242553A1 (en) * | 2006-04-13 | 2007-10-18 | Hynix Semiconductor Inc. | Multi-port memory device with serial input/output interface and control method thereof |
US20090097345A1 (en) * | 2007-09-18 | 2009-04-16 | Alexander Kushnarenko | Method, device and system for regulating access to an integrated circuit (IC) device |
US20110292745A1 (en) * | 2010-05-31 | 2011-12-01 | Hynix Semiconductor Inc. | Data transmission device |
KR101212777B1 (ko) | 2011-04-27 | 2012-12-14 | 에스케이하이닉스 주식회사 | 반도체 집적회로의 테스트 회로 및 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050112972A (ko) * | 2004-05-28 | 2005-12-01 | 삼성전자주식회사 | 스캔 플립-플롭 회로 및 그를 포함한 반도체 집적 회로 장치 |
JP4309368B2 (ja) * | 2005-03-30 | 2009-08-05 | エルピーダメモリ株式会社 | 半導体記憶装置 |
JP2011082449A (ja) * | 2009-10-09 | 2011-04-21 | Elpida Memory Inc | 半導体装置 |
KR20120019882A (ko) * | 2010-08-27 | 2012-03-07 | 주식회사 하이닉스반도체 | 반도체 집적회로 |
KR101138835B1 (ko) * | 2010-10-29 | 2012-05-15 | 에스케이하이닉스 주식회사 | 반도체 메모리 장치 |
-
2012
- 2012-08-08 KR KR1020120086683A patent/KR101919415B1/ko active IP Right Grant
- 2012-12-21 US US13/723,653 patent/US9019778B2/en active Active
-
2013
- 2013-03-05 CN CN201310068864.2A patent/CN103578564B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5604710A (en) * | 1994-05-20 | 1997-02-18 | Mitsubishi Denki Kabushiki Kaisha | Arrangement of power supply and data input/output pads in semiconductor memory device |
US5808960A (en) * | 1996-01-19 | 1998-09-15 | Sgs-Thomson Microelectronics, Inc. | Circuit and method for tracking the start of a write to a memory cell |
US5930187A (en) * | 1996-10-31 | 1999-07-27 | Kabushiki Kaisha Toshiba | One-chip LSI including a general memory and a logic |
US6216240B1 (en) * | 1997-06-26 | 2001-04-10 | Samsung Electronics Co., Ltd. | Merged memory and logic (MML) integrated circuits including memory test controlling circuits and methods |
US6166989A (en) * | 1998-07-28 | 2000-12-26 | Mitsubishi Denki Kabushiki Kaisha | Clock synchronous type semiconductor memory device that can switch word configuration |
US20030043664A1 (en) * | 2001-08-28 | 2003-03-06 | Mitsubishi Denki Kabushiki Kaisha | Test circuit device capable of identifying error in stored data at memory cell level and semiconductor integrated circuit device including the same |
US20040013016A1 (en) * | 2002-07-19 | 2004-01-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor circuit device capable of accurately testing embedded memory |
US20070242553A1 (en) * | 2006-04-13 | 2007-10-18 | Hynix Semiconductor Inc. | Multi-port memory device with serial input/output interface and control method thereof |
US20090097345A1 (en) * | 2007-09-18 | 2009-04-16 | Alexander Kushnarenko | Method, device and system for regulating access to an integrated circuit (IC) device |
US20110292745A1 (en) * | 2010-05-31 | 2011-12-01 | Hynix Semiconductor Inc. | Data transmission device |
KR101212777B1 (ko) | 2011-04-27 | 2012-12-14 | 에스케이하이닉스 주식회사 | 반도체 집적회로의 테스트 회로 및 방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160364309A1 (en) * | 2015-06-12 | 2016-12-15 | SK Hynix Inc. | Input/output (i/o) line test device and method for controlling the same |
US9959184B2 (en) * | 2015-06-12 | 2018-05-01 | SK Hynix Inc. | Input/output (I/O) line test device and method for controlling the same |
Also Published As
Publication number | Publication date |
---|---|
KR20140020419A (ko) | 2014-02-19 |
CN103578564A (zh) | 2014-02-12 |
CN103578564B (zh) | 2017-11-03 |
US20140043884A1 (en) | 2014-02-13 |
KR101919415B1 (ko) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9164147B2 (en) | Method and apparatus for 3D IC test | |
US9019778B2 (en) | Semiconductor apparatus | |
KR102143490B1 (ko) | 패드 및 범프를 포함하는 반도체 장치 | |
KR102449022B1 (ko) | 적층형 반도체 메모리 및 이를 포함하는 반도체 시스템 | |
US9368167B2 (en) | Semiconductor apparatus and testing method thereof | |
US20120326775A1 (en) | Chip select circuit and semiconductor apparatus including the same | |
US8487645B2 (en) | Through silicon via testing structure | |
US20140167281A1 (en) | Stack type semiconductor circuit with impedance calibration | |
US9548134B2 (en) | Semiconductor integrated circuit device and multi chip package including the same | |
US8873267B2 (en) | Semiconductor apparatus | |
US9502384B2 (en) | Semiconductor devices and semiconductor systems including the same | |
US20110103156A1 (en) | Data input/output circuit and semiconductor memory apparatus having the same | |
US10247778B2 (en) | Semiconductor apparatus and test method thereof | |
US9356000B2 (en) | Semiconductor integrated circuit and semiconductor system with the same | |
US8699280B2 (en) | Semiconductor apparatus and data transmission method thereof | |
CN109785873B (zh) | 层叠式半导体装置和半导体系统 | |
US9165624B2 (en) | Semiconductor integrated circuit with switch to select single or multiple chips | |
US8713384B2 (en) | Semiconductor apparatus | |
US9343438B1 (en) | Semiconductor apparatus having multiple channels | |
US9466555B2 (en) | Semiconductor chip and stack type semiconductor apparatus using the same | |
US10678716B2 (en) | Memory device and memory system including the same | |
US20140353664A1 (en) | Semiconductor chip, semiconductor apparatus having the same and method of arranging the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SK HYNIX INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YOUNG JU;SHIN, SANG HOON;REEL/FRAME:030096/0554 Effective date: 20130325 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |