New! Search for patents from more than 100 countries including Australia, Brazil, Sweden and more

US8947679B2 - Portable handheld device with multi-core microcoded image processor - Google Patents

Portable handheld device with multi-core microcoded image processor Download PDF

Info

Publication number
US8947679B2
US8947679B2 US13/620,872 US201213620872A US8947679B2 US 8947679 B2 US8947679 B2 US 8947679B2 US 201213620872 A US201213620872 A US 201213620872A US 8947679 B2 US8947679 B2 US 8947679B2
Authority
US
UNITED STATES OF AMERICA
Prior art keywords
bit
image
data
bits
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US13/620,872
Other versions
US20130010135A1 (en
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AUPO7991 priority Critical
Priority to AUPO7991A priority patent/AUPO799197A0/en
Priority to AUPO7979 priority
Priority to AUPO7979A priority patent/AUPO797997A0/en
Priority to US09/113,053 priority patent/US6362868B1/en
Priority to US09/922,274 priority patent/US6618117B2/en
Priority to US10/656,791 priority patent/US7957009B2/en
Priority to US13/101,131 priority patent/US8274665B2/en
Priority to US13/620,872 priority patent/US8947679B2/en
Application filed by Google LLC filed Critical Google LLC
Publication of US20130010135A1 publication Critical patent/US20130010135A1/en
Assigned to GOOGLE INC. reassignment GOOGLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK RESEARCH PTY LTD
Assigned to SILVERBROOK RESEARCH PTY LTD reassignment SILVERBROOK RESEARCH PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK, KIA
Application granted granted Critical
Publication of US8947679B2 publication Critical patent/US8947679B2/en
Assigned to GOOGLE LLC reassignment GOOGLE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GOOGLE INC.
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers, thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0005Curl smoothing, i.e. smoothing down corrugated printing material, e.g. by pressing means acting on wrinkled printing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers, thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/66Applications of cutting devices
    • B41J11/70Applications of cutting devices cutting perpendicular to the direction of paper feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J15/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers, thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
    • B41J15/04Supporting, feeding, or guiding devices; Mountings for web rolls or spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J15/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers, thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
    • B41J15/04Supporting, feeding, or guiding devices; Mountings for web rolls or spindles
    • B41J15/044Cassettes or cartridges containing continuous copy material, tape, for setting into printing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1623Production of nozzles manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1626Production of nozzles manufacturing processes etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1626Production of nozzles manufacturing processes etching
    • B41J2/1628Production of nozzles manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1626Production of nozzles manufacturing processes etching
    • B41J2/1629Production of nozzles manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1631Production of nozzles manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1632Production of nozzles manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1635Production of nozzles manufacturing processes dividing the wafer into individual chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1637Production of nozzles manufacturing processes molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1637Production of nozzles manufacturing processes molding
    • B41J2/1639Production of nozzles manufacturing processes molding sacrificial molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/164Production of nozzles manufacturing processes thin film formation
    • B41J2/1642Production of nozzles manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/164Production of nozzles manufacturing processes thin film formation
    • B41J2/1643Production of nozzles manufacturing processes thin film formation thin film formation by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/164Production of nozzles manufacturing processes thin film formation
    • B41J2/1645Production of nozzles manufacturing processes thin film formation thin film formation by spincoating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/164Production of nozzles manufacturing processes thin film formation
    • B41J2/1646Production of nozzles manufacturing processes thin film formation thin film formation by sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1648Production of print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17543Cartridge presence detection or type identification
    • B41J2/17546Cartridge presence detection or type identification electronically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/02Framework
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms, e.g. ink-jet printers, thermal printers characterised by the purpose for which they are constructed
    • B41J3/44Typewriters or selective printing mechanisms having dual functions or combined with, or coupled to, apparatus performing other functions
    • B41J3/445Printers integrated in other types of apparatus, e.g. printers integrated in cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/02Postcards; Greeting, menu, business or like cards; Letter cards or letter-sheets
    • B42D15/10
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/02Exposure apparatus for contact printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0866Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches for peripheral storage systems, e.g. disk cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/78Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
    • G06F21/79Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/86Secure or tamper-resistant housings
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/121Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/0006Affine transformations
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/086Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/12Card verification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/22Safety or protection circuits preventing unauthorised or accidental access to memory cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/57Protection from inspection, reverse engineering or tampering
    • H01L23/576Protection from inspection, reverse engineering or tampering using active circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00278Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a printing apparatus, e.g. a laser beam printer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00326Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a data reading, recognizing or recording apparatus, e.g. with a bar-code apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/0035User-machine interface; Control console
    • H04N1/00352Input means
    • H04N1/00355Mark-sheet input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/0035User-machine interface; Control console
    • H04N1/00405Output means
    • H04N1/00408Display of information to the user, e.g. menus
    • H04N1/0044Display of information to the user, e.g. menus for image preview or review, e.g. to help the user position a sheet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00962Input arrangements for operating instructions or parameters, e.g. updating internal software
    • H04N1/00965Input arrangements for operating instructions or parameters, e.g. updating internal software using a plug-in memory module, e.g. memory card, memory stick
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00962Input arrangements for operating instructions or parameters, e.g. updating internal software
    • H04N1/00968Input arrangements for operating instructions or parameters, e.g. updating internal software by scanning marks on a sheet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • H04N1/2154Intermediate information storage for one or a few pictures using still video cameras the still video camera incorporating a hardcopy reproducing device, e.g. a printer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/23Reproducing arrangements
    • H04N1/2307Circuits or arrangements for the control thereof, e.g. using a programmed control device, according to a measured quantity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32106Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file
    • H04N1/32122Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file in a separate device, e.g. in a memory or on a display separate from image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32128Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image
    • H04N1/32133Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title attached to the image data, e.g. file header, transmitted message header, information on the same page or in the same computer file as the image on the same paper sheet, e.g. a facsimile page header
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/04Picture signal generators
    • H04N9/045Picture signal generators using solid-state devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2002/041Electromagnetic transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • B41J2202/041
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D2035/00Nature or shape of the markings provided on identity, credit, cheque or like information-bearing cards
    • B42D2035/02Nature of the markings
    • B42D2035/08Alphanumerical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D2035/00Nature or shape of the markings provided on identity, credit, cheque or like information-bearing cards
    • B42D2035/34Markings visible under particular conditions or containing coded information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D2035/00Nature or shape of the markings provided on identity, credit, cheque or like information-bearing cards
    • B42D2035/50Corresponding markings appearing in different shapes or at different places
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/20Employing a main memory using a specific memory technology
    • G06F2212/202Non-volatile memory
    • G06F2212/2022Flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2129Authenticate client device independently of the user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0281Arrangement of scan or data electrode driver circuits at the periphery of a panel not inherent to a split matrix structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3212Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a job, e.g. communication, capture or filing of an image
    • H04N2201/3222Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a job, e.g. communication, capture or filing of an image of processing required or performed, e.g. forwarding, urgent or confidential handling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3225Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
    • H04N2201/3242Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of processing required or performed, e.g. for reproduction or before recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3261Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3261Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal
    • H04N2201/3264Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of multimedia information, e.g. a sound signal of sound signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3269Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3274Storage or retrieval of prestored additional information
    • H04N2201/3276Storage or retrieval of prestored additional information of a customised additional information profile, e.g. a profile specific to a user ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/328Processing of the additional information
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S358/00Facsimile and static presentation processing
    • Y10S358/9091Electronic still camera or scene reproducer

Abstract

A portable handheld device including a CPU for processing a script; a multi-core processor for processing an image; an input buffer for receiving data for processing by the multi-core processor, the input buffer being provided under the control of the multi-core processor to send data thereto; and an output buffer for receiving data processed by the multi-core processor, the output buffer being provided under the control of the multi-core processor to receive data therefrom. The multi-core processor comprises a plurality of micro-coded processing units. The CPU is configured with authority to clear and query the input and output buffers.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/101,131 filed May 4, 2011 now U.S Pat. No. 8,274,665, which is a continuation of U.S. application Ser. No. 10/656,791 filed Sep. 8, 2003, issued Jun. 7, 2011, as U.S. Pat. No. 7,957,009, which is a continuation application of U.S. application Ser. No. 09/922,274 filed Aug. 6, 2001, issued Sep. 9, 2003, as U.S. Pat. No. 6,618,117, which is a continuation-in-part application of U.S. application Ser. No. 09/113,053, filed Jul. 10, 1998, issued Mar. 26, 2002, as U.S. Pat. No. 6,362,868. Each of the above identified patents and applications and U.S. Pat. No. 6,238,044 are hereby incorporated herein by reference in their entirety. With respect to the present application, any disclaimer of claim scope made in the parent application or any predecessor or related application is hereby rescinded. Further, any disclaimer of claim scope that may occur in the present application should not be read back into any predecessor or related application.

FIELD OF THE INVENTION

The present invention relates to an image sensing and printing device.

BACKGROUND OF THE INVENTION

Recently, digital printing technology has been proposed as a suitable replacement for traditional camera and photographic film techniques. The traditional film and photographic techniques rely upon a film roll having a number of pre-formatted negatives which are drawn past a lensing system and onto which is imaged a negative of a image taken by the lensing system. Upon the completion of a film roll, the film is rewound into its container and forwarded to a processing shop for processing and development of the negatives so as to produce a corresponding positive set of photos.

Unfortunately, such a system has a number of significant drawbacks. Firstly, the chemicals utilized are obviously very sensitive to light and any light impinging upon the film roll will lead to exposure of the film. They are therefore required to operate in a light sensitive environment where the light imaging is totally controlled. This results in onerous engineering requirements leading to increased expense. Further, film processing techniques require the utilizing of a “negative” and its subsequent processing onto a “positive” film paper through the utilization of processing chemicals and complex silver halide processing etc. This is generally unduly cumbersome, complex and expensive. Further, such a system through its popularity has lead to the standardization on certain size film formats and generally minimal flexibility is possible with the aforementioned techniques.

Recently, all digital cameras have been introduced. These camera devices normally utilize a charge coupled device (CCD) or other form of photosensor connected to a processing chip which in turn is connected to and controls a media storage device which can take the form of a detachable magnetic card. In this type of device, the image is captured by the CCD and stored on the magnetic storage device. At some later time, the image or images that have been captured are down loaded to a computer device and printed out for viewing. The digital camera has the disadvantage that access to images is non-immediate and the further post processing step of loading onto a computer system is required, the further post processing often being a hindrance to ready and expedient use.

At present, hardware for image processing demands processors that are capable of multi-media and high resolution processing. In this field, VLIW microprocessor chips have found favor rather than the Reduced Instruction Set Computer (RISC) chip or the Complex Instruction Set Computer (CISC) chip.

By way of background, a CISC processor chip can have an instruction set of well over 80 instructions, many of them very powerful and very specialized for specific control tasks. It is common for the instructions to all behave differently. For example, some might only operate on certain address spaces or registers, and others might only recognize certain addressing modes. This does result in a chip that is relatively slow, but that has powerful instructions. The advantages of the CISC architecture are that many of the instructions are macro-like, allowing the programmer to use one instruction in place of many simpler instructions. The problem of the slow speed has rendered these chips undesirable for image processing. Further, because of the macro-like instructions, it often occurs that the processor is not used to its full capacity.

The industry trend for general-purpose microprocessor design is for RISC designs. By implementing fewer instructions, the chip designed is able to dedicate some of the precious silicon real-estate for performance enhancing features. The benefits of RISC design simplicity are a smaller chip, smaller pin count, and relatively low power consumption.

Modern microprocessors are complex chip structures that utilize task scheduling and other devices to achieve rapid processing of complex instructions. For example, microprocessors for pre-Pentium type computers use RISC microprocessors together with pipelined superscalar architecture. On the other hand, microprocessors for Pentium and newer computers use CISC microprocessors together with pipelined superscalar architecture. These are expensive and complicated chips as a result of the many different tasks they are called upon to perform.

In application-specific electronic devices such as cameras, it is simply unnecessary and costly to incorporate such chips into these devices. However, image manipulation demands substantial processor performance. For this reason, Very Long Instruction Word processors have been found to be most suitable for the task. One of the reasons for this is that they can be tuned to suit image processing functions. This can result in an operational speed that is substantially higher than that of a desktop computer.

As is known, RISC architecture takes advantage of temporal parallelism by using pipelining and is limited to this approach. VLIW architectures can take advantage of spatial parallelism as well as temporal parallelism by using multiple functional units to execute several operations concurrently.

VLIW processors have multiple functional units connected through a globally shared register file. A central controller is provided that issues a long instruction word every cycle. Each instruction consists of multiple independent parallel operations. Further, each operation requires a statically known number of cycles to complete.

Instructions in VLIW architecture are very long and may contain hundreds of bits. Each instruction contains a number of operations that are executed in parallel. A compiler schedules operations in VLIW instructions. VLIW processes rely on advanced compilation techniques such as percolation scheduling that expose instruction level parallelism beyond the limits of basic blocks. In other words, the compiler breaks code defining the instructions into fragments and does complex scheduling. The architecture of the VLIW processor is completely exposed to the compiler so that the compiler has full knowledge of operation latencies and resource constraints of the processor implementation.

The advantages of the VLIW processor have led it to become a popular choice for image processing devices.

In FIG. 1A of the drawings, there is shown a prior art image processing device 1 a that incorporates a VLIW microprocessor 2 a. The microprocessor 1 a includes a bus interface 3 a.

The device 1 a includes a CCD (charge coupled device) image sensor 4 a. The device 1 a includes a CCD interface 5 a so that the CCD can be connected to the bus interface 2 a, via a bus 6 a. As is known, such CCD's are analog devices. It follows that the CCD interface 5 a includes an analog/digital converter (ADC) 7 a. A suitable memory 35 a and other devices 36 a are also connected to the bus 2 a in a conventional fashion.

In FIG. 1B of the drawings, there is shown another example of a prior art image processing device. With reference to FIG. 1A, like reference numerals refer to like parts, unless otherwise specified.

In this example, the image sensor is in the form of a CMOS image sensor 8 a. Typically, the CMOS image sensor 8 a is in the form of an active pixel sensor. This form of sensor has become popular lately, since it is a digital device and can be manufactured using standard integrated circuit fabrication techniques.

The CMOS image sensor 8 a includes a bus interface 9 a that permits the image sensor 8 a to be connected to the bus interface 2 a via the bus 6 a.

VLIW processors are generally, however, not yet the standard for digital video cameras. A schematic diagram indicating the main components of a digital video camera 10 a is shown in FIG. 1C.

The camera 10 a includes an MPEG encoder 11 a that is connected to a microcontroller 12 a. The MPEG encoder 11 a and the microcontroller 12 a both communicate with an ASIC (application specific integrated circuit) 13 a that, in turn, controls a digital tape drive 14 a. A CCD 15 a is connected to the MPEG encoder 11 a, via an ADC 16 a and an image processor 17 a. A suitable memory 18 a is connected to the MPEG encoder 11 a.

In order for an image sensor device, be it a CCD or a CMOS Active Pixel Sensor (APS), to communicate with a VLIW processor, it is necessary for signals generated by an image sensor to be converted into a form which is readable by the VLIW processor. Further, control signals generated by the VLIW processor must be converted into a form that is suitable for reading by the image sensor.

In the case of a CCD device, this is done with a bus interface in combination with a CCD interface that includes an ADC. In the case of an APS, this is done with a bus interface that also receives signals from other devices controlled by the VLIW processor.

At present, an image sensing interface does not form part of a VLIW processor. This results in the necessity for an interface to be provided with the image sensor device or as an intermediate component. As a result, a bus interface of the VLIW processor is required to receive signals from this suitable interface and from other components such as memory devices. Image processing operations result in the transfer of large amounts of data. Furthermore, it is necessary to carry out a substantial amount of data processing as a result of the size of the instruction words used by the VLIW processor. This can result in an excessive demand being made of the bus interface. Further, as can be seen in the description of the prior art, it is necessary to provide at least two interfaces between the image sensor and the VLIW processor.

Applicant has filed a large number of patent applications in the field of integrated circuits and integrated circuit manufacture. As a result, the Applicant has spent much time investigating commercially viable integrated circuit devices that would be suitable for mass manufacture. As a result of the time and effort spent by the Applicant in developing this technology the Applicant has investigated the possibility of using microcontrollers to achieve low cost, yet complex image processing devices.

A microcontroller is an integrated chip that includes, on one chip, all or most of the components needed for a controller. A microcontroller is what is known as a “system on a chip.” A microcontroller can typically include the following components:

CPU (central processing unit);

RAM (Random Access Memory);

EPROM/PROM/ROM (Erasable Programmable Read Only Memory);

bus interface/s;

timers; and an

interrupt controller.

An advantage of microcontrollers is that by only including the features specific to the task (control), cost is relatively low. A typical microcontroller has bit manipulation instructions, easy and direct access to I/O (input/output) data, and quick and efficient interrupt processing. Microcontrollers are a “one-chip solution” which reduces parts count and design costs. The fact that a microcontroller is in the form of a single chip allows the manufacture of controlling devices to take place in a single integrated circuit fabrication process.

In this invention, the Applicant has conceived a microcontroller that includes a VLIW processor. In particular, the Applicant believes that a microcontroller can be provided that is specifically suited for image processing. It is submitted that this approach is generally counter-intuitive, since VLIW processors are generally used in the format shown in the drawings indicating the prior art. The reason for this is that the fabrication techniques are extremely complex. However, Applicant believes that, in the event that a sufficiently large number of microcontrollers are manufactured, the cost per unit will drop exponentially. Applicant intends utilizing the microcontroller of the present invention in a device that it is envisaged will have a high turnover. At present, it has been simply more convenient for manufacturers of image processing devices to obtain a standard VLIW processor and to program it to suit the particular application.

SUMMARY OF THE INVENTION

According to an aspect of the present disclosure, an image sensing and printing digital camera device comprises a housing defining a slot for receiving a printed instruction card having printed thereon an array of dots representing a programming script, the housing further storing therein a roll of print media; an area image sensor for sensing an image and generating pixel data representing the image; a linear image sensor for scanning the array of dots on the card and converting the array of dots into a data signal; a microcontroller provided in the housing, the microcontroller for decoding the data signal into the programming script and applying the programming script on the pixel data; a printing mechanism for printing on the pixel data, having applied thereto the programming script, on the roll of print media; a guillotine for cutting the roll of print media; and a print manager for activating the guillotine upon receipt of a signal indicate of a manual attempt to pull the print media from the housing.

BRIEF DESCRIPTION OF THE DRAWINGS

Notwithstanding any other forms that may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

FIG. 1 illustrates an Artcam device constructed in accordance with the preferred embodiment;

FIG. 1A illustrates a prior art image processing device that includes a CCD image sensor;

FIG. 1B illustrates a prior art image processing device that includes an APS (active pixel sensor);

FIG. 1C illustrates a prior art image processing device that includes an MPEG decoder;

FIG. 1D illustrates a schematic block diagram of an image processing device of the invention, including a CCD image sensor;

FIG. 1E illustrates a schematic block diagram of an image processing device of the invention, including an APS;

FIG. 1F includes a schematic block diagram of a digital video camera of the invention;

FIG. 2 is a schematic block diagram of the main Artcam electronic components;

FIG. 3 is a schematic block diagram of the Artcam Central Processor;

FIG. 3( a) illustrates the VLIW Vector Processor in more detail;

FIG. 4 illustrates the Processing Unit in more detail;

FIG. 5 illustrates the ALU 188 in more detail;

FIG. 6 illustrates the In block in more detail;

FIG. 7 illustrates the Out block in more detail;

FIG. 8 illustrates the Registers block in more detail;

FIG. 9 illustrates the Crossbar1 in more detail;

FIG. 10 illustrates the Crossbar2 in more detail;

FIG. 11 illustrates the read process block in more detail;

FIG. 12 illustrates the read process block in more detail;

FIG. 13 illustrates the barrel shifter block in more detail;

FIG. 14 illustrates the adder/logic block in more detail;

FIG. 15 illustrates the multiply block in more detail;

FIG. 16 illustrates the I/O address generator block in more detail;

FIG. 17 illustrates a pixel storage format;

FIG. 18 illustrates a sequential read iterator process;

FIG. 19 illustrates a box read iterator process;

FIG. 20 illustrates a box write iterator process;

FIG. 21 illustrates the vertical strip read/write iterator process;

FIG. 22 illustrates the vertical strip read/write iterator process;

FIG. 23 illustrates the generate sequential process;

FIG. 24 illustrates the generate sequential process;

FIG. 25 illustrates the generate vertical strip process;

FIG. 26 illustrates the generate vertical strip process;

FIG. 27 illustrates a pixel data configuration;

FIG. 28 illustrates a pixel processing process;

FIG. 29 illustrates a schematic block diagram of the display controller;

FIG. 30 illustrates the CCD image organization;

FIG. 31 illustrates the storage format for a logical image;

FIG. 32 illustrates the internal image memory storage format;

FIG. 33 illustrates the image pyramid storage format;

FIG. 34 illustrates a time line of the process of sampling an Artcard;

FIG. 35 illustrates the super sampling process;

FIG. 36 illustrates the process of reading a rotated Artcard;

FIG. 37 illustrates a flow chart of the steps necessary to decode an Artcard;

FIG. 38 illustrates an enlargement of the left hand corner of a single Artcard;

FIG. 39 illustrates a single target for detection;

FIG. 40 illustrates the method utilised to detect targets;

FIG. 41 illustrates the method of calculating the distance between two targets;

FIG. 42 illustrates the process of centroid drift;

FIG. 43 shows one form of centroid lookup table;

FIG. 44 illustrates the centroid updating process;

FIG. 45 illustrates a delta processing lookup table utilised in the preferred embodiment;

FIG. 46 illustrates the process of unscrambling Artcard data;

FIG. 47 illustrates a magnified view of a series of dots;

FIG. 48 illustrates the data surface of a dot card;

FIG. 49 illustrates schematically the layout of a single datablock;

FIG. 50 illustrates a single datablock;

FIG. 51 and FIG. 52 illustrate magnified views of portions of the datablock of FIG. 50;

FIG. 53 illustrates a single target structure;

FIG. 54 illustrates the target structure of a datablock;

FIG. 55 illustrates the positional relationship of targets relative to border clocking regions of a data region;

FIG. 56 illustrates the orientation columns of a datablock;

FIG. 57 illustrates the array of dots of a datablock;

FIG. 58 illustrates schematically the structure of data for Reed-Solomon encoding;

FIG. 59 illustrates an example Reed-Solomon encoding;

FIG. 60 illustrates the Reed-Solomon encoding process;

FIG. 61 illustrates the layout of encoded data within a datablock;

FIG. 62 illustrates the sampling process in sampling an alternative Artcard;

FIG. 63 illustrates, in exaggerated form, an example of sampling a rotated alternative Artcard;

FIG. 64 illustrates the scanning process;

FIG. 65 illustrates the likely scanning distribution of the scanning process;

FIG. 66 illustrates the relationship between probability of symbol errors and Reed-Solomon block errors;

FIG. 67 illustrates a flow chart of the decoding process;

FIG. 68 illustrates a process utilization diagram of the decoding process;

FIG. 69 illustrates the dataflow steps in decoding;

FIG. 70 illustrates the reading process in more detail;

FIG. 71 illustrates the process of detection of the start of an alternative Artcard in more detail;

FIG. 72 illustrates the extraction of bit data process in more detail;

FIG. 73 illustrates the segmentation process utilized in the decoding process;

FIG. 74 illustrates the decoding process of finding targets in more detail;

FIG. 75 illustrates the data structures utilized in locating targets;

FIG. 76 illustrates the Lancos 3 function structure;

FIG. 77 illustrates an enlarged portion of a datablock illustrating the clockmark and border region;

FIG. 78 illustrates the processing steps in decoding a bit image;

FIG. 79 illustrates the dataflow steps in decoding a bit image;

FIG. 80 illustrates the descrambling process of the preferred embodiment;

FIG. 81 illustrates one form of implementation of the convolver;

FIG. 82 illustrates a convolution process;

FIG. 83 illustrates the compositing process;

FIG. 84 illustrates the regular compositing process in more detail;

FIG. 85 illustrates the process of warping using a warp map;

FIG. 86 illustrates the warping bi-linear interpolation process;

FIG. 87 illustrates the process of span calculation;

FIG. 88 illustrates the basic span calculation process;

FIG. 89 illustrates one form of detail implementation of the span calculation process;

FIG. 90 illustrates the process of reading image pyramid levels;

FIG. 91 illustrates using the pyramid table for bilinear interpolation;

FIG. 92 illustrates the histogram collection process;

FIG. 93 illustrates the color transform process;

FIG. 94 illustrates the color conversion process;

FIG. 95 illustrates the color space conversion process in more detail;

FIG. 96 illustrates the process of calculating an input coordinate;

FIG. 97 illustrates the process of compositing with feedback;

FIG. 98 illustrates the generalized scaling process;

FIG. 99 illustrates the scale in X scaling process;

FIG. 100 illustrates the scale in Y scaling process;

FIG. 101 illustrates the tessellation process;

FIG. 102 illustrates the sub-pixel translation process;

FIG. 103 illustrates the compositing process;

FIG. 104 illustrates the process of compositing with feedback;

FIG. 105 illustrates the process of tiling with color from the input image;

FIG. 106 illustrates the process of tiling with feedback;

FIG. 107 illustrates the process of tiling with texture replacement;

FIG. 108 illustrates the process of tiling with color from the input image;

FIG. 108 illustrates the process of tiling with color from the input image;

FIG. 109 illustrates the process of applying a texture without feedback;

FIG. 110 illustrates the process of applying a texture with feedback;

FIG. 111 illustrates the process of rotation of CCD pixels;

FIG. 112 illustrates the process of interpolation of Green subpixels;

FIG. 113 illustrates the process of interpolation of Blue subpixels;

FIG. 114 illustrates the process of interpolation of Red subpixels;

FIG. 115 illustrates the process of CCD pixel interpolation with 0 degree rotation for odd pixel lines;

FIG. 116 illustrates the process of CCD pixel interpolation with 0 degree rotation for even pixel lines;

FIG. 117 illustrates the process of color conversion to Lab color space;

FIG. 118 illustrates the process of calculation of 1/√X;

FIG. 119 illustrates the implementation of the calculation of 1/√X in more detail;

FIG. 120 illustrates the process of Normal calculation with a bump map;

FIG. 121 illustrates the process of illumination calculation with a bump map;

FIG. 122 illustrates the process of illumination calculation with a bump map in more detail;

FIG. 123 illustrates the process of calculation of L using a directional light;

FIG. 124 illustrates the process of calculation of L using a Omni lights and spotlights;

FIG. 125 illustrates one form of implementation of calculation of L using a Omni lights and spotlights;

FIG. 126 illustrates the process of calculating the N.L dot product;

FIG. 127 illustrates the process of calculating the N.L dot product in more detail;

FIG. 128 illustrates the process of calculating the R.V dot product;

FIG. 129 illustrates the process of calculating the R.V dot product in more detail;

FIG. 130 illustrates the attenuation calculation inputs and outputs;

FIG. 131 illustrates an actual implementation of attenuation calculation;

FIG. 132 illustrates an graph of the cone factor;

FIG. 133 illustrates the process of penumbra calculation;

FIG. 134 illustrates the angles utilised in penumbra calculation;

FIG. 135 illustrates the inputs and outputs to penumbra calculation;

FIG. 136 illustrates an actual implementation of penumbra calculation;

FIG. 137 illustrates the inputs and outputs to ambient calculation;

FIG. 138 illustrates an actual implementation of ambient calculation;

FIG. 139 illustrates an actual implementation of diffuse calculation;

FIG. 140 illustrates the inputs and outputs to a diffuse calculation;

FIG. 141 illustrates an actual implementation of a diffuse calculation;

FIG. 142 illustrates the inputs and outputs to a specular calculation;

FIG. 143 illustrates an actual implementation of a specular calculation;

FIG. 144 illustrates the inputs and outputs to a specular calculation;

FIG. 145 illustrates an actual implementation of a specular calculation;

FIG. 146 illustrates an actual implementation of an ambient only calculation;

FIG. 147 illustrates the process overview of light calculation;

FIG. 148 illustrates an example illumination calculation for a single infinite light source;

FIG. 149 illustrates an example illumination calculation for an Omni light source without a bump map;

FIG. 150 illustrates an example illumination calculation for an Omni light source with a bump map;

FIG. 151 illustrates an example illumination calculation for a Spotlight light source without a bump map;

FIG. 152 illustrates the process of applying a single Spotlight onto an image with an associated bump-map;

FIG. 153 illustrates the logical layout of a single printhead;

FIG. 154 illustrates the structure of the printhead interface;

FIG. 155 illustrates the process of rotation of a Lab image;

FIG. 156 illustrates the format of a pixel of the printed image;

FIG. 157 illustrates the dithering process;

FIG. 158 illustrates the process of generating an 8 bit dot output;

FIG. 159 illustrates a perspective view of the card reader;

FIG. 160 illustrates an exploded perspective of a card reader;

FIG. 161 illustrates a close up view of the Artcard reader;

FIG. 162 illustrates a perspective view of the print roll and print head;

FIG. 163 illustrates a first exploded perspective view of the print roll;

FIG. 164 illustrates a second exploded perspective view of the print roll;

FIG. 164A illustrates a three dimensional view of another embodiment of the print roll and print head in the form of a printing cartridge also in accordance with the invention;

FIG. 164B illustrates a three dimensional, sectional view of the print cartridge of FIG. 164A;

FIG. 164C shows a three dimensional, exploded view of the print cartridge of FIG. 164A;

FIG. 164D shows a three dimensional, exploded view of an ink cartridge forming part of the print cartridge of FIG. 164A;

FIG. 164E shows a three dimensional view of an air filter of the print cartridge of FIG. 164A;

FIG. 165 illustrates the print roll authentication chip;

FIG. 166 illustrates an enlarged view of the print roll authentication chip;

FIG. 167 illustrates a single authentication chip data protocol;

FIG. 168 illustrates a dual authentication chip data protocol;

FIG. 169 illustrates a first presence only protocol;

FIG. 170 illustrates a second presence only protocol;

FIG. 171 illustrates a third data protocol;

FIG. 172 illustrates a fourth data protocol;

FIG. 173 is a schematic block diagram of a maximal period LFSR;

FIG. 174 is a schematic block diagram of a clock limiting filter;

FIG. 175 is a schematic block diagram of the tamper detection lines;

FIG. 176 illustrates an oversized nMOS transistor;

FIG. 177 illustrates the taking of multiple XORs from the Tamper Detect Line

FIG. 178 illustrates how the Tamper Lines cover the noise generator circuitry;

FIG. 179 illustrates the normal form of FET implementation;

FIG. 180 illustrates the modified form of FET implementation of the preferred embodiment;

FIG. 181 illustrates a schematic block diagram of the authentication chip;

FIG. 182 illustrates an example memory map;

FIG. 183 illustrates an example of the constants memory map;

FIG. 184 illustrates an example of the RAM memory map;

FIG. 185 illustrates an example of the Flash memory variables memory map;

FIG. 186 illustrates an example of the Flash memory program memory map;

FIG. 187 shows the data flow and relationship between components of the State Machine;

FIG. 188 shows the data flow and relationship between components of the I/O Unit.

FIG. 189 illustrates a schematic block diagram of the Arithmetic Logic Unit;

FIG. 190 illustrates a schematic block diagram of the RPL unit;

FIG. 191 illustrates a schematic block diagram of the ROR block of the ALU;

FIG. 192 is a block diagram of the Program Counter Unit;

FIG. 193 is a block diagram of the Memory Unit;

FIG. 194 shows a schematic block diagram for the Address Generator Unit;

FIG. 195 shows a schematic block diagram for the JSIGEN Unit;

FIG. 196 shows a schematic block diagram for the JSRGEN Unit.

FIG. 197 shows a schematic block diagram for the DBRGEN Unit;

FIG. 198 shows a schematic block diagram for the LDKGEN Unit;

FIG. 199 shows a schematic block diagram for the RPLGEN Unit;

FIG. 200 shows a schematic block diagram for the VARGEN Unit.

FIG. 201 shows a schematic block diagram for the CLRGEN Unit.

FIG. 202 shows a schematic block diagram for the BITGEN Unit.

FIG. 203 sets out the information stored on the print roll authentication chip;

FIG. 204 illustrates the data stored within the Artcam authorization chip;

FIG. 205 illustrates the process of print head pulse characterization;

FIG. 206 is an exploded perspective, in section, of the print head ink supply mechanism;

FIG. 207 is a bottom perspective of the ink head supply unit;

FIG. 208 is a bottom side sectional view of the ink head supply unit;

FIG. 209 is a top perspective of the ink head supply unit;

FIG. 210 is a top side sectional view of the ink head supply unit;

FIG. 211 illustrates a perspective view of a small portion of the print head;

FIG. 212 illustrates is an exploded perspective of the print head unit;

FIG. 213 illustrates a top side perspective view of the internal portions of an Artcam camera, showing the parts flattened out;

FIG. 214 illustrates a bottom side perspective view of the internal portions of an Artcam camera, showing the parts flattened out;

FIG. 215 illustrates a first top side perspective view of the internal portions of an Artcam camera, showing the parts as encased in an Artcam;

FIG. 216 illustrates a second top side perspective view of the internal portions of an Artcam camera, showing the parts as encased in an Artcam;

FIG. 217 illustrates a second top side perspective view of the internal portions of an Artcam camera, showing the parts as encased in an Artcam;

FIG. 218 illustrates the backing portion of a postcard print roll;

FIG. 219 illustrates the corresponding front image on the postcard print roll after printing out images;

FIG. 220 illustrates a form of print roll ready for purchase by a consumer;

FIG. 221 illustrates a layout of the software/hardware modules of the overall Artcam application;

FIG. 222 illustrates a layout of the software/hardware modules of the Camera Manager;

FIG. 223 illustrates a layout of the software/hardware modules of the Image Processing Manager;

FIG. 224 illustrates a layout of the software/hardware modules of the Printer Manager;

FIG. 225 illustrates a layout of the software/hardware modules of the Image Processing Manager;

FIG. 226 illustrates a layout of the software/hardware modules of the File Manager;

FIG. 227 illustrates a perspective view, partly in section, of an alternative form of printroll;

FIG. 228 is a left side exploded perspective view of the print roll of FIG. 227;

FIG. 229 is a right side exploded perspective view of a single printroll;

FIG. 230 is an exploded perspective view, partly in section, of the core portion of the printroll; and

FIG. 231 is a second exploded perspective view of the core portion of the printroll.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

The digital image processing camera system constructed in accordance with the preferred embodiment is as illustrated in FIG. 1. The camera unit 1 includes means for the insertion of an integral print roll (not shown). The camera unit 1 can include an area image sensor 2 which sensors an image 3 for captured by the camera. Optionally, the second area image sensor can be provided to also image the scene 3 and to optionally provide for the production of stereographic output effects.

The camera 1 can include an optional color display 5 for the display of the image being sensed by the sensor 2. When a simple image is being displayed on the display 5, the button 6 can be depressed resulting in the printed image 8 being output by the camera unit 1. A series of cards, herein after known as “Artcards” 9 contain, on one surface encoded information and on the other surface, contain an image distorted by the particular effect produced by the Artcard 9. The Artcard 9 is inserted in an Artcard reader 10 in the side of camera 1 and, upon insertion, results in output image 8 being distorted in the same manner as the distortion appearing on the surface of Artcard 9. Hence, by means of this simple user interface a user wishing to produce a particular effect can insert one of many Artcards 9 into the Artcard reader 10 and utilize button 19 to take a picture of the image 3 resulting in a corresponding distorted output image 8.

The camera unit 1 can also include a number of other control button 13, 14 in addition to a simple LCD output display 15 for the display of informative information including the number of printouts left on the internal print roll on the camera unit. Additionally, different output formats can be controlled by CHP switch 17.

Image Processing Apparatus 20 a

In FIG. 1D, reference numeral 20 a generally indicates an image processing apparatus in accordance with the invention.

The image processing apparatus 20 a includes a microcontroller 22 a. The microcontroller 22 a includes circuitry that defines a VLIW processor that is indicated generally at 21 a. The operational details and structure of the VLIW processor is described in further detail later on in the specification.

The microcontroller also includes circuitry that defines a bus interface 23 a. The bus interface permits the VLIW processor 21 a to communicate with other devices indicated at 24 a and with a memory, such as DRAM or EEPROM, indicated at 25 a.

The apparatus 20 a includes an image sensor in the form of a CCD (charge-coupled device) sensor 26 a. These sensors are widely used for image sensing. As is known, such sensors produce an analog signal upon sensing an image. It follows that it is necessary that such a signal be converted into a digital signal in order that it can be processed by the VLIW processor 21 a. Further, as set out in the preamble and later on in the specification, the VLIW processor 21 a makes use of long instruction words in order to process data.

Thus, the microcontroller 22 a includes interface circuitry 28 a that defines an interface 27 a that is capable of converting a signal emanating from the image sensor 26 a into a signal that can be read by the VLIW processor 21 a. Further, the interface circuitry 28 a defines an analog/digital converter (ADC) 29 a for converting signals passing between the VLIW processor 21 a and the CCD sensor 26 a into an appropriate analog or digital signal.

It is important to note that the interface circuitry 28 a and the VLIW processor 21 a share a common wafer substrate. This provides a compact and self-contained microcontroller that is specifically suited to image processing.

In FIG. 1E, reference numeral 30 a generally indicates a further image processing apparatus in accordance with the invention. With reference to FIG. 1D, like reference numerals refer to like parts, unless otherwise specified.

Instead of the CCD sensor 26 a, the apparatus 30 a includes a CMOS type sensor in the form of an active pixel sensor (APS) 31 a.

Such sensors generate a digital signal upon sensing an image. It follows that, in this case, the interface circuitry 28 a does not include the ADC 29 a.

In FIG. 1F, reference numeral 32 a generally indicates a schematic block diagram of a digital video camera, in accordance with the invention. With reference to FIGS. 1D and 1E, like reference numerals refer to like parts, unless otherwise specified.

In this example, the bus interface 23 a is connected to a memory 33 a and to a digital tape drive 34 a.

The camera 32 a includes a CCD sensor 35 a. Thus, the interface circuitry 28 includes the ADC 29 a to carry out the necessary analog/digital conversion as described above. A particular advantage of the VLIW processor 21 a is that it facilitates the provision of image processing, MPEG encoding, digital tape formatting and control in a single integrated circuit device that is the microcontroller 22 a.

Turning now to FIG. 2, there is illustrated a schematic view of the internal hardware of the camera unit 1. The internal hardware is based around an Artcam central processor unit (ACP) 31.

Artcam Central Processor 31

The Artcam central processor 31 provides many functions that form the ‘heart’ of the system. The ACP 31 is preferably implemented as a complex, high speed, CMOS system on-a-chip. Utilising standard cell design with some full custom regions is recommended. Fabrication on a 0.25 micron CMOS process will provide the density and speed required, along with a reasonably small die area.

The functions provided by the ACP 31 include:

1. Control and digitization of the area image sensor 2. A 3D stereoscopic version of the ACP requires two area image sensor interfaces with a second optional image sensor 4 being provided for stereoscopic effects.

2. Area image sensor compensation, reformatting, and image enhancement.

3. Memory interface and management to a memory store 33.

4. Interface, control, and analog to digital conversion of an Artcard reader linear image sensor 34 which is provided for the reading of data from the Artcards 9.

5. Extraction of the raw Artcard data from the digitized and encoded Artcard image.

6. Reed-Solomon error detection and correction of the Artcard encoded data. The encoded surface of the Artcard 9 includes information on how to process an image to produce the effects displayed on the image distorted surface of the Artcard 9. This information is in the form of a script, hereinafter known as a “Vark script”. The Vark script is utilised by an interpreter running within the ACP 31 to produce the desired effect.

7. Interpretation of the Vark script on the Artcard 9.

8. Performing image processing operations as specified by the Vark script.

9. Controlling various motors for the paper transport 36, zoom lens 38, autofocus 39 and

Artcard driver 37.

10. Controlling a guillotine actuator 40 for the operation of a guillotine 41 for the cutting of photographs 8 from print roll 42.

11. Half-toning of the image data for printing.

12. Providing the print data to a print-head 44 at the appropriate times.

13. Controlling the print head 44.

14. Controlling the ink pressure feed to print-head 44.

15. Controlling optional flash unit 56.

16. Reading and acting on various sensors in the camera, including camera orientation sensor 46, autofocus 47 and Artcard insertion sensor 49.

17. Reading and acting on the user interface buttons 6, 13, 14.

18. Controlling the status display 15.

19. Providing viewfinder and preview images to the color display 5.

20. Control of the system power consumption, including the ACP power consumption via power management circuit 51.

21. Providing external communications 52 to general purpose computers (using part USB).

22. Reading and storing information in a printing roll authentication chip 53.

23. Reading and storing information in a camera authentication chip 54.

24. Communicating with an optional mini-keyboard 57 for text modification.

Quartz Crystal 58

A quartz crystal 58 is used as a frequency reference for the system clock. As the system clock is very high, the ACP 31 includes a phase locked loop clock circuit to increase the frequency derived from the crystal 58.

Image Sensing

Area Image Sensor 2

The area image sensor 2 converts an image through its lens into an electrical signal. It can either be a charge coupled device (CCD) or an active pixel sensor (APS)CMOS image sector. At present, available CCD's normally have a higher image quality, however, there is currently much development occurring in CMOS imagers. CMOS imagers are eventually expected to be substantially cheaper than CCD's have smaller pixel areas, and be able to incorporate drive circuitry and signal processing. They can also be made in CMOS fabs, which are transitioning to 12″ wafers. CCD's are usually built in 6″ wafer fabs, and economics may not allow a conversion to 12″ fabs. Therefore, the difference in fabrication cost between CCD's and CMOS imagers is likely to increase, progressively favoring CMOS imagers. However, at present, a CCD is probably the best option.

The Artcam unit will produce suitable results with a 1,500×1,000 area image sensor. However, smaller sensors, such as 750×500, will be adequate for many markets. The Artcam is less sensitive to image sensor resolution than are conventional digital cameras. This is because many of the styles contained on Artcards 9 process the image in such a way as to obscure the lack of resolution. For example, if the image is distorted to simulate the effect of being converted to an impressionistic painting, low source image resolution can be used with minimal effect. Further examples for which low resolution input images will typically not be noticed include image warps which produce high distorted images, multiple miniature copies of the of the image (e.g. passport photos), textural processing such as bump mapping for a base relief metal look, and photo-compositing into structured scenes.

This tolerance of low resolution image sensors may be a significant factor in reducing the manufacturing cost of an Artcam unit 1 camera. An Artcam with a low cost 750×500 image sensor will often produce superior results to a conventional digital camera with a much more expensive 1,500×1,000 image sensor.

Optional Stereoscopic 3D Image Sensor 4

The 3D versions of the Artcam unit 1 have an additional image sensor 4, for stereoscopic operation. This image sensor is identical to the main image sensor. The circuitry to drive the optional image sensor may be included as a standard part of the ACP chip 31 to reduce incremental design cost. Alternatively, a separate 3D Artcam ACP can be designed. This option will reduce the manufacturing cost of a mainstream single sensor Artcam.

Print Roll Authentication Chip 53

A small chip 53 is included in each print roll 42. This chip replaced the functions of the bar code, optical sensor and wheel, and ISO/ASA sensor on other forms of camera film units such as Advanced Photo Systems film cartridges.

The authentication chip also provides other features:

1. The storage of data rather than that which is mechanically and optically sensed from APS rolls

2. A remaining media length indication, accurate to high resolution.

3. Authentication Information to prevent inferior clone print roll copies.

The authentication chip 53 contains 1024 bits of Flash memory, of which 128 bits is an authentication key, and 512 bits is the authentication information. Also included is an encryption circuit to ensure that the authentication key cannot be accessed directly.

Print-Head 44

The Artcam unit 1 can utilize any color print technology which is small enough, low enough power, fast enough, high enough quality, and low enough cost, and is compatible with the print roll. Relevant printheads will be specifically discussed hereinafter.

The specifications of the ink jet head are:

Image type Bi-level, dithered
Color CMY Process Color
Resolution 1600 dpi
Print head length ‘Page-width’ (100 mm)
Print speed 2 seconds per photo

Optional Ink Pressure Controller (not Shown)

The function of the ink pressure controller depends upon the type of ink jet print head 44 incorporated in the Artcam. For some types of ink jet, the use of an ink pressure controller can be eliminated, as the ink pressure is simply atmospheric pressure. Other types of print head require a regulated positive ink pressure. In this case, the in pressure controller consists of a pump and pressure transducer.

Other print heads may require an ultrasonic transducer to cause regular oscillations in the ink pressure, typically at frequencies around 100 KHz. In the case, the ACP 31 controls the frequency phase and amplitude of these oscillations.

Paper Transport Motor 36

The paper transport motor 36 moves the paper from within the print roll 42 past the print head at a relatively constant rate. The motor 36 is a miniature motor geared down to an appropriate speed to drive rollers which move the paper. A high quality motor and mechanical gears are required to achieve high image quality, as mechanical rumble or other vibrations will affect the printed dot row spacing.

Paper Transport Motor Driver 60

The motor driver 60 is a small circuit which amplifies the digital motor control signals from the APC 31 to levels suitable for driving the motor 36.

Paper Pull Sensor

A paper pull sensor 50 detects a user's attempt to pull a photo from the camera unit during the printing process. The APC 31 reads this sensor 50, and activates the guillotine 41 if the condition occurs. The paper pull sensor 50 is incorporated to make the camera more ‘foolproof’ in operation. Were the user to pull the paper out forcefully during printing, the print mechanism 44 or print roll 42 may (in extreme cases) be damaged. Since it is acceptable to pull out the ‘pod’ from a Polaroid type camera before it is fully ejected, the public has been ‘trained’ to do this. Therefore, they are unlikely to heed printed instructions not to pull the paper.

The Artcam preferably restarts the photo print process after the guillotine 41 has cut the paper after pull sensing.

The pull sensor can be implemented as a strain gauge sensor, or as an optical sensor detecting a small plastic flag which is deflected by the torque that occurs on the paper drive rollers when the paper is pulled. The latter implementation is recommendation for low cost.

Paper Guillotine Actuator 40

The paper guillotine actuator 40 is a small actuator which causes the guillotine 41 to cut the paper either at the end of a photograph, or when the paper pull sensor 50 is activated.

The guillotine actuator 40 is a small circuit which amplifies a guillotine control signal from the APC tot the level required by the actuator 41.

Artcard 9

The Artcard 9 is a program storage medium for the Artcam unit. As noted previously, the programs are in the form of Vark scripts. Vark is a powerful image processing language especially developed for the Artcam unit. Each Artcard 9 contains one Vark script, and thereby defines one image processing style.

Preferably, the VARK language is highly image processing specific. By being highly image processing specific, the amount of storage required to store the details on the card are substantially reduced. Further, the ease with which new programs can be created, including enhanced effects, is also substantially increased. Preferably, the language includes facilities for handling many image processing functions including image warping via a warp map, convolution, color lookup tables, posterizing an image, adding noise to an image, image enhancement filters, painting algorithms, brush jittering and manipulation edge detection filters, tiling, illumination via light sources, bump maps, text, face detection and object detection attributes, fonts, including three dimensional fonts, and arbitrary complexity pre-rendered icons. Further details of the operation of the Vark language interpreter are contained hereinafter.

Hence, by utilizing the language constructs as defined by the created language, new affects on arbitrary images can be created and constructed for inexpensive storage on Artcard and subsequent distribution to camera owners. Further, on one surface of the card can be provided an example illustrating the effect that a particular VARK script, stored on the other surface of the card, will have on an arbitrary captured image.

By utilizing such a system, camera technology can be distributed without a great fear of obsolescence in that, provided a VARK interpreter is incorporated in the camera device, a device independent scenario is provided whereby the underlying technology can be completely varied over time. Further, the VARK scripts can be updated as new filters are created and distributed in an inexpensive manner, such as via simple cards for card reading.

The Artcard 9 is a piece of thin white plastic with the same format as a credit card (86mm long by 54mm wide). The Artcard is printed on both sides using a high resolution ink jet printer. The inkjet printer technology is assumed to be the same as that used in the Artcam, with 1600 dpi (63dpmm) resolution. A major feature of the Artcard 9 is low manufacturing cost. Artcards can be manufactured at high speeds as a wide web of plastic film. The plastic web is coated on both sides with a hydrophilic dye fixing layer. The web is printed simultaneously on both sides using a ‘pagewidth’ color ink jet printer. The web is then cut and punched into individual cards. On one face of the card is printed a human readable representation of the effect the Artcard 9 will have on the sensed image. This can be simply a standard image which has been processed using the Vark script stored on the back face of the card.

On the back face of the card is printed an array of dots which can be decoded into the Vark script that defines the image processing sequence. The print area is 80mm×50mm, giving a total of 15,876,000 dots. This array of dots could represent at least 1.89 Mbytes of data. To achieve high reliability, extensive error detection and correction is incorporated in the array of dots. This allows a substantial portion of the card to be defaced, worn, creased, or dirty with no effect on data integrity. The data coding used is Reed-Solomon coding, with half of the data devoted to error correction. This allows the storage of 967 Kbytes of error corrected data on each Artcard 9.

Linear Image Sensor 34

The Artcard linear sensor 34 converts the aforementioned Artcard data image to electrical signals. As with the area image sensor 2, 4, the linear image sensor can be fabricated using either CCD or APS CMOS technology. The active length of the image sensor 34 is 50mm, equal to the width of the data array on the Artcard 9. To satisfy Nyquist's sampling theorem, the resolution of the linear image sensor 34 must be at least twice the highest spatial frequency of the Artcard optical image reaching the image sensor. In practice, data detection is easier if the image sensor resolution is substantially above this. A resolution of 4800 dpi (189dpmm) is chosen, giving a total of 9,450 pixels. This resolution requires a pixel sensor pitch of 5.3μm. This can readily be achieved by using four staggered rows of 20μm pixel sensors.

The linear image sensor is mounted in a special package which includes a LED 65 to illuminate the Artcard 9 via a light-pipe (not shown).

The Artcard reader light-pipe can be a molded light-pipe which has several function:

1. It diffuses the light from the LED over the width of the card using total internal reflection facets.

2. It focuses the light onto a 16 μm wide strip of the Artcard 9 using an integrated cylindrical lens.

3. It focuses light reflected from the Artcard onto the linear image sensor pixels using a molded array of microlenses.

The operation of the Artcard reader is explained further hereinafter.

Artcard Reader Motor 37

The Artcard reader motor propels the Artcard past the linear image sensor 34 at a relatively constant rate. As it may not be cost effective to include extreme precision mechanical components in the Artcard reader, the motor 37 is a standard miniature motor geared down to an appropriate speed to drive a pair of rollers which move the Artcard 9. The speed variations, rumble, and other vibrations will affect the raw image data as circuitry within the APC 31 includes extensive compensation for these effects to reliably read the Artcard data.

The motor 37 is driven in reverse when the Artcard is to be ejected.

Artcard Motor Driver 61

The Artcard motor driver 61 is a small circuit which amplifies the digital motor control signals from the APC 31 to levels suitable for driving the motor 37.

Card Insertion Sensor 49

The card insertion sensor 49 is an optical sensor which detects the presence of a card as it is being inserted in the card reader 34. Upon a signal from this sensor 49, the APC 31 initiates the card reading process, including the activation of the Artcard reader motor 37.

Card Eject Button 16

A card eject button 16 (FIG. 1) is used by the user to eject the current Artcard, so that another Artcard can be inserted. The APC 31 detects the pressing of the button, and reverses the Artcard reader motor 37 to eject the card.

Card Status Indicator 66

A card status indicator 66 is provided to signal the user as to the status of the Artcard reading process. This can be a standard bi-color (red/green) LED. When the card is successfully read, and data integrity has been verified, the LED lights up green continually. If the card is faulty, then the LED lights up red.

If the camera is powered from a 1.5 V instead of 3V battery, then the power supply voltage is less than the forward voltage drop of the greed LED, and the LED will not light. In this case, red LEDs can be used, or the LED can be powered from a voltage pump which also powers other circuits in the Artcam which require higher voltage.

64 Mbit DRAM 33

To perform the wide variety of image processing effects, the camera utilizes 8 Mbytes of memory 33. This can be provided by a single 64 Mbit memory chip. Of course, with changing memory technology increased Dram storage sizes may be substituted.

High speed access to the memory chip is required. This can be achieved by using a Rambus DRAM (burst access rate of 500 Mbytes per second) or chips using the new open standards such as double data rate (DDR) SDRAM or Synclink DRAM.

Camera Authentication Chip

The camera authentication chip 54 is identical to the print roll authentication chip 53, except that it has different information stored in it. The camera authentication chip 54 has three main purposes:

1. To provide a secure means of comparing authentication codes with the print roll authentication chip;

2. To provide storage for manufacturing information, such as the serial number of the camera;

3. To provide a small amount of non-volatile memory for storage of user information.

Displays

The Artcam includes an optional color display 5 and small status display 15. Lowest cost consumer cameras may include a color image display, such as a small TFT LCD 5 similar to those found on some digital cameras and camcorders. The color display 5 is a major cost element of these versions of Artcam, and the display 5 plus back light are a major power consumption drain.

Status Display 15

The status display 15 is a small passive segment based LCD, similar to those currently provided on silver halide and digital cameras. Its main function is to show the number of prints remaining in the print roll 42 and icons for various standard camera features, such as flash and battery status.

Color Display 5

The color display 5 is a full motion image display which operates as a viewfinder, as a verification of the image to be printed, and as a user interface display. The cost of the display 5 is approximately proportional to its area, so large displays (say 4″ diagonal) unit will be restricted to expensive versions of the Artcam unit. Smaller displays, such as color camcorder viewfinder TFT's at around 1″, may be effective for mid-range Artcams.

Zoom Lens (not Shown)

The Artcam can include a zoom lens. This can be a standard electronically controlled zoom lens, identical to one which would be used on a standard electronic camera, and similar to pocket camera zoom lenses. A referred version of the Artcam unit may include standard interchangeable 35mm SLR lenses.

Autofocus Motor 39

The autofocus motor 39 changes the focus of the zoom lens. The motor is a miniature motor geared down to an appropriate speed to drive the autofocus mechanism.

Autofocus Motor Driver 63

The autofocus motor driver 63 is a small circuit which amplifies the digital motor control signals from the APC 31 to levels suitable for driving the motor 39.

Zoom Motor 38

The zoom motor 38 moves the zoom front lenses in and out. The motor is a miniature motor geared down to an appropriate speed to drive the zoom mechanism.

Zoom Motor Driver 62

The zoom motor driver 62 is a small circuit which amplifies the digital motor control signals from the APC 31 to levels suitable for driving the motor.

Communications

The ACP 31 contains a universal serial bus (USB) interface 52 for communication with personal computers. Not all Artcam models are intended to include the USB connector. However, the silicon area required for a USB circuit 52 is small, so the interface can be included in the standard ACP.

Optional Keyboard 57

The Artcam unit may include an optional miniature keyboard 57 for customizing text specified by the Artcard. Any text appearing in an Artcard image may be editable, even if it is in a complex metallic 3D font. The miniature keyboard includes a single line alphanumeric LCD to display the original text and edited text. The keyboard may be a standard accessory.

The ACP 31 contains a serial communications circuit for transferring data to and from the miniature keyboard.

Power Supply

The Artcam unit uses a battery 48. Depending upon the Artcam options, this is either a 3V Lithium cell, 1.5 V AA alkaline cells, or other battery arrangement.

Power Management Unit 51

Power consumption is an important design constraint in the Artcam. It is desirable that either standard camera batteries (such as 3V lithium batters) or standard AA or AAA alkaline cells can be used. While the electronic complexity of the Artcam unit is dramatically higher than 35mm photographic cameras, the power consumption need not be commensurately higher. Power in the Artcam can be carefully managed with all units being turned off when not in use.

The most significant current drains are the ACP 31, the area image sensors 2,4, the printer 44 various motors, the flash unit 56, and the optional color display 5 dealing with each part separately:

1. ACP: If fabricated using 0.25μm CMOS, and running on 1.5V, the ACP power consumption can be quite low. Clocks to various parts of the ACP chip can be quite low. Clocks to various parts of the ACP chip can be turned off when not in use, virtually eliminating standby current consumption. The ACP will only fully used for approximately 4 seconds for each photograph printed.

2. Area image sensor: power is only supplied to the area image sensor when the user has their finger on the button.

3. The printer power is only supplied to the printer when actually printing. This is for around 2 seconds for each photograph. Even so, suitably lower power consumption printing should be used.

4. The motors required in the Artcam are all low power miniature motors, and are typically only activated for a few seconds per photo.

5. The flash unit 45 is only used for some photographs. Its power consumption can readily be provided by a 3V lithium battery for a reasonably battery life.

6. The optional color display 5 is a major current drain for two reasons: it must be on for the whole time that the camera is in use, and a backlight will be required if a liquid crystal display is used. Cameras that incorporate a color display will require a larger battery to achieve acceptable batter life.

Flash Unit 56

The flash unit 56 can be a standard miniature electronic flash for consumer cameras.

Overview of the ACP 31

FIG. 3 illustrates the Artcam Central Processor (ACP) 31 in more detail. The Artcam Central Processor provides all of the processing power for Artcam. It is designed for a 0.25 micron CMOS process, with approximately 1.5 million transistors and an area of around 50 mm2. The ACP 31 is a complex design, but design effort can be reduced by the use of datapath compilation techniques, macrocells, and IP cores. The ACP 31 contains:

    • A RISC CPU core 72
    • A 4 way parallel VLIW Vector Processor 74
    • A Direct RAMbus interface 81
    • A CMOS image sensor interface 83
    • A CMOS linear image sensor interface 88
    • A USB serial interface 52
    • An infrared keyboard interface 55
    • A numeric LCD interface 84, and
    • A color TFT LCD interface 88
    • A 4 Mbyte Flash memory 70 for program storage 70
      The RISC CPU, Direct RAMbus interface 81, CMOS sensor interface 83 and USB serial interface 52 can be vendor supplied cores. The ACP 31 is intended to run at a clock speed of 200 MHz on 3V externally and 1.5V internally to minimize power consumption. The CPU core needs only to run at 100 MHz. The following two block diagrams give two views of the ACP 31:
    • A view of the ACP 31 in isolation
      An example Artcam showing a high-level view of the ACP 31 connected to the rest of the Artcam hardware.
      Image Access

As stated previously, the DRAM Interface 81 is responsible for interfacing between other client portions of the ACP chip and the RAMBUS DRAM. In effect, each module within the DRAM Interface is an Address Generator.

There are three logical types of images manipulated by the ACP. They are:

    • CCD Image, which is the Input Image captured from the CCD.
    • Internal Image format—the Image format utilised internally by the Artcam device.

Print Image—the Output Image format printed by the Artcam

These images are typically different in color space, resolution, and the output & input color spaces which can vary from camera to camera. For example, a CCD image on a low-end camera may be a different resolution, or have different color characteristics from that used in a high-end camera. However all internal image formats are the same format in terms of color space across all cameras.

In addition, the three image types can vary with respect to which direction is ‘up’. The physical orientation of the camera causes the notion of a portrait or landscape image, and this must be maintained throughout processing. For this reason, the internal image is always oriented correctly, and rotation is performed on images obtained from the CCD and during the print operation.

CPU Core (CPU) 72

The ACP 31 incorporates a 32 bit RISC CPU 72 to run the Vark image processing language interpreter and to perform Artcam's general operating system duties. A wide variety of CPU cores are suitable: it can be any processor core with sufficient processing power to perform the required core calculations and control functions fast enough to met consumer expectations. Examples of suitable cores are: MIPS R4000 core from LSI Logic, StrongARM core. There is no need to maintain instruction set continuity between different Artcam models. Artcard compatibility is maintained irrespective of future processor advances and changes, because the Vark interpreter is simply re-compiled for each new instruction set. The ACP 31 architecture is therefore also free to evolve. Different ACP 31 chip designs may be fabricated by different manufacturers, without requiring to license or port the CPU core. This device independence avoids the chip vendor lock-in such as has occurred in the PC market with Intel. The CPU operates at 100 MHz, with a single cycle time of 10 ns. It must be fast enough to run the Vark interpreter, although the VLIW Vector Processor 74 is responsible for most of the time-critical operations.

Program Cache 72

Although the program code is stored in on-chip Flash memory 70, it is unlikely that well packed Flash memory 70 will be able to operate at the 10 ns cycle time required by the CPU. Consequently a small cache is required for good performance. 16 cache lines of 32 bytes each are sufficient, for a total of 512 bytes. The program cache 72 is defined in the chapter entitled Program cache 72.

Data Cache 76

A small data cache 76 is required for good performance. This requirement is mostly due to the use of a RAMbus DRAM, which can provide high-speed data in bursts, but is inefficient for single byte accesses. The CPU has access to a memory caching system that allows flexible manipulation of CPU data cache 76 sizes. A minimum of 16 cache lines (512 bytes) is recommended for good performance.

CPU Memory Model

An Artcam's CPU memory model consists of a 32MB area. It consists of 8MB of physical RDRAM off-chip in the base model of Artcam, with provision for up to 16MB of off-chip memory. There is a 4MB Flash memory 70 on the ACP 31 for program storage, and finally a 4MB address space mapped to the various registers and controls of the ACP 31. The memory map then, for an Artcam is as follows:

Contents Size
Base Artcam DRAM 8 MB
Extended DRAM 8 MB
Program memory (on ACP 31 in Flash memory 70) 4 MB
Reserved for extension of program memory 4 MB
ACP 31 registers and memory-mapped I/O 4 MB
Reserved 4 MB
TOTAL 32 MB

A straightforward way of decoding addresses is to use address bits 23-24:

    • If bit 24 is clear, the address is in the lower 16-MB range, and hence can be satisfied from DRAM and the Data cache 76. In most cases the DRAM will only be 8 MB, but 16 MB is allocated to cater for a higher memory model Artcams.
    • If bit 24 is set, and bit 23 is clear, then the address represents the Flash memory 70 4 Mbyte range and is satisfied by the Program cache 72.
    • If bit 24=1 and bit 23=1, the address is translated into an access over the low speed bus to the requested component in the AC by the CPU Memory Decoder 68.
      Flash Memory 70

The ACP 31 contains a 4 Mbyte Flash memory 70 for storing the Artcam program. It is envisaged that Flash memory 70 will have denser packing coefficients than masked ROM, and allows for greater flexibility for testing camera program code. The downside of the Flash memory 70 is the access time, which is unlikely to be fast enough for the 100 MHz operating speed (10 ns cycle time) of the CPU. A fast Program Instruction cache 77 therefore acts as the interface between the CPU and the slower Flash memory 70.

Program Cache 72

A small cache is required for good CPU performance. This requirement is due to the slow speed Flash memory 70 which stores the Program code. 16 cache lines of 32 bytes each are sufficient, for a total of 512 bytes. The Program cache 72 is a read only cache. The data used by CPU programs comes through the CPU Memory Decoder 68 and if the address is in DRAM, through the general Data cache 76. The separation allows the CPU to operate independently of the VLIW Vector Processor 74. If the data requirements are low for a given process, it can consequently operate completely out of cache.

Finally, the Program cache 72 can be read as data by the CPU rather than purely as program instructions. This allows tables, microcode for the VLIW etc to be loaded from the Flash memory 70. Addresses with bit 24 set and bit 23 clear are satisfied from the Program cache 72.

CPU Memory Decoder 68

The CPU Memory Decoder 68 is a simple decoder for satisfying CPU data accesses. The Decoder translates data addresses into internal ACP register accesses over the internal low speed bus, and therefore allows for memory mapped I/O of ACP registers. The CPU Memory Decoder 68 only interprets addresses that have bit 24 set and bit 23 clear. There is no caching in the CPU Memory Decoder 68.

DRAM Interface 81

The DRAM used by the Artcam is a single channel 64 Mbit (8 MB) RAMbus RDRAM operating at 1.6 GB/sec. RDRAM accesses are by a single channel (16-bit data path) controller. The RDRAM also has several useful operating modes for low power operation. Although the Rambus specification describes a system with random 32 byte transfers as capable of achieving a greater than 95% efficiency, this is not true if only part of the 32 bytes are used. Two reads followed by two writes to the same device yields over 86% efficiency. The primary latency is required for bus turn-around going from a Write to a Read, and since there is a Delayed Write mechanism, efficiency can be further improved. With regards to writes, Write Masks allow specific subsets of bytes to be written to. These write masks would be set via internal cache “dirty bits”. The upshot of the Rambus Direct RDRAM is a throughput of >1GB/sec is easily achievable, and with multiple reads for every write (most processes) combined with intelligent algorithms making good use of 32 byte transfer knowledge, transfer rates of >1.3 GB/sec are expected. Every 10 ns, 16 bytes can be transferred to or from the core.

Dram Organization

The DRAM organization for a base model (8 MB RDRAM) Artcam is as follows:

Contents Size
Program scratch RAM 0.50 MB
Artcard data 1.00 MB
Photo Image, captured from CMOS Sensor 0.50 MB
Print Image (compressed) 2.25 MB
1 Channel of expanded Photo Image 1.50 MB
1 Image Pyramid of single channel 1.00 MB
Intermediate Image Processing 1.25 MB
TOTAL   8 MB

Notes:

Uncompressed, the Print Image requires 4.5 MB (1.5 MB per channel). To accommodate other objects in the 8 MB model, the Print Image needs to be compressed. If the chrominance channels are compressed by 4:1 they require only 0.375 MB each).

The memory model described here assumes a single 8 MB RDRAM. Other models of the Artcam may have more memory, and thus not require compression of the Print Image. In addition, with more memory a larger part of the final image can be worked on at once, potentially giving a speed improvement.

Note that ejecting or inserting an Artcard invalidates the 5.5MB area holding the Print Image, 1 channel of expanded photo image, and the image pyramid. This space may be safely used by the Artcard Interface for decoding the Artcard data.

Data Cache 76

The ACP 31 contains a dedicated CPU instruction cache 77 and a general data cache 76. The Data cache 76 handles all DRAM requests (reads and writes of data) from the CPU, the VLIW Vector Processor 74, and the Display Controller 88. These requests may have very different profiles in terms of memory usage and algorithmic timing requirements. For example, a VLIW process may be processing an image in linear memory, and lookup a value in a table for each value in the image. There is little need to cache much of the image, but it may be desirable to cache the entire lookup table so that no real memory access is required. Because of these differing requirements, the Data cache 76 allows for an intelligent definition of caching.

Although the Rambus DRAM interface 81 is capable of very high-speed memory access (an average throughput of 32 bytes in 25ns), it is not efficient dealing with single byte requests. In order to reduce effective memory latency, the ACP 31 contains 128 cache lines. Each cache line is 32 bytes wide. Thus the total amount of data cache 76 is 4096 bytes (4KB). The 128 cache lines are configured into 16 programmable-sized groups. Each of the 16 groups must be a contiguous set of cache lines. The CPU is responsible for determining how many cache lines to allocate to each group. Within each group cache lines are filled according to a simple Least Recently Used algorithm. In terms of CPU data requests, the Data cache 76 handles memory access requests that have address bit 24 clear. If bit 24 is clear, the address is in the lower 16 MB range, and hence can be satisfied from DRAM and the Data cache 76. In most cases the DRAM will only be 8 MB, but 16 MB is allocated to cater for a higher memory model Artcam. If bit 24 is set, the address is ignored by the Data cache 76.

All CPU data requests are satisfied from Cache Group 0. A minimum of 16 cache lines is recommended for good CPU performance, although the CPU can assign any number of cache lines (except none) to Cache Group 0. The remaining Cache Groups (1 to 15) are allocated according to the current requirements. This could mean allocation to a VLIW Vector Processor 74 program or the Display Controller 88. For example, a 256 byte lookup table required to be permanently available would require 8 cache lines. Writing out a sequential image would only require 2-4 cache lines (depending on the size of record being generated and whether write requests are being Write Delayed for a significant number of cycles). Associated with each cache line byte is a dirty bit, used for creating a Write Mask when writing memory to DRAM. Associated with each cache line is another dirty bit, which indicates whether any of the cache line bytes has been written to (and therefore the cache line must be written back to DRAM before it can be reused). Note that it is possible for two different Cache Groups to be accessing the same address in memory and to get out of sync. The VLIW program writer is responsible to ensure that this is not an issue. It could be perfectly reasonable, for example, to have a Cache Group responsible for reading an image, and another Cache Group responsible for writing the changed image back to memory again. If the images are read or written sequentially there may be advantages in allocating cache lines in this manner. A total of 8 buses 182 connect the VLIW Vector Processor 74 to the Data cache 76. Each bus is connected to an I/O Address Generator. (There are 2 I/O Address Generators 189, 190 per Processing Unit 178, and there are 4 Processing Units in the VLIW Vector Processor 74. The total number of buses is therefore 8.)

In any given cycle, in addition to a single 32 bit (4 byte) access to the CPU's cache group (Group 0), 4 simultaneous accesses of 16 bits (2 bytes) to remaining cache groups are permitted on the 8 VLIW Vector Processor 74 buses. The Data cache 76 is responsible for fairly processing the requests. On a given cycle, no more than 1 request to a specific Cache Group will be processed. Given that there are 8 Address Generators 189, 190 in the VLIW Vector Processor 74, each one of these has the potential to refer to an individual Cache Group. However it is possible and occasionally reasonable for 2 or more Address Generators 189, 190 to access the same Cache Group. The CPU is responsible for ensuring that the Cache Groups have been allocated the correct number of cache lines, and that the various Address Generators 189, 190 in the VLIW Vector Processor 74 reference the specific Cache Groups correctly.

The Data cache 76 as described allows for the Display Controller 88 and VLIW Vector Processor 74 to be active simultaneously. If the operation of these two components were deemed to never occur simultaneously, a total 9 Cache Groups would suffice. The CPU would use Cache Group 0, and the VLIW Vector Processor 74 and the Display Controller 88 would share the remaining 8 Cache Groups, requiring only 3 bits (rather than 4) to define which Cache Group would satisfy a particular request.

JTAG Interface 85

A standard JTAG (Joint Test Action Group) Interface is included in the ACP 31 for testing purposes. Due to the complexity of the chip, a variety of testing techniques are required, including BIST (Built In Self Test) and functional block isolation. An overhead of 10% in chip area is assumed for overall chip testing circuitry. The test circuitry is beyond the scope of this document.

Serial Interfaces

USB Serial Port Interface 52

This is a standard USB serial port, which is connected to the internal chip low speed bus, thereby allowing the CPU to control it.

Keyboard Interface 65

This is a standard low-speed serial port, which is connected to the internal chip low speed bus, thereby allowing the CPU to control it. It is designed to be optionally connected to a keyboard to allow simple data input to customize prints.

Authentication Chip Serial Interfaces 64

These are 2 standard low-speed serial ports, which are connected to the internal chip low speed bus, thereby allowing the CPU to control them. The reason for having 2 ports is to connect to both the on-camera Authentication chip, and to the print-roll Authentication chip using separate lines. Only using 1 line may make it possible for a clone print-roll manufacturer to design a chip which, instead of generating an authentication code, tricks the camera into using the code generated by the authentication chip in the camera.

Parallel Interface 67

The parallel interface connects the ACP 31 to individual static electrical signals. The CPU is able to control each of these connections as memory-mapped I/O via the low speed bus The following table is a list of connections to the parallel interface:

Connection Direction Pins
Paper transport stepper motor Out 4
Artcard stepper motor Out 4
Zoom stepper motor Out 4
Guillotine motor Out 1
Flash trigger Out 1
Status LCD segment drivers Out 7
Status LCD common drivers Out 4
Artcard illumination LED Out 1
Artcard status LED (red/green) In 2
Artcard sensor In 1
Paper pull sensor In 1
Orientation sensor In 2
Buttons In 4
TOTAL 36

VLIW Input and Output FIFOs 78, 79

The VLIW Input and Output FIFOs are 8 bit wide FIFOs used for communicating between processes and the VLIW Vector Processor 74. Both FIFOs are under the control of the VLIW Vector Processor 74, but can be cleared and queried (e.g. for status) etc by the CPU.

VLIW Input FIFO 78

A client writes 8-bit data to the VLIW Input FIFO 78 in order to have the data processed by the VLIW Vector Processor 74. Clients include the Image Sensor Interface, Artcard Interface, and CPU. Each of these processes is able to offload processing by simply writing the data to the FIFO, and letting the VLIW Vector Processor 74 do all the hard work. An example of the use of a client's use of the VLIW Input FIFO 78 is the Image Sensor Interface (ISI 83). The ISI 83 takes data from the Image Sensor and writes it to the FIFO. A VLIW process takes it from the FIFO, transforming it into the correct image data format, and writing it out to DRAM. The ISI 83 becomes much simpler as a result.

VLIW Output FIFO 79

The VLIW Vector Processor 74 writes 8-bit data to the VLIW Output FIFO 79 where clients can read it. Clients include the Print Head Interface and the CPU. Both of these clients is able to offload processing by simply reading the already processed data from the FIFO, and letting the VLIW Vector Processor 74 do all the hard work. The CPU can also be interrupted whenever data is placed into the VLIW Output FIFO 79, allowing it to only process the data as it becomes available rather than polling the FIFO continuously. An example of the use of a client's use of the VLIW Output FIFO 79 is the Print Head Interface (PHI 62). A VLIW process takes an image, rotates it to the correct orientation, color converts it, and dithers the resulting image according to the print head requirements. The PHI 62 reads the dithered formatted 8-bit data from the VLIW Output FIFO 79 and simply passes it on to the Print Head external to the ACP 31. The PHI 62 becomes much simpler as a result.

VLIW Vector Processor 74

To achieve the high processing requirements of Artcam, the ACP 31 contains a VLIW (Very Long Instruction Word) Vector Processor. The VLIW processor is a set of 4 identical Processing Units (PU e.g. 178) working in parallel, connected by a crossbar switch 183. Each PU e.g. 178 can perform four 8-bit multiplications, eight 8-bit additions, three 32-bit additions, I/O processing, and various logical operations in each cycle. The PUs e.g. 178 are microcoded, and each has two Address Generators 189, 190 to allow full use of available cycles for data processing. The four PUs e.g. 178 are normally synchronized to provide a tightly interacting VLIW processor. Clocking at 200 MHz, the VLIW Vector Processor 74 runs at 12 Gops (12 billion operations per second). Instructions are tuned for image processing functions such as warping, artistic brushing, complex synthetic illumination, color transforms, image filtering, and compositing. These are accelerated by two orders of magnitude over desktop computers.

As shown in more detail in FIG. 3( a), the VLIW Vector Processor 74 is 4 PUs e.g. 178 connected by a crossbar switch 183 such that each PU e.g. 178 provides two inputs to, and takes two outputs from, the crossbar switch 183. Two common registers form a control and synchronization mechanism for the PUs e.g. 178. 8 Cache buses 182 allow connectivity to DRAM via the Data cache 76, with 2 buses going to each PU e.g. 178 (1 bus per I/O Address Generator).

Each PU e.g. 178 consists of an ALU 188 (containing a number of registers & some arithmetic logic for processing data), some microcode RAM 196, and connections to the outside world (including other ALUs). A local PU state machine runs in microcode and is the means by which the PU e.g. 178 is controlled. Each PU e.g. 178 contains two I/O Address Generators 189, 190 controlling data flow between DRAM (via the Data cache 76) and the ALU 188 (via Input FIFO and Output FIFO). The address generator is able to read and write data (specifically images in a variety of formats) as well as tables and simulated FIFOs in DRAM. The formats are customizable under software control, but are not microcoded. Data taken from the Data cache 76 is transferred to the ALU 188 via the 16-bit wide Input FIFO. Output data is written to the 16-bit wide Output FIFO and from there to the Data cache 76. Finally, all PUs e.g. 178 share a single 8-bit wide VLIW Input FIFO 78 and a single 8-bit wide VLIW Output FIFO 79. The low speed data bus connection allows the CPU to read and write registers in the PU e.g. 178, update microcode, as well as the common registers shared by all PUs e.g. 178 in the VLIW Vector Processor 74. Turning now to FIG. 4, a closer detail of the internals of a single PU e.g. 178 can be seen, with components and control signals detailed in subsequent hereinafter:

Microcode

Each PU e.g. 178 contains a microcode RAM 196 to hold the program for that particular PU e.g. 178. Rather than have the microcode in ROM, the microcode is in RAM, with the CPU responsible for loading it up. For the same space on chip, this tradeoff reduces the maximum size of any one function to the size of the RAM, but allows an unlimited number of functions to be written in microcode. Functions implemented using microcode include Vark acceleration, Artcard reading, and Printing. The VLIW Vector Processor 74 scheme has several advantages for the case of the ACP 31:

    • Hardware design complexity is reduced
    • Hardware risk is reduced due to reduction in complexity
    • Hardware design time does not depend on all Vark functionality being implemented in dedicated silicon
    • Space on chip is reduced overall (due to large number of processes able to be implemented as microcode)
    • Functionality can be added to Vark (via microcode) with no impact on hardware design time

Size and Content

The CPU loaded microcode RAM 196 for controlling each PU e.g. 178 is 128 words, with each word being 96 bits wide. A summary of the microcode size for control of various units of the PU e.g. 178 is listed in the following table:

Process Block Size (bits)
Status Output 3
Branching (microcode control) 11
In 8
Out 6
Registers 7
Read 10
Write 6
Barrel Shifter 12
Adder/Logical 14
Multiply/Interpolate 19
TOTAL 96

With 128 instruction words, the total microcode RAM 196 per PU e.g. 178 is 12,288 bits, or 1.5KB exactly. Since the VLIW Vector Processor 74 consists of 4 identical PUs e.g. 178 this equates to 6,144 bytes, exactly 6KB. Some of the bits in a microcode word are directly used as control bits, while others are decoded. See the various unit descriptions that detail the interpretation of each of the bits of the microcode word.

Synchronization Between PUs e.g. 178

Each PU e.g. 178 contains a 4 bit Synchronization Register 197. It is a mask used to determine which PUs e.g. 178 work together, and has one bit set for each of the corresponding PUs e.g. 178 that are functioning as a single process. For example, if all of the PUs e.g. 178 were functioning as a single process, each of the 4 Synchronization Register 197s would have all 4 bits set. If there were two asynchronous processes of 2 PUs e.g. 178 each, two of the PUs e.g. 178 would have 2 bits set in their Synchronization Register 197s (corresponding to themselves), and the other two would have the other 2 bits set in their Synchronization Register 197s (corresponding to themselves).

The Synchronization Register 197 is used in two basic ways:

    • Stopping and starting a given process in synchrony
    • Suspending execution within a process
      Stopping and Starting Processes

The CPU is responsible for loading the microcode RAM 196 and loading the execution address for the first instruction (usually 0). When the CPU starts executing microcode, it begins at the specified address.

Execution of microcode only occurs when all the bits of the Synchronization Register 197 are also set in the Common Synchronization Register 197. The CPU therefore sets up all the PUs e.g. 178 and then starts or stops processes with a single write to the Common Synchronization Register 197.

This synchronization scheme allows multiple processes to be running asynchronously on the PUs e.g. 178, being stopped and started as processes rather than one PU e.g. 178 at a time.

Suspending Execution within a Process

In a given cycle, a PU e.g. 178 may need to read from or write to a FIFO (based on the opcode of the current microcode instruction). If the FIFO is empty on a read request, or full on a write request, the FIFO request cannot be completed. The PU e.g. 178 will therefore assert its SuspendProcess control signal 198. The SuspendProcess signals from all PUs e.g. 178 are fed back to all the PUs e.g. 178. The Synchronization Register 197 is ANDed with the 4 SuspendProcess bits, and if the result is non-zero, none of the PU e.g. 178's register WriteEnables or FIFO strobes will be set. Consequently none of the PUs e.g. 178 that form the same process group as the PU e.g. 178 that was unable to complete its task will have their registers or FIFOs updated during that cycle. This simple technique keeps a given process group in synchronization. Each subsequent cycle the PU e.g. 178's state machine will attempt to re-execute the microcode instruction at the same address, and will continue to do so until successful. Of course the Common Synchronization Register 197 can be written to by the CPU to stop the entire process if necessary. This synchronization scheme allows any combinations of PUs e.g. 178 to work together, each group only affecting its co-workers with regards to suspension due to data not being ready for reading or writing.

Control and Branching

During each cycle, each of the four basic input and calculation units within a PU e.g. 178's ALU 188 (Read, Adder/Logic, Multiply/Interpolate, and Barrel Shifter) produces two status bits: a Zero flag and a Negative flag indicating whether the result of the operation during that cycle was 0 or negative. Each cycle one of those 4 status bits is chosen by microcode instructions to be output from the PU e.g. 178. The 4 status bits (1 per PU e.g. 178's ALU 188) are combined into a 4 bit Common Status Register 200. During the next cycle, each PU e.g. 178's microcode program can select one of the bits from the Common Status Register 200, and branch to another microcode address dependant on the value of the status bit.

Status Bit

Each PU e.g. 178's ALU 188 contains a number of input and calculation units. Each unit produces 2 status bits—a negative flag and a zero flag. One of these status bits is output from the PU e.g. 178 when a particular unit asserts the value on the 1-bit tri-state status bit bus. The single status bit is output from the PU e.g. 178, and then combined with the other PU e.g. 178 status bits to update the Common Status Register 200. The microcode for determining the output status bit takes the following form:

# Bits Description
2 Select unit whose status bit is to be output
00 = Adder unit
01 = Multiply/Logic unit
10 = Barrel Shift unit
11 = Reader unit
1  0 = Zero flag
 1 = Negative flag
3 TOTAL

Within the ALU 188, the 2-bit Select Processor Block value is decoded into four 1-bit enable bits, with a different enable bit sent to each processor unit block. The status select bit (choosing Zero or Negative) is passed into all units to determine which bit is to be output onto the status bit bus.

Branching within Microcode

Each PU e.g. 178 contains a 7 bit Program Counter (PC) that holds the current microcode address being executed. Normal program execution is linear, moving from address N in one cycle to address N+1 in the next cycle. Every cycle however, a microcode program has the ability to branch to a different location, or to test a status bit from the Common Status Register 200 and branch. The microcode for determining the next execution address takes the following form:

# Bits Description
2 00 = NOP (PC = PC + 1)
01 = Branch always
10 = Branch if status bit clear
11 = Branch if status bit set
2 Select status bit from status word
7 Address to branch to (absolute address, 00-7F)
11 TOTAL

ALU 188

FIG. 5 illustrates the ALU 188 in more detail. Inside the ALU 188 are a number of specialized processing blocks, controlled by a microcode program. The specialized processing blocks include:

    • Read Block 202, for accepting data from the input FIFOs
    • Write Block 203, for sending data out via the output FIFOs
    • Adder/Logical block 204, for addition & subtraction, comparisons and logical operations
    • Multiply/Interpolate block 205, for multiple types of interpolations and multiply/accumulates
    • Barrel Shift block 206, for shifting data as required
    • In block 207, for accepting data from the external crossbar switch 183
    • Out block 208, for sending data to the external crossbar switch 183
    • Registers block 215, for holding data in temporary storage

Four specialized 32 bit registers hold the results of the 4 main processing blocks:

    • M register 209 holds the result of the Multiply/Interpolate block
    • L register 209 holds the result of the Adder/Logic block
    • S register 209 holds the result of the Barrel Shifter block
    • R register 209 holds the result of the Read Block 202

In addition there are two internal crossbar switches 213 and 214 for data transport. The various process blocks are further expanded in the following sections, together with the microcode definitions that pertain to each block. Note that the microcode is decoded within a block to provide the control signals to the various units within.

Data Transfers Between PUs e.g. 178

Each PU e.g. 178 is able to exchange data via the external crossbar. A PU e.g. 178 takes two inputs and outputs two values to the external crossbar. In this way two operands for processing can be obtained in a single cycle, but cannot be actually used in an operation until the following cycle.

In 207

This block is illustrated in FIG. 6 and contains two registers, In1 and In2 that accept data from the external crossbar. The registers can be loaded each cycle, or can remain unchanged. The selection bits for choosing from among the 8 inputs are output to the external crossbar switch 183. The microcode takes the following form:

# Bits Description
1 0 = NOP
1 = Load In1 from crossbar
3 Select Input 1 from external crossbar
1 0 = NOP
1 = Load In2 from crossbar
3 Select Input 2 from external crossbar
8 TOTAL

Out 208

Complementing In is Out 208. The Out block is illustrated in more detail in FIG. 7. Out contains two registers, Out1 and Out2, both of which are output to the external crossbar each cycle for use by other PUs e.g. 178. The Write unit is also able to write one of Out1 or Out2 to one of the output FIFOs attached to the ALU 188. Finally, both registers are available as inputs to Crossbar1 213, which therefore makes the register values available as inputs to other units within the ALU 188. Each cycle either of the two registers can be updated according to microcode selection. The data loaded into the specified register can be one of D0-D3 (selected from Crossbar1 213) one of M, L, S, and R (selected from Crossbar2 214), one of 2 programmable constants, or the fixed values 0 or 1. The microcode for Out takes the following form:

# Bits Description
1 0 = NOP
1 = Load Register
1 Select Register to load [Out1 or Out2]
4 Select input
[In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R, K1, K2, 0, 1]
6 TOTAL

Local Registers and Data Transfers within ALU 188

As noted previously, the ALU 188 contains four specialized 32-bit registers to hold the results of the 4 main processing blocks:

    • M register 209 holds the result of the Multiply/Interpolate block
    • L register 209 holds the result of the Adder/Logic block
    • S register 209 holds the result of the Barrel Shifter block
    • R register 209 holds the result of the Read Block 202

The CPU has direct access to these registers, and other units can select them as inputs via Crossbar2 214. Sometimes it is necessary to delay an operation for one or more cycles. The Registers block contains four 32-bit registers D0-D3 to hold temporary variables during processing. Each cycle one of the registers can be updated, while all the registers are output for other units to use via Crossbar1 213 (which also includes In1, In2, Out1 and Out2). The CPU has direct access to these registers. The data loaded into the specified register can be one of D0-D3 (selected from Crossbar1 213) one of M, L, S, and R (selected from Crossbar2 214), one of 2 programmable constants, or the fixed values 0 or 1. The Registers block 215 is illustrated in more detail in FIG. 8. The microcode for Registers takes the following form:

# Bits Description
1 0 = NOP
1 = Load Register
2 Select Register to load [ D0 − D3]
4 Select input
[In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R, K1, K2, 0, 1]
7 TOTAL

Crossbar1 213

Crossbar1 213 is illustrated in more detail in FIG. 9. Crossbar1 213 is used to select from inputs In1, In2, Out1, Out2, D0-D3. 7 outputs are generated from Crossbar1 213: 3 to the Multiply/Interpolate Unit, 2 to the Adder Unit, 1 to the Registers unit and 1 to the Out unit. The control signals for Crossbar1 213 come from the various units that use the Crossbar inputs. There is no specific microcode that is separate for Crossbar1 213.

Crossbar2 214

Crossbar2 214 is illustrated in more detail in FIG. 10. Crossbar2 214 is used to select from the general ALU 188 registers M, L, S and R. 6 outputs are generated from Crossbar1 213: 2 to the Multiply/Interpolate Unit, 2 to the Adder Unit, 1 to the Registers unit and 1 to the Out unit. The control signals for Crossbar2 214 come from the various units that use the Crossbar inputs. There is no specific microcode that is separate for Crossbar2 214.

Data Transfers Between PUs e.g. 178 and DRAM or External Processes

Returning to FIG. 4, PUs e.g. 178 share data with each other directly via the external crossbar. They also transfer data to and from external processes as well as DRAM. Each PU e.g. 178 has 2 I/O Address Generators 189, 190 for transferring data to and from DRAM. A PU e.g. 178 can send data to DRAM via an I/O Address Generator's Output FIFO e.g. 186, or accept data from DRAM via an I/O Address Generator's Input FIFO 187. These FIFOs are local to the PU e.g. 178. There is also a mechanism for transferring data to and from external processes in the form of a common VLIW Input FIFO 78 and a common VLIW Output FIFO 79, shared between all ALUs. The VLIW Input and Output FIFOs are only 8 bits wide, and are used for printing, Artcard reading, transferring data to the CPU etc. The local Input and Output FIFOs are 16 bits wide.

Read

The Read process block 202 of FIG. 5 is responsible for updating the ALU 188's R register 209, which represents the external input data to a VLIW microcoded process. Each cycle the Read Unit is able to read from either the common VLIW Input FIFO 78 (8 bits) or one of two local Input FIFOs (16 bits). A 32-bit value is generated, and then all or part of that data is transferred to the R register 209. The process can be seen in FIG. 11. The microcode for Read is described in the following table. Note that the interpretations of some bit patterns are deliberately chosen to aid decoding.

# Bits Description
2 00 = NOP
01 = Read from VLIW Input FIFO 78
10 = Read from Local FIFO 1
11 = Read from Local FIFO 2
1 How many significant bits
0 = 8 bits (pad with 0 or sign extend)
1 = 16 bits (only valid for Local FIFO reads)
1 0 = Treat data as unsigned (pad with 0)
1 = Treat data as signed (sign extend when reading
from FIFO)r
2 How much to shift data left by:
00 = 0 bits (no change)
01 = 8 bits
10 = 16 bits
11 = 24 bits
4 Which bytes of R to update (hi to lo order byte)
Each of the 4 bits represents 1 byte WriteEnable on R
10 TOTAL

Write

The Write process block is able to write to either the common VLIW Output FIFO 79 or one of the two local Output FIFOs each cycle. Note that since only 1 FIFO is written to in a given cycle, only one 16-bit value is output to all FIFOs, with the low 8 bits going to the VLIW Output FIFO 79. The microcode controls which of the FIFOs gates in the value. The process of data selection can be seen in more detail in FIG. 12. The source values Out1 and Out2 come from the Out block. They are simply two registers. The microcode for Write takes the following form:

# Bits Description
2 00 = NOP
01 = Write VLIW Output FIFO 79
10 = Write local Output FIFO 1
11 = Write local Output FIFO 2
1 Select Output Value [Out1 or Out2]
3 Select part of Output Value to write (32 bits = 4 bytes ABCD)
000 = 0D
001 = 0D
010 = 0B
011 = 0A
100 = CD
101 = BC
110 = AB
111 = 0
6 TOTAL

Computational Blocks

Each ALU 188 has two computational process blocks, namely an Adder/Logic process block 204, and a Multiply/Interpolate process block 205. In addition there is a Barrel Shifter block to provide help to these computational blocks. Registers from the Registers block 215 can be used for temporary storage during pipelined operations.

Barrel Shifter

The Barrel Shifter process block 206 is shown in more detail in FIG. 13 and takes its input from the output of Adder/Logic or Multiply/Interpolate process blocks or the previous cycle's results from those blocks (ALU registers L and M). The 32 bits selected are barrel shifted an arbitrary number of bits in either direction (with sign extension as necessary), and output to the ALU 188's S register 209. The microcode for the Barrel Shift process block is described in the following table. Note that the interpretations of some bit patterns are deliberately chosen to aid decoding.

# Bits Description
3 000 = NOP
001 = Shift Left (unsigned)
010 = Reserved
011 = Shift Left (signed)
100 = Shift right (unsigned, no rounding)
101 = Shift right (unsigned, with rounding)
110 = Shift right (signed, no rounding)
111 = Shift right (signed, with rounding)
2 Select Input to barrel shift:
00 = Multiply/Interpolate result
01 = M
10 = Adder/Logic result
11 = L
5 # bits to shift
1 Ceiling of 255
1 Floor of 0 (signed data)
12 TOTAL

Adder/Logic 204

The Adder/Logic process block is shown in more detail in FIG. 14 and is designed for simple 3 2-bit addition/subtraction, comparisons, and logical operations. In a single cycle a single addition, comparison, or logical operation can be performed, with the result stored in the ALU 188's L register 209. There are two primary operands, A and B, which are selected from either of the two crossbars or from the 4 constant registers. One crossbar selection allows the results of the previous cycle's arithmetic operation to be used while the second provides access to operands previously calculated by this or another ALU 188. The CPU is the only unit that has write access to the four constants (K1-K4). In cases where an operation such as (A+B)×4 is desired, the direct output from the adder can be used as input to the Barrel Shifter, and can thus be shifted left 2 places without needing to be latched into the L register 209 first. The output from the adder can also be made available to the multiply unit for a multiply-accumulate operation. The microcode for the Adder/Logic process block is described in the following table. The interpretations of some bit patterns are deliberately chosen to aid decoding. Microcode bit interpretation for Adder/Logic unit

# Bits Description
4 0000 = A + B (carry in = 0)
0001 = A + B (carry in = carry out of previous operation)
0010 = A + B + 1 (carry in = 1)
0011 = A + 1 (increments A)
0100 = A − B − 1 (carry in = 0)
0101 = A − B (carry in = carry out of previous operation)
0110 = A − B (carry in = 1)
0111 = A − 1 (decrements A)
1000 = NOP
1001 = ABS(A − B)
1010 = MIN(A, B)
1011 = MAX(A, B)
1100 = A AND B (both A & B can be inverted, see below)
1101 = A OR B (both A & B can be inverted, see below)
1110 = A XOR B (both A & B can be inverted, see below)
1111 = A (A can be inverted, see below)
1 If logical operation:
0 = A = A
1 = A = NOT(A)
If Adder operation:
0 = A is unsigned
1 = A is signed
1 If logical operation:
0 = B = B
1 = B = NOT(B)
If Adder operation
0 = B is unsigned
1 = B is signed
4 Select A
[In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R, K1,
K2, K3, K4]
4 Select B
[In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R, K1,
K2, K3, K4]
14 TOTAL

Multiply/Interpolate 205

The Multiply/Interpolate process block is shown in more detail in FIG. 15 and is a set of four 8×8 interpolator units that are capable of performing four individual 8×8 interpolates per cycle, or can be combined to perform a single 16×16 multiply. This gives the possibility to perform up to 4 linear interpolations, a single bi-linear interpolation, or half of a tri-linear interpolation in a single cycle. The result of the interpolations or multiplication is stored in the ALU 188's M register 209. There are two primary operands, A and B, which are selected from any of the general registers in the ALU 188 or from four programmable constants internal to the Multiply/Interpolate process block. Each interpolator block functions as a simple 8 bit interpolator [result=A+(B−A)f] or as a simple 8×8 multiply [result=A*B]. When the operation is interpolation, A and B are treated as four 8 bit numbers A0 thru A3 (A0 is the low order byte), and B0 thru B3. Agen, Bgen, and Fgen are responsible for ordering the inputs to the Interpolate units so that they match the operation being performed. For example, to perform bilinear interpolation, each of the 4 values must be multiplied by a different factor & the result summed, while a 16×16 bit multiplication requires the factors to be 0. The microcode for the Adder/Logic process block is described in the following table. Note that the interpretations of some bit patterns are deliberately chosen to aid decoding.

# Bits Description
4 0000 = (A10 * B10) + V
0001 = (A0 * B0) + (A1 * B1) + V
0010 = (A10* B10) − V
0011 = V − (A10 * B10)
0100 = Interpolate A0, B0 by f0
0101 = Interpolate A0, B0 by f0, A1, B1 by f1
0110 = Interpolate A0, B0 by f0, A1, B1 by f1, A2, B2 by f2
0111 = Interpolate A0, B0 by f0, A1, B1 by f1, A2, B2 by f2,
A3, B3 by f3
1000 = Interpolate 16 bits stage 1 [M = A10 * f10]
1001 = Interpolate 16 bits stage 2 [M = M + (A10 * f10)]
1010 = Tri-linear interpolate A by f stage 1
[M = A0f0 + A1f1 + A2f2 + A3f3]
1011 = Tri-linear interpolate A by f stage 2
[M = M + A0f0 + A1f1+ A2f2 + A3f3]
1100 = Bi-linear interpolate A by f stage 1 [M = A0f0 + A1f1]
1101 = Bi-linear interpolate A by f stage 2 [M = M + A0f0 + A1f1]
1110 = Bi-linear interpolate A by f complete
[M = A0f0 + A1f1 + A2f2 + A3f3]
1111 = NOP
4 Select A [In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R,
K1, K2, K3, K4]
4 Select B [In1, In2, Out1, Out2, D0, D1, D2, D3, M, L, S, R,
K1, K2, K3, K4]
If
Mult:
4 Select V [In1, In2, Out1, Out2, D0, D1, D2, D3, K1, K2, K3, K4,
Adder result, M, 0, 1]
1 Treat A as signed
1 Treat B as signed
1 Treat V as signed
If
Interp:
4 Select basis for f
[In1, In2, Out1, Out2, D0, D1, D2, D3, K1, K2, K3, K4, X, X, X, X]
1 Select interpolation f generation from P1 or P2
Pn, is interpreted as # fractional bits in f
If Pn = 0, f is range 0 . . . 255 representing 0 . . . 1
2 Reserved
19 TOTAL

The same 4 bits are used for the selection of V and f, although the last 4 options for V don't generally make sense as f values. Interpolating with a factor of 1 or 0 is pointless, and the previous multiplication or current result is unlikely to be a meaningful value for f.

I/O Address Generators 189, 190

The I/O Address Generators are shown in more detail in FIG. 16. A VLIW process does not access DRAM directly. Access is via 2 I/O Address Generators 189, 190, each with its own Input and Output FIFO. A PU e.g. 178 reads data from one of two local Input FIFOs, and writes data to one of two local Output FIFOs. Each I/O Address Generator is responsible for reading data from DRAM and placing it into its Input FIFO, where it can be read by the PU e.g. 178, and is responsible for taking the data from its Output FIFO (placed there by the PU e.g. 178) and writing it to DRAM. The I/O Address Generator is a state machine responsible for generating addresses and control for data retrieval and storage in DRAM via the Data cache 76. It is customizable under CPU software control, but cannot be microcoded. The address generator produces addresses in two broad categories:

    • Image Iterators, used to iterate (reading, writing or both) through pixels of an image in a variety of ways
    • Table I/O, used to randomly access pixels in images, data in tables, and to simulate FIFOs in DRAM

Each of the I/O Address Generators 189, 190 has its own bus connection to the Data cache 76, making 2 bus connections per PU e.g. 178, and a total of 8 buses over the entire VLIW Vector Processor 74. The Data cache 76 is able to service 4 of the maximum 8 requests from the 4 PUs e.g. 178 each cycle. The Input and Output FIFOs are 8 entry deep 16-bit wide FIFOs. The various types of address generation (Image Iterators and Table I/O) are described in the subsequent sections.

Registers

The I/O Address Generator has a set of registers for that are used to control address generation. The addressing mode also determines how the data is formatted and sent into the local Input FIFO, and how data is interpreted from the local Output FIFO. The CPU is able to access the registers of the I/O Address Generator via the low speed bus. The first set of registers define the housekeeping parameters for the I/O Generator:

Register Name # bits Description
Reset 0 A write to this register halts any operations,
and writes 0s to all the data registers
of the I/O Generator. The input and
output FIFOs are not cleared.
Go 0 A write to this register restarts the counters
according to the current setup.
For example, if the I/O Generator is a Read
Iterator, and the Iterator is currently halfway
through the image, a write to
Go will cause the reading to begin at the
start of the image again. While the I/O
Generator is performing,
the Active bit of the Status register will be set.
Halt 0 A write to this register stops any current activity
and clears the Active bit of
the Status register. If the Active bit is already
cleared, writing to this register has no effect.
Continue 0 A write to this register continues the I/O
Generator from the current setup.
Counters are not reset, and FIFOs are not
cleared. A write to this register while the I/O
Generator is active has no effect.
ClearFIFOsOnGo 1 0 = Don't clear FIFOs on a write to the Go bit.
1 = Do clear FIFOs on a write to the Go bit.
Status 8 Status flags

The Status Register has the Following Values

Register Name # bits Description
Active 1 0 = Currently inactive
1 = Currently active
Reserved 7

Caching

Several registers are used to control the caching mechanism, specifying which cache group to use for inputs, outputs etc. See the section on the Data cache 76 for more information about cache groups.

Register Name # bits Description
CacheGroup1 4 Defines cache group to read data from
CacheGroup2 4 Defines which cache group to write data to, and in
the case of the ImagePyramidLookup I/O mode,
defines the cache to use for reading the Level
Information Table.

Image Iterators=Sequential Automatic Access to Pixels

The primary image pixel access method for software and hardware algorithms is via Image Iterators. Image iterators perform all of the addressing and access to the caches of the pixels within an image channel and read, write or read & write pixels for their client. Read Iterators read pixels in a specific order for their clients, and Write Iterators write pixels in a specific order for their clients. Clients of Iterators read pixels from the local Input FIFO or write p