JPH01220478A - Manufacture of photosensor - Google Patents

Manufacture of photosensor

Info

Publication number
JPH01220478A
JPH01220478A JP63046193A JP4619388A JPH01220478A JP H01220478 A JPH01220478 A JP H01220478A JP 63046193 A JP63046193 A JP 63046193A JP 4619388 A JP4619388 A JP 4619388A JP H01220478 A JPH01220478 A JP H01220478A
Authority
JP
Japan
Prior art keywords
thin film
photocurrent
semiconductor thin
cds
small amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046193A
Other languages
Japanese (ja)
Inventor
Kosuke Ikeda
光佑 池田
Hiroko Wada
裕子 和田
Noboru Yoshigami
由上 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63046193A priority Critical patent/JPH01220478A/en
Publication of JPH01220478A publication Critical patent/JPH01220478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe

Abstract

PURPOSE:To make a light response speed high with a photocurrent value kept large and to increase a gamma value, by activating and heat-treating a semiconductor thin film, attaching a small amount of Cu or Ag on the surface, and diffusing the Cu or Ag into the semiconductor thin film. CONSTITUTION:A semiconductor thin film of CdS, CdSe or CdS-CdSe incorporating a small amount of Cu or Ag is formed on an insulating substrate. After the thin film is activated and heat-treated, a small amount of Cu or Ag are attached and diffused into the semiconductor thin film. Thus, the mobility of photoelectrons in the semiconductor thin film becomes large. A photocurrent does not become small even if the fall-down time of the photocurrent becomes short. A light response speed becomes high with the photocurrent value kept large, and the gamma value can be made large.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクシミリ装置や光ディスクなどの0ム機
器の画像入力部に用いられる光センサの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method of manufacturing an optical sensor used in an image input section of an electronic device such as a facsimile machine or an optical disk.

従来の技術 近年、ファクシミリ装置や各種Oム機器の画像情報入力
部の小型化や画像ひずみの改善を0指して原稿幅と同一
寸法の密着型ラインセンサが開発され、これを用いた画
像読取装置が使用され始めており、さらに現在では性能
面での向上すなわち高速化や画品質の向上が強く望まれ
ている。
Background of the Invention In recent years, a close-contact line sensor with the same dimensions as the document width has been developed in order to miniaturize the image information input section of facsimile machines and various OM devices and improve image distortion, and image reading devices using this have been developed. has begun to be used, and there is currently a strong desire for improvements in performance, that is, higher speeds and improved image quality.

さて、Cds、CdSeあるいは固溶体06B−CdS
eを主体として成る光センサは、光電流が大きいのが特
徴で、このためこのセンサを用いた密着型ラインセンサ
では周辺回路の設計が容易となる。−方、この光センサ
は光電流、ipの光照射に対する応答速度が遅く、しか
も照射光強度、すなわち原稿からの反射光強度りに対す
る比例性に劣るという二つの欠点がある。すなわち、前
者ではJpの立上り時間τrや立下り時間τdが通常使
用時のセンサ面強度100JuXで2〜311!lee
と長く、後者ではJ p oe L  としたときのγ
値が、60〜1oo6uxで0.6〜0.76と小さい
Now, Cds, CdSe or solid solution 06B-CdS
An optical sensor mainly composed of e is characterized by a large photocurrent, and for this reason, it is easy to design peripheral circuits in a contact type line sensor using this sensor. On the other hand, this optical sensor has two drawbacks: its photocurrent and IP response speed to light irradiation are slow, and its proportionality to the irradiated light intensity, that is, the intensity of reflected light from the document, is poor. That is, in the former case, the rise time τr and fall time τd of Jp are 2 to 311 when the sensor surface strength is 100JuX during normal use! lee
In the latter case, γ when J p oe L is
The value is small at 60-1oo6ux and 0.6-0.76.

発明が解決しようとする課題 ゛ この様に、センサの光電流の立上り時間や立下り時間が
長いと、このセンサを用いたラインセンサの読取り走査
速度が4〜sms/71ine と制限されてしまう。
Problems to be Solved by the Invention As described above, if the rise time and fall time of the photocurrent of the sensor are long, the reading scanning speed of a line sensor using this sensor is limited to 4 to 71 in.

またγ値が小さいと、センサ面での光強度に応じて生じ
る光電流すなわち出力信号値が図に見られる様にγ=1
.0の場合は比例しているのにγ=0.6の場合はひど
く比例性が劣ることが分かる。このため中間調の再現に
余分の回路処理を必要とする。
In addition, when the γ value is small, the photocurrent generated in response to the light intensity on the sensor surface, that is, the output signal value, is γ = 1, as shown in the figure.
.. It can be seen that although it is proportional when γ=0, the proportionality is extremely poor when γ=0.6. Therefore, extra circuit processing is required to reproduce halftones.

CdS、CdSeあるいは固溶体CdS−CdSeをC
aCl2蒸気中で活性化熱処理した光導電型センサの場
合、γ値を大きくすることは、例えば不純物であるCu
濃度を高くするなどの方法によって実現される。ただ同
時に光電流の立下り時間τdは小さくなるが、立上り時
間τrが大きくなシ、全体としての光応答速度が遅くな
るとともに光電流Jpも小さくなるという大きな欠点が
ある。
CdS, CdSe or solid solution CdS-CdSe
In the case of a photoconductive sensor subjected to activation heat treatment in aCl2 vapor, increasing the γ value is due to the presence of impurities such as Cu.
This is achieved by methods such as increasing the concentration. However, at the same time, the fall time τd of the photocurrent becomes small, but the rise time τr becomes large, and there is a big drawback that the overall photoresponse speed becomes slow and the photocurrent Jp becomes small.

本発明は、光電流Jpを小さくせずに光応答速度を速く
し、しかもγ値を大きくする方法を提供するものである
The present invention provides a method of increasing the photoresponse speed and increasing the γ value without decreasing the photocurrent Jp.

課題を解決するだめの手段 絶縁性基板上にCdS5G(1815あるいは固溶体0
65−CdSeを主体とし、これに少量のCuあるいは
Agを添加して成る半導体薄膜を形成し、前記薄膜を高
温でCdC712の蒸気に暴露し活性化熱処理した後、
対向電極を設け、さらに保護膜を形成する光センサの製
造方法において、前記活性化熱処理の後にさらに、少量
のCuあるいはAgを表面に付着させ前記半導体薄膜中
に拡散させることを特徴とする。
A solution to the problem: CdS5G (1815 or solid solution 0) on an insulating substrate.
After forming a semiconductor thin film mainly composed of 65-CdSe and adding a small amount of Cu or Ag, and exposing the thin film to CdC712 vapor at high temperature and performing activation heat treatment,
The method for manufacturing an optical sensor in which a counter electrode is provided and a protective film is further formed is characterized in that, after the activation heat treatment, a small amount of Cu or Ag is further attached to the surface and diffused into the semiconductor thin film.

作用 本発明の方法によれば、CdS系光導電型センサの光電
流値が大きいという特長を損わずに、しかもその光応答
速度を著しく速くし、さらにγ値を大きくすることがで
きる。しかも特性のバラツキは小さく、かつ安定性に優
れる。光電流は、その立下り時間τdにほぼ比例するも
のであるが、この立下り時間が短かくなっても光電流が
小さくならないのは、本発明の方法によシ半導体薄膜中
の光キャリア(電子)の移動度が大きくなるためである
Effect: According to the method of the present invention, the photoresponse speed of the CdS-based photoconductive sensor can be significantly increased, and the γ value can be increased, without impairing the feature of the large photocurrent value of the CdS-based photoconductive sensor. Moreover, the variation in characteristics is small and the stability is excellent. The photocurrent is approximately proportional to its fall time τd, but the reason why the photocurrent does not become smaller even if the fall time becomes shorter is because the method of the present invention reduces photocarriers ( This is because the mobility of electrons increases.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

ガラスなどの絶縁性基板上に少量のCuあるいはAgを
含むCjaSlCdSeあるいは0d8−CdSeの半
導体薄膜を真空蒸着法などによって形成する。
A semiconductor thin film of CjaSlCdSe or 0d8-CdSe containing a small amount of Cu or Ag is formed on an insulating substrate such as glass by vacuum evaporation or the like.

この薄膜を高温にてCdCl2の蒸気に暴露し、通常4
60〜eoo℃で活性化熱処理を施す。その後、NiC
r/ムUの蒸着形成膜などで対向電極を形成する。この
電極形成の前か後で上記活性化半導体薄膜上さらに少量
のCuあるいはAgを付着拡散させる。C(is系先光
センサ添加されたCuやAgなどを増感不純物と言う。
This thin film is exposed to CdCl2 vapor at high temperature, typically 4
Activation heat treatment is performed at 60-eoo°C. After that, NiC
A counter electrode is formed using a vapor-deposited film of r/muU. Before or after this electrode formation, a small amount of Cu or Ag is further deposited and diffused on the activated semiconductor thin film. Cu, Ag, and the like added to the C (is-based optical sensor) are called sensitizing impurities.

増感不純物としては増感効果、すなわち光電流を大きく
し、光電流と暗電流の比いわゆる明暗比を大きくするも
のなら何でも良いが、特にCuやAgがその効果が大き
い。この様な増感不純物の付着は活性比熱処理後電極形
成の前でも良く、あるいは電極形成後保護膜形成の前で
も良い。増感不純物の膜中への拡散は加熱によって起こ
すが、これは付着時の基板加熱や付着後の加熱によって
達成される。付着後の加熱は電極形成前であったり後で
あったりするが、場合によっては保護膜形成時の加熱を
利用しても良い。増感不純物の付着は真空蒸着法や化学
的付着法による。化学的付着とは、例えばCuを付着さ
せる場合、cuc12を水に溶かした液中に基板上のC
aS系膜を浸漬し表面にCuを付着させる方法である。
Any sensitizing impurity may be used as long as it increases the sensitizing effect, that is, increases the photocurrent and increases the ratio of photocurrent to dark current, so-called brightness ratio, but Cu and Ag are particularly effective. The attachment of such sensitizing impurities may be carried out after the activation specific heat treatment and before the formation of the electrode, or after the formation of the electrode and before the formation of the protective film. Diffusion of the sensitizing impurity into the film is caused by heating, and this is achieved by heating the substrate during deposition or by heating after deposition. Heating after deposition may be performed before or after the electrode is formed, but depending on the case, heating during the formation of the protective film may be used. The sensitizing impurity is attached by a vacuum deposition method or a chemical deposition method. Chemical adhesion means, for example, when attaching Cu, C on the substrate is added to a solution of cuc12 dissolved in water.
This is a method in which an aS-based film is immersed and Cu is attached to the surface.

この化学的付着時には基板温度(すなわち液温)は室温
〜80℃とする。80℃を越えるとバラツキを生じやす
い。また真空蒸着時の基板温度は室温〜400’Cとす
る。400’Cを越えるとバラツキを生じ好ましくない
During this chemical attachment, the substrate temperature (ie, liquid temperature) is set at room temperature to 80°C. When the temperature exceeds 80°C, variations tend to occur. Further, the substrate temperature during vacuum deposition is from room temperature to 400'C. If it exceeds 400'C, it will cause variations and is not preferable.

さらに、増感不純物の付着時の基板温度が低い場合や必
要特性を得るために、増感不純物付着後中性または少量
の酸素を含む雰囲気中において、150〜400℃の加
熱処理を施すのがよい。その後シリコン樹脂やポリイミ
ドなどの保護膜を形成し光センサを完成する。保護膜の
乾燥、加熱などの処理をもって上記熱処理にかえても良
い。増感不純物付着中、あるいは付着後におけるこれら
の加熱過程によって拡散が達成される。
Furthermore, when the substrate temperature is low when the sensitizing impurity is attached, or in order to obtain the required characteristics, it is recommended to perform heat treatment at 150 to 400°C in a neutral or a small amount of oxygen atmosphere after the sensitizing impurity is attached. good. A protective film made of silicone resin or polyimide is then formed to complete the optical sensor. The above heat treatment may be replaced by drying, heating, or other treatments for the protective film. Diffusion is achieved by these heating processes during or after the sensitizing impurity deposition.

実施例1 ガラス基板(コーニング社、≠7059.230X26
X1,27)上に厚さ4000人のCd8o、6860
,4 : Cu (0,005モルチ)の蒸着膜を形成
し、フォトエツチングによシ主走査方向に島状(90X
350μ1a2)に8ビット/mmの割合で1728ピ
ツト配置する。Cuの分量は母体のcaso6Seo、
4に対して0.005〜0.015モル%が好ましい。
Example 1 Glass substrate (Corning, ≠7059.230X26
X1,27) 4000 thick Cd8o on top, 6860
, 4: A vapor-deposited film of Cu (0,005 molti) was formed, and an island-like (90X
350μ1a2), 1728 pits are arranged at a rate of 8 bits/mm. The amount of Cu is parent caso6Seo,
0.005 to 0.015 mol % based on 4 is preferable.

0.005モル係以下では特性は優れるが均一性に劣る
ことがあり、0.015モルチ以上ではJpの立上り時
間τrが大きくなる。この島状のCdSo、6 seo
、4 : Cu膜を500’CでCdCj!2の飽和蒸
気中で加熱処理して光電的に活性化して光導電体膜にし
た後、その島状の膜の各々に対向電極(NiCr/ムU
蒸着膜)すなわち共通電極と個別電極を形成する。対向
電極のギャップは60μmである。その後、母体である
CdS(1,6g60.4膜に対して0.005〜0.
1モルチのCuを蒸着拡散させる。Cu量が0.005
モルチよシ少ないと立下シ特性を良くする効果が小さく
、0.1モルチ以上では立上シ特性が悪くなる。Cu蒸
着後中性または少量の酸素を含む雰囲気中、160〜4
00℃で加熱処理を施す。その後シリコン樹脂保MMを
形成シラインセンサを完成する。これらラインセンサの
うちの1ビツトの特性を調べCU蒸着時の基板温度が1
50℃の場合の結果を第1表にまとめる。比較のため、
通常のC(i5o、6 S・Q、4 : Cu (QO
1〜0.1モル%)蒸着膜を上記同様活性比熱処理後電
極形成したセンサについても調べである。なお特性は印
加電圧DC1oV、光照射は緑色LID光(570nm
 、 1001ux )を1Hz (0,5seaずつ
)で点滅して測定した。応答時間は光電流Jpが0から
飽和値の50%に上がるまでの時間を立上り時間τr%
Jpが飽和値からその60チに下がるまでの時間を立下
り時間τdとした。またγは60〜10071ux間で
の平均値である。
If it is less than 0.005 molar ratio, the properties may be excellent but the uniformity may be poor, and if it is more than 0.015 molar ratio, the rise time τr of Jp becomes large. This island-like CdSo, 6 seo
, 4: CdCj! of Cu film at 500'C! After photoelectrically activation by heat treatment in saturated steam of step 2 to form a photoconductor film, a counter electrode (NiCr/mu U) was placed on each of the island-like films.
evaporated film), that is, form a common electrode and individual electrodes. The gap between the opposing electrodes is 60 μm. After that, the parent CdS (0.005 to 0.6 g for 60.4 membranes)
1 molten Cu is vapor-deposited and diffused. Cu amount is 0.005
If the mulch is less than 0.1 molt, the effect of improving the falling property will be small, and if the mulch is more than 0.1 molt, the rising property will deteriorate. 160-4 in a neutral or a small amount of oxygen-containing atmosphere after Cu deposition
Heat treatment is performed at 00°C. Thereafter, a silicone resin retainer MM is formed to complete a sill line sensor. We investigated the characteristics of one bit of these line sensors and found that the substrate temperature during CU deposition was 1.
The results for the case of 50°C are summarized in Table 1. For comparison,
Normal C (i5o, 6 S・Q, 4: Cu (QO
A sensor in which a vapor-deposited film (1 to 0.1 mol %) was subjected to the activation specific heat treatment and then formed into an electrode was also investigated. The characteristics are that the applied voltage is 1oV DC, and the light irradiation is green LID light (570 nm).
, 1001ux) was measured by blinking at 1Hz (0.5sea each). The response time is the rise time τr%, which is the time it takes for the photocurrent Jp to rise from 0 to 50% of the saturation value.
The time required for Jp to drop from the saturation value to 60 degrees was defined as the fall time τd. Moreover, γ is an average value between 60 and 10071 ux.

(以 下 余 白) この様に、光電流を数μ五以上と大きく保ったまま立下
り時間τdをo、s mgec程度にまで小さく、γも
0.70以上、多くは0.80以上と大きくできる。一
方、光電流の立上り時間τrは、通常センサの場合と違
ってτdが小さくなっても大きくならず、実際にライン
センサとして用いる場合には原稿黒地でも存在する反射
光(少なくとも3%はある)がバイアス光となり、これ
が常時センサに照射されるため、実効的には著しく小さ
くなる。その効果を第2表にて示す。仁の程度のバイア
ス光照射による他の特性(、yp、τd、γ)の変化は
殆んどない。
(Margins below) In this way, the fall time τd can be reduced to about 0, s mgec while keeping the photocurrent large at several microns or more, and the γ can also be increased to 0.70 or more, often 0.80 or more. You can make it bigger. On the other hand, unlike in the case of a normal sensor, the rise time τr of the photocurrent does not increase even if τd becomes small, and when actually used as a line sensor, the reflected light that exists even on the black background of the original (at least 3%) becomes bias light, which is constantly irradiated onto the sensor, so the effective light becomes significantly smaller. The effects are shown in Table 2. There is almost no change in other characteristics (, yp, τd, γ) due to the bias light irradiation.

(以下余白) 実施例2 実施例1と同じ製法で、CuO代りにAgを用いた光セ
ンサを作製した。CdS、)、63eO,4:Ag蒸着
膜中のAgの分量は母体CdSo6S004に対して0
.005〜0.015モルモル係極形成後蒸着拡散させ
るAgの分量は母体に対して0.005〜0.1モル係
である。
(The following is a blank space) Example 2 An optical sensor was produced using the same manufacturing method as in Example 1, using Ag instead of CuO. CdS, ), 63eO,4: The amount of Ag in the Ag deposited film is 0 with respect to the parent CdSo6S004.
.. The amount of Ag deposited and diffused after polarization formation is 0.005 to 0.1 mol based on the base material.

この様にして得た光センサの内、最初の蒸着膜中のAg
の分量が0.005モル係、後で蒸着拡散させるλgの
分量がo、01〜0.1モル係のラインセンサのうちそ
れぞれ1ビツトについての特性を第3表に、またそれら
のうち一部についてはバイアス光3悌を照射した場合の
特性を第4表にて示す。
Among the optical sensors obtained in this way, Ag in the first vapor-deposited film
Table 3 shows the characteristics of one bit of each of the line sensors in which the amount of λg is 0.005 molar, the amount of λg to be vaporized and diffused is o, and the amount of 01 to 0.1 molar is shown in Table 3. Table 4 shows the characteristics when irradiating with 3 beams of bias light.

(以 下 余 白) CuあるいはAgの付加的な付着拡散により優れた特性
が得られることが分かる。CdS(1,6seO,4:
 Cuの上にAgを付着拡散しても、逆に”5o6s8
o4:Agの上にCuを付着拡散しても良い。ただ最初
に含まれるCuあるいはAgの分量は微量(0,006
〜0.015モル係)であることを要する。
(Left below) It can be seen that excellent properties can be obtained by additional adhesion and diffusion of Cu or Ag. CdS(1,6seO,4:
Even if Ag is attached and diffused on Cu, on the contrary “5o6s8
o4: Cu may be attached and diffused on Ag. However, the amount of Cu or Ag initially contained is very small (0,006
~0.015 molar ratio).

上記実施例ではCd 5o6S e O4を例にとった
が、CdS、CdSe  や他の組成比の固溶体CdS
−CdSeでも同様の効果が得られる。
In the above example, Cd5o6S e O4 was taken as an example, but CdS, CdSe, and solid solution CdS with other composition ratios may also be used.
Similar effects can be obtained with -CdSe.

発明の効果 本発明によれば、光電流値が大きいままで光応答速度が
著しく速く、しかもγ値の大なる光センサを実現するこ
とが可能となる。これよシ、中間調再現に優れた、高速
の画像読取装置ができる。
Effects of the Invention According to the present invention, it is possible to realize an optical sensor that has a significantly high photoresponse speed and a large γ value while maintaining a large photocurrent value. This allows for a high-speed image reading device with excellent halftone reproduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図は光センサにおける光電流と光強度の関係を示す図で
ある。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名り亡
i1強度 (仕5九尺、受ン
The figure is a diagram showing the relationship between photocurrent and light intensity in an optical sensor. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板上にCdS、CdSeあるいは固溶体
CdS−CdSeを主体とし、これに少量のCuあるい
はAgを添加して成る半導体薄膜を形成し、前記薄膜を
高温でCdGl_2の蒸気に暴露し活性化熱処理した後
対向電極を設け、さらに保護膜を形成する光センサの製
造方法において、前記活性化熱処理の後にさらに、少量
のCuあるいはAgを表面に付着させ前記半導体薄膜中
に拡散させることを特徴とする光センサの製造方法。
(1) A semiconductor thin film mainly composed of CdS, CdSe or solid solution CdS-CdSe with a small amount of Cu or Ag added is formed on an insulating substrate, and the thin film is exposed to CdGl_2 vapor at high temperature to activate it. A method for manufacturing an optical sensor in which a counter electrode is provided after activation heat treatment and a protective film is further formed, characterized in that, after the activation heat treatment, a small amount of Cu or Ag is further attached to the surface and diffused into the semiconductor thin film. A method for manufacturing an optical sensor.
JP63046193A 1988-02-29 1988-02-29 Manufacture of photosensor Pending JPH01220478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046193A JPH01220478A (en) 1988-02-29 1988-02-29 Manufacture of photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046193A JPH01220478A (en) 1988-02-29 1988-02-29 Manufacture of photosensor

Publications (1)

Publication Number Publication Date
JPH01220478A true JPH01220478A (en) 1989-09-04

Family

ID=12740225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046193A Pending JPH01220478A (en) 1988-02-29 1988-02-29 Manufacture of photosensor

Country Status (1)

Country Link
JP (1) JPH01220478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804463A (en) * 1995-06-05 1998-09-08 Raytheon Ti Systems, Inc. Noble metal diffusion doping of mercury cadmium telluride for use in infrared detectors
US5861321A (en) * 1995-11-21 1999-01-19 Texas Instruments Incorporated Method for doping epitaxial layers using doped substrate material
US20130016266A1 (en) * 1997-07-15 2013-01-17 Kia Silverbrook Handheld imaging device with vliw image processor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804463A (en) * 1995-06-05 1998-09-08 Raytheon Ti Systems, Inc. Noble metal diffusion doping of mercury cadmium telluride for use in infrared detectors
US5861321A (en) * 1995-11-21 1999-01-19 Texas Instruments Incorporated Method for doping epitaxial layers using doped substrate material
US9544451B2 (en) 1997-07-12 2017-01-10 Google Inc. Multi-core image processor for portable device
US20130016266A1 (en) * 1997-07-15 2013-01-17 Kia Silverbrook Handheld imaging device with vliw image processor
US9432529B2 (en) 1997-07-15 2016-08-30 Google Inc. Portable handheld device with multi-core microcoded image processor
US9560221B2 (en) * 1997-07-15 2017-01-31 Google Inc. Handheld imaging device with VLIW image processor
US9584681B2 (en) 1997-07-15 2017-02-28 Google Inc. Handheld imaging device incorporating multi-core image processor

Similar Documents

Publication Publication Date Title
JPH01220478A (en) Manufacture of photosensor
JP2658078B2 (en) Manufacturing method of optical sensor
JP3019866B2 (en) Manufacturing method of optical sensor
JP2538252B2 (en) Optical sensor manufacturing method
JP2658079B2 (en) Manufacturing method of optical sensor
JPH0198269A (en) Manufacture of photosensor
JPH02238675A (en) Manufacture of photosensor
JPH01110778A (en) Manufacture of photosensor
JP2502783B2 (en) Optical sensor manufacturing method
JPH02237078A (en) Manufacture of photosensor
JPH01109775A (en) Manufacture of photosensor
JP2921892B2 (en) Manufacturing method of optical sensor
JPH01228165A (en) Manufacture of photosensor
TW382822B (en) Photoelectric conversion device
JPH02237079A (en) Manufacture of photosensor
JPH0243775A (en) Manufacture of optical sensor
JPH01220479A (en) Manufacture of photosensor
JPH04199879A (en) Optical sensor and manufacture thereof
JPH02270380A (en) Manufacture of photosensor
JPH029175A (en) Manufacture of optical sensor
JPH03200369A (en) Manufacture of photosensor
JPH03240276A (en) Manufacture of optical sensor thin film
JPH02237168A (en) Manufacture of photosensor
JPS60247965A (en) Solid-state image pickup element
JPH02237169A (en) Manufacture of photosensor