JP2658078B2 - Manufacturing method of optical sensor - Google Patents

Manufacturing method of optical sensor

Info

Publication number
JP2658078B2
JP2658078B2 JP62256553A JP25655387A JP2658078B2 JP 2658078 B2 JP2658078 B2 JP 2658078B2 JP 62256553 A JP62256553 A JP 62256553A JP 25655387 A JP25655387 A JP 25655387A JP 2658078 B2 JP2658078 B2 JP 2658078B2
Authority
JP
Japan
Prior art keywords
optical sensor
manufacturing
cds
heat treatment
photocurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62256553A
Other languages
Japanese (ja)
Other versions
JPH0198267A (en
Inventor
裕子 和田
光佑 池田
登 由上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62256553A priority Critical patent/JP2658078B2/en
Publication of JPH0198267A publication Critical patent/JPH0198267A/en
Application granted granted Critical
Publication of JP2658078B2 publication Critical patent/JP2658078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリ装置や光ディスクなどのOA機器
の画像入力部に用いられる光センサの製造方法に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical sensor used in an image input unit of an OA device such as a facsimile machine or an optical disk.

従来の技術 近年、ファクシミリ装置や各種OA機器の画像情報入力
部の小型化や画像ひずみの改善を目指して原稿幅と同一
寸法の密着型ラインセンサが開発され、これを用いた画
像読取装置が使用され始めており、さらに現在では性能
面での向上すなわち高速化や高品質の向上が強く望まれ
ている。
Conventional technology In recent years, with the aim of reducing the size of the image information input section of facsimile machines and various OA equipment and improving image distortion, a contact type line sensor with the same size as the document width has been developed, and an image reading device using this has been used At present, there is a strong demand for improvement in performance, that is, improvement in speed and quality.

さて、CdS,CdSeあるいは固溶体CdS−CdSeを主体とし
て成る光センサは光電流が大きいのが特徴で、このため
のこのセンサを用いた密着型ラインセンサでは周辺回路
の設計が容易となる。一方、この光センサは光電流Jp
光照射に対する応答速度が遅く、しかも照射光強度(す
なわち原稿からの反射光強度)Lに対する比例性に劣る
という二つの欠点がある。すなわち、前者ではJpの立上
り時間τや立下り時間τが通常使用時のセンサ面強
度100luxで2〜3msecと長く後者ではJp∝Lγとしたの
きのγ値が、50〜100luxで0.6〜0.75と小さい。
An optical sensor mainly composed of CdS, CdSe or a solid solution CdS-CdSe is characterized by a large photocurrent. For this reason, a contact-type line sensor using this sensor makes it easy to design peripheral circuits. On the other hand, the optical sensor is slow response to light irradiation of the photocurrent J p, moreover there are two drawbacks of poor proportionality for L (reflected light intensity from i.e. original) irradiation light intensity. That, gamma value of Ki was a J p .alpha.L gamma in the latter as long as 2~3msec the sensor surface strength 100lux during rise time tau r and fall time tau d is normally used for J p in the former is 50 It is as small as 0.6-0.75 at 100lux.

発明が解決しようとする問題点 この様に、センサの光電流の立上り時間や立下り時間
が長いとこのセンサを用いたラインセンサの読取り走査
速度が4〜5ms/lineと制限されてしまう。またγ値が小
さいと、センサ面での光強度に応じて生じる光電流すな
わち出力信号値が第1図に見られる様にγ=1.0の場合
は比例しているのにγ=0.6の場合はひどく比例性が劣
ることが分る。このため中間調の再現に余分の回路処理
を必要とする。
Problems to be Solved by the Invention As described above, when the rise time and the fall time of the photocurrent of the sensor are long, the reading scanning speed of the line sensor using this sensor is limited to 4 to 5 ms / line. When the γ value is small, the photocurrent generated according to the light intensity on the sensor surface, that is, the output signal value is proportional when γ = 1.0 as shown in FIG. It turns out that the proportionality is very poor. Therefore, extra circuit processing is required to reproduce the halftone.

CdS,CdSeあるいは固溶体CdS−CdSeをCdCl2蒸気中で活
性化熱処理した光導電型センサの場合、γ値を大きくす
ることは、例えば不純物であるCu濃度を高くするなどの
方法によって実現される。ただ同時に光電流の立下り時
間τは小さくなるが、立上り時間τが大きくなり、
全体としての光応答速度が遅くなるとともに光電流Jp
小さくなるという大きな欠点がある。
In the case of a photoconductive sensor in which CdS, CdSe or a solid solution CdS-CdSe is activated and heat-treated in CdCl 2 vapor, increasing the γ value is realized by, for example, increasing the concentration of Cu as an impurity. However, at the same time, the fall time τ d of the photocurrent decreases, but the rise time τ r increases,
There is a major drawback in that the optical response speed as a whole decreases and the photocurrent Jp also decreases.

問題点を解決するための手段 本発明は、光電流Jpを小さくせずして光応答速度を速
くし、しかもγ値を大きくする方法を提供するものであ
る。すなわち、絶縁性基板上にCdS,CdSeあるいは固溶体
CdS−CdSeで成る半導体薄膜を形成し、前記薄膜を高温
でCdCl2の蒸気に暴露し、光電的に活性化した後少量のC
uを蒸着し、熱処理を施して後、前記半導体薄膜に対向
電極を設けることにより、光電流を小さくせずしてその
光応答速度を著しく速くし、しかもγ値を大きくする製
造方法である。
Means the present invention for solving the problem is to not reduce the photocurrent J p faster optical response speed, moreover there is provided a method of increasing the γ value. In other words, CdS, CdSe or solid solution
Forming a semiconductor thin film made of CdS-CdSe, the thin film was exposed to the vapor of CdCl 2 at a high temperature, a small amount of C after photoelectrically activated
This is a manufacturing method in which a counter electrode is provided on the semiconductor thin film after u is deposited and subjected to a heat treatment, so that the photocurrent is not significantly reduced, the photoresponse speed is remarkably increased, and the γ value is increased.

作用 本発明の方法によれば、CdS系光導電型センサの光電
流値が大きいという特長を損わずして、しかもその光応
答速度を著しく速くし、さらにγ値を大きくすることが
できる。光電流は、その立下り時間τにほゞ比例する
ものであるが、この立下り時間が短かくなっても光電流
が小さくならないのは本発明の方法により半導体薄膜中
の光キャリア(電子)の移動度が大きくなるためであ
る。
According to the method of the present invention, the CdS-based photoconductive sensor does not lose its large photocurrent value, and its photoresponse speed can be significantly increased, and its γ value can be increased. Although the photocurrent is almost proportional to the fall time τ d , the reason that the photocurrent does not decrease even if the fall time is shortened is that the photocarrier (electron) in the semiconductor thin film is reduced by the method of the present invention. This is because the mobility of ()) increases.

実施例 以下、本発明の実施例をCdS0.6Se0.4を例にとり説明
する。ガラス基板(コーニング社.#7059.230×25×1.
2mm3)上に厚さ4000ÅのCdS0.6Se0.4の蒸着膜を形成
し、フォトエッチングにより主走査方向に島状(90×35
0μm2)に8ビット/mmの割合で1728ビット配置する。こ
の島状のCdS0.6Se0.4膜を500℃でCdCl2の飽和蒸気中で
加熱処理して光電的に活性化して光導電体膜にした後、
母体であるCdS0.6Se0.4膜に対して0.005〜0.1モル%のC
uを蒸着する。Cu量が0.005モル%より少ないと効果が小
さく、0.1モル%より多いと立上り特性が悪くなる。Cu
蒸着時の基板温度は室温〜400℃とする。基板温度が400
℃を越えると特性のバラツキを生じ易く好ましくない。
その後、中性または少量の酸素を含む雰囲気中、150〜2
50℃で加熱処理する。この時250℃以上で加熱すると急
激にJpが小さくなり特性が悪くなる。その後、島状の膜
の各々に対向電極(NiCr/Au蒸着膜)すなわち共通電極
と個別電極を形成する。対向電極のギャップは60μmで
ある。しかる後に、さらに中性または少量の酸素を含む
雰囲気中、150〜400℃で加熱処理を施すことは、さらに
若干の特性コントロールや安定性の向上に有効である。
その後シリコン樹脂やポリイミドなどの保護膜を形成し
ラインセンサを完成する。保護膜の乾燥などの熱処理を
上記熱処理(150〜400℃)に代えても良い。これらライ
ンセンサのうちの1ビットの特性を調べCu蒸着時の基板
温度および電極形成後の熱処理温度がともに150℃の場
合の結果を第1表にまとめる。比較のため、通常のCdS
0.6Se0.4:Cu(0.01〜0.1モル%)蒸着膜を上記同様活性
化熱処理後電極形成したセンサについても調べてある。
なお特性は印加電圧DC10V。光照射は緑色LED光(570n
m、100lux)を1Hz(0.5secずつ)で点滅して測定した。
応答時間は光電流Jpが0から飽和値の50%に上がるまで
の時間を立上り時間τr,Jpが飽和値からその50%に下が
るまでの時間を立下り時間τとした。またγは50〜10
0lux間での平均値である。
Examples Hereinafter, examples of the present invention will be described using CdS 0.6 Se 0.4 as an example. Glass substrate (Corning Co. # 7059.230 × 25 × 1.
2mm 3 ) Deposit a 4000mm thick CdS 0.6 Se 0.4 deposited film on the surface and apply photolithography to form islands (90 × 35
1728 bits are arranged at a rate of 8 bits / mm in 0 μm 2 ). After heating this island-shaped CdS 0.6 Se 0.4 film at 500 ° C. in saturated vapor of CdCl 2 to photoelectrically activate it to form a photoconductor film,
0.005 to 0.1 mol% of C with respect to the CdS 0.6 Se 0.4 film as the base material
deposit u. If the Cu content is less than 0.005 mol%, the effect is small, and if it is more than 0.1 mol%, the rising characteristics are poor. Cu
The substrate temperature during vapor deposition is between room temperature and 400 ° C. Substrate temperature 400
If the temperature exceeds ℃, characteristics are likely to vary, which is not preferable.
Then, in an atmosphere containing neutral or small amounts of oxygen, 150-2
Heat at 50 ° C. When heated in this case 250 ° C. or higher abruptly J p is characteristic is deteriorated less. Thereafter, a counter electrode (NiCr / Au deposited film), that is, a common electrode and an individual electrode are formed on each of the island-shaped films. The gap between the opposing electrodes is 60 μm. After that, heat treatment at 150 to 400 ° C. in an atmosphere further containing neutral or a small amount of oxygen is more effective for slightly controlling characteristics and improving stability.
After that, a protective film such as silicon resin or polyimide is formed to complete the line sensor. Heat treatment such as drying of the protective film may be replaced with the above heat treatment (150 to 400 ° C.). The characteristics of one bit of these line sensors are examined, and the results when the substrate temperature during Cu deposition and the heat treatment temperature after electrode formation are both 150 ° C. are summarized in Table 1. Normal CdS for comparison
A sensor in which a 0.6 Se 0.4 : Cu (0.01 to 0.1 mol%) vapor-deposited film was formed after the activation heat treatment as described above was examined.
The characteristics are applied voltage DC10V. Light irradiation is green LED light (570n
m, 100 lux) at 1 Hz (0.5 sec each).
Response time was photocurrent J p rise time is the time until up to 50% of the saturation value from 0 τ r, J p is the fall time of the time down to 50% from saturation value tau d. Γ is 50 to 10
It is the average value between 0lux.

この様に、光電流を数μA以上と大きく保ったまゝ立
下り時間τを0.5msec程度にまで小さく、γも0.70以
上、多くは0.80以上と大きくできる。一方、光電流の立
上り時間τは、通常センサの場合と違ってτが小さ
くなっても大きくならず、実際にラインセンサとして用
いる場合には原稿黒地でも存在する反射光(少なくとも
3%はある)がバイアス光となり、これが常時センサに
照射されるため、実効的には著しく小さくなる。その効
果を第2表にて示す。この程度のバイアス光照射による
他の特性(Jpd,γ)の変化は殆んどない。
In this way, the fall time τ d can be reduced to about 0.5 msec and the γ can be increased to 0.70 or more, and in many cases to 0.80 or more, while the photocurrent is kept as large as several μA or more. On the other hand, the rise time τ r of the photocurrent does not increase even when τ d decreases unlike the case of the normal sensor, and when actually used as a line sensor, the reflected light (at least 3% ) Becomes bias light, which constantly irradiates the sensor, so that it effectively becomes extremely small. The effect is shown in Table 2. There is almost no change in other characteristics (J p , γ d , γ) due to the bias light irradiation of this degree.

本実施例ではCdS0.6Se0.4を例にとったがCdS,CdSeや
他の組成比の固溶体CdS−CdSeでも同様の効果が得られ
る。
In the present embodiment, CdS 0.6 Se 0.4 is taken as an example, but the same effect can be obtained with CdS, CdSe or a solid solution CdS-CdSe having another composition ratio.

発明の効果 本発明によれば、光電流値が大きいままで光応答速度
が著しく速く、しかもγ値の大なる光センサを実現する
ことが可能となる。これより、中間調再現に優れた、高
速の画像読取装置ができる。
Effects of the Invention According to the present invention, it is possible to realize an optical sensor having an extremely high optical response speed and a large γ value while maintaining a large photocurrent value. As a result, a high-speed image reading apparatus excellent in halftone reproduction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は光センサにおける光電流と光強度の関係を示す
図である。
FIG. 1 is a diagram showing the relationship between photocurrent and light intensity in an optical sensor.

フロントページの続き (56)参考文献 特開 昭61−24285(JP,A) 特開 昭58−172232(JP,A) 特開 昭60−142579(JP,A)Continuation of the front page (56) References JP-A-61-24285 (JP, A) JP-A-58-172232 (JP, A) JP-A-60-142579 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上にCdS,CdSeあるいは固溶体Cd
S−CdSeで成る半導体薄膜を形成し、前記薄膜を高温でC
dCl2の蒸気に暴露し光電的に活性化した後少量のCuを蒸
着し、しかる後熱処理を施し、前記半導体薄膜に対向電
極を設けてなることを特徴とする光センサの製造方法。
CdS, CdSe or solid solution Cd on an insulating substrate.
A semiconductor thin film made of S-CdSe is formed,
A method for producing an optical sensor, comprising: exposing to dCl 2 vapor to photoelectrically activate, depositing a small amount of Cu, performing a heat treatment thereafter, and providing a counter electrode on the semiconductor thin film.
【請求項2】Cu蒸着時の基板温度が室温〜400℃である
ことを特徴とする特許請求の範囲第1項に記載の光セン
サの製造方法。
2. The method for manufacturing an optical sensor according to claim 1, wherein the substrate temperature at the time of depositing Cu is from room temperature to 400 ° C.
【請求項3】Cu蒸着後電極形成前の熱処理条件が中性ま
たは少量の酸素を含む雰囲気中、80〜250℃であること
を特徴とする特許請求の範囲第1項または第2項記載の
光センサの製造方法。
3. The method according to claim 1, wherein the heat treatment condition after the Cu deposition and before the electrode formation is 80 to 250 ° C. in an atmosphere containing a neutral or a small amount of oxygen. Manufacturing method of optical sensor.
【請求項4】電極形成後に、さらに中性または少量の酸
素を含む雰囲気中、150〜400℃で加熱処理したことを特
徴とする特許請求の範囲第1項記載の光センサの製造方
法。
4. The method for manufacturing an optical sensor according to claim 1, wherein after the electrodes are formed, a heat treatment is performed at 150 to 400 ° C. in an atmosphere containing a neutral or a small amount of oxygen.
【請求項5】蒸着Cuの分量が母体の半導体に対して0.00
5〜0.1モル%であることを特徴とする特許請求の範囲第
1項記載の光センサの製造方法。
5. The method according to claim 1, wherein the amount of the deposited Cu is 0.00
2. The method for manufacturing an optical sensor according to claim 1, wherein the content is 5 to 0.1 mol%.
JP62256553A 1987-10-12 1987-10-12 Manufacturing method of optical sensor Expired - Lifetime JP2658078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62256553A JP2658078B2 (en) 1987-10-12 1987-10-12 Manufacturing method of optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62256553A JP2658078B2 (en) 1987-10-12 1987-10-12 Manufacturing method of optical sensor

Publications (2)

Publication Number Publication Date
JPH0198267A JPH0198267A (en) 1989-04-17
JP2658078B2 true JP2658078B2 (en) 1997-09-30

Family

ID=17294238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62256553A Expired - Lifetime JP2658078B2 (en) 1987-10-12 1987-10-12 Manufacturing method of optical sensor

Country Status (1)

Country Link
JP (1) JP2658078B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172232A (en) * 1982-04-01 1983-10-11 Ricoh Co Ltd Manufacture of photoconductive thin film
JPS60142579A (en) * 1983-12-28 1985-07-27 Matsushita Electric Ind Co Ltd Manufacture of light conducting film
JPS6124285A (en) * 1984-07-13 1986-02-01 Matsushita Electric Ind Co Ltd Manufacture of photoconductive thin-film

Also Published As

Publication number Publication date
JPH0198267A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
JP2658078B2 (en) Manufacturing method of optical sensor
JP2658079B2 (en) Manufacturing method of optical sensor
JP2538252B2 (en) Optical sensor manufacturing method
JP3019866B2 (en) Manufacturing method of optical sensor
JPH01220478A (en) Manufacture of photosensor
JPH07109900B2 (en) Optical sensor manufacturing method
JPH02238675A (en) Manufacture of photosensor
JP2921892B2 (en) Manufacturing method of optical sensor
JPH0612831B2 (en) Optical sensor manufacturing method
JP2502783B2 (en) Optical sensor manufacturing method
JPH0198269A (en) Manufacture of photosensor
JPH01110778A (en) Manufacture of photosensor
JPH0719901B2 (en) Optical sensor manufacturing method
JPH0612832B2 (en) Optical sensor manufacturing method
JPH01109775A (en) Manufacture of photosensor
JPH0758796B2 (en) Method for manufacturing photoconductive photosensor
JPH01220479A (en) Manufacture of photosensor
JPH04199879A (en) Optical sensor and manufacture thereof
JPS62247565A (en) Manufacture of optical sensor
JPS62247564A (en) Manufacture of optical sensor
JPH07109901B2 (en) Optical sensor manufacturing method
JPH01228165A (en) Manufacture of photosensor
JPS63249366A (en) Manufacture of photosensor
JPH02237168A (en) Manufacture of photosensor
JPH03200369A (en) Manufacture of photosensor