JPS62247565A - Manufacture of optical sensor - Google Patents

Manufacture of optical sensor

Info

Publication number
JPS62247565A
JPS62247565A JP61090441A JP9044186A JPS62247565A JP S62247565 A JPS62247565 A JP S62247565A JP 61090441 A JP61090441 A JP 61090441A JP 9044186 A JP9044186 A JP 9044186A JP S62247565 A JPS62247565 A JP S62247565A
Authority
JP
Japan
Prior art keywords
forming
optical sensor
value
cdse
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61090441A
Other languages
Japanese (ja)
Inventor
Hiroko Wada
裕子 和田
Kosuke Ikeda
光佑 池田
Noboru Yoshigami
由上 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61090441A priority Critical patent/JPS62247565A/en
Publication of JPS62247565A publication Critical patent/JPS62247565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To increase a gamma-value without delaying a response speed by forming a thin film consisting of a solid solution CdS-CdSe on an insulating substrate and forming an opposite electrode after activating said thin film photoelectrically and further forming a protective film and irradiating a photosensor with a light of above a specified quantity at high temperature before forming front and rear protective films. CONSTITUTION:On an insulating substrate 1, a thin film 6 consisting of CdS, CdSe or a their solid solution CdS-CdSe is formed and this film 6 is exposed to a vapor of CdCl2 at high temperature to be activated photoelectrically, after which an opposite electrode is formed. Then, after forming the opposite electrode and before forming a protective film 7, this substrate is irradiated with a light above a specified quantity. As a result, it becomes possible to increase a gamma-value without damaging the goodness of a photoconductive type optical sensor that a photocurrent value is large and without delaying an optical response speed of the above photocurrent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリ装置や元ディスクなどのOA機器
の画像入力部に用いられる光センサの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an optical sensor used in an image input section of OA equipment such as a facsimile machine or an original disk.

従来の技術 近年、ファクシミリ装置や各種0ム機器の画像情報入力
部の小型化や画像ひずみの改善を目指して原稿と同一寸
法の密着型ラインセンサが開発され、これを用いた画像
読取装置が使用され始めており、さらに現在では階調面
での画像品質の改善やカラー化が強く望まれている。
Conventional technology In recent years, a close-contact line sensor with the same dimensions as the original document has been developed with the aim of downsizing the image information input section of facsimile machines and various types of zero-meter devices and improving image distortion, and image reading devices using this have been developed. Currently, there is a strong desire for improved image quality in terms of gradation and for colorization.

さて、CdS 、 CdSeあるいはこれらの固溶体C
dS −Ca5e f主体として成る光センサは光電流
が大きいのが特徴で、このためこのセンサを用いた密着
型ラインセンサでは周辺回路の設計が容易となる。一方
、この光センサは光電流JPの照射光強度(すなわち原
稿からの反射光強度)Lに対する比例性に劣る欠点があ
る。すなわち後者ではJpocl、としたときのγ値が
、通常の使用時のセンサ面照度60〜1oOβuxで0
.6〜0.75と小さい。光強度りが太き(200、3
0011uxとなるとγはさらに小さくなるので、高光
強度が得られるレンズレス方式の完全密着型ラインセン
サではさらに不都合を生じる。
Now, CdS, CdSe or their solid solution C
An optical sensor mainly composed of dS-Ca5e f is characterized by a large photocurrent, and therefore, in a contact type line sensor using this sensor, it is easy to design the peripheral circuit. On the other hand, this optical sensor has a drawback in that the proportionality of the photocurrent JP to the irradiated light intensity (that is, the reflected light intensity from the document) L is poor. In other words, in the latter case, the γ value when Jpocl is 0 at sensor surface illuminance of 60 to 1oOβux during normal use.
.. It is small at 6-0.75. The light intensity is high (200, 3
When the value becomes 0011ux, γ becomes even smaller, which causes further inconvenience in a lensless fully contact type line sensor that can obtain high light intensity.

発明が解決しようとする問題点 この様にγ値が小さいと例えば第2図に見る様に、セン
サ面での光強度に対して生じる光電流に比例した出力信
号値がγ=1.0の場合は比例しているのにγ=0.6
の場合は出力信号値の比例性がひどく劣ることが分る。
Problems to be Solved by the Invention When the γ value is small in this way, for example, as shown in Figure 2, the output signal value proportional to the photocurrent generated with respect to the light intensity on the sensor surface is Even though it is proportional, γ=0.6
It can be seen that in the case of , the proportionality of the output signal value is extremely poor.

このため階調すなわち中間調を必要とする場合には余分
の回路処理を必要とすることになる。
Therefore, when gradations, that is, intermediate tones are required, extra circuit processing is required.

CdS 、 CdSeあるいは固溶体CdS −CdS
e fCdCβ2で活性化した光導電型のセンサの場合
、γ値を大きくする。すなわち1.0に近づける方法と
してはJp k小さくすればよい。例えば■不純物であ
るCu濃度を高くする、■活性化時の温度を高くするな
どの方法によってJPi小さくすることが出来るためγ
値向上が可能となる。ただ同時に光電流の立下シ時間τ
dは小さくなるが立上り時間τrが大きくなり、全体と
して光応答速度が遅くなってしまうという大きな欠点が
ある。
CdS, CdSe or solid solution CdS-CdS
e For photoconductive sensors activated with fCdCβ2, increase the γ value. In other words, the method for approaching 1.0 is to reduce Jp k. For example, JPi can be reduced by increasing the concentration of Cu, which is an impurity, or increasing the temperature during activation.
It is possible to improve the value. However, at the same time, the photocurrent fall time τ
Although d becomes smaller, the rise time τr becomes larger, and there is a major drawback that the optical response speed becomes slower as a whole.

そこで、本発明は光応答速度を遅くせずしてγ値を大き
くする光センサの製造方法を提供するものである。
Therefore, the present invention provides a method for manufacturing an optical sensor that increases the γ value without slowing down the optical response speed.

問題点を解決するための手段 この目的を達成するため本発明は、絶縁性基板上に、C
dS 、 CdSeあるいはこれらの固溶体Cd5− 
CdSeを主体として成る薄膜を形成し、該薄膜を高温
でCaG12の蒸気に暴露し光電的に活性化して後対向
電極を設け、さらに保護膜を形成し、前記対向電極を形
成後、高温で前後保護膜形成の前に前記光センサに一定
光量以上の光を照射するものである。
Means for Solving the Problems In order to achieve this object, the present invention provides C
dS, CdSe or their solid solution Cd5-
A thin film mainly composed of CdSe is formed, the thin film is exposed to CaG12 vapor at high temperature and photoelectrically activated to form a counter electrode, and a protective film is further formed. Before forming the protective film, the optical sensor is irradiated with a certain amount of light or more.

作用 この方法により本発明は、光導電型光センサの光電流値
が大きいという特長を損わずして、しかもその光電流の
光応答速度を遅くせずしてγ値を大きくすることができ
る。
Effect: By using this method, the present invention can increase the γ value without impairing the feature of the photoconductive type optical sensor that the photocurrent value is large, and without slowing down the photoresponse speed of the photocurrent. .

実施例 以下実施例により本方法とその効果の詳細について述べ
る。
EXAMPLES The details of this method and its effects will be described below using examples.

実施例1 絶縁性基板(コーニング社、97069.230×25
×1.2−)上に0.01モル%のOuを含んだ厚さ4
000人のCaSα6Seα4の蒸着膜を形成し、フォ
トエツチングにより主走査方向に島状(e。
Example 1 Insulating substrate (Corning, 97069.230×25
×1.2-) thickness 4 containing 0.01 mol% O on top
A vapor-deposited film of CaSα6Seα4 of 0.00000000000000000000000000000000000000000000000 film is formed in the form of islands (e) in the main scanning direction.

×36oμrrf)に8ビット/mmの割合で1728
ビツト配置する。この島状のCdSα6Seα4膜を5
00°CでCaCl2の飽和蒸気中で加熱処理して光電
的に活性化して光導電体膜にした後、島状の膜の各々に
対向電極(NiCr/ムU蒸着膜)すなわち共通電極と
個別電極を形成する。対向電極のギャップは60μmで
ある。その後空気中176°Cにおいてセンサに表面で
の光強度2000 jBuxの可視光(W−βamp 
)を照射する。
×36oμrrf) at a rate of 8 bits/mm
Place bits. This island-like CdSα6Seα4 film is
After being heat-treated in CaCl2 saturated vapor at 00°C and photoelectrically activated to form a photoconductor film, each of the island-like films is coated with a counter electrode (NiCr/MU-deposited film), that is, a common electrode and an individual electrode. Form an electrode. The gap between the opposing electrodes is 60 μm. Thereafter, the sensor was exposed to visible light (W-βamp
).

その後低温処理で形成可能な有機絶縁物すなわちシリコ
ン樹脂を塗布し、90″Cで加熱し保護膜を形成する。
Thereafter, an organic insulator that can be formed by low-temperature treatment, ie, silicone resin, is applied and heated at 90''C to form a protective film.

このラインセンサのうち、1素子の特性が光照射時間と
共に変る様子を第1表にまとめる。なお特性は印加電圧
DC10V、光照射は緑色LED光(s7onm、 1
oOJux )を1Hz(0,5secずつ)で点滅し
て測定した。応答時間は光電流JPが0から飽和値の6
0%に上がるまでの時間を立上シ時間τrs JPが飽
和値からその60%に下がるまでの時間を立下り時間τ
dとした。
Table 1 summarizes how the characteristics of one element of this line sensor change with light irradiation time. The characteristics are that the applied voltage is DC 10V, and the light irradiation is a green LED light (s7onm, 1
oOJux) was blinked at 1 Hz (0.5 sec each). The response time is the photocurrent JP from 0 to the saturation value of 6.
The time it takes for JP to rise to 0% is the rise time τrs The time it takes for JP to fall from the saturation value to 60% of it is the fall time τ
It was set as d.

またγは60〜100βux間での平均値である。Moreover, γ is an average value between 60 and 100βux.

(以下余白) 時間、すなわち露光量の増大と共にJPが減少し、γが
増大することが分る。ただ過度に露光するとJPが小さ
くなってしまうのでJPは5μA以上であることが好ま
しい。
(The following is a blank space) It can be seen that JP decreases and γ increases as time, that is, the exposure amount increases. However, if excessive exposure occurs, JP becomes small, so it is preferable that JP is 5 μA or more.

一方、光照射時の温度を100ないし400″Cと変え
た場合の結果を第2表にまとめである。
On the other hand, Table 2 summarizes the results when the temperature during light irradiation was varied from 100 to 400''C.

100°C以下では効果が小さく、400’C以上では
電極(NiCr−Au )が剥離することがある。この
時の光強度は同じ< 2000βuxで処理時間は30
分および60分である。
Below 100°C, the effect is small, and above 400°C, the electrode (NiCr-Au) may peel off. The light intensity at this time is the same < 2000βux and the processing time is 30
minutes and 60 minutes.

(以下金 白) この様にγ値を大きくすることができる。この光照射時
の雰囲気は空気中だけでなく、N2やArなどの中性雰
囲気でも良い。
(hereinafter referred to as Kinpaku) In this way, the γ value can be increased. The atmosphere during this light irradiation may be not only air but also a neutral atmosphere such as N2 or Ar.

実施例2 本出願人の特願昭59−250029号に示したレンズ
レス方式ラインセンサを作製した。すなわちガラス基板
1(コーニング社、$7059.230X25X1,2
J)上に遮光膜(Or )(1ooo人蒸着)2、金属
酸化膜や窒化膜からなる拡散防止膜3、高融点材料より
なる拡散防止膜4を形成し、その上に絶縁性ガラス積1
膜(aooo人スパッタ)6を形成し、その上に0.0
1モル%のCuを含んだ厚さ4000人のCdSα6S
eα4の蒸着膜6を形成し、フォトエツチングにより主
走査方向に島状(30X60μrn”)に8ピット/m
mの割合で1728ビツト配置する。その後実施例1と
同様に活性化し電極形成を行ない、210’Cで30分
および60分間可視光照射を行ない、シリコン樹脂の保
護膜アを形成した。8は照明光、9は照明光、10け読
み取り原慝である、蕊着1[sの対向電極のギャップは
30μmである。光照射時の強度は2000 luxの
可視光(W −#amp )  で温度は実施例1より
若干高温の210’Cとした。このレンズレス方式のラ
インセンサは実施例1よりも光強度が約3倍と高く得ら
れJpが大きくなるのでγ値はそれに従って小さくなる
。そのために光照射温度を少し高めで処理しJPを少し
小さ目にするためである。得られたラインセンサの1素
子の特性を第3表にまとめる。測定条件はセンサ面光強
度を3 Q OluXとしたほかは、実施例1と同じで
ある。γ値は150〜300 jluxでの平均値であ
る。
Example 2 A lensless line sensor as disclosed in Japanese Patent Application No. 59-250029 filed by the present applicant was manufactured. That is, glass substrate 1 (Corning Inc., $7059.230X25X1,2
J) A light shielding film (Or) (1ooo human vapor deposition) 2, a diffusion prevention film 3 made of a metal oxide film or a nitride film, and a diffusion prevention film 4 made of a high melting point material are formed on top of that, and an insulating glass layer 1 is formed thereon.
Form a film (aooo person sputter) 6 and 0.0
4000mm thick CdSα6S containing 1 mol% Cu
A vapor deposited film 6 of eα4 is formed, and 8 pits/m are formed in an island shape (30×60μrn”) in the main scanning direction by photoetching.
1728 bits are arranged at a ratio of m. Thereafter, activation and electrode formation were performed in the same manner as in Example 1, and visible light irradiation was performed at 210'C for 30 and 60 minutes to form a silicone resin protective film A. 8 is the illumination light, 9 is the illumination light, 10 is the reading source, and the gap between the opposing electrodes of the coating 1[s is 30 μm. The intensity during light irradiation was 2000 lux of visible light (W-#amp), and the temperature was 210'C, which was slightly higher than in Example 1. This lensless type line sensor has a light intensity that is about three times higher than that of Example 1, and Jp increases, so the γ value decreases accordingly. For this reason, the light irradiation temperature is set a little higher to make JP a little smaller. Table 3 summarizes the characteristics of one element of the obtained line sensor. The measurement conditions were the same as in Example 1, except that the sensor surface light intensity was 3Q OluX. The γ value is an average value from 150 to 300 jlux.

第3表 この様に高い照度域でのγ値の改善が著しい。Table 3 In this way, the improvement in the γ value in the high illumination range is remarkable.

発明の効果 本発明は、光電流値が大きく、かつ光応答速度を遅くせ
ずしてγ値の大なる光センナを実現することが可能とな
る。
Effects of the Invention The present invention makes it possible to realize an optical sensor with a large photocurrent value and a large γ value without slowing down the optical response speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の元センサの断面図、第2図
は光センサにおける光電流と光強度の関係を示す図であ
る。 1・・・・・・ガラス基板、6・・・・・・Cd5Se
蒸着膜。
FIG. 1 is a sectional view of an original sensor according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between photocurrent and light intensity in the optical sensor. 1...Glass substrate, 6...Cd5Se
Vapor deposited film.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁性基板上にCdS、CdSeあるいはこれら
の固溶体CdS−CdSeを主体として成る薄膜を形成
し、前記薄膜を高温でCdCl_2の蒸気に暴露し光電
的に活性化して後対向電極を設け、前記対向電極を形成
後、前記保護膜形成の前に特定光量以上の光を照射する
ことを特徴として成る光センサの製造方法。
(1) Forming a thin film mainly composed of CdS, CdSe, or their solid solution CdS-CdSe on an insulating substrate, exposing the thin film to CdCl_2 vapor at high temperature to photoelectrically activate it, and then providing a counter electrode; A method for manufacturing an optical sensor, characterized in that after forming the counter electrode and before forming the protective film, a light of a specific amount or more is irradiated.
(2)光照射時の温度が100〜400℃であることを
特徴とする特許請求の範囲第1項記載の光センサの製造
方法。
(2) The method for manufacturing an optical sensor according to claim 1, wherein the temperature during light irradiation is 100 to 400°C.
(3)保護膜が100℃以下の低温処理で形成可能な絶
縁物であることを特徴とする特許請求の範囲第1項記載
の光センサの製造方法。
(3) The method for manufacturing an optical sensor according to claim 1, wherein the protective film is an insulator that can be formed by low-temperature treatment at 100° C. or lower.
(4)可視光の光量が10^6lux・sec以上であ
ることを特徴とする特許請求の範囲第1項記載の光セン
サの製造方法。
(4) The method for manufacturing an optical sensor according to claim 1, wherein the amount of visible light is 10^6 lux·sec or more.
JP61090441A 1986-04-18 1986-04-18 Manufacture of optical sensor Pending JPS62247565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090441A JPS62247565A (en) 1986-04-18 1986-04-18 Manufacture of optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090441A JPS62247565A (en) 1986-04-18 1986-04-18 Manufacture of optical sensor

Publications (1)

Publication Number Publication Date
JPS62247565A true JPS62247565A (en) 1987-10-28

Family

ID=13998702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090441A Pending JPS62247565A (en) 1986-04-18 1986-04-18 Manufacture of optical sensor

Country Status (1)

Country Link
JP (1) JPS62247565A (en)

Similar Documents

Publication Publication Date Title
JPS62247565A (en) Manufacture of optical sensor
JPS62247564A (en) Manufacture of optical sensor
JPS6047752B2 (en) friction tube target
JP2538252B2 (en) Optical sensor manufacturing method
JP2658079B2 (en) Manufacturing method of optical sensor
JP2658078B2 (en) Manufacturing method of optical sensor
JP3019866B2 (en) Manufacturing method of optical sensor
JP2921892B2 (en) Manufacturing method of optical sensor
JPH0247110B2 (en)
JP2502783B2 (en) Optical sensor manufacturing method
JPH02238675A (en) Manufacture of photosensor
JPH07109900B2 (en) Optical sensor manufacturing method
JPH0758796B2 (en) Method for manufacturing photoconductive photosensor
JPH02237079A (en) Manufacture of photosensor
JPH0612831B2 (en) Optical sensor manufacturing method
JPH01220478A (en) Manufacture of photosensor
KR830001454B1 (en) Solid-state Imaging Device for Color
JPS5752276A (en) Solid image pickup element
JPH0719901B2 (en) Optical sensor manufacturing method
JPS63249366A (en) Manufacture of photosensor
JPS616879A (en) Thin-film type phototransistor
JPH0198269A (en) Manufacture of photosensor
JPH04340769A (en) Optical sensor and its manufacture
JPH022167A (en) Line sensor
JPS6012781A (en) Manufacture of photoconductive element