JPH07109900B2 - Optical sensor manufacturing method - Google Patents

Optical sensor manufacturing method

Info

Publication number
JPH07109900B2
JPH07109900B2 JP63194065A JP19406588A JPH07109900B2 JP H07109900 B2 JPH07109900 B2 JP H07109900B2 JP 63194065 A JP63194065 A JP 63194065A JP 19406588 A JP19406588 A JP 19406588A JP H07109900 B2 JPH07109900 B2 JP H07109900B2
Authority
JP
Japan
Prior art keywords
thin film
optical sensor
heat treatment
sensor
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63194065A
Other languages
Japanese (ja)
Other versions
JPH0243775A (en
Inventor
裕子 和田
光佑 池田
登 由上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63194065A priority Critical patent/JPH07109900B2/en
Publication of JPH0243775A publication Critical patent/JPH0243775A/en
Publication of JPH07109900B2 publication Critical patent/JPH07109900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクシミリ装置や光ディスクなどのOA機器
の画像入力部に用いられる光センサの製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical sensor used in an image input section of an OA device such as a facsimile machine or an optical disk.

従来の技術 近年、ファクシミリ装置や各種OA機器の画像入力部の小
型化や画像ひずみの改善を目指して原稿幅と同一寸法の
密着性ラインセンサが開発され、これを用いた画像読取
装置が広く使用されるようになり、さらに現在では性能
面での向上即ち高速化や画品質の向上が強く望まれてい
る。
2. Description of the Related Art In recent years, an adhesive line sensor having the same size as the document width has been developed with the aim of downsizing the image input section of facsimile machines and various OA equipment and improving image distortion, and image reading devices using this have been widely used. Further, at present, there is a strong demand for improvement in performance, that is, speedup and improvement in image quality.

さて、CdS、CdSeあるいは固溶体CdS−CdSeを主体として
成る光センサは光電流が大きいのが特長で、このためこ
のセンサを用いた密着型ラインセンサでは周辺回路の設
計が容易となる。一方、この光センサは光電流Jpの光照
射に対する応答速度が遅く、しかも照射光強度(即ち原
稿からの反射光強度)Lに対する比例性に劣るという二
つの欠点がある。すなわち、前者では、Jpの立上がり時
間τや立下がり時間τが通常使用時のセンサ面強度
100luxで2〜3msecと長く、後者では、JpがLγに比例
するとしたときのγ値が、50〜100luxで0.6〜0.75と小
さい。
An optical sensor mainly composed of CdS, CdSe or solid solution CdS-CdSe has a feature that the photocurrent is large. Therefore, a contact type line sensor using this sensor can easily design a peripheral circuit. On the other hand, this photosensor has two drawbacks: the response speed of the photocurrent Jp to the light irradiation is slow, and the proportionality to the irradiation light intensity (that is, the reflected light intensity from the original) L is poor. That is, in the former case, the rise time τ r and the fall time τ d of Jp are the sensor surface strength during normal use.
It is as long as 2-3 msec at 100 lux, and in the latter case, the γ value when Jp is proportional to L γ is as small as 0.6-0.75 at 50-100 lux.

発明が解決しようとする課題 この様に、光センサの光電流の立上がり時間や立下がり
時間が長いと、この光センサを用いたラインセンサの読
取り走査速度が4〜5ms/lineと制限されてしまう。また
γ値が小さいと、センサ面での光強度に応じて生じる光
電流すなわち出力信号値がγ=1.0の場合は比例してい
るのに、γ=0.6の場合はひどく比例性が劣るという事
態が生じる。このため中間調の再現に余分の回路処理を
必要とする。
As described above, if the rise time and fall time of the photocurrent of the optical sensor are long, the reading scanning speed of the line sensor using the optical sensor is limited to 4 to 5 ms / line. . Also, if the γ value is small, the photocurrent generated according to the light intensity on the sensor surface, that is, the output signal value is proportional when γ = 1.0, but the proportionality is bad when γ = 0.6. Occurs. Therefore, extra circuit processing is required to reproduce the halftone.

CdS,CdSeあるいは固溶体CdS−CdSeを主体として成る半
導体薄膜をCdCl2蒸気中で活性化熱処理した光導電型セ
ンサの場合、γ値を大きくすることは、例えば増感不純
物であるCu濃度を高くするなどの方法によって実現され
る。ただ同時に光電流の立下がり時間τは小さくなる
が、立上がり時間τが大きくなり、全体としての光応
答速度が遅くなるとともに光電流Jpも小さくなるという
大きな欠点がある。この欠点をなくすため、先願発明
(特願昭62−256553)においては、半導体薄膜を活性化
熱処理した後、増感不純物としてのCuを表面に付着さ
せ、250℃以下で加熱拡散せしめて後電極を形成し、高
速でかつ高γ値の光センサを製造した。ただ250℃以上
の加熱では、Jpの著しい減少が見られた。
In the case of a photoconductive sensor in which a semiconductor thin film mainly composed of CdS, CdSe or a solid solution CdS-CdSe is heat-treated for activation in CdCl 2 vapor, increasing the γ value increases the Cu concentration, which is a sensitizing impurity, for example. It is realized by the method such as. However, at the same time, the fall time τ d of the photocurrent becomes small, but the rise time τ r becomes large, and the overall photoresponse speed becomes slow, and the photocurrent Jp also becomes small, which is a major drawback. In order to eliminate this drawback, in the prior invention (Japanese Patent Application No. 62-256553), after the semiconductor thin film is activated and heat-treated, Cu as a sensitizing impurity is attached to the surface and heat-diffused at 250 ° C. or lower. An electrode was formed and a high-speed and high-γ optical sensor was manufactured. However, a significant decrease in Jp was observed when heated above 250 ° C.

本発明は、このような従来技術の課題に鑑み、光電流Jp
を小さくせずして光応答速度を速くし、しかもγ値を大
きくすることの出来る光センサの製造方法を提供するこ
とを目的とする。
The present invention has been made in view of such problems of the conventional technology, and thus, the photocurrent Jp
It is an object of the present invention to provide a method for manufacturing an optical sensor which can increase the optical response speed and increase the γ value without decreasing the value.

課題を解決するための手段 本発明は、絶縁性基板上にCdS,CdSeあるいは固溶体CdS
−CdSeで成る半導体薄膜を形成し、前記薄膜を高温でCd
Cl2の蒸気に暴露、熱処理し光電的に活性化して後対向
電極を設け、さらに保護膜を形成する光センサの製造方
法において、前記活性化熱処理の後電極形成の前に少量
のCuを前記半導体薄膜に付着せしめ、CdCl2蒸気を含ま
ない中性または少量の酸素を含む雰囲気中250〜550℃で
30min以上熱処理し膜中に拡散させることにより、光電
流を小さくせずしてその光応答速度を著しく速くし、し
かもγ値を大きくするものである。
Means for Solving the Problems The present invention provides CdS, CdSe or solid solution CdS on an insulating substrate.
-CdSe semiconductor thin film is formed, and the thin film is CdSe
In the method of manufacturing an optical sensor in which a counter electrode is provided after being exposed to Cl 2 vapor, heat-treated and photoelectrically activated to form a protective film, a small amount of Cu is added before the electrode formation after the activation heat treatment. It is attached to a semiconductor thin film at 250 to 550 ° C in an atmosphere containing no CdCl 2 vapor or containing a small amount of oxygen.
By heat-treating for 30 min or more and diffusing it in the film, the photocurrent is not reduced and the photoresponse speed is remarkably increased, and the γ value is increased.

作用 本発明の方法によれば、CdS系光導電型センサの光電流
値が大きいという特徴を損なわずして、しかもその光応
答速度を著しく速くし、さらにγ値を大きくすることが
できる。250〜550℃にて30min以上Cuを熱処理拡散した
センサは、250℃以下で熱処理拡散したセンサ(先願発
明)に較べて安定性において一段と優れている。光電流
は、その立下がり時間τにほぼ比例するものである
が、この立下がり時間が短くなっても光電流が小さくな
らないのは、本発明の方法により半導体薄膜中の光キャ
リア(電子)の移動度が大きくなるためである。
Effect According to the method of the present invention, the photoresponse value of the CdS-based photoconductive sensor is not impaired, the photoresponse speed thereof can be significantly increased, and the γ value can be increased. The sensor in which Cu is heat-treated and diffused at 250 to 550 ° C for 30 minutes or more is much more excellent in stability than the sensor in which heat-treated and diffused at 250 ° C or less (the invention of the prior application). The photocurrent is almost proportional to the fall time τ d , but the photocurrent does not decrease even if the fall time is short because the photocarrier (electron) in the semiconductor thin film is reduced by the method of the present invention. This is because the mobility of is increased.

実施例 以下に、本発明の実施例を説明する。Examples Examples of the present invention will be described below.

ガラスなどの絶縁性基板上にCdS、CdSeあるいはCdS−Cd
Seを主体として成る半導体薄膜を真空蒸着法などの方法
によって形成する。この薄膜を500℃程度の高温にてCdC
l2の蒸気に暴露し、活性化熱処理を施す。その後少量の
Cuを前記半導体薄膜に付着せしめ中性または少量の酸素
を含む雰囲気中250〜550℃にて30min以上熱処理し膜中
に拡散させる。しかる後、NiCr/Auの蒸着形成膜などで
対向電極を形成し、さらにシリコン樹脂やポリイミドな
どの保護膜を形成し光センサを完成する。
CdS, CdSe or CdS-Cd on an insulating substrate such as glass
A semiconductor thin film mainly composed of Se is formed by a method such as a vacuum deposition method. This thin film is subjected to CdC at a high temperature of about 500 ° C.
It is exposed to l 2 vapor and subjected to activation heat treatment. Then a small amount
Cu is attached to the semiconductor thin film and heat-treated at 250 to 550 ° C. for 30 minutes or more in an atmosphere containing neutral or a small amount of oxygen to diffuse into the film. Then, a counter electrode is formed by a NiCr / Au deposition film or the like, and a protective film such as a silicon resin or polyimide is further formed to complete the optical sensor.

Cuの付着は真空蒸着法や化学的付着法による。化学的付
着法とは例えばCuイオンを含む水溶液に半導体薄膜を浸
漬し、半導体薄膜表面にCuを付着させる方法である。
Cu is attached by a vacuum deposition method or a chemical attachment method. The chemical adhesion method is, for example, a method of immersing a semiconductor thin film in an aqueous solution containing Cu ions to adhere Cu to the surface of the semiconductor thin film.

また、活性化熱処理前の半導体薄膜中には少量の増感不
純物CuやAgを添加しておいても良い。増感不純物として
は増感効果すなわち光電流を大きくし、光電流と暗電流
の比いわゆる明暗比を大きくするものならどのようなも
のでも良いが、特にCuやAgがその効果が大きい。このと
きのCuやAgの分量は母体の半導体に対して0.015モル%
以下であることを要する。この様な増感不純物の添加
は、特性すなわち高速光応答性などの点では必ずしも好
ましくはないが、多数の素子からなるセンサなどの場
合、特性の均一性の点では優れる。この分量が0.015モ
ル%を越えると高速化、高γ値化など特性の改善が難か
しくなる。
Further, a small amount of sensitizing impurities Cu or Ag may be added to the semiconductor thin film before the activation heat treatment. Any sensitizing impurity may be used as long as it can increase the sensitizing effect, that is, increase the photocurrent and increase the ratio of the photocurrent to the dark current, that is, the so-called light-dark ratio. The amount of Cu and Ag at this time is 0.015 mol% with respect to the host semiconductor.
The following is required. Such addition of sensitizing impurities is not always preferable in terms of characteristics, that is, high-speed photoresponsiveness, but in the case of a sensor including a large number of elements, it is excellent in terms of uniformity of characteristics. If this amount exceeds 0.015 mol%, it becomes difficult to improve the characteristics such as high speed and high γ value.

さて、先願発明の第1表データにその傾向が見られる様
に、Cuを付着後拡散させる熱処理温度が250℃以上の場
合は光電流Jpが著しく小さい。これは、特に記載しなか
ったが、熱処理時間が15minと短かったためである。CdS
系半導体薄膜では熱処理によって特性が変わるが、普通
には10minもすれば変化は飽和する。
As can be seen from the data shown in Table 1 of the prior invention, the photocurrent Jp is extremely small when the heat treatment temperature at which Cu is diffused after deposition is 250 ° C. or higher. This is because the heat treatment time was as short as 15 min, although not particularly described. CdS
The characteristics of the system semiconductor thin film change by heat treatment, but the change usually saturates in 10 minutes.

ところが本発明のセンサでは、この飽和に30minを要す
るのである。熱処理が15minだとセンサ表面に高抵抗層
ができ、その後に電極を形成すると光電流が著しく小さ
くなったものである。従ってこの熱処理時間は30min以
上を要する。そして実用的には1H程度までで充分であ
る。250〜550℃で拡散熱処理したセンサは先願発明のセ
ンサよりも保存寿命などの安定性が一段と優れている。
However, the sensor of the present invention requires 30 minutes for this saturation. A high resistance layer was formed on the sensor surface when the heat treatment was carried out for 15 minutes, and the photocurrent was remarkably reduced when the electrodes were formed after that. Therefore, this heat treatment time requires 30 minutes or more. And up to about 1H is practically sufficient. The sensor subjected to the diffusion heat treatment at 250 to 550 ° C is more excellent in stability such as shelf life than the sensor of the invention of the prior application.

次ぎに更に、具体例を説明する。Next, a specific example will be further described.

ガラス基板(コーニング社,#7059、230×25×1.2m
m3)上に厚さ4000AのCdS0.6Se0.4の蒸着膜を形成し、フ
ォトエッチングにより主走査方向に島状(90×350μ
m2)に8ビット/mmの割合で1728ビット配置する。この
島状のCdS0.6Se0.4膜を500℃でCdCl2の飽和蒸気中で加
熱処理して光電的に活性化して光導電体膜にした後、母
体であるCdS0.6Se0.4膜に対して、0.005〜0.1モル%のC
uを蒸着拡散させる。Cu量が、0.005モル%より少ないと
効果が小さく、0.1モル%以上だと立上がり特性が悪く
なる。Cu蒸着時の基板温度は室温〜400℃とする。基板
温度が400℃を超えると特性のバラツキを生じ好ましく
ない。Cu蒸着後さらに今度はCdCl2蒸気を含まない中性
または少量の酸素を含む雰囲気中、250〜550℃で30min
の加熱処理を施す。この加熱温度が550℃を超えるとセ
ンサは低抵抗となり、光感度を示さなくなる。その後、
その島状の膜の各々に対向電極(NiCr/Au蒸着膜)すな
わち共通電極と個別電極を形成する。対向電極のギャッ
プは60μmである。その後シリコン樹脂やポリイミドな
どの保護膜を形成しラインセンサを完成する。これらラ
インセンサのうち1ビットの特性を調べCu蒸着時の基板
温度が150℃でポリイミド保護膜の場合の結果を第1表
にまとめる。比較のため、通常のCdS0.6Se0.4:Cu(0.03
モル%)蒸着膜を上記同様活性化熱処理後電極形成した
センサについても調べてある。なお特性は印加電圧DC10
V、光照射は緑色LED光(570nm,100lux)を1Hz(0.5sec
ずつ)で点滅して測定した。応答時間は光電流Jpが、0
から飽和値の50%に上がるまでの時間を立上がり時間τ
、Jpが飽和値からその50%に下がるまでの時間を立下
がり時間τとした。またγ値は50〜100lux間での平均
値である。
Glass substrate (Corning, # 7059, 230 × 25 × 1.2m
A 4000A thick CdS 0.6 Se 0.4 evaporated film is formed on m 3 ), and is photo-etched to form islands (90 × 350μ) in the main scanning direction.
1728 bits are allocated to m 2 ) at a rate of 8 bits / mm. After the photoconductor film is photoelectrically activate this island CdS 0.6 Se 0.4 film by heat treatment in saturated steam of CdCl 2 at 500 ° C., relative CdS 0.6 Se 0.4 film is maternal 0.005-0.1 mol% C
u is vapor-deposited and diffused. If the Cu content is less than 0.005 mol%, the effect is small, and if it is 0.1 mol% or more, the start-up characteristics are deteriorated. The substrate temperature during Cu deposition is room temperature to 400 ° C. If the substrate temperature exceeds 400 ° C, variations in characteristics will occur, which is not preferable. After Cu deposition, this time, in a neutral atmosphere containing no CdCl 2 vapor or in an atmosphere containing a small amount of oxygen, at 250 to 550 ° C for 30 min.
Heat treatment. When the heating temperature exceeds 550 ° C, the sensor has low resistance and no photosensitivity. afterwards,
A counter electrode (NiCr / Au vapor deposition film), that is, a common electrode and an individual electrode are formed on each of the island-shaped films. The gap between the counter electrodes is 60 μm. After that, a protective film of silicon resin or polyimide is formed to complete the line sensor. The characteristics of 1 bit of these line sensors are investigated, and the results when the substrate temperature during Cu deposition is 150 ° C and the polyimide protective film is summarized in Table 1. For comparison, normal CdS 0.6 Se 0.4 : Cu (0.03
A sensor was also investigated in which electrodes were formed after heat treatment for activation of the vapor-deposited film in the same manner as above. The characteristics are applied voltage DC10
V, light irradiation is green LED light (570nm, 100lux) 1Hz (0.5sec)
Each) to blink and measure. The photocurrent Jp is 0 for the response time.
Rise time τ from the time to rise to 50% of the saturation value
The time taken for r and Jp to fall from the saturation value to 50% thereof was defined as the fall time τ d . The γ value is an average value between 50 and 100 lux.

この様に、光電流を数μA以上と大きく保ったまま立下
がり時間τを0.5msec程度にまで小さく、γ値も0.70
以上、多くは0.80以上と大きくできる。一方光電流の立
上がり時間τは、通常センサの場合と違ってτが小
さくなっても大きくならず、実際にラインセンサとして
用いる場合には原稿黒字でも存在する反射光(少なくと
も3%はある)がバイアス光となり、これが常時センサ
に照射されるため、実効的立上がり時間τ は著しく
小さくなる。その効果を第2表にて示す。この程度のバ
イアス光照射による他の特性(Jp、τ、γ)の変化は
殆どない。
In this way, the fall time τ d is reduced to about 0.5 msec while the photocurrent is kept large at several μA or more, and the γ value is 0.70.
As mentioned above, many can be as large as 0.80 or more. On the other hand, the rise time τ r of the photocurrent does not increase even if τ d becomes small unlike the case of a normal sensor, and when actually used as a line sensor, there is reflected light (even at least 3% exists) even in a black document. ) Becomes bias light, which is constantly irradiated on the sensor, so that the effective rise time τ r * is significantly reduced. The effect is shown in Table 2. There is almost no change in other characteristics (Jp, τ d , γ) due to bias light irradiation to this extent.

この様にCdS0.6Se0.4蒸着膜のCdCl2蒸気中での活性化熱
処理後Cuを付着拡散させることにより優れた特性が得ら
れる。
In this way, excellent properties can be obtained by depositing and diffusing Cu after the activation heat treatment of CdS 0.6 Se 0.4 vapor deposition film in CdCl 2 vapor.

本実施例ではCdS0.6Se0.4を例にとったがCdS、CdSeや他
の組成比の固溶体CdS−CdSeでも同様の効果が得られ
る。また本発明のセンサは先願発明のセンサに較べて安
定性においても優れている。すなわち、例えば先願発明
の実施例のセンサ(その明細書の第1表、左側上から5
番目)と本発明の実施例のセンサ(第1表、上から4番
目)を暗中で60℃にて2000時間保存した場合、その光電
流Jpは初期値が何れも24μAであったのが先願発明セン
サでは10%減少したが、本発明センサでは3%の減少に
とどまった。
In this embodiment, CdS 0.6 Se 0.4 is taken as an example, but similar effects can be obtained with CdS, CdSe, and other solid solution CdS-CdSe having other composition ratios. The sensor of the present invention is also superior in stability as compared with the sensor of the invention of the prior application. That is, for example, the sensor of the embodiment of the invention of the prior application (Table 1 of the specification, 5 from the top left side)
2) and the sensor of the embodiment of the present invention (Table 1, 4th from the top) were stored at 60 ° C. for 2000 hours in the dark, the photocurrent Jp had an initial value of 24 μA. The sensor of the invention of the present application reduced the amount by 10%, but the sensor of the present invention reduced the amount by 3%.

発明の効果 本発明によれば、光電流値が大きいままで光応答速度が
著しく速く、γ値が大で、しかも安定性に優れた光セン
サを実現することが可能となる。これより、中間調再現
に優れた、高速の画像読取装置を製造することが出来
る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to realize an optical sensor having a large photocurrent value, a significantly high photoresponse speed, a large γ value, and excellent stability. As a result, it is possible to manufacture a high-speed image reading device that is excellent in halftone reproduction.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上にCdS、CdSeまたは固溶体CdS
−CdSeを主体としてなる半導体薄膜をパターン形成し、
その半導体薄膜を高温でCdCl2の蒸気に暴露し光電的に
活性化熱処理した後、対向電極を設け、さらに保護膜を
形成する光センサの製造方法において、前記活性化熱処
理の後対向電極形成の前に少量のCuを前記半導体薄膜に
付着せしめ、CdCl2蒸気を含まない中性または少量の酸
素を含む雰囲気中250〜550℃で30min以上熱処理し薄膜
中に拡散させることを特徴とする光センサの製造方法。
1. CdS, CdSe or solid solution CdS on an insulating substrate.
-Patterning a semiconductor thin film mainly composed of CdSe,
The semiconductor thin film is exposed to CdCl 2 vapor at a high temperature and subjected to photoelectrically activating heat treatment, and then a counter electrode is provided, and in the method for manufacturing an optical sensor in which a protective film is further formed, after the activation heat treatment, the counter electrode is formed. An optical sensor characterized in that a small amount of Cu is previously attached to the semiconductor thin film, and heat-treated at 250 to 550 ° C. for 30 minutes or more in an atmosphere containing no CdCl 2 vapor or containing a small amount of oxygen to diffuse into the thin film. Manufacturing method.
【請求項2】活性化熱処理前の半導体薄膜中に、0.015
モル%以下のCuが添加されていることを特徴とする請求
項1記載の光センサの製造方法。
2. 0.015 in a semiconductor thin film before activation heat treatment
The method for manufacturing an optical sensor according to claim 1, wherein Cu is added in an amount of not more than mol%.
【請求項3】活性化熱処理の後付着するCuの分量が母体
の半導体に対して、0.005〜0.1モル%であることを特徴
とする請求項1または2記載の光センサの製造方法。
3. The method for producing an optical sensor according to claim 1, wherein the amount of Cu deposited after the activation heat treatment is 0.005 to 0.1 mol% with respect to the base semiconductor.
JP63194065A 1988-08-03 1988-08-03 Optical sensor manufacturing method Expired - Fee Related JPH07109900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194065A JPH07109900B2 (en) 1988-08-03 1988-08-03 Optical sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194065A JPH07109900B2 (en) 1988-08-03 1988-08-03 Optical sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0243775A JPH0243775A (en) 1990-02-14
JPH07109900B2 true JPH07109900B2 (en) 1995-11-22

Family

ID=16318369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194065A Expired - Fee Related JPH07109900B2 (en) 1988-08-03 1988-08-03 Optical sensor manufacturing method

Country Status (1)

Country Link
JP (1) JPH07109900B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129827A (en) * 1981-02-04 1982-08-12 Canon Inc Manufacture of photoconductive cadmium sulfide
JPS6323374A (en) * 1986-07-16 1988-01-30 Fujitsu Ltd Manufacture of photoconductive film

Also Published As

Publication number Publication date
JPH0243775A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
JPH07109900B2 (en) Optical sensor manufacturing method
JP3019866B2 (en) Manufacturing method of optical sensor
JP2658078B2 (en) Manufacturing method of optical sensor
JP2502783B2 (en) Optical sensor manufacturing method
JP2921892B2 (en) Manufacturing method of optical sensor
JP2658079B2 (en) Manufacturing method of optical sensor
JP2538252B2 (en) Optical sensor manufacturing method
JPS6047752B2 (en) friction tube target
JPH0612831B2 (en) Optical sensor manufacturing method
JPH0612833B2 (en) Optical sensor manufacturing method
JPH01220478A (en) Manufacture of photosensor
JPH0612832B2 (en) Optical sensor manufacturing method
JPH0719901B2 (en) Optical sensor manufacturing method
JPH04199879A (en) Optical sensor and manufacture thereof
JPH0198269A (en) Manufacture of photosensor
JPH01109775A (en) Manufacture of photosensor
JPH04340769A (en) Optical sensor and its manufacture
JPH07109901B2 (en) Optical sensor manufacturing method
JPS62247565A (en) Manufacture of optical sensor
JPH0719902B2 (en) Optical sensor manufacturing method
JPH0758796B2 (en) Method for manufacturing photoconductive photosensor
JPH01228165A (en) Manufacture of photosensor
JPH03200369A (en) Manufacture of photosensor
JPH03240276A (en) Manufacture of optical sensor thin film
JPH01220479A (en) Manufacture of photosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees