JPS6323374A - Manufacture of photoconductive film - Google Patents

Manufacture of photoconductive film

Info

Publication number
JPS6323374A
JPS6323374A JP61167083A JP16708386A JPS6323374A JP S6323374 A JPS6323374 A JP S6323374A JP 61167083 A JP61167083 A JP 61167083A JP 16708386 A JP16708386 A JP 16708386A JP S6323374 A JPS6323374 A JP S6323374A
Authority
JP
Japan
Prior art keywords
film
heat treatment
cdse
light
photoconductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167083A
Other languages
Japanese (ja)
Inventor
Masuji Sato
佐藤 万寿治
Hideaki Yoda
秀昭 依田
Hiroyuki Shimizu
弘之 清水
Tsutsumi Abe
阿部 堤
Satoru Nakazato
中里 了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61167083A priority Critical patent/JPS6323374A/en
Publication of JPS6323374A publication Critical patent/JPS6323374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To manufacture an optical potentiometer high in dark resistance and light and darkness resistance ratio, and excellent in optical response, by introducing oxygen in the final stage of heat treatment process. CONSTITUTION:Oxygen is led in the final stage of heat treatment process to activate cadmium selenide formed on a heat resistant insulating substrate. For example, after forming a CdSe film on an aluminium substrate by vacuum evaporation ptocess, Cu evaporated thereon is put on a quartz boat comprising CdSe mixed with CdCl2 to be heated in N2 flow further supposed to be mixed with O2 three minutes before finishing the heat treatment process meeting the requirements for N2 flow rate of 0.1/min or O2 flow rate 0.3/min. Through these procedures, the light and darkness resistance ratio and the optical response of photoconductive film comprising CdSe can be improved by increasing the dark resistance.

Description

【発明の詳細な説明】 〔概要〕 光ポテンショメータの光応答性と明暗抵抗比を向上する
方法として、耐熱性絶縁基板上に形成したセレン化カド
ミウムを活性化処理する熱処理工程の最終段階で、酸素
を導入する光導電膜の製造方法。
[Detailed Description of the Invention] [Summary] As a method for improving the photoresponsiveness and light-to-dark resistance ratio of an optical potentiometer, oxygen A method for producing a photoconductive film that introduces.

〔産業上の利用分野〕[Industrial application field]

本発明は光応答性と明暗抵抗比を改良した光導電膜の製
造方法に関する。
The present invention relates to a method for producing a photoconductive film with improved photoresponsiveness and light-to-dark resistance ratio.

光電型ポテンショメータは非接触形のポテンショメータ
であって抵抗膜と光導電膜および電極膜とから構成され
ている光電変換素子である。
A photoelectric potentiometer is a non-contact type potentiometer, and is a photoelectric conversion element composed of a resistive film, a photoconductive film, and an electrode film.

そして微少な光スボ゛ントの照射によって必要とする電
位を得るものであり、そのための必要条件は光導電膜の
明暗抵抗比が大きく、また光応答性が速いことである。
The required potential is obtained by irradiation with a minute light spot, and the necessary conditions for this are that the photoconductive film has a large light-to-dark resistance ratio and has fast photoresponsiveness.

〔従来の技術〕[Conventional technology]

第2図は光電型ポテンショメータの平面図であって、ア
ルミナなどの耐熱性絶縁基板上に1μm程度の厚さに光
n電膜を形成し、この上に抵抗膜や電極膜をパターン形
成して素子形成が行われている。
Figure 2 is a plan view of a photoelectric potentiometer, in which a photoelectric film is formed to a thickness of about 1 μm on a heat-resistant insulating substrate such as alumina, and a resistive film and an electrode film are patterned on this. Element formation is underway.

ここで、素子構成の一例を述べると、厚さが500〜7
00μmのニクロム(Ni Cr)抵抗膜1の両端に1
00人程0の厚さのNi Cr膜を下地とし、1000
人程度0金(Au)膜からなる入力電極2と接地電極3
が設けられていて入力端子4と接地端子5があり、また
抵抗膜1から光導電膜8を下地層とする50μm程度の
間隙を隔て\出力電極6が平行に設けられており、その
一端に出力端子7が設けられている。
Here, to describe an example of the element configuration, the thickness is 500 to 7
1 on both ends of a 00 μm Nichrome (NiCr) resistive film 1.
The base is a NiCr film with a thickness of about 1,000
Input electrode 2 and ground electrode 3 made of gold (Au) film
is provided with an input terminal 4 and a ground terminal 5, and an output electrode 6 is provided in parallel with a gap of about 50 μm from the resistive film 1 to the photoconductive film 8 as a base layer. An output terminal 7 is provided.

そして動作としては入力端子4と出力端子ぎとの間に電
圧を印加し、抵抗膜1に電流iを流した状態で光導電膜
8に光スポット9を照射すると、照射部の光導電膜8の
抵抗は数桁減少するのでこの位置で抵抗膜1と出力電極
6とを短絡したと同様な状態となり、その位置の抵抗膜
lの電位が出力端子7に現れる。
In operation, a voltage is applied between the input terminal 4 and the output terminal, and a light spot 9 is irradiated onto the photoconductive film 8 while a current i is flowing through the resistive film 1. The resistance decreases by several orders of magnitude, resulting in a state similar to if the resistive film 1 and the output electrode 6 were short-circuited at this position, and the potential of the resistive film l at that position appears at the output terminal 7.

かかる光電型ポテンショメータにおいて光1膜8の必要
条件は、 ■ 暗抵抗は抵抗膜1の抵抗よりも数桁以上筒<、10
0門Ω以上あること、 ■ 明暗抵抗比が充分に高いこと、 ■ 光応答速度が速く数10μs〜数100μs程度で
あること。
In such a photoelectric potentiometer, the necessary conditions for the optical film 8 are as follows: ■ The dark resistance is several orders of magnitude higher than the resistance of the resistive film 1.
0 Ω or more; (1) the light-to-dark resistance ratio is sufficiently high; (2) the light response speed is fast, on the order of several 10 μs to several 100 μs.

などである。etc.

ここで、光電型ポテンショメータに使われる光4電膜の
材料としてはセレン化カドミウム(CdSe)や硫化カ
ドミウム(CdS)や硫化セレン化カドミウムCCd 
(SeS) )などの化合物半導体が用いられている。
Here, the materials for the photoelectric film used in photoelectric potentiometers include cadmium selenide (CdSe), cadmium sulfide (CdS), and cadmium selenide sulfide (CCd).
Compound semiconductors such as (SeS) are used.

然し、かかる化合物半導体は真空蒸着或いはスパッタし
て形成したま\の状態では欠陥(Vacancy)が多
く、そのま−の状態では光導電膜として使用することは
できない。
However, such a compound semiconductor has many defects (vacancies) when it is formed by vacuum evaporation or sputtering, and cannot be used as a photoconductive film in that state.

そのためには焼鈍などの活性化処理が必要となる。For this purpose, activation treatment such as annealing is required.

ここで化合物半導体としてCciSやCd (SeS)
など硫黄(S)を含む化合物半導体を用いる場合につい
て述べると、蒸着膜の欠陥を無くするためには不活性雰
囲気例えば窒素(N2)気流中で650℃前後の温度で
熱処理することが必要であるが、この場合には成分元素
特にSとSeの蒸発が同時に起こるので制御性や再現性
が頗る悪い。
Here, CciS and Cd (SeS) are used as compound semiconductors.
When using a compound semiconductor containing sulfur (S) such as sulfur (S), it is necessary to heat treat it at a temperature of around 650°C in an inert atmosphere, such as a nitrogen (N2) stream, in order to eliminate defects in the deposited film. However, in this case, the component elements, especially S and Se, evaporate at the same time, resulting in extremely poor controllability and reproducibility.

そこで、CdSやCd (SeS)の蒸着膜のついたア
ルミナ基板を塩化カドミウム(CdCl□)中で550
℃程度の温度で熱処理して活性化し光導電膜とすること
が行われている。
Therefore, we prepared an alumina substrate with a vapor-deposited film of CdS or Cd (SeS) in cadmium chloride (CdCl□) at 550°C.
A photoconductive film is produced by activating it by heat treatment at a temperature of about 0.degree.

然し、実際にこのような活性化処理によって光導電性を
得ようとしても、CdSやCd (SeS)からなる膜
中にはSの関与する欠陥(Vacancy)が多すぎ、
そのため光導電膜としての潜在性はあるもの\暗抵抗が
少なく、そのため明暗抵抗比が大きくならない。
However, even if one attempts to actually obtain photoconductivity through such activation treatment, there are too many defects (vacancies) involving S in the film made of CdS or Cd (SeS).
Therefore, although it has potential as a photoconductive film, the dark resistance is small, and therefore the light-dark resistance ratio does not become large.

そこで、銅(Cu)を添加して高抵抗化し光導電性を出
させることが行われている。
Therefore, copper (Cu) is added to increase the resistance and improve photoconductivity.

その方法として蒸着あるいはスパッタ法で得た光導電膜
の上に蒸着法などによりCuを数10人の厚さに膜形成
し、これをN2などの不活性雰囲気中でCdCl!2と
共存させて熱処理し、活性化することが行われている。
As a method, a Cu film is formed to a thickness of several tens of layers by vapor deposition or the like on a photoconductive film obtained by vapor deposition or sputtering, and this is coated with CdCl! in an inert atmosphere such as N2. 2 and heat-treated to activate it.

然し、CdSeについては550℃前後で行われる活性
化のだめの熱処理では硫化物はどの欠陥を生じないので
Cuの添加やCdCN Zと共存させての熱処理は必ず
しも必要な処理工程であるとは認められていなかった。
However, in the case of CdSe, sulfide does not produce any defects in the heat treatment performed at around 550°C for activation, so the addition of Cu or the heat treatment in coexistence with CdCNZ is not necessarily a necessary treatment step. It wasn't.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はCdScからなる光導電膜について暗抵抗を増
加して明暗抵抗比を向上すると共に光応答性を改善でき
る活性化方法を見出すことが課題である。
The object of the present invention is to find an activation method that can increase the dark resistance of a photoconductive film made of CdSc, improve the light-to-dark resistance ratio, and improve the photoresponsiveness.

(問題点を解決するための手段〕 上記の問題は耐熱性絶縁基板上に形成したCdSeより
なる蒸着膜上に該膜厚に較べて格段に薄(Cuを被覆し
た後、不活性雰囲気中でCdCl 2と共存させて熱処
理し、前記CdSeを活性化せしめる光導電膜の製造工
程において、前記熱処理工程の最終段階で酸素を導入し
て行う光導電膜の製造方法により達成することができる
(Means for solving the problem) The above problem is caused by the fact that after coating a vapor-deposited film of CdSe formed on a heat-resistant insulating substrate, which is much thinner than the thickness of the film (Cu), it is deposited in an inert atmosphere. This can be achieved by a method for manufacturing a photoconductive film in which oxygen is introduced at the final stage of the heat treatment process in a process for manufacturing a photoconductive film in which CdSe is activated by heat treatment in the presence of CdCl 2 .

〔作用〕[Effect]

発明者等はCdSe蒸着膜の活性化について研究した結
果、Cd5ei着膜を光導電膜化するにはCuの添加や
CdCj!zの存在のもとで熱処理することは有効では
あるが、それよりも酸素の影響が顕著であることを見出
し報告した。
As a result of research on the activation of CdSe deposited films, the inventors found that in order to convert Cd5ei deposited films into photoconductive films, it is necessary to add Cu or CdCj! Although heat treatment in the presence of z is effective, the authors found and reported that the effect of oxygen is more significant.

く佐胚、依田、蛸島、昭和61年度 電通学会総合全国
大会、講演予稿集1分冊2.289 )表はこの実験結
果を示すもので、試料としてCdSe藤着膜とこれにC
uを13人の厚さに蒸着したもの表 の二種類を′f$備し、これをCdSeとCdCf 、
を含む石英ボート上に置き、N2気流中で550 ’c
で70分に亙って熱処理した結果である。
Kusage, Yoda, Takojima, 1985 National Conference of the Institute of Electrical Communication Engineers of Japan, Lecture Proceedings Volume 1 2.289) The table shows the results of this experiment.
The two types shown in the table are prepared by vapor depositing u to a thickness of 13 mm, and these are CdSe and CdCf,
placed on a quartz boat containing
This is the result of heat treatment for 70 minutes.

但し、照度条件は明状態は25βXまた暗状態は2.5
 j2xである。
However, the illuminance condition is 25βX in the bright state and 2.5 in the dark state.
j2x.

ここで、熱処理の最終段階でN2中に0□を導入する処
理も行った。
Here, at the final stage of the heat treatment, a process was also performed in which 0□ was introduced into N2.

第2欄の02の有無はこれを示すものである。The presence or absence of 02 in the second column indicates this.

この表からCdSeについてもCu添加の効果が認めら
れるが、それ以上に0□処理の影響が顕著であることが
明らかになった。
From this table, it is clear that the effect of Cu addition is also recognized for CdSe, but the effect of the 0□ treatment is even more remarkable.

本発明はこの実験結果を更に発展させて光ボテンシシメ
ータに適用したものである。
The present invention further develops this experimental result and applies it to an optical potentisimeter.

すなわち光ポテンショメータ用光導電膜の必要条件は暗
抵抗が高く、明暗抵抗比が高く、また光応答速度が速い
ことが必要である。
That is, the necessary conditions for a photoconductive film for an optical potentiometer are that it has a high dark resistance, a high light-to-dark resistance ratio, and a fast photoresponse speed.

本発明において光導電膜の抵抗はCuの添加量により調
節を行う。
In the present invention, the resistance of the photoconductive film is adjusted by the amount of Cu added.

発明者等は実験の結果、明抵抗と光応答性とは顕著な関
係があり、この場合0□処理の影響が顕著なことを見出
し、また明暗抵抗値を制御するにはCuの添加量を制御
すればよいことが判った。
As a result of experiments, the inventors found that there is a significant relationship between bright resistance and photoresponsiveness, and in this case, the influence of 0□ treatment is significant.In order to control the bright and dark resistance value, the amount of Cu added must be adjusted. I found out that I could control it.

第1図(A)と(B)は0□処理の影響を示すもので、
照度を3000ルツクス(A’x)とした場合の明抵抗
値と光応答性との関係を示している。
Figures 1 (A) and (B) show the effects of the 0□ treatment;
It shows the relationship between bright resistance value and photoresponsiveness when the illuminance is 3000 lux (A'x).

図においてτ4.。は光源を切った際に光電流が減衰し
て1/10の値になるまでの時間を示し、一方τ2.。
In the figure, τ4. . represents the time it takes for the photocurrent to attenuate to 1/10 of its value when the light source is turned off, while τ2. .

は光源を入れた際に光電流が増加して飽和量の9710
になるまでの時間を示している。
When the light source is turned on, the photocurrent increases and reaches the saturation amount of 9710
It shows the time until

この図から明らかなように02処理の影響は顕著であり
同図(B)に示すように従来の方法で光ポテンショメー
タ用の光導電膜を形成する場合にはτ410(降下時間
)として最小でLmsが限度であるが、本発明の方法を
使用することにより同図(A)から明らかなように0.
2ms程度にまで短縮することができ、そのため高速追
随が可能になる。
As is clear from this figure, the influence of the 02 process is significant, and as shown in figure (B), when forming a photoconductive film for an optical potentiometer by the conventional method, the minimum τ410 (falling time) is Lms. is the limit, but by using the method of the present invention, as is clear from the same figure (A), 0.
This can be shortened to about 2 ms, making high-speed tracking possible.

〔実施例〕〔Example〕

アルミナ基板上に真空蒸着法により1μmの厚さにCd
Se膜を形成した後、この上にCuを13人の厚さに蒸
着したものを準備し、これをCdSeとCdCl2を重
器比で100:5に混ぜた石英ボートの上に置き、N2
気流中で550℃で70分加熱した。
Cd was deposited on an alumina substrate to a thickness of 1 μm by vacuum evaporation method.
After forming the Se film, prepare a film on which Cu is vapor-deposited to a thickness of 13 mm, place it on a quartz boat containing a mixture of CdSe and CdCl2 at a heavy equipment ratio of 100:5, and heat it with N2.
It was heated at 550° C. for 70 minutes in an air stream.

なお、熱処理終了前3分前からN2気流中に0□を混じ
た。
Note that 0 □ was mixed in the N2 gas flow from 3 minutes before the end of the heat treatment.

その条件はN2の流量が1.01/分また0□の流量は
0.347分である。
The conditions are that the flow rate of N2 is 1.01/min and the flow rate of 0□ is 0.347 min.

このようにして住した光導電膜の明抵抗値は25ルツク
スの照明の下で9X103MΩであり、また30の明暗
抵抗比を得た。
The bright resistance value of the photoconductive film thus prepared was 9×10 3 MΩ under 25 lux illumination, and a light-dark resistance ratio of 30 was obtained.

また光応答性としてて(1111の値として0.2ms
の値を得ることができた。
Also, as the photoresponsiveness (1111 value is 0.2ms
I was able to obtain the value of

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により従来と較べて暗抵
抗が高く、明暗抵抗比が大きくまた光応答性のよい光ポ
テンショメータを実現することが可能となる。
As described above, by carrying out the present invention, it is possible to realize an optical potentiometer that has a higher dark resistance, a larger light-to-dark resistance ratio, and better photoresponsiveness than conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱処理の光応答性に及ぼす影客の読図、 第2図は光電型ポテンショメータの平面図、である。 図において、 1は抵抗膜、       2は入力電極、3は接地電
極、     6は出力電極、8は光導電膜、    
  9は光スポット、である。
Figure 1 is a diagram of the effects of heat treatment on photoresponsiveness, and Figure 2 is a plan view of a photoelectric potentiometer. In the figure, 1 is a resistive film, 2 is an input electrode, 3 is a ground electrode, 6 is an output electrode, 8 is a photoconductive film,
9 is a light spot.

Claims (1)

【特許請求の範囲】[Claims] 耐熱性絶縁基板上に形成したセレン化カドミウムよりな
る蒸着膜或いはスパッタ膜上に該膜厚に較べて格段に薄
く銅を被覆した後、不活性雰囲気中において塩化カドミ
ウムと共に熱処理して前記セレン化カドミウムを活性化
せしめる光導電膜の製造工程において、前記熱処理工程
の最終段階で酸素を導入して行うことを特徴とする光導
電膜の製造方法。
A vapor-deposited or sputtered film of cadmium selenide formed on a heat-resistant insulating substrate is coated with copper much thinner than the film, and then heat-treated with cadmium chloride in an inert atmosphere to form the cadmium selenide. A method for producing a photoconductive film, characterized in that the process for producing a photoconductive film is carried out by introducing oxygen at the final stage of the heat treatment step.
JP61167083A 1986-07-16 1986-07-16 Manufacture of photoconductive film Pending JPS6323374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167083A JPS6323374A (en) 1986-07-16 1986-07-16 Manufacture of photoconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167083A JPS6323374A (en) 1986-07-16 1986-07-16 Manufacture of photoconductive film

Publications (1)

Publication Number Publication Date
JPS6323374A true JPS6323374A (en) 1988-01-30

Family

ID=15843091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167083A Pending JPS6323374A (en) 1986-07-16 1986-07-16 Manufacture of photoconductive film

Country Status (1)

Country Link
JP (1) JPS6323374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243775A (en) * 1988-08-03 1990-02-14 Matsushita Electric Ind Co Ltd Manufacture of optical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243775A (en) * 1988-08-03 1990-02-14 Matsushita Electric Ind Co Ltd Manufacture of optical sensor

Similar Documents

Publication Publication Date Title
US3988774A (en) Process for producing a photodiode sensitive to infrared radiation
JPH06244442A (en) Semiconductor thin film having chalcophylite structure and manufacture thereof, solar battery and light emitting device
US4842705A (en) Method for manufacturing transparent conductive indium-tin oxide layers
JPS6323374A (en) Manufacture of photoconductive film
US3716406A (en) Method for making a cadmium sulfide thin film sustained conductivity device
US5304539A (en) Method for fabricating integrated microelectronic assembly comprising photoconductor with oxide superconducting leads
US3805128A (en) Cadmium sulfide thin film sustained conductivity device with cermet schottky contact
GB1141944A (en) Photoconductors
JPH02122069A (en) Formation of thin film of multi-elemental compound
US3431134A (en) Method of activation of phosphor
JPS59101795A (en) Electroluminescence thin film display device
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPS6012781A (en) Manufacture of photoconductive element
US20040241901A1 (en) Method and device for the production of a semiconducting and/or electroluminescence-displaying organic layered structure
JPH08146477A (en) Nonlinear optical thin film and its production
JPH0476222B2 (en)
JPS60223118A (en) Manufacture of semiconductor device
JPH06181339A (en) Forming method of p-type znse electrode
JPS62282458A (en) Optical censer
JPS6149483A (en) Manufacture of photoconductive thin film
JPS6390154A (en) Manufacture of semiconductor device
JPH082916A (en) Method and device for producing chalcopyrite thin film
JPH03165515A (en) Contact forming method
JPS61251085A (en) Manufacture of photoconductive film
JPS63205969A (en) Amorphous silicon thin-film device