US8336651B2 - Charge/discharge control device for secondary battery and hybrid vehicle using the same - Google Patents
Charge/discharge control device for secondary battery and hybrid vehicle using the same Download PDFInfo
- Publication number
- US8336651B2 US8336651B2 US12/375,587 US37558707A US8336651B2 US 8336651 B2 US8336651 B2 US 8336651B2 US 37558707 A US37558707 A US 37558707A US 8336651 B2 US8336651 B2 US 8336651B2
- Authority
- US
- United States
- Prior art keywords
- secondary battery
- battery
- charge
- power
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000006866 deterioration Effects 0.000 claims description 153
- 229910001416 lithium ion Inorganic materials 0.000 claims description 50
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 15
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 238000003411 electrode reaction Methods 0.000 claims description 8
- 238000007689 inspection Methods 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 53
- 239000011149 active material Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000001172 regenerating effect Effects 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 12
- 238000010248 power generation Methods 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 150000002641 lithium Chemical group 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a charge/discharge control device for a secondary battery and a hybrid vehicle using the same, and more particularly to secondary battery charge/discharge control using a battery model capable of dynamically estimating an internal state of a battery.
- a power supply system has been used which is configured to be able to supply power to load equipment using a rechargeable secondary battery and charge the secondary battery even during operation of the load equipment as necessary.
- such power supply systems are mounted on hybrid vehicles, electric vehicles, or the like including electric motors driven by secondary batteries as driving power sources.
- the vehicle is driven by driving a motor using power stored in the secondary battery.
- a hybrid vehicle the vehicle is driven by driving a motor using electric power stored in the secondary battery, or the vehicle is driven by driving the motor with the assistance of an engine.
- a fuel cell vehicle the vehicle is driven by driving a motor using electric power from a fuel cell, or the vehicle is driven by driving the motor using electric power stored in a secondary battery in addition to the electric power from the fuel cell.
- SOC State Of Charge
- charge/discharge control is performed in such a manner that excessive charge/discharge is restricted by properly setting inputtable/outputtable power (Win, Wout), which indicates the upper limit values of charging power and discharging power of a secondary battery, according to a battery state.
- Win, Wout inputtable/outputtable power
- Patent Document 1 discloses a control configuration in which charging electricity by regenerative braking is restricted according to a battery state during regenerative braking so as to prolong the lifetime of a secondary battery mounted on a vehicle. Specifically, during regenerative braking of the vehicle, the degree of deterioration of the secondary battery due to charge during regenerative braking is predicted, and in addition, the charging electricity during regenerative braking is restricted based on the predicted degree of deterioration.
- Non Patent Document 1 proposes modeling for estimating a battery state using a battery model of capable of estimating the battery internal electrochemical reaction, for example, in a lithium-ion battery, as a technique of performing charge/discharge control by accurately estimating the remaining capacity (SOC) based on a secondary battery internal state.
- the present invention is made in order to solve such problems, and an object of the present invention is to provide a charge/discharge control device for a secondary battery capable of carrying out charge/discharge control such that the battery performance is maximized, in addition to preventing overcharge and overdischarge, and a hybrid vehicle using the same.
- a charge/discharge control device for a secondary battery configured to be capable of receiving/transmitting electric power from/to a load
- the battery state estimation portion is configured to sequentially calculate a state estimation value indicative of a battery state according to a battery model capable of dynamically estimating an internal state of the secondary battery, based on a detection value by a sensor provided for the secondary battery.
- the input/output-allowed time prediction portion is configured to predict an input/output-allowed time for which the secondary battery can continuously input/output a prescribed power from a present time, based on the state estimation value at present estimated by the battery state estimation portion.
- the load control portion is configured to generate an operation command for the load such that overcharge and overdischarge of the secondary battery are avoided, based on an operation request to the load, in consideration of the time predicted by the input/output-allowed time prediction portion.
- a state estimation value at present as calculated by the battery model capable of dynamically estimating the internal state of the secondary battery is used to predict an input/output-allowed time for which charge/discharge can be executed with prescribed power continuously from the present time.
- the characteristic of the input/output-allowed time with respect to the input/output power can be obtained. Therefore, based on this characteristic, charge/discharge control can be performed in which charge/discharge restriction is set step by step such that overcharge and overdischarge are avoided and the battery performance is maximized.
- the input/output-allowed time prediction portion is configured to predict the respective input/output-allowed times continuously from a present time, for a plurality of prescribed power.
- the input/output power-input/output-allowed time characteristic which reflects the internal state of the secondary battery at the present time, is found in detail and is utilized in charge/discharge restriction.
- the input/output-allowed time prediction portion is configured to be activated every prescribed period to predict, at a time of each activation, an input/output-allowed time during which the secondary battery can input/output the prescribed power continuously from that point of time.
- charge/discharge control can be performed by sequentially updating the input/output power-input/output-allowed time characteristic every prescribed period thereby appropriately reflecting the internal state of the secondary battery at each point of time.
- the input/output-allowed time prediction portion is configured to include: a voltage transition prediction portion predicting a transition of an output voltage of the secondary battery in a case where the secondary battery inputs/outputs the prescribed power continuously from a present time; and a time prediction portion predicting a time from the present time to a time at which the output voltage reaches an upper limit voltage or a lower limit voltage of the secondary battery, based on prediction by the voltage transition prediction portion.
- the time required for the output voltage of the secondary battery to reach the upper limit voltage or the lower limit voltage by continuous charge/discharge of prescribed power can be predicted as an input/output-allowed time, so that charge/discharge control can be executed in such a manner that the secondary battery does not exceed the upper limit voltage or the lower limit voltage.
- a charge/discharge control device for a secondary battery configured to be capable of receiving/transmitting electric power from/to a load includes: a battery state estimation portion, a deterioration rate prediction portion, and a load control portion.
- the battery state estimation portion is configured to sequentially calculate a state estimation value indicative of a battery state according to a battery model capable of dynamically estimating an internal state of the secondary battery, based on a detection value by a sensor provided for the secondary battery.
- the deterioration rate prediction portion is configured to predict a deterioration rate of the secondary battery in a case where the secondary battery inputs/outputs prescribed power continuously from a present time, based on the state estimation value at a present time estimated by the battery state estimation portion.
- the load control portion is configured to generate an operation command for the load in consideration of the deterioration rate predicted by the deterioration rate prediction portion, based on an operation request to the load.
- the internal state of the secondary battery is sequentially estimated based on the battery model, and in addition, a predicted deterioration rate in a case where prescribed power is continuously charged/discharged can be found using the state estimation value using the battery model.
- charge/discharge restriction of the secondary battery can be performed in such a manner that the internal state of the secondary battery at each point of time is appropriately reflected and that consideration is given so that deterioration does not proceed rapidly due to overdischarge or overcharge of the secondary battery.
- the deterioration rate prediction portion is configured to predict the respective deterioration rates for a plurality of prescribed power.
- the input/output power-predicted deterioration rate characteristic at the present time which reflects the internal state of the secondary battery at the present time, is found in detail by finding a predicted deterioration rate for prescribed power in multiple cases and is then utilized in charge/discharge restriction.
- the charge/discharge control device for a secondary battery further includes a deterioration degree estimation portion estimating a deterioration degree or a remaining lifetime of the secondary battery, based on the detection value by the sensor.
- the load control portion is configured to find a deterioration rate range permissible at a present time, in consideration of the deterioration degree or the remaining lifetime estimated by the deterioration degree estimation portion, and in addition, to generate an operation command for the load with restriction within such a charge/discharge power range of the secondary battery in that the deterioration rate predicted by the deterioration rate prediction portion falls within the deterioration rate range.
- the permissible range of deterioration rate can be changed based on the deterioration degree or the remaining lifetime of the secondary battery at the present time. Accordingly, charge/discharge restriction of the secondary battery can be performed in which the deterioration degree of the secondary battery at the present time is reflected and consideration is given so that deterioration does not proceed rapidly to shorten the battery life.
- the secondary battery is formed of a lithium-ion battery, and the state estimation value includes a lithium ion concentration distribution in the interior of the secondary battery.
- a lithium-ion battery is a control target, whose output characteristic varies depending on the distribution state of lithium ion concentration in the interior of the battery. Therefore, as in the present invention, the charge/discharge control based on estimation of the internal reaction of the battery by the battery model effectively brings about the effect of avoiding overcharge and overdischarge and maximizing the battery performance.
- a hybrid vehicle includes an internal combustion engine and a motor configured to be capable of generating a driving power of a vehicle, a control device, a secondary battery, and a charge/discharge control device for the secondary battery.
- the control device is configured to determine a driving power output by each of the internal combustion engine and the motor such that a required driving power for the vehicle as a whole is secured.
- the charge/discharge control device sequentially calculates a state estimation value indicative of a battery state according to a battery model capable of dynamically estimating an internal state of the secondary battery, based on a detection value by a sensor provided for the secondary battery, and in addition, predicts an input/output-allowed time during which the secondary battery can input/output prescribed power continuously from a present time, based on the state estimation value at present as estimated.
- control device sets an input/output permissible power of the motor with restriction within such a charge/discharge power range of the secondary battery in that overcharge and overdischarge of the secondary battery are avoided, in consideration of the input/output-allowed time predicted by the charge/discharge control device, and in addition, determines a torque command value of the motor with restriction such that input/output power of the motor falls within a range of the input/output permissible power.
- the charge/discharge control device is configured to predict the respective input/output-allowed times continuously from a present time, for a plurality of prescribed power. Then, the control device is configured to set input/output permissible power of the motor based on the input/output-allowed time predicted for the plurality of prescribed power.
- the charge/discharge control device is configured to predict, at every prescribed period, an input/output-allowed time during which the secondary battery can continuously input/output the prescribed power from that point of time.
- the charge/discharge control device is configured to predict a time from the present time to a time at which the output voltage reaches an upper limit voltage or a lower limit voltage of the secondary battery, in a case where the secondary battery inputs/outputs the prescribed power continuously from a present time, based on the state estimation value at present as estimated, and to predict an input/output-allowed time for which the secondary battery can continuously input/output prescribed power from a present time based on the prediction.
- a hybrid vehicle in accordance with another aspect of the present invention, includes an internal combustion engine and a motor configured to be capable of generating a driving power of a vehicle, an internal combustion engine and a motor configured to be capable of generating a driving power of a vehicle, a control device, a secondary battery, and a charge/discharge control device for the secondary battery.
- the control device is configured to determine a driving power output by each of the internal combustion engine and the motor such that a required driving power for the vehicle as a whole is secured.
- the charge/discharge control device is configured to sequentially calculate a state estimation value indicative of a battery state according to a battery model capable of dynamically estimating an internal state of the secondary battery, based on a detection value by a sensor provided for the secondary battery, and in addition, to predict a deterioration rate of the secondary battery in a case where the secondary battery inputs/outputs prescribed power continuously from a present time, based on the state estimation value at a present time as estimated.
- control device is configured to set an input/output permissible power of the motor with restriction within such a charge/discharge power range of the secondary battery in that deterioration of the secondary battery does not proceed significantly, based on the deterioration rate predicted by the charge/discharge control device, and in addition, to determine a torque command value of the motor with restriction such that input/output power of the motor falls within a range of the input/output permissible power.
- the charge/discharge control device is configured to predict the respective deterioration rates for a plurality of prescribed power. Then, the control device is configured to set input/output permissible power of the motor based on the deterioration rate predicted for the plurality of prescribed power.
- the charge/discharge control device is configured to further estimate a deterioration degree or a remaining lifetime of the secondary battery, based on the detection value by the sensor. Furthermore, the control device is configured to find a deterioration rate range permissible at a present time, in consideration of the deterioration degree or the remaining lifetime estimated by the charge/discharge control device, and in addition, to determine a charge/discharge power range of the secondary battery with restriction such that the predicted deterioration rate falls within the deterioration rate range.
- the secondary battery is formed of a lithium-ion battery, and the state estimation value includes a lithium ion concentration distribution in the interior of the secondary battery.
- FIG. 1 is a schematic block diagram illustrating a configuration of a power supply system including a secondary battery controlled by a charge/discharge control device for a secondary battery in accordance with an embodiment of the present invention.
- FIG. 2 is a schematic configuration view of the secondary battery.
- FIG. 3 is a conceptual view illustrating modeling of the secondary battery in a battery model portion.
- FIG. 4 is a diagram showing a list of variables and constants used in the battery model portion.
- FIG. 5 is a conceptual diagram illustrating an operational timing of the battery model portion and a behavior prediction portion in the charge/discharge control device for a secondary battery in accordance with the first embodiment.
- FIG. 6 is a flowchart illustrating a behavior prediction routine executed by the behavior prediction portion during operation in accordance with the first embodiment.
- FIG. 7 is a conceptual diagram illustrating the relation between battery output voltage behavior prediction and input/output-allowed time.
- FIG. 8 is a conceptual diagram showing an exemplary structure of prediction information for use in the charge/discharge control device for a secondary battery in accordance with the first embodiment.
- FIG. 9 is a schematic block diagram illustrating a functional configuration of the charge/discharge control device for a secondary battery in accordance with the second embodiment.
- FIG. 10 is a conceptual diagram showing an exemplary structure of prediction information and charge/discharge restriction for use in the charge/discharge control device for a secondary battery in accordance with the second embodiment.
- FIG. 11 is a flowchart illustrating the secondary battery charge/discharge control in accordance with the second embodiment.
- FIG. 12 is a schematic block diagram illustrating a functional configuration of the charge/discharge control device for a secondary battery in accordance with a modification of the second embodiment.
- FIG. 13 is a waveform diagram illustrating a secondary battery operation in a diagnostic mode for deterioration degree estimation.
- FIG. 14 is a conceptual diagram illustrating an operation of a deterioration degree estimation portion shown in FIG. 12 .
- FIG. 15 is a conceptual diagram showing an example of online identification of a deterioration management parameter.
- FIG. 16 is a conceptual diagram showing an exemplary structure of prediction information and charge/discharge restriction for use in the charge/discharge control device for a secondary battery in accordance with the modification of the second embodiment.
- FIG. 17 is a flowchart illustrating the secondary battery charge/discharge control in accordance with the modification of the second embodiment.
- FIG. 18 is a block diagram illustrating an exemplary configuration of a hybrid vehicle in accordance with the third embodiment of the present invention.
- FIG. 19 is a flowchart illustrating operational command value setting for a motor generator MG 2 in a hybrid vehicle in which the secondary battery charge/discharge control in accordance with the embodiment is reflected.
- FIG. 1 is a schematic block diagram illustrating a configuration of a power supply system including a secondary battery controlled by a charge/discharge control device for a secondary battery in accordance with an embodiment of the present invention.
- a power supply system 5 includes a secondary battery 10 , a load 20 , a cooling fan 40 for the secondary battery, and a battery ECU 50 and a control device 70 , each formed of an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Each ECU is typically formed of a microcomputer and a memory (RAM: Random Access Memory, ROM: Read Only Memory, or the like) for executing prescribed sequences and prescribed operations programmed in advance.
- Battery ECU 50 and control device 70 realize “charge/discharge control device” which carries out charge/discharge restriction as illustrated below.
- a lithium-ion battery is used as rechargeable secondary battery 10 .
- Lithium ion batteries are suitably adopted for the present invention, because their output characteristic varies depending on the distribution state of lithium ion concentration in the interior of the battery.
- Secondary battery 10 is provided with a temperature sensor 30 measuring a battery temperature Tb, a current sensor 32 measuring input/output current Ib (also referred to as battery current Ib hereinafter) of secondary battery 10 , and a voltage sensor 34 measuring a terminal-to-terminal voltage Vb (also referred to as battery output voltage Vb hereinafter) between the positive electrode and the negative electrode.
- a temperature sensor 30 measuring a battery temperature Tb
- a current sensor 32 measuring input/output current Ib (also referred to as battery current Ib hereinafter) of secondary battery 10
- a voltage sensor 34 measuring a terminal-to-terminal voltage Vb (also referred to as battery output voltage Vb hereinafter) between the positive electrode and the negative electrode.
- Cooling fan 40 is connected to secondary battery 10 through a coolant passage 41 to supply cooling air 45 as “coolant” to coolant passage 41 .
- secondary battery 10 is provided with a coolant channel as appropriate so that each cell of secondary battery 10 can be cooled by cooling air 45 supplied through coolant passage 41 .
- the actuation/termination of cooling fan 40 and the coolant supply rate during operation are controlled by battery ECU 50 .
- Load 20 is driven by an output voltage from secondary battery 10 . Furthermore, a not-shown power generating and supplying element is provided to be included in load 20 or is provided separately from load 20 , so that secondary battery 10 can be charged by charging current from the power generation/feeding element. Therefore, during discharge of secondary battery 10 , battery current Ib>0, and during charge of secondary battery 10 , battery current Ib ⁇ 0.
- Battery ECU 50 is configured to include a battery model portion 60 and a behavior prediction portion 65 .
- each of battery model portion 60 and behavior prediction portion 65 corresponds to a functional block realized by execution of a prescribed program by battery ECU 50 .
- Battery model portion 60 sequentially calculates a state estimation value indicative of a battery state every prescribed period, in accordance with a battery model capable of dynamically estimating the internal state of secondary battery 10 based on detection values from sensors 30 , 32 , 34 provided for secondary battery 10 .
- Behavior prediction portion 65 generates and outputs to control device 70 prediction information in a case where secondary battery 10 is continuously charged/discharged with prescribed power, based on a prescribed prediction operation using a state estimation value calculated by battery model portion 60 .
- this prediction information indicates a predicted input/output-allowed time when certain prescribed power is input (charge) or output (discharge) continuously from the present time.
- Control device 70 generates an operation command for load 20 , based on an operation request to load 20 , and based on charge/discharge restriction such that overcharge/overdischarge of secondary battery 10 does not occur, in consideration of prediction information from battery ECU 50 .
- Secondary battery 10 shown in FIG. 1 is configured as a battery pack in which a plurality of battery cells 10 # are connected.
- each of battery cells 10 # constituting secondary battery 10 includes a negative electrode 12 , a separator 14 , and a positive electrode 15 .
- Separator 14 is formed by immersing a resin provided between negative electrode 12 and positive electrode 15 in electrolyte.
- Each of negative electrode 12 and positive electrode 15 is formed of a collection of spherical active materials 18 .
- active material 18 of negative electrode 12 On the interface of active material 18 of negative electrode 12 , a chemical reaction occurs to emit a lithium ion Li + and an electron e ⁇ .
- active material 18 of positive electrode 15 On the other hand, on the interface of active material 18 of positive electrode 15 , a chemical reaction occurs to absorb a lithium ion Li + and an electron e ⁇ .
- Negative electrode 12 is provided with a current collector 13 absorbing electron e ⁇
- positive electrode 15 is provided with a current collector 16 emitting electron e ⁇
- Current collector 13 of the negative electrode is typically formed of copper and current collector 16 of the positive electrode is typically formed of aluminum.
- Current collector 13 is provided with a negative electrode terminal 11 n and current collector 16 is provided with a positive electrode collector 11 p .
- the transport of lithium ion Li + through separator 14 causes charge/discharge in battery cell 10 # to generate charging current Ib (>0) or discharging current Ib ( ⁇ 0).
- FIG. 3 is a conceptual diagram illustrating the modeling of the secondary battery in battery model portion 60 .
- lithium atom Li in active material 18 n becomes lithium ion Li + due to emission of electron e ⁇ and is then emitted to the electrolyte in separator 14 .
- the lithium ion Li + in the electrolyte is taken in and electron e ⁇ is absorbed. Accordingly, lithium atom Li is taken into the interior of positive electrode active material 18 p .
- the emission of lithium ion Li + from negative electrode active material 18 n and take-in of lithium ion Li + at positive electrode active material 18 p causes current to flow from positive electrode current collector 16 to negative electrode current collector 13 .
- lithium ion Li + in the electrolyte is taken in, and in the electrode reaction on the surface of positive electrode active material 18 p , lithium ion Li + is emitted into the electrolyte.
- the electrode reaction on the surface of active material 18 p , 18 n during charge/discharge, diffusion (radial direction) of lithium ions in the interior of active material 18 p , 18 n , diffusion of lithium ions in electrolyte, and the potential distribution at each part are modeled.
- the battery model is configured with battery model equations (M1)-(M15).
- FIG. 4 shows a listing of variables and constants used in the battery model equations (M1)-(M15) below.
- the variables such as battery temperature T (in the interior of the battery), each potential, and a lithium ion concentration shown in FIG. 4 correspond to “state estimation values” in the present invention.
- Equations (M1)-(M3) are equations called Butler-Volmer equations, which indicate electrode reaction.
- equation (M1) exchange current density i 0 is given by a function of a lithium ion concentration at the interface of active material 18 (see Non Patent Document 1 for the details).
- equation (M2) the detail of ⁇ in equation (M1) is shown, and in equation (M3), the detail of U in equation (M2) is shown.
- Equations (M4)-(M6) show conservation of lithium ion in the electrolyte.
- Equation (M5) shows the definition of the effective diffusion coefficient in the electrolyte
- equation (M6) shows that reaction current j Li is given by the product of active material surface area a s per unit volume of the electrode and transport current density/i n shown in equation (M1).
- the volume integral for the entire electrode of reaction current j Li corresponds to battery current Ib.
- Equations (M7) and (M8) show conservation of lithium ion in the solid state.
- Equation (M7) shows the diffusion equation in spherical active material 18
- equation (M8) shows active material surface area a s per unit volume of the electrode.
- equations (M9)-(M11) the equation indicating a potential in the electrolyte is derived from conservation of charge in the electrolyte.
- Equation (M10) shows effective ion conductivity ⁇ eff
- equation (M11) shows diffusion conductivity coefficient ⁇ D eff in the electrolyte.
- ⁇ ( ⁇ eff ⁇ s ) ⁇ j Li 0 (M12)
- ⁇ eff ⁇ s ⁇ (M13)
- Equations (M12) and (M13) show the equations for finding a potential in the solid state by conservation of charge in the active material.
- thermal energy conservation law is expressed. This enables analysis of a local temperature change into the interior of the secondary battery resulting from charge/discharge phenomenon.
- each variable shown in FIG. 4 namely, the state estimation value of secondary battery 10 is sequentially calculated, so that the temporal change of the battery state reflective of the internal reaction of the secondary battery can be estimated.
- the lithium ion concentration in each active material 18 p , 18 n is a function of radius r inside the active material and the lithium ion concentration is uniform in the circumferential direction.
- SOC is found by the number of lithium atoms in negative electrode active material 18 n . Furthermore, estimation of the lithium ion concentration distribution in the interior of active material 18 p , 18 n enables prediction of the battery state reflective of charge/discharge history in the past. For example, even if the present SOC is the same, the output voltage is relatively less likely to be decreased in a case where the current SOC is achieved by charge, followed by discharge than in a case where the current SOC is achieved by discharge, followed by further discharge. Here, prediction of such phenomenon is possible.
- the lithium ion concentration in negative electrode active material 18 n is relatively high on the surface side immediately after charge, the lithium ion concentration in negative electrode active material 18 n is relatively decreased on the surface side during discharge.
- the prediction as described above becomes possible, which reflects the lithium ion concentration distribution in the active material.
- FIG. 5 is a conceptual diagram illustrating an operational timing of the battery model portion and the behavior prediction portion in the charge/discharge control device for a secondary battery in accordance with the first embodiment.
- battery model portion 60 is operated every prescribed period to sequentially calculate the state estimation value according to the battery model equations described above, based on the detection values from sensors 30 , 32 , 34 . Actually, a difference from the previous estimation calculation is calculated and then the state estimation value is updated. Thus, the state estimation value of the secondary battery is sequentially updated with an initial value as a starting point, based on the detection values from sensors 30 , 32 , 34 indicating the use status of the secondary battery.
- a behavior prediction routine is executed by behavior prediction portion 65 every prescribed period Tc.
- This prescribed period Tc is set to be equal to or longer than an operation period of the battery model portion.
- behavior prediction portion 65 predicts an input/output-allowed time when certain prescribed power is input (charge) or output (discharge) continuously from the present time. Prediction of the input/output-allowed time is executed every prescribed period Tc, in the example in FIG. 5 , at time tb after a lapse of Tc since time ta and at time tc after a lapse of further Tc, using the state estimation values by battery model portion 60 at the respective points of time.
- FIG. 6 is a flowchart illustrating the behavior prediction routine executed by behavior prediction portion 65 during operation.
- the flowchart shown in FIG. 6 is realized as a function of behavior prediction portion 65 shown in FIG. 1 by executing a program stored beforehand in battery ECU 50 every prescribed period (Tc).
- step S 100 behavior prediction portion 65 obtains the state estimation value at that point of time when it is sequentially estimated according to the battery model equations by battery model portion 60 .
- the state estimation value to be considered in step S 100 includes SOC, the internal temperature, the lithium ion concentration distribution, the potential distribution at this point of time, and the like.
- behavior prediction portion 65 predicts the behavior of the battery output voltage at the time when prescribed power is charged or discharged continuously from the present time.
- a prediction value of battery voltage Vb is calculated according to a model created in advance, in the case where charge/discharge is performed continuously from the present time with the maximum output power Womax to the load, the maximum input power Wimax from the load, and the present input/output power Wc.
- a prediction value of battery voltage Vb may also be calculated according to the aforementioned model in order to predict the input/output-allowed time.
- this battery voltage behavior prediction model for example, a simplified version of the aforementioned battery model equations (M1)-(M15) may be used, considering that the input/output power is constant.
- a function equation may be defined separately, which predicts the battery voltage behavior (for example, dVb/dt: the battery voltage change amount per unit time) using the state estimation value obtained in step S 100 and prescribed power for charge/discharge as variables.
- the battery voltage behavior prediction model As described above, when the input/output voltage from secondary battery 10 , which is Womax (the maximum output power: discharge), Wimax (the maximum input power: charge) and the present input/output power Wc, is continuously input/output, the time required for battery voltage Vb to reach the lower limit voltage Vmin (during discharge) or to reach the upper limit value Vmax (during charge) is obtained.
- the required time to reach T 1 -T 3 is the input/output-allowed time predicted when Womax, Wimax and Wc are input/output from secondary battery 10 continuously from the present time.
- the upper limit voltage Vmax and the lower limit voltage Vmin are determined according to the highest rated voltage and the lowest rated voltage of secondary battery 10 , the operative (guaranteed) voltage of the load, or the like.
- input/output time T 1 represents the maximum time during which discharge can be performed with the maximum output power Womax continuously without battery voltage Vb decreasing to the lower limit voltage Vmin, from the present time.
- input/output time T 2 represents the maximum time during which charge can be performed continuously with maximum input power Wimax without battery voltage Vb rising to the upper limit voltage Vmax, from the present time.
- input/output time T 3 represents the maximum time during which charge/discharge of secondary battery 10 with the present input/output power can be continued from the present time with battery voltage Vb kept within the range from the upper limit voltage Vmax to the lower limit voltage Vmin.
- behavior prediction portion 65 can predict the input/output-allowed time with respect to prescribed input/output power, at each point of time.
- the respective input/output-allowed times are predicted, so that the input/output power-input/output-allowed time characteristic can be obtained in the map format.
- behavior prediction portion 65 predicts the input/output-allowed time by comparison between the battery voltage behavior prediction shown in FIG. 7 and the upper limit voltage Vmax and the lower limit voltage Vmin, in step S 120 . Then, behavior prediction portion 65 obtains the characteristics of input/output power and input/output-allowed time as shown in FIG. 8 and outputs the same as prediction information to control device 70 , in step S 130 .
- control device 70 in response to an operation request to load 20 , in consideration of characteristics of the input/output power and input/output-allowed time obtained by behavior prediction portion 65 , an operation command for load 20 is generated such that charge/discharge of secondary battery 10 is restricted within the range in which overcharge or overdischarge of the secondary battery is avoided.
- an operation command for load 20 is generated such that charge/discharge of secondary battery 10 is restricted within the range in which overcharge or overdischarge of the secondary battery is avoided.
- information indicative of the continuous input/output-allowed time with respect to charging/discharging power rather than merely the outputtable power from secondary battery 10 (discharging power upper limit value) Wout and the inputtable power (charging power upper limit value) Win, it can be expected that such charge/discharge restriction becomes possible in that overcharge and overdischarge are avoided in a foreseeable manner and the battery performance is maximized.
- the output power from secondary battery 10 is reduced in advance when the continuous input/output-allowed time is short, thereby achieving improved driving comfortability as a result of avoiding shocks during travel and improved fuel efficiency.
- the output power from secondary battery 10 is increased when the input/output-allowed time is long, thereby achieving improved fuel efficiency.
- the input/output-allowed time for prescribed power can be predicted every prescribed period. Furthermore, since this behavior prediction is reflected in generating the operation command for load 20 for receiving/supplying power from/to secondary battery 10 , such charge/discharge restriction becomes possible in that overcharge/overdischarge of secondary battery 10 can be avoided reliably.
- the input/output-allowed time is predicted for the input/output power at multiple stages and is reflected in the operation command for load 20 , so that step-by-step charge/discharge restriction can be performed, as compared with the control configuration in which only the upper limit value of charging/discharging power is simply set, and the secondary battery can be used in such a manner that the battery performance at that point of time can be maximized while overcharge and overdischarge are avoided.
- battery model portion 60 in FIG. 1 corresponds to “battery state estimation portion” in the present invention
- behavior prediction portion 65 in FIG. 1 corresponds to “input/output-allowed prediction portion” in the present invention
- control device 70 corresponds to “load control portion” in the present invention
- step S 110 in FIG. 6 corresponds to “voltage transition prediction portion” in the present invention
- step S 120 corresponds to “time prediction portion” in the present invention.
- FIG. 9 is a schematic block diagram illustrating a functional configuration of the charge/discharge control device for a secondary battery in accordance with the second embodiment.
- battery ECU 50 includes battery model portion 60 similar to that of the first embodiment and a behavior prediction portion 65 #.
- Battery model portion 60 dynamically estimates the internal state of secondary battery 10 to sequentially update the state estimation value, similarly to the first embodiment.
- Behavior prediction portion 65 # evaluates a deterioration rate in a case where secondary battery 10 is continuously charged/discharged with prescribed power, by a prescribed prediction operation using the state estimation value calculated by battery model portion 60 . Then, the characteristics of input/output power and deterioration rate is output as prediction information to control device 70 . Control device 70 generates an operation command for load 20 in consideration of the prediction information (the input/output power-deterioration rate characteristic) from behavior prediction portion 65 #. It is noted that the deterioration rate is a parameter indicating the progress degree of battery deterioration per unit time, and the greater deterioration, rate indicates that battery deterioration is more likely to proceed.
- behavior prediction portion 65 # finds a predicted deterioration rate in inputting/outputting prescribed power in multiple cases, in the present battery state, within a range from the maximum output power Womax to the maximum input power Wimax.
- the model equation for predicting a deterioration rate is set in which at least battery temperature T, input/output power Ib, of the state estimation values by battery model portion 60 at that point of time, are reflected. This model equation can be set arbitrarily and therefore the detailed description thereof will be omitted.
- Behavior prediction portion 65 # executes a behavior prediction routine (not shown) for finding the aforementioned prediction information (the input/output power-deterioration rate characteristic) every prescribed period, in a manner similar to behavior prediction portion 65 of the first embodiment.
- FIG. 11 is a flowchart illustrating charge/discharge control of secondary battery 10 in accordance with the second embodiment.
- Charge/discharge control in accordance with the second embodiment is mainly directed to generation of the operation command by control device 70 , which reflects the deterioration rate prediction by battery ECU 50 .
- control device 70 obtains the charge/discharge conditions (input/output power)—predicted deterioration rate characteristic at present from battery ECU 50 , in step S 200 . Then, control device 70 calculates the upper limit deterioration rate DRmax permissible at the present time such that the integrated value or the mean value of deterioration rates within a certain period falls within a prescribed range, in step S 210 . For example, in a case where a battery operation continues so far under the condition of a great deterioration degree, the upper limit deterioration rate DRmax is set to a relatively low value in order to restrict rapid progress of battery deterioration.
- control device 70 performs charge/discharge restriction according to the calculated upper limit deterioration rate DRmax.
- charge/discharge is restricted by restriction on input/output power or by restriction on the battery temperature (upper limit), the upper (lower) limit voltage or the upper (lower) limit SOC.
- the upper limit output power Wo# and the upper limit input power Wi# at the time when the deterioration rate predicted based on the battery state at the present time reaches the upper limit deterioration rate DRmax are obtained.
- control device 70 performs charge/discharge restriction by putting restrictions within the charge/discharge restriction range set in step S 210 , for example, by restricting the input/output power range with Wi# set as the upper limit for charge and with Wo# set as the upper limit for discharge, and then generates an operation command for load 20 . Furthermore, in step S 230 , control device 70 obtains and stores the predicted deterioration rate corresponding to the operation command for load 20 set in step S 220 , based on the prediction information shown in FIG. 10 . Accordingly, evaluation of the deterioration rate (the integrated value or the mean value) for a certain period in the next operation is updated.
- the deterioration rate the integrated value or the mean value
- the deterioration degree for the use power (input/output power) at each point of time is sequentially predicted based on the internal state estimation of the secondary battery according to the battery model, and then charge/discharge control can be performed with restrictions within such a range in that deterioration of secondary battery 10 does not significantly proceed.
- first and second embodiments may be combined to perform charge/discharge control of secondary battery 10 , in which both of the input/output-allowed time and the deterioration rate for the input/output power are output as prediction information from battery ECU 50 to control device 70 .
- the operation command for load 20 is generated by control device 70 such that overcharge and overdischarge and rapid deterioration progress of secondary battery 10 are avoided.
- FIG. 12 is a block diagram illustrating a functional configuration of the charge/discharge control device for a secondary battery in accordance with a modification of the second embodiment.
- battery ECU 50 further includes a deterioration degree estimation portion 61 in addition to battery model portion 60 and behavior prediction portion 65 # similar to those of FIG. 9 .
- Deterioration degree estimation portion 61 has a function of estimating a deterioration state of a battery (SOH: State of Health), so to speak, and estimates a deterioration degree and/or remaining lifetime of secondary battery 10 , based on the detection values Tp, Ib, Vb by sensors 30 , 32 , 34 .
- the deterioration degree and/or the remaining lifetime of secondary battery 10 as estimated by deterioration degree estimation portion 61 is output to control device 70 (or also to behavior prediction portion 65 #).
- deterioration degree estimation portion 61 is configured to be able to identify a part of parameters (constants) for use in the battery model, based on the secondary battery behavior in a diagnostic mode operation.
- a diagnosis operation is performed in such a manner that secondary battery 10 outputs constant current in a pulse form from time t 0 to t 2 .
- battery voltage Vb gradually recovers after cut-off of pulse current (namely, after time t 2 ), according to output of pulse-like current.
- Such voltage behavior is sensed by voltage sensor 34 , and battery voltage Vb is input to deterioration degree estimation portion 61 .
- a diagnostic mode is preferably performed after a prescribed time (about 30 minutes) has passed since the termination of use of the secondary battery and the internal state of the secondary battery has become statistic.
- exchange current density i 0 can be estimated based on the voltage behavior at a time of pulse-like current output.
- diffusion coefficient D s at the positive electrode can be estimated based on the voltage behavior after cut-off of pulse current.
- the parameters referred to as deterioration management parameters X, Y hereinafter) to be identified and the number thereof may be determined arbitrarily.
- deterioration degree estimation portion 61 identifies parameter values at present for deterioration management parameters X, Y during execution of the aforementioned diagnostic mode.
- a change of the parameter value corresponding to the degree of use of the secondary battery, namely, the deterioration characteristic is obtained in advance.
- a use period (time) or a charge/discharge current integrated value is used as the use degree of the secondary battery.
- a travel distance or a use period can be used as the degree of use of the battery.
- a deterioration characteristic line 200 is obtained in advance with respect to deterioration management parameter X
- a deterioration characteristic line 210 is obtained in advance for deterioration management parameter Y.
- Deterioration degree estimation portion 61 can estimate the deterioration degree of secondary battery 10 at the present time, for the parameter values at the present time found in the foregoing manner, according to a change amount from an initial value and a margin from the limit value.
- a macroscopic deterioration degree of secondary battery 10 as a whole can be estimated by finding the mean value, the maximum value, the minimum value, or the like of the deterioration degree for each parameter.
- deterioration degree estimation portion 61 can estimate the remaining lifetime of secondary battery 10 based on the difference between the parameter value at the present time and the above-noted limit value.
- deterioration degree estimation portion 61 may be configured to operate in parallel with battery model portion 60 to identify the deterioration management parameter online, based on the online detection values (Tb, current Ib, voltage Vb) detected by sensors 30 - 34 during use of secondary battery 10 , without execution of the diagnostic mode as shown in FIG. 13 .
- Such online parameter identification is enabled according to the kind of deterioration management parameter. For example, as shown in FIG. 15 , by finding the slope of Vb with respect to Ib based on a set of online characteristic points 250 obtained by plotting the relation between battery current Ib and battery voltage Vb, interface direct-current resistance R in the battery model equations can be identified and set as a deterioration management parameter.
- behavior prediction portion 65 # predicts a deterioration rate of secondary battery 10 for the input/output power based on the internal state of the secondary battery at this point of time and outputs the input/output power-deterioration rate characteristic as prediction information to control device 70 , in a similar manner as shown in FIG. 10 .
- control device 70 sets the upper limit deterioration rate DRmax permissible at the present time according to the deterioration degree and/or remaining lifetime estimated by deterioration degree estimation portion 61 .
- the upper limit deterioration rate DRmax is set to a relatively lower value.
- control device 70 generates an operation command for load 20 with restrictions within a range with Wi# set as the upper limit for charge and with Wo# set as the upper limit for discharge.
- control device 70 obtains the charge/discharge condition (input/output power) predicted deterioration rate characteristic at present, from battery ECU 50 . Then, control device 70 obtains the deterioration degree and/or remaining lifetime estimated by deterioration degree estimation portion 61 , in step S 202 , and in addition, sets the permissible deterioration rate range (namely, the upper limit deterioration rate DRmax) according to the present deterioration degree and/or remaining lifetime, in step S 204 .
- the permissible deterioration rate range namely, the upper limit deterioration rate DRmax
- control device 70 sets the input/output power restriction according to the permissible deterioration rate range set in step S 204 .
- the upper limit output power Wo# and the upper limit input power Wi# at the time when the deterioration rate predicted based on the battery state at the present time reaches the upper limit deterioration rate DRmax are obtained. It is noted that such setting of input/output power restriction may be executed in behavior prediction portion 65 # and the upper limit output power Wo# and the upper limit input power Wi# may be included in the prediction information and sequentially sent from behavior prediction portion 65 # to control device 70 .
- control device 70 puts restrictions within the input/output power range set in step S 210 #, more specifically, performs charge/discharge restriction with Wi# set as the upper limit for charge and with Wo# set as the upper limit for discharge and then generates an operation command for load 20 .
- the deterioration rate permissible at each point of time can be set according to the predicted deterioration degree and/or the estimated remaining lifetime at that point of time.
- the charge/discharge restriction range is set appropriately according to the deterioration state of the secondary battery, thereby further preventing significant deterioration of the secondary battery and prolonging the lifetime.
- the first embodiment and the modification of the second embodiment may be combined to perform charge/discharge control of secondary battery 10 , in which both of the input/output-allowed time for the input/output power and the deterioration rate are used as prediction information and, in addition, the prediction deterioration degree and/or the estimated remaining lifetime is taken into consideration.
- an operation command for load 20 is generated by control device 70 such that overcharge and overdischarge of secondary battery 10 and the shortened battery lifetime resulting from a rapid deterioration progress are avoided.
- battery model portion 60 in FIGS. 9 , 12 corresponds to “battery state estimation portion” in the present invention
- behavior prediction portion 65 # in FIGS. 9 , 12 corresponds to “deterioration rate prediction portion” in the present invention
- control device 70 corresponds to “load control portion” in the present invention.
- deterioration degree estimation portion 61 in FIG. 12 corresponds to “deterioration degree estimation portion” in the present invention.
- FIG. 18 is a block diagram illustrating an exemplary configuration of a hybrid vehicle in accordance with the third embodiment of the present invention.
- a hybrid vehicle 500 includes an engine 510 , a traction battery 520 , a battery ECU 525 , an inverter 530 , wheels 540 a , a transaxle 550 , and an electronic control unit (HV-ECU) 590 controlling the entire operation of hybrid vehicle 500 .
- HV-ECU electronice control unit
- traction battery 520 and battery ECU 525 respectively correspond to secondary battery 10 and battery ECU 50 ( FIG. 1 ) in the first and second embodiments and the modification of the second embodiment
- HV-ECU 590 corresponds to control device 70 ( FIG. 1 ) in the first and second embodiments and the modification of the second embodiment
- motor generators MG 1 and MG 2 correspond to load 20 ( FIG. 1 ) in the first and second embodiments and the modification of the second embodiment.
- Motor generator MG 2 for vehicle driving power generation mainly serves as a load performing input/output of electric power for traction battery 520 .
- Traction Engine 510 generates a driving power using combustion energy of fuel such as gasoline as a source.
- Traction battery 520 supplies direct-current power to a power line 551 .
- Traction battery 520 is typically formed of a lithium-ion secondary battery and the charge/discharge thereof is controlled by the charge/discharge control device for a secondary battery in accordance with the embodiments of the present invention.
- Inverter 530 converts the direct-current power supplied from traction battery 520 into alternating-current power, which is then output to a power line 553 .
- inverter 530 converts alternating-current power supplied to power lines 552 , 553 into direct-current power, which is then output to power line 551 .
- Transaxle 550 includes a transmission and an axle as an integrated structure and has a power split mechanism 560 , a speed reducer 570 , motor generator MG 1 , and motor generator MG 2 .
- Power split mechanism 560 can divide the driving power generated by engine 510 into a transmission path to a drive shaft 545 for driving wheels 540 a through speed reducer 570 and a transmission path to motor generator MG 1 .
- Motor generator MG 1 is rotated by the driving power from engine 510 transmitted through power split mechanism 560 to generate electric power.
- the generated electric power by motor generator MG 1 is supplied to inverter 530 through power line 552 and used as charging current for traction battery 520 or driving power of motor generator MG 2 .
- Motor generator MG 2 is rotated and driven by the alternating-current power supplied from inverter 530 to power line 553 .
- the driving power generated by motor generator MG 2 is transmitted to drive shaft 545 through speed reducer 570 .
- electromotive force (alternating-current power) created in motor generator MG 2 is supplied to power line 553 .
- inverter 530 converts the alternating-current power supplied to power line 553 into direct-current power for output to power line 551 , thereby charging traction battery 520 .
- motor generators MG, MG 2 may function as a generator and as a motor
- motor generator MG 1 often operates as a generator in general
- motor generator MG 2 often operates mainly as a motor.
- HV-ECU 590 controls the entire operation of the equipment and circuitry installed on the vehicle in order to allow hybrid vehicle 500 to be driven according to an instruction by the driver.
- hybrid vehicle 500 with a combination of the driving power generated by engine 510 and the driving power generated by motor generator MG 2 using the electric energy from traction battery 520 as a source, vehicle operation is performed with improved fuel efficiency.
- hybrid vehicle 500 runs only with the driving power by motor generator MG 2 basically without starting the engine, in order to avoid a region in which an engine efficiency is bad.
- the driving power output from engine 510 is split into a driving power for wheels 540 a and a driving power for electric power generation at motor generator MG 1 by power split mechanism 560 .
- the generated electric power by motor generator MG 1 is used for driving motor generator MG 2 . Therefore, during normal travel, wheels 540 a are driven with the driving power by engine 510 with the assistance of the driving power by motor generator MG 2 .
- ECU 590 controls the proportion of driving power sharing between engine 510 and motor generator MG 2 .
- supply power from traction battery 520 is further used to drive the second motor generator MG 2 , thereby further increasing the driving power for wheels 540 a.
- motor generator MG 2 During deceleration and braking, motor generator MG 2 generates a torque in the opposite direction to rotation of wheels 540 a thereby to function as a generator performing regenerative power generation. Electric power recovered by regenerative power generation of motor generator MG 2 is used to charge traction battery 520 through power line 553 , inverter 530 , and power line 551 . Furthermore, at vehicle stop, engine 510 is automatically stopped.
- HV-ECU 590 determines the above-noted distribution according to the drive situation, in consideration of the efficiency of engine 510 in terms of fuel efficiency.
- FIG. 19 is a flowchart illustrating operation command value setting for motor generator MG 2 in hybrid vehicle 500 , which reflects charge/discharge control of a secondary battery in accordance with the present embodiment.
- the flowchart shown in FIG. 19 is realized by executing a program stored beforehand in HV-ECU 590 every prescribed period.
- step S 300 HV-ECU 590 calculates a vehicle driving power and a vehicle braking power required for the entire vehicle, depending on the present vehicle speed and a pedal operation by the driver.
- step S 310 HV-ECU 590 sets an input/output permissible value (electric power) of motor generator MG 2 , corresponding to charge/discharge restriction of traction battery 520 (secondary battery 10 ) set in accordance with the first and second embodiments and the modification of the second embodiment.
- HV-ECU 590 determines a driving power output share between engine 510 and motor generator MG 2 , considering the input/output permissible value of MG 2 set in step S 310 and the efficiency of hybrid vehicle 500 on the whole, specifically, while giving consideration so that the operation region of engine 510 is an efficient one (step S 320 ). This avoids such an operation of motor generator MG 2 in that traction battery 520 is overcharged or overdischarged (specifically, a power running operation to generate a vehicle driving power or a regenerative braking operation for electric power generation).
- HV-ECU 590 determines a torque command value for motor generator MG 2 according to the MG 2 output determined in step S 320 .
- the torque command value for motor generator MG 2 is generally set to a positive torque during power running of generating a vehicle driving power and set to a negative torque during regenerative braking of exerting a vehicle driving power.
- hybrid vehicle 500 is provided with not-shown hydraulic brakes for the wheels including driving wheels 540 a and is controlled such that a required braking power for the entire vehicle, which is calculated in step S 300 , is secured based on the sum of a braking power generated by the hydraulic brakes and a braking power involving regenerative braking power generation by motor generator MG 2 .
- a required braking power for the entire vehicle which is calculated in step S 300
- the braking power for the entire vehicle is secured by not-shown hydraulic brakes.
- effective recovery of electric power is enabled by a regenerative braking operation performed by motor generator MG 2 within a range of charge restriction on traction battery 520 .
- a part of functions of HV-ECU 590 realized by the process in steps S 300 -S 330 shown in FIG. 19 as described above corresponds to “control device” in the present invention.
- motor generator MG 2 for vehicle driving power generation can be operated with charge/discharge control in which overcharge and overdischarge and rapid deterioration progress are avoided and consideration is given so that the battery performance is fully achieved, even for traction battery 520 in such a usage manner that a charge operation and a discharge operation are repeated.
- the third embodiment an exemplary application to a series/parallel-type hybrid system capable of dividing and transmitting motive power from the engine into the axle (drive shaft) and the generator using a power split mechanism has been described, with attention to the output distribution of the vehicle driving power between the engine and the motor.
- the application of the present invention is not limited to such a case, and the secondary battery charge/discharge control in accordance with the present invention realized by generation of a load operation command based on behavior prediction may be applied to any equipment or system without any particular limitation of a load.
- the present invention may also be applied to only one of discharge restriction and charge restriction, for example, in a case where only either power supply from the secondary battery to the load (discharge) or power supply from the load to the secondary battery (charge) is executed.
- the charge/discharge control device for a secondary battery in accordance with the present invention may typically be applied to charge/discharge control for a secondary battery (for example, lithium-ion battery) mounted on an electric vehicle or a hybrid vehicle.
- a secondary battery for example, lithium-ion battery
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Hybrid Electric Vehicles (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-209751 | 2006-08-01 | ||
JP2006209751A JP4265629B2 (ja) | 2006-08-01 | 2006-08-01 | 二次電池の充放電制御装置およびそれを搭載したハイブリッド車両 |
PCT/JP2007/065220 WO2008016129A1 (fr) | 2006-08-01 | 2007-07-27 | Dispositif de commande de charge/décharge de batterie secondaire et véhicule hybride l'utilisant |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100000809A1 US20100000809A1 (en) | 2010-01-07 |
US8336651B2 true US8336651B2 (en) | 2012-12-25 |
Family
ID=38997302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/375,587 Active 2029-11-22 US8336651B2 (en) | 2006-08-01 | 2007-07-27 | Charge/discharge control device for secondary battery and hybrid vehicle using the same |
Country Status (5)
Country | Link |
---|---|
US (1) | US8336651B2 (fr) |
EP (1) | EP2048763A4 (fr) |
JP (1) | JP4265629B2 (fr) |
CN (1) | CN101496255B (fr) |
WO (1) | WO2008016129A1 (fr) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110174564A1 (en) * | 2010-01-20 | 2011-07-21 | Soo Shin Nam | Electric power generation system for electric vehicles |
US20140084867A1 (en) * | 2012-09-24 | 2014-03-27 | Kabushiki Kaisha Toshiba | Secondary battery device and battery capacity estimation system |
US20150022157A1 (en) * | 2012-01-13 | 2015-01-22 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for secondary battery |
US9008858B1 (en) | 2014-03-31 | 2015-04-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for providing adaptive vehicle settings based on a known route |
US20150134283A1 (en) * | 2012-05-15 | 2015-05-14 | Toyota Jidosha Kabushiki Kaisha | Battery system and method of determining polarization of secondary battery |
US20150232083A1 (en) * | 2014-02-20 | 2015-08-20 | Ford Global Technologies, Llc | Active Battery Parameter Identification Using Conditional Extended Kalman Filter |
US9266443B2 (en) | 2014-03-31 | 2016-02-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for adaptive battery charge and discharge rates and limits on known routes |
US9272634B2 (en) | 2014-02-20 | 2016-03-01 | Ford Global Technologies, Llc | Active battery system estimation request generation |
US9290108B2 (en) | 2014-03-31 | 2016-03-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for adaptive battery temperature control of a vehicle over a known route |
US9381825B2 (en) | 2014-02-20 | 2016-07-05 | Ford Global Technologies, Llc | State of charge quality based cell balancing control |
US9539912B2 (en) | 2014-02-20 | 2017-01-10 | Ford Global Technologies, Llc | Battery capacity estimation using state of charge initialization-on-the-fly concept |
US9695760B2 (en) | 2014-03-31 | 2017-07-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for improving energy efficiency of a vehicle based on known route segments |
US9707849B2 (en) | 2013-06-07 | 2017-07-18 | Mitsubishi Electric Corporation | Charging and discharging control apparatus and electric motor vehicle |
US20180358663A1 (en) * | 2015-09-01 | 2018-12-13 | Hitachi Automotive Systems, Ltd. | Battery management device, battery system, and hybrid vehicle control system |
US10644359B2 (en) | 2015-09-15 | 2020-05-05 | Kabushiki Kaisha Toshiba | Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system |
US10935607B2 (en) * | 2018-04-24 | 2021-03-02 | Toyota Jidosha Kabushiki Kaisha | Control device for secondary battery, control method of secondary battery, battery system, and motor-driven vehicle |
US11034243B2 (en) * | 2018-10-22 | 2021-06-15 | Chongqing Jinkang New Energy Vehicle Co., Ltd. | Vehicle battery controller based on a reduced order model |
US20210263104A1 (en) * | 2020-02-24 | 2021-08-26 | Ford Global Technologies, Llc | Vehicle traction battery over-discharge diagnosing method and assembly |
WO2023241895A1 (fr) * | 2022-06-15 | 2023-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Procédé de fonctionnement d'une batterie de traction pour un véhicule automobile, dispositif informatique électronique et véhicule automobile équipé d'une batterie de traction |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4341652B2 (ja) * | 2006-09-04 | 2009-10-07 | トヨタ自動車株式会社 | 蓄電制御装置及び蓄電制御方法 |
JP4494453B2 (ja) * | 2007-11-13 | 2010-06-30 | トヨタ自動車株式会社 | 二次電池の制御装置および制御方法 |
US20110204844A1 (en) * | 2008-02-14 | 2011-08-25 | Fernando Emilio Adames | Two-way batter charger and use method |
JP4539735B2 (ja) * | 2008-02-29 | 2010-09-08 | 三菱自動車工業株式会社 | バッテリ管理制御装置 |
JP5314906B2 (ja) * | 2008-02-29 | 2013-10-16 | ニチユ三菱フォークリフト株式会社 | 作業用車両の制御方法および作業用車両 |
FR2929410B1 (fr) * | 2008-03-28 | 2010-04-09 | Inst Francais Du Petrole | Methode pour estimer les caracteristiques non mesurables d'un systeme electrochimique |
JP4930434B2 (ja) * | 2008-04-02 | 2012-05-16 | トヨタ自動車株式会社 | 二次電池モジュール制御装置 |
US8754611B2 (en) * | 2008-04-11 | 2014-06-17 | Apple Inc. | Diffusion-limited adaptive battery charging |
US9331513B2 (en) * | 2008-04-11 | 2016-05-03 | Apple Inc. | Adaptive surface concentration battery charging |
US8040106B2 (en) | 2008-05-29 | 2011-10-18 | Honda Motor Co., Ltd. | Method of controlling battery charging |
JP2009286254A (ja) * | 2008-05-29 | 2009-12-10 | Denso Corp | 車載装置、及びプログラム |
US8063609B2 (en) * | 2008-07-24 | 2011-11-22 | General Electric Company | Method and system for extending life of a vehicle energy storage device |
JP5018681B2 (ja) * | 2008-08-01 | 2012-09-05 | トヨタ自動車株式会社 | リチウムイオン二次電池の制御方法、及び、リチウムイオン二次電池システム |
GB2462312B (en) * | 2008-08-01 | 2012-03-21 | Sensormatic Electronics Llc | Battery backed power-over-ethernet system |
US7919966B2 (en) * | 2008-09-23 | 2011-04-05 | Honda Motor Co., Ltd. | Method of estimating surface ion density |
JP5310003B2 (ja) * | 2009-01-07 | 2013-10-09 | 新神戸電機株式会社 | 風力発電用鉛蓄電池制御システム |
WO2010087363A1 (fr) * | 2009-01-28 | 2010-08-05 | 住友重機械工業株式会社 | Machine à fonctionnement hybride et appareil de commande de stockage d'électricité |
JP5566635B2 (ja) * | 2009-07-08 | 2014-08-06 | 株式会社デンソー | 回転機の制御装置 |
US8179140B2 (en) | 2009-07-10 | 2012-05-15 | Honda Motor Co., Ltd. | Method of estimating solid phase potential |
JP5324356B2 (ja) * | 2009-08-18 | 2013-10-23 | 株式会社豊田中央研究所 | 放電電力制限値演算装置 |
JP5362478B2 (ja) * | 2009-08-18 | 2013-12-11 | 株式会社豊田中央研究所 | 充電電力制限値演算装置 |
EP2295098B1 (fr) * | 2009-09-10 | 2011-10-26 | F. Hoffmann-La Roche AG | Pompe à perfusion médicale et procédé pour déterminer la cause d'interruption d'alimentation électrique de la pompe |
JP2011135680A (ja) * | 2009-12-24 | 2011-07-07 | Toyota Motor Corp | 蓄電装置の入出力制御装置 |
US20130069660A1 (en) * | 2010-02-17 | 2013-03-21 | Julien Bernard | Method for in situ battery diagnostic by electrochemical impedance spectroscopy |
CN102859324B (zh) * | 2010-04-19 | 2016-06-29 | 日产自动车株式会社 | 信息提供装置和信息提供方法 |
US11791647B2 (en) | 2010-05-21 | 2023-10-17 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US10067198B2 (en) | 2010-05-21 | 2018-09-04 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell using the state of health thereof |
US10389156B2 (en) | 2010-05-21 | 2019-08-20 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US11397216B2 (en) | 2010-05-21 | 2022-07-26 | Qnovo Inc. | Battery adaptive charging using a battery model |
US9142994B2 (en) | 2012-09-25 | 2015-09-22 | Qnovo, Inc. | Method and circuitry to adaptively charge a battery/cell |
US11397215B2 (en) | 2010-05-21 | 2022-07-26 | Qnovo Inc. | Battery adaptive charging using battery physical phenomena |
US12081057B2 (en) | 2010-05-21 | 2024-09-03 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US8791669B2 (en) | 2010-06-24 | 2014-07-29 | Qnovo Inc. | Method and circuitry to calculate the state of charge of a battery/cell |
US8638070B2 (en) | 2010-05-21 | 2014-01-28 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US8970178B2 (en) | 2010-06-24 | 2015-03-03 | Qnovo Inc. | Method and circuitry to calculate the state of charge of a battery/cell |
JP5742117B2 (ja) * | 2010-06-03 | 2015-07-01 | 日産自動車株式会社 | 車両用の情報提示装置 |
JP5651424B2 (ja) * | 2010-10-14 | 2015-01-14 | 株式会社東芝 | 電力安定化システムおよび電力安定化方法 |
US8400112B2 (en) * | 2010-11-10 | 2013-03-19 | Ford Global Technologies, Llc | Method for managing power limits for a battery |
WO2012063606A1 (fr) * | 2010-11-10 | 2012-05-18 | 日産自動車株式会社 | Appareil de diagnostic pour batterie de véhicule |
US8698348B2 (en) | 2011-01-10 | 2014-04-15 | Ford Global Technologies, Llc | System and method for managing a power source in a vehicle |
US20120210150A1 (en) * | 2011-02-10 | 2012-08-16 | Alcatel-Lucent Usa Inc. | Method And Apparatus Of Smart Power Management For Mobile Communication Terminals |
US20130297244A1 (en) * | 2011-02-28 | 2013-11-07 | Mitsubishi Heavy Industries, Ltd. | Secondary battery lifetime prediction apparatus, battery system and secondary battery lifetime prediction method |
JP5747610B2 (ja) * | 2011-03-30 | 2015-07-15 | ソニー株式会社 | 充電制御装置、充電制御方法、プログラム及びシステム |
US8989939B2 (en) * | 2011-04-22 | 2015-03-24 | Toyota Jidosha Kabushiki Kaisha | Vehicle and vehicle control method |
WO2013129499A1 (fr) * | 2012-02-27 | 2013-09-06 | 京セラ株式会社 | Dispositif de commande, système de commande et procédé de commande de pile de stockage |
JP5783122B2 (ja) | 2012-04-11 | 2015-09-24 | トヨタ自動車株式会社 | 電池状態推定装置 |
JP5900160B2 (ja) * | 2012-05-28 | 2016-04-06 | ソニー株式会社 | 二次電池の相対残容量推定方法、相対残容量推定装置、電池パック、電子機器及び電動車両 |
JP2014017074A (ja) | 2012-07-06 | 2014-01-30 | Toyota Motor Corp | 二次電池における反応関与物質の析出及び溶解を制御する装置 |
GB2504689B (en) * | 2012-08-06 | 2015-07-29 | Jaguar Land Rover Ltd | Control of rechargeable electric battery system for a vehicle |
US9236748B2 (en) * | 2012-08-30 | 2016-01-12 | Texas Instruments Incorporated | Method and apparatus of charging the battery with globally minimized integral degradation possible for predefined charging duration |
US9081068B2 (en) | 2012-09-18 | 2015-07-14 | Apple Inc. | Method and apparatus for determining a capacity of a battery |
US9063018B1 (en) | 2012-10-22 | 2015-06-23 | Qnovo Inc. | Method and circuitry to determine temperature and/or state of health of a battery/cell |
US20140214346A1 (en) * | 2013-01-25 | 2014-07-31 | Cummins Inc. | Adaptive available power estimation for high voltage lithium ion battery |
JP2014147168A (ja) * | 2013-01-28 | 2014-08-14 | Toyota Industries Corp | 退避走行時車速制限方法及び車両 |
CA2899497C (fr) * | 2013-03-14 | 2021-03-16 | Allison Transmission, Inc. | Systeme et procede permettant d'optimaliser les contraintes d'utilisation d'une batterie de vehicule hybride |
DE102013005684A1 (de) | 2013-04-03 | 2014-10-09 | Daimler Ag | Elektrochemische Zelle, elektrochemischer Energiespeicher und Verfahren zu deren Herstellung |
US9461492B1 (en) | 2013-04-19 | 2016-10-04 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell using a charge-time parameter |
JP6225655B2 (ja) * | 2013-11-14 | 2017-11-08 | 富士通株式会社 | モデル予測制御装置、方法及びプログラム |
KR101530679B1 (ko) * | 2014-03-07 | 2015-06-22 | (주)누리텔레콤 | 배터리의 열화를 고려한 에너지 관리 장치 및 그 방법 |
US10574079B1 (en) | 2014-06-20 | 2020-02-25 | Qnovo Inc. | Wireless charging techniques and circuitry for a battery |
US20160001670A1 (en) * | 2014-07-01 | 2016-01-07 | Ford Global Technologies, Llc | System and method for battery management |
US20160006275A1 (en) * | 2014-07-01 | 2016-01-07 | Ford Global Technologies, Llc | System and method for battery open circuit voltage estimation |
US10594002B2 (en) * | 2015-03-31 | 2020-03-17 | Gs Yuasa International Ltd. | Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device |
WO2016198103A1 (fr) | 2015-06-10 | 2016-12-15 | Volvo Truck Corporation | Procédé et système pour optimiser la durée de vie d'un système de stockage d'énergie |
US10468730B2 (en) * | 2015-09-26 | 2019-11-05 | Intel Corporation | Battery reliability odometer |
KR20170060499A (ko) * | 2015-11-24 | 2017-06-01 | 현대자동차주식회사 | 배터리의 출력을 제어하는 방법 |
US10176100B1 (en) * | 2015-12-21 | 2019-01-08 | Cadence Design Systems, Inc. | Cache coherency process |
US9834112B2 (en) * | 2016-03-09 | 2017-12-05 | Ford Global Technologies, Llc | Battery state of charge estimation based on reduced order electrochemical models |
US10040366B2 (en) | 2016-03-10 | 2018-08-07 | Ford Global Technologies, Llc | Battery terminal voltage prediction |
US10023064B2 (en) | 2016-03-10 | 2018-07-17 | Ford Global Technologies, Llc | Power capability estimation for vehicle battery systems |
EP3439130A4 (fr) * | 2016-03-29 | 2019-10-16 | Kyocera Corporation | Appareil de gestion d'énergie, système de gestion d'énergie et procédé de gestion d'énergie |
US10014706B2 (en) * | 2016-05-23 | 2018-07-03 | Nxp B.V. | Model-based fast-charging method based on lithium surface concentration |
JP7096008B2 (ja) * | 2018-02-19 | 2022-07-05 | 旭化成株式会社 | 非水系リチウム型蓄電素子の容量劣化率推定方法および容量劣化率推定装置、システム |
US10809305B2 (en) * | 2018-02-23 | 2020-10-20 | Ford Global Technologies, Llc | System and method for detecting and responding to a battery over-discharge condition within a vehicle |
US11126232B2 (en) | 2018-11-28 | 2021-09-21 | Intel Corporation | Battery heat balancing during peak power mode |
US12079051B2 (en) | 2018-11-28 | 2024-09-03 | Intel Corporation | Battery heat balancing apparatus and method during peak mode |
JP7067490B2 (ja) | 2019-01-07 | 2022-05-16 | トヨタ自動車株式会社 | 車両用電池制御装置 |
JP7251464B2 (ja) * | 2019-12-19 | 2023-04-04 | トヨタ自動車株式会社 | 車両、車両制御システム |
CN112677769B (zh) * | 2020-12-28 | 2022-10-11 | 重庆大学 | 基于多因素融合的电池系统功率限值估算方法 |
US12017633B2 (en) * | 2021-03-24 | 2024-06-25 | Deere & Company | Intelligent power allocation systems onboard hybrid combines and associated methods |
AT525061B1 (de) * | 2021-08-10 | 2022-12-15 | Avl List Gmbh | Kontrollverfahren für eine Kontrolle einer Abgabeleistung einer Batterievorrichtung und einer Betriebsleistung eines Brennstoffzellensystems |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11136808A (ja) | 1997-10-31 | 1999-05-21 | Nissan Motor Co Ltd | ハイブリッド車両の発電制御装置 |
JP2002243813A (ja) | 2001-02-16 | 2002-08-28 | Nissan Motor Co Ltd | 二次電池の電池容量劣化演算装置 |
JP2003017139A (ja) | 2001-04-03 | 2003-01-17 | Fuji Electric Co Ltd | 電池の残量計測装置 |
JP2003297435A (ja) | 2002-03-29 | 2003-10-17 | Honda Motor Co Ltd | 蓄電池の寿命予測装置および蓄電池の制御装置 |
JP2003346919A (ja) | 2002-05-24 | 2003-12-05 | Nissan Motor Co Ltd | 蓄電システム |
JP2004007954A (ja) | 1995-01-30 | 2004-01-08 | Seiko Epson Corp | 電気自動車の蓄電池容量不足警告装置 |
US20050083017A1 (en) * | 2003-10-20 | 2005-04-21 | Toyota Jidosha Kabushiki Kaisha | Control apparatus of electricity accumulation mechanism |
JP2005137091A (ja) | 2003-10-29 | 2005-05-26 | Toyota Motor Corp | 二次電池の制御装置および制御方法 |
JP2005195388A (ja) | 2004-01-05 | 2005-07-21 | Fuji Electric Device Technology Co Ltd | 電池の残量計測装置 |
JP2006042497A (ja) | 2004-07-27 | 2006-02-09 | Toyota Motor Corp | 動力出力装置 |
US20070013347A1 (en) * | 2005-07-12 | 2007-01-18 | Nissan Motor Co., Ltd. | Battery pack controller |
US7514902B2 (en) * | 2003-11-14 | 2009-04-07 | Sony Corporation | Battery pack and remaining battery power calculation method |
US20100036628A1 (en) * | 2008-08-07 | 2010-02-11 | Research In Motion Limited | Systems and Methods for Monitoring Deterioration of a Rechargeable Battery |
US20100033132A1 (en) * | 2006-08-31 | 2010-02-11 | Yuji Nishi | Control system of secondary battery and hybrid vehicle equipped with the same |
US7683579B2 (en) * | 2005-06-14 | 2010-03-23 | Lg Chem, Ltd. | Method and apparatus of controlling for charge/discharge power of battery |
US20100241376A1 (en) * | 2007-11-13 | 2010-09-23 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for secondary battery |
US7880597B2 (en) * | 2006-03-31 | 2011-02-01 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle battery information display device |
US20110068719A1 (en) * | 2009-09-18 | 2011-03-24 | Mitsubishi Heavy Industries, Ltd. | Battery system |
US8180508B2 (en) * | 2006-09-04 | 2012-05-15 | Toyota Jidosha Kabushiki Kaisha | Electricity storage control apparatus and method of controlling electricity storage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07128416A (ja) * | 1993-11-04 | 1995-05-19 | Mitsubishi Motors Corp | 電気自動車用バッテリ残存容量計 |
EP1040546A4 (fr) * | 1997-11-20 | 2000-11-22 | Encore 2000 Limited | Systeme de controle de batteries |
JP3750567B2 (ja) * | 2001-06-27 | 2006-03-01 | 日産自動車株式会社 | 二次電池の出力劣化演算装置および方法 |
JP3613216B2 (ja) * | 2001-09-18 | 2005-01-26 | 日産自動車株式会社 | ハイブリッド車両の制御装置 |
US6534954B1 (en) * | 2002-01-10 | 2003-03-18 | Compact Power Inc. | Method and apparatus for a battery state of charge estimator |
JP4032934B2 (ja) * | 2002-11-15 | 2008-01-16 | ソニー株式会社 | 電池容量算出方法、電池容量算出装置、及び電池容量算出プログラム |
US7321220B2 (en) * | 2003-11-20 | 2008-01-22 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
-
2006
- 2006-08-01 JP JP2006209751A patent/JP4265629B2/ja active Active
-
2007
- 2007-07-27 EP EP07791894.4A patent/EP2048763A4/fr not_active Withdrawn
- 2007-07-27 US US12/375,587 patent/US8336651B2/en active Active
- 2007-07-27 WO PCT/JP2007/065220 patent/WO2008016129A1/fr active Search and Examination
- 2007-07-27 CN CN2007800286632A patent/CN101496255B/zh active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004007954A (ja) | 1995-01-30 | 2004-01-08 | Seiko Epson Corp | 電気自動車の蓄電池容量不足警告装置 |
JPH11136808A (ja) | 1997-10-31 | 1999-05-21 | Nissan Motor Co Ltd | ハイブリッド車両の発電制御装置 |
JP2002243813A (ja) | 2001-02-16 | 2002-08-28 | Nissan Motor Co Ltd | 二次電池の電池容量劣化演算装置 |
JP2003017139A (ja) | 2001-04-03 | 2003-01-17 | Fuji Electric Co Ltd | 電池の残量計測装置 |
JP2003297435A (ja) | 2002-03-29 | 2003-10-17 | Honda Motor Co Ltd | 蓄電池の寿命予測装置および蓄電池の制御装置 |
JP2003346919A (ja) | 2002-05-24 | 2003-12-05 | Nissan Motor Co Ltd | 蓄電システム |
US20050083017A1 (en) * | 2003-10-20 | 2005-04-21 | Toyota Jidosha Kabushiki Kaisha | Control apparatus of electricity accumulation mechanism |
JP2005137091A (ja) | 2003-10-29 | 2005-05-26 | Toyota Motor Corp | 二次電池の制御装置および制御方法 |
US7514902B2 (en) * | 2003-11-14 | 2009-04-07 | Sony Corporation | Battery pack and remaining battery power calculation method |
JP2005195388A (ja) | 2004-01-05 | 2005-07-21 | Fuji Electric Device Technology Co Ltd | 電池の残量計測装置 |
JP2006042497A (ja) | 2004-07-27 | 2006-02-09 | Toyota Motor Corp | 動力出力装置 |
US7683579B2 (en) * | 2005-06-14 | 2010-03-23 | Lg Chem, Ltd. | Method and apparatus of controlling for charge/discharge power of battery |
US20070013347A1 (en) * | 2005-07-12 | 2007-01-18 | Nissan Motor Co., Ltd. | Battery pack controller |
US7880597B2 (en) * | 2006-03-31 | 2011-02-01 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle battery information display device |
US20100033132A1 (en) * | 2006-08-31 | 2010-02-11 | Yuji Nishi | Control system of secondary battery and hybrid vehicle equipped with the same |
US8018203B2 (en) * | 2006-08-31 | 2011-09-13 | Toyota Jidosha Kabushiki Kaisha | Control system of secondary battery and hybrid vehicle equipped with the same |
US8180508B2 (en) * | 2006-09-04 | 2012-05-15 | Toyota Jidosha Kabushiki Kaisha | Electricity storage control apparatus and method of controlling electricity storage |
US20100241376A1 (en) * | 2007-11-13 | 2010-09-23 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for secondary battery |
US20100036628A1 (en) * | 2008-08-07 | 2010-02-11 | Research In Motion Limited | Systems and Methods for Monitoring Deterioration of a Rechargeable Battery |
US20110068719A1 (en) * | 2009-09-18 | 2011-03-24 | Mitsubishi Heavy Industries, Ltd. | Battery system |
Non-Patent Citations (1)
Title |
---|
W.B. Gu and C.Y. Wang: Thermal-Electrochemical Coupled Modeling of a Lithium-ion Cell, 2000, vol. 99-25 (1), Gate Center for Advanced Energy Storage, Department of Mechanical Engineering & Pennsylvania Transportation Institute, The Pennsylvania State University, University Park, PA 16802, USA. |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110174564A1 (en) * | 2010-01-20 | 2011-07-21 | Soo Shin Nam | Electric power generation system for electric vehicles |
US20150022157A1 (en) * | 2012-01-13 | 2015-01-22 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for secondary battery |
US9728992B2 (en) * | 2012-01-13 | 2017-08-08 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for secondary battery |
US9939494B2 (en) * | 2012-05-15 | 2018-04-10 | Toyota Jidosha Kabushiki Kaisha | Battery system and method of determining polarization of secondary battery |
US20150134283A1 (en) * | 2012-05-15 | 2015-05-14 | Toyota Jidosha Kabushiki Kaisha | Battery system and method of determining polarization of secondary battery |
US20140084867A1 (en) * | 2012-09-24 | 2014-03-27 | Kabushiki Kaisha Toshiba | Secondary battery device and battery capacity estimation system |
US9707849B2 (en) | 2013-06-07 | 2017-07-18 | Mitsubishi Electric Corporation | Charging and discharging control apparatus and electric motor vehicle |
US20150232083A1 (en) * | 2014-02-20 | 2015-08-20 | Ford Global Technologies, Llc | Active Battery Parameter Identification Using Conditional Extended Kalman Filter |
US9272634B2 (en) | 2014-02-20 | 2016-03-01 | Ford Global Technologies, Llc | Active battery system estimation request generation |
US9381825B2 (en) | 2014-02-20 | 2016-07-05 | Ford Global Technologies, Llc | State of charge quality based cell balancing control |
US9539912B2 (en) | 2014-02-20 | 2017-01-10 | Ford Global Technologies, Llc | Battery capacity estimation using state of charge initialization-on-the-fly concept |
US9718455B2 (en) * | 2014-02-20 | 2017-08-01 | Ford Global Technologies, Llc | Active battery parameter identification using conditional extended kalman filter |
US9266443B2 (en) | 2014-03-31 | 2016-02-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for adaptive battery charge and discharge rates and limits on known routes |
US9695760B2 (en) | 2014-03-31 | 2017-07-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for improving energy efficiency of a vehicle based on known route segments |
US9290108B2 (en) | 2014-03-31 | 2016-03-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for adaptive battery temperature control of a vehicle over a known route |
US9008858B1 (en) | 2014-03-31 | 2015-04-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for providing adaptive vehicle settings based on a known route |
US20180358663A1 (en) * | 2015-09-01 | 2018-12-13 | Hitachi Automotive Systems, Ltd. | Battery management device, battery system, and hybrid vehicle control system |
US10818983B2 (en) * | 2015-09-01 | 2020-10-27 | Vehicle Energy Japan, Inc. | Battery management device and system, and hybrid vehicle control system for utilizing battery performance while maintaining battery life |
US10644359B2 (en) | 2015-09-15 | 2020-05-05 | Kabushiki Kaisha Toshiba | Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system |
US10935607B2 (en) * | 2018-04-24 | 2021-03-02 | Toyota Jidosha Kabushiki Kaisha | Control device for secondary battery, control method of secondary battery, battery system, and motor-driven vehicle |
US11034243B2 (en) * | 2018-10-22 | 2021-06-15 | Chongqing Jinkang New Energy Vehicle Co., Ltd. | Vehicle battery controller based on a reduced order model |
US20210263104A1 (en) * | 2020-02-24 | 2021-08-26 | Ford Global Technologies, Llc | Vehicle traction battery over-discharge diagnosing method and assembly |
US11262408B2 (en) * | 2020-02-24 | 2022-03-01 | Ford Global Technologies, Llc | Vehicle traction battery over-discharge diagnosing method and assembly |
WO2023241895A1 (fr) * | 2022-06-15 | 2023-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Procédé de fonctionnement d'une batterie de traction pour un véhicule automobile, dispositif informatique électronique et véhicule automobile équipé d'une batterie de traction |
Also Published As
Publication number | Publication date |
---|---|
EP2048763A4 (fr) | 2018-02-21 |
JP4265629B2 (ja) | 2009-05-20 |
EP2048763A1 (fr) | 2009-04-15 |
CN101496255A (zh) | 2009-07-29 |
JP2008042960A (ja) | 2008-02-21 |
CN101496255B (zh) | 2012-05-30 |
WO2008016129A1 (fr) | 2008-02-07 |
US20100000809A1 (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8336651B2 (en) | Charge/discharge control device for secondary battery and hybrid vehicle using the same | |
US8018203B2 (en) | Control system of secondary battery and hybrid vehicle equipped with the same | |
US20230191943A1 (en) | Battery module lithium plating reduction | |
US20230040026A1 (en) | State of charge dependent plating estimation and prevention | |
JP4874633B2 (ja) | 二次電池の充放電制御装置 | |
US6356083B1 (en) | State of charge algorithm for a battery | |
EP3245096B1 (fr) | Procédé et agencement permettant de déterminer une valeur de l'état énergétique d'une batterie dans un véhicule | |
US8886479B2 (en) | Charge state detecting device for battery pack and method for detecting charge state | |
US7646166B2 (en) | Method and apparatus for modeling diffusion in an electrochemical system | |
US9475480B2 (en) | Battery charge/discharge control device and hybrid vehicle using the same | |
US20090276172A1 (en) | Internal state estimating device for secondary battery and method for estimating internal state of secondary battery | |
RU2524530C1 (ru) | Система управления зарядной емкостью | |
US9197078B2 (en) | Battery parameter estimation | |
US10040366B2 (en) | Battery terminal voltage prediction | |
US20160006275A1 (en) | System and method for battery open circuit voltage estimation | |
CN106953131A (zh) | 用于电动车辆的电池系统 | |
Masjosthusmann et al. | A vehicle energy management system for a battery electric vehicle | |
US9067504B1 (en) | Perturbative injection for battery parameter identification | |
JP2005261034A (ja) | 蓄電機構の制御装置 | |
JP5772209B2 (ja) | 蓄電装置の充放電制御装置およびそれを搭載した電動車両 | |
Liang et al. | PHEV hybrid vehicle system efficiency and battery aging optimization using A-ECMS based algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHI, YUJI;YAMAUCHI, TOMOKAZU;REEL/FRAME:022173/0822 Effective date: 20081224 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |