US6076344A - Process for producing a steel cord - Google Patents
Process for producing a steel cord Download PDFInfo
- Publication number
- US6076344A US6076344A US09/043,500 US4350098A US6076344A US 6076344 A US6076344 A US 6076344A US 4350098 A US4350098 A US 4350098A US 6076344 A US6076344 A US 6076344A
- Authority
- US
- United States
- Prior art keywords
- filaments
- core
- steel cord
- wire
- core filaments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 92
- 239000010959 steel Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 40
- 241001589086 Bellapiscis medius Species 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 abstract description 4
- 230000005012 migration Effects 0.000 abstract description 2
- 238000013508 migration Methods 0.000 abstract description 2
- 238000007493 shaping process Methods 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0646—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
- D07B1/0653—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0646—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B3/00—General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B7/00—Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
- D07B7/02—Machine details; Auxiliary devices
- D07B7/025—Preforming the wires or strands prior to closing
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/2007—Wires or filaments characterised by their longitudinal shape
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/2007—Wires or filaments characterised by their longitudinal shape
- D07B2201/2008—Wires or filaments characterised by their longitudinal shape wavy or undulated
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2016—Strands characterised by their cross-sectional shape
- D07B2201/2018—Strands characterised by their cross-sectional shape oval
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2019—Strands pressed to shape
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2022—Strands coreless
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2023—Strands with core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2024—Strands twisted
- D07B2201/2029—Open winding
- D07B2201/2031—Different twist pitch
- D07B2201/2032—Different twist pitch compared with the core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2035—Strands false twisted
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2038—Strands characterised by the number of wires or filaments
- D07B2201/2039—Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2095—Auxiliary components, e.g. electric conductors or light guides
- D07B2201/2097—Binding wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2207/00—Rope or cable making machines
- D07B2207/40—Machine components
- D07B2207/4004—Unwinding devices
- D07B2207/4009—Unwinding devices over the head
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2207/00—Rope or cable making machines
- D07B2207/40—Machine components
- D07B2207/4004—Unwinding devices
- D07B2207/4013—Unwinding devices comprising flyer
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2046—Tyre cords
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S57/00—Textiles: spinning, twisting, and twining
- Y10S57/902—Reinforcing or tyre cords
Definitions
- the invention relates to a process for producing a steel cord as well as to a steel cord produced by this process.
- Steel cords as inserts in vehicular pneumatic tires for improving ride, dynamics, stability and extending useful life are known and are typically made up of strands, a strand being a bunch of at least two, as a rule, however, typically more, individual wires interlaid and/or intertwined, produced by means of a stranding machine in a highly complicated procedure.
- steel cords are known, the core of which consists of a central, compartmented bunch of wires which are no longer produced in a separate stranding process but can be formed directly in stranding.
- EP 0 492 682 A1 is a bunch of wires for a tire cord comprising two to seven individual filaments having substantially a circular cross-section.
- the individual filaments are oriented juxtaposed in parallel in a single plane and are sheathed by one or more filaments in a single sheathing direction.
- One or more of the core filaments arranged in one plane or the plane of the core filaments as a whole features residual torsional stresses.
- Said elastic residual torsional stresses are selected such that the bunch of wires remains substantially flat full-length as long as it is not subjected to external forces.
- the magnitude and direction of the residual torsional stresses are selected so that the elastic residual torsional stresses of the core filaments are cancelled by the restoring forces of the sheathing filaments.
- a reinforcement cord for elastomer products consisting of spirally shaped wires, one or more of the individual steel sheathing wires being wound about a core which is in turn made up of two or more individual steel wires which are not intertwined.
- the core wires have the same spiral-shaped configuration and are arranged adjacent and opposite to each other so that each of the core wires is linearly in contact with at least one other core wire.
- the spiral of the sheathing wires features the same hand and pitch as that of the core wires.
- the known reinforcement cord is produced by combining the wires into a bunch of core wires.
- the bunch is guided over a first downsweep edge and each of one or more wires is guided over one or several downsweep edges and twisted around the bunch.
- the radius of curvature of the downsweep edges dictates the radius of curvature of the wires.
- the individual filaments In twisting and preshaping the individual filaments care must be taken that their fatigue strength is not impaired by the treatment. More particularly, when shaped via gearwheels and the like the high-strength individual filaments receive localized points of compression as a result of which they are unsuitable for cyclic stressing since such localized deformations are the starting points for the occurrence of fatigue fractures.
- the present invention is thus based on the object of providing a process for producing a steel cord including a bunch of wires as the core which can be simply implemented technically and resulting in a steel cord of improved quality as regards strength, fatigue properties and working ability. More particularly the process in accordance with the invention is intended to permit achieving smaller radii of curvature than those of known processes.
- the invention is based on the object of proposing a process for producing a steel cord in which no impairment of the wire coating or localized pressure points occur.
- the present invention includes a process of producing a steel cord comprising the following steps:
- the core filaments are intertwined by means of a false twister to obtain a spiral plastic deformation. Downstream of the false twister the spirally preshaped individual filaments located juxtaposed in parallel are wrapped by at least one sheathing wire.
- the substantial advantage of the production process in accordance with the invention lies in the gentle plastic deformation of the core filaments by means of a false twister, resulting neither in impairment of the coating nor in localized pressure points. Accordingly, the steel cord produced by the process in accordance with the invention features good bonding to the tire rubber and, in addition, high fatigue strength.
- step B of the process more particularly described above, two, three or four core filaments are mutually intertwined and that two or more strands are combined with two, three or four intertwined core filaments into a core in an additional step C.
- the process as proposed in accordance with the invention ensures a simple and cost-effective means of producing a steel cord in accordance with the invention since no additional bunching and/or stranding procedures are needed outside of the production line, i.e. the complete steel cord being instead produced in accordance with the invention so-to-speak in one piece in the production line.
- the nature in which the steel cord is preshaped also prevents the wire filaments from being damaged and/or locally deformed as may be the case, for example, in preshaping by means of gearwheels. Accordingly, the nature of production in accordance with the invention is without detriment to the fatigue properties of the steel cord. In addition to this steel cords in accordance with the invention are achievable with smaller radii of curvature.
- the steel cord in accordance with the invention is thus producible by a single type of machine, merely minor modifications being necessary to the machine in producing various types of cord.
- the process in accordance with the invention is also suitable for producing steel cords having cores of spirally preshaped core filaments which in addition feature residual torsional stresses which are cancelled outwardly by suitably selecting the sheathing with a sheathing wire.
- a steel cord having a bunch of wires which comprises at least three wire filaments, at least two filaments being spirally shaped to form a core and oriented juxtaposed in parallel and at least one wire filament surrounding the two core filaments spirally as the sheathing wire.
- a bunch of wires in accordance with the invention for a steel cord thus comprises three filaments, two of which are spirally shaped and surrounded likewise spirally by the third filament.
- the two spiral shaped core filaments are surrounded by a likewise spiral shaped sheathing wire.
- the individual filaments are suitably intertwined by means of a false twister with the desired number of revolutions to then be returned together downstream of the false twister in parallel to each other but with a spiral preshaping.
- a further filament having the same pitch and hand as the spiral preshape of the individual filaments is then wrapped around this bunch of parallel individual filaments. Due to this configuration of the wire bunch in accordance with the invention the individual filaments are neither damaged nor locally deformed so that a steel cord produced with such a bunch of wires features very good fatigue properties for a tire, especially in the case of compressive strain.
- one or more plies of sheathing wires are provided surrounding the at least two core filaments, as a result of which a bunch of wires for a tire cord is provided in which the wires of the core bunch do not migrate from the cord composite even when put to use in the belt of the tire.
- the bunch of wires in accordance with the invention can be produced highly cost-effectively since the core bunch necessitates no separate operation, it instead being produced in line with the production as a whole.
- a steel cord having a bunch of wires in which at least two wire filaments are oriented bunched juxtaposed in parallel as core filaments forming a core and featuring residual torsional stresses which in conjunction with the restoring forces of at least one the sheathing wires surrounding the core filaments are cancelled out.
- the bunch of wires in accordance with the invention can be simply produced since the wire filaments of the core are not located parallel to each other in a single plane, which involves a certain complication technically in production, they instead being combined in the form of a bunch.
- the steel cord is compressed such that if features a flattened, substantially oval shape.
- This oval shape in accordance with the invention has considerable advantages for application in tires, more particularly due to the stiffness of the steel cord differing radially and laterally.
- the flattened, substantially oval shape can be achieved, for example, by squeezing the steel cord between a pair of rolls.
- FIG. 1 is a schematic illustration of the process in accordance with the invention for producing a steel cord in accordance with the invention as shown in FIG. 4.
- FIG. 2 is a schematic illustration of the process in accordance with the invention for producing a steel cord in accordance with the invention as shown in FIG. 3.
- FIG. 3 is a schematic perspective illustration of a steel cord in accordance with the invention comprising two spirally preshaped core filaments located juxtaposed in parallel, surrounded spirally by a sheathing wire.
- FIG. 4 is an illustration of a steel cord as shown in FIG. 3 in accordance with the invention but comprising six spirally preshaped core filaments located juxtaposed in parallel.
- FIG. 5 is a schematic perspective illustration of a steel cord in accordance with the invention comprising three spirally preshaped core filaments as the core located juxtaposed in parallel, surrounded by a ply of six sheathing wires
- FIG. 6 is an illustration of a further steel cord in accordance with the invention comprising a core of twelve spirally preshaped wire filaments surrounded by a ply of sheathing wire s which in turn are surrounded spirally by a spiral wire.
- FIGS. 3 to 6 illustrate various embodiments of steel cords in accordance with the invention each having a differing number of wire filaments forming the core of the steel cord. Illustrated in FIG. 3 is a first embodiment of a steel cord in accordance with the invention incorporating a bunch of wires with two core filaments 10 as the core 60 which are spirally shaped and oriented juxtaposed in parallel. The two core filaments 10 are surrounded by a further filament as the sheathing wire 20, this sheathing wire 20 being located with the same pitch and hand as the spiral shape of the core filaments 10.
- the core filaments 10 are shaped left-handedly and the sheathing wire 20 is likewise wound left-handedly about the two core filaments 10.
- the pitch is typically approximately 14 mm
- the diameter of the core filaments 10 and of the sheathing wire 20 is approximately 0.28 mm.
- FIG. 4 there is illustrated a different embodiment of a steel cord in accordance with the invention as shown in FIG. 3 in which the core 60 is formed from six spirally shaped core filaments 10 located juxtaposed in parallel, the spiral being shaped left-handedly and surrounded by a left-handed seventh filament as the sheathing wire 20 .
- the pitch may be, for example, 18 mm and the diameter of the filaments used may be 0.35 mm.
- steel cords are also conceivable having wire bunches comprising an even greater number of wire filaments.
- the diameter of the filaments is selected smaller.
- the pitch can be defined and the diameter of the sheathing wire can be selected the same as the diameter of the wire filaments of the core, but may also differ from their diameter.
- the pitch is e.g. advantageously 12.5 mm, the diameter of the wire filaments 0.22 mm and the diameter of the sheathing wire surrounding the core wire bunch 0.15 mm.
- FIG. 5 there is illustrated schematically in perspective a further example embodiment of a steel cord in accordance with the invention.
- the core 60 of the steel cord is formed by three spirally preshaped core filaments 10 located juxtaposed in parallel. These are surrounded by a ply of six sheathing wires 20 located closely juxtaposed having the same hand as the core filaments 10.
- the core filaments 10 are depicted longer than the sheathing wires 20.
- the hand of the core filaments 10 may also be opposite to the hand of the sheathing wires 20, however.
- Such a close sheathing of the core 60 with a ply of sheathing wires 20 has the advantage that the core filaments 10 of the core bunch cannot migrate from the core composite even when put to use as the steel belt.
- producing such a steel cord is highly cost-effective since the core bunch 60, as will be described in the following, necessitates no separate operation, it instead being able to be produced in line with the steel cord production.
- the core filaments 10 feature to advantage a diameter of 0.2 mm, the sheathing wires 20 a diameter of 0.35 mm.
- FIG. 6 there is illustrated an example embodiment of a steel cord in accordance with the invention similar to that as shown in FIG. 5, it incorporating a core 60 of twelve left-handed spirally preshaped core filaments 10 which in turn are surrounded by a left-handed ply of fifteen sheathing wires 20.
- all wires have to advantage the same diameter of 0.175 mm.
- the steel cord as shown in FIG. 6 is additionally wrapped right-handedly by a spiral wire 30.
- the diameter of the spiral wire 30 is, for example, 0.15 mm.
- the hand of the core filaments 10 may be opposite to the hand of the sheathing wires, of course.
- FIG. 1 there is illustrated schematically a process in accordance with the invention for producing a steel cord in accordance with the invention as shown in FIG. 4.
- the core filaments 10 are uncoiled from six reels 11 in a first step A in the operation.
- step B three each of the six wire filaments 10 are combined into a strand 50 by means of deflection sheaves 15 to be then spirally preshaped in a third step in the operation C by two false twisters 40 each right-handedly with a set pitch (in this case 18 mm)
- step D after having left the false twisters 40 the two bunches of three wire filaments each are combined into a bunch of wires comprising six wire filaments, forming the core 60 of the steel cord to be produced.
- the core 60 of six core filaments 10, formed on a right-handed spiral, is surrounded in the same operation with a sheathing wire 20 which is uncoiled in step E from a reel 21 and is wound around the core 60 right-handedly with a prescribed pitch (for example 18 mm) in step F of the operation.
- a steel cord in accordance with the invention as depicted in FIG. 4, which incorporates left-handed core filaments 10 and sheathing wires 20 as shown in FIG. 4, likewise as the steel cord shown in FIG. 3.
- the wire filaments used in this production process are advantageously made of rolled wire having a steel quality of 0.6 to 0.9% C, 0.4 to 0.8% Mn and 0.1 to 0.3% Si as well as max. 0.03% S, P and further accompanying elements as usual.
- the rolled wire is rolled in several stages from 5.5 mm to thinner diameters, drawn, heat-treated and--prior to the subsequent last stage, mostly a wet drawing stage--brassed.
- the brass is exploited as a "lubricant " in drawing, it serving, however, primarily to enhance the bond of the steel cord to the rubber blend of the tire.
- Producing the steel cord is done by twisting and stranding the wire filaments in suitable number and shape, the choice of machine parameters needing to be found from a suitable combination of reel size and machine speed since a high speed calls for small working reels and correspondingly a low speed calls for large working reels.
- the process as illustrated in accordance with the invention for producing a steel cord is suitable for producing steel cords incorporating core bunches of two to thirty wire filaments, although cord designs of the same kind incorporating more than thirty wire filaments are also conceivable.
- FIG. 2 there is illustrated a process for producing a steel cord in accordance with the invention as shown in FIG. 3.
- a first step A in the operation two wire filaments 10 are uncoiled from two reels 11 and combined in a second step B.
- the two wire filaments 10 are shaped into a right-handed spiral in a further step C in the operation in a false twister 40 right-handedly at a set pitch (for example 14 mm).
- These two spirally intertwined wire filaments 10 form the core 60 of the steel cord to be produced.
- a third wire filament is uncoiled from a reel 21 which as the sheathing wire 20 is wound around the core 60 right-handedly with pitch of e.g. 14 mm in a last step F in the operation.
- the steel cords in accordance with the invention as described above are pressed into an oval shape, this being particularly suitable in the case of steel cords as shown in FIGS. 5 and 6.
- the oval shape of the steel cord may be obtained, for example, by squeezing the cord through a pair of rolls. Due to the difference in stiffness radially and laterally the oval shape of the steel cord offers considerable advantages when put to use in a tire.
- the steel cord as proposed in accordance with the invention is simple and cost-effective in production and features excellent properties especially as regards compressive stressing. It is easily rubberized since the residual torsional stresses are cancelled outwardly and it thus remains flat during rubberizing. Migration of the employed wire filaments from the core composite when used as belting is also very slight.
- a plurality of steel cord designs can be produced, covering a broad range of applications, starting from steel cords for car tires via van tires up to tires for heavy trucks and buses.
Landscapes
- Ropes Or Cables (AREA)
- Tires In General (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19535598A DE19535598A1 (de) | 1995-09-25 | 1995-09-25 | Verfahren zur Herstellung eines Stahlcords |
| DE19535598 | 1995-09-25 | ||
| PCT/EP1996/003884 WO1997012091A1 (de) | 1995-09-25 | 1996-09-04 | Verfahren zur herstellung eines stahlcords |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6076344A true US6076344A (en) | 2000-06-20 |
Family
ID=7773114
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/043,500 Expired - Lifetime US6076344A (en) | 1995-09-25 | 1996-09-04 | Process for producing a steel cord |
Country Status (15)
| Country | Link |
|---|---|
| US (1) | US6076344A (cs) |
| EP (1) | EP0852634B1 (cs) |
| JP (1) | JPH11512787A (cs) |
| KR (1) | KR100434750B1 (cs) |
| CN (1) | CN1079864C (cs) |
| AT (1) | ATE187512T1 (cs) |
| BR (1) | BR9610722A (cs) |
| CA (1) | CA2232549A1 (cs) |
| CZ (1) | CZ294724B6 (cs) |
| DE (2) | DE19535598A1 (cs) |
| ES (1) | ES2142610T3 (cs) |
| RU (1) | RU2151227C1 (cs) |
| SK (1) | SK284783B6 (cs) |
| TR (1) | TR199800542T2 (cs) |
| WO (1) | WO1997012091A1 (cs) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040134181A1 (en) * | 2001-04-26 | 2004-07-15 | Hans Cauwels | Steel cord for reinforcing rubber articles |
| US20050034443A1 (en) * | 2003-08-14 | 2005-02-17 | Cook Thomas Christopher | Optical fibers twinning apparatus and process |
| US7565084B1 (en) | 2004-09-15 | 2009-07-21 | Wach Michael L | Robustly stabilizing laser systems |
| US7901870B1 (en) | 2004-05-12 | 2011-03-08 | Cirrex Systems Llc | Adjusting optical properties of optical thin films |
| US20140027211A1 (en) * | 2011-04-14 | 2014-01-30 | Otis Elevator Company | Coated Rope or Belt for Elevator Systems |
| CN107044060A (zh) * | 2017-05-31 | 2017-08-15 | 东华大学 | 连续态超细金属长丝的加捻合股方法与设备 |
| US20170321376A1 (en) * | 2014-11-25 | 2017-11-09 | Compagnie Generale Des Etablissements Michelin | Splitting method |
| US20170321352A1 (en) * | 2014-11-25 | 2017-11-09 | Compagnie Generale Des Etablissements Michelin | Splitting facility |
| US20220402302A1 (en) * | 2019-07-25 | 2022-12-22 | Compagnie Generale Des Etablissements Michelin | Method for separating and reassembling a dual layer assembly |
| US11598027B2 (en) * | 2019-12-18 | 2023-03-07 | Patrick Yarn Mills, Inc. | Methods and systems for forming a composite yarn |
| US20240075772A1 (en) * | 2020-12-21 | 2024-03-07 | Nv Bekaert Sa | A steel cord for rubber reinforcement |
| US12036830B2 (en) | 2019-07-25 | 2024-07-16 | Compagnie Generale Des Etablissements Michelin | Highly compressible open reinforcing cord |
| US12281438B2 (en) | 2019-07-25 | 2025-04-22 | Compagnie Generale Des Etablissements Michelin | Method for separation and reassembly |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19912192C2 (de) * | 1999-03-18 | 2001-03-08 | Drahtcord Saar Gmbh & Co Kg | Falschdraller und Verfahren insbesondere zum Herstellen von spiralförmigen Filamenten |
| EP1167620A1 (en) * | 2000-06-19 | 2002-01-02 | DRAHTCORD SAAR GMBH & Co.KG | Steel cord |
| JP2002294573A (ja) * | 2001-03-30 | 2002-10-09 | Tokusen Kogyo Co Ltd | タイヤ補強用スチールコード及びタイヤ |
| CN100443661C (zh) * | 2002-10-11 | 2008-12-17 | 米其林技术公司 | 用于加强重型车辆轮胎的缆线 |
| JP5319219B2 (ja) * | 2008-09-16 | 2013-10-16 | 株式会社ブリヂストン | コード製造装置及びコード製造方法 |
| JP5825234B2 (ja) * | 2012-09-11 | 2015-12-02 | 横浜ゴム株式会社 | ゴム補強用スチールコードおよびコンベヤベルト |
| CN104631167B (zh) * | 2015-02-11 | 2017-03-01 | 辽宁通达建材实业有限公司 | 低消耗预应力钢绞线生产工艺 |
| CN109338766A (zh) * | 2018-11-10 | 2019-02-15 | 江苏兴达钢帘线股份有限公司 | 一种1×n×d系列子午线轮胎钢帘线的生产方法 |
| CN110373922B (zh) * | 2019-05-22 | 2022-07-29 | 东台磊达钢帘线有限公司 | 一种钢帘线的生产设备及生产方法 |
| CN113403870A (zh) * | 2021-06-25 | 2021-09-17 | 山东大业股份有限公司 | 一种超高强度高渗胶性能钢帘线及捻制方法及捻制设备 |
| CN114606787A (zh) * | 2022-03-11 | 2022-06-10 | 浙江家蕊洁具股份有限公司 | 一种手提袋三股绳子用高效自动加工设备 |
| CN118516872A (zh) * | 2024-05-10 | 2024-08-20 | 江苏兴达钢帘线股份有限公司 | 一种钢帘线及制造方法 |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3977174A (en) * | 1974-02-12 | 1976-08-31 | Compagnie Generale Des Etablissements Michelin, Raison Sociale Michelin & Cie | Cable for reinforcing objects formed of elastic or easily deformable materials |
| DE2619086A1 (de) * | 1975-05-12 | 1976-11-25 | Akzo Gmbh | Verstaerkungsseil fuer elastomere erzeugnisse, verfahren und vorrichtung zur herstellung |
| US4158946A (en) * | 1977-07-07 | 1979-06-26 | N. V. Bekaert S.A. | Metal cord |
| US4545190A (en) * | 1983-09-26 | 1985-10-08 | The Goodyear Tire & Rubber Company | Metallic cable and method and apparatus for making same |
| US4651513A (en) * | 1984-09-24 | 1987-03-24 | N.V. Bekaert S.A. | Layered steel cord |
| US4724663A (en) * | 1984-07-09 | 1988-02-16 | N.V. Bekaert S.A. | Steel cord twisting structure |
| DE3635298A1 (de) * | 1986-10-16 | 1988-04-21 | Akzo Gmbh | Luftreifen mit flachcorden bzw. flachcord |
| EP0363893A2 (en) * | 1988-10-11 | 1990-04-18 | Tokusen Kogyo Company Limited | Steel cord and tire reinforced with the same |
| US4938015A (en) * | 1988-11-11 | 1990-07-03 | Bridgestone Bekaert Steel Cord Co., Ltd. | Reinforcing steel cords |
| EP0492682A1 (en) * | 1990-12-21 | 1992-07-01 | N.V. Bekaert S.A. | Steel strip |
| US5323596A (en) * | 1990-11-05 | 1994-06-28 | The Goodyear Tire & Rubber Company | Open metallic cord for penetration by elastomer |
| US5581990A (en) * | 1994-04-07 | 1996-12-10 | N.V. Bekaert S.A. | Twisting steel cord with wavy filament |
| US5797257A (en) * | 1995-12-21 | 1998-08-25 | Pirelli Coordinamento Pneumatici | Reinforcing metallic cord for elastomer-matrix composite articles, a process and apparatus for the manufacture thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU517675A1 (ru) * | 1971-11-22 | 1976-06-15 | Всесоюзный научно-исследовательский институт организации и механизации шахтного строительства | Канат с закрытым наружным слоем |
| SU587187A1 (ru) * | 1976-09-06 | 1978-01-05 | Всесоюзный научно-исследовательский институт метизной промышленности | Арматурный канат |
| SU924208A1 (en) * | 1977-10-25 | 1982-04-30 | Novocherkassk Polt Inst | Strand of oval-strand rope |
| AT391292B (de) * | 1987-12-18 | 1990-09-10 | Miller Martin Ag | Verfahren zur herstellung eines ein- oder zweiseitigen stanzmessers fuer nichtmetallische werkstoffe |
-
1995
- 1995-09-25 DE DE19535598A patent/DE19535598A1/de not_active Withdrawn
-
1996
- 1996-09-04 CN CN96198549A patent/CN1079864C/zh not_active Expired - Fee Related
- 1996-09-04 TR TR1998/00542T patent/TR199800542T2/xx unknown
- 1996-09-04 US US09/043,500 patent/US6076344A/en not_active Expired - Lifetime
- 1996-09-04 AT AT96931018T patent/ATE187512T1/de not_active IP Right Cessation
- 1996-09-04 CZ CZ1998892A patent/CZ294724B6/cs not_active IP Right Cessation
- 1996-09-04 DE DE59603883T patent/DE59603883D1/de not_active Expired - Lifetime
- 1996-09-04 BR BR9610722A patent/BR9610722A/pt not_active IP Right Cessation
- 1996-09-04 KR KR10-1998-0702170A patent/KR100434750B1/ko not_active Expired - Fee Related
- 1996-09-04 CA CA002232549A patent/CA2232549A1/en not_active Abandoned
- 1996-09-04 WO PCT/EP1996/003884 patent/WO1997012091A1/de not_active Ceased
- 1996-09-04 ES ES96931018T patent/ES2142610T3/es not_active Expired - Lifetime
- 1996-09-04 JP JP9513103A patent/JPH11512787A/ja active Pending
- 1996-09-04 SK SK369-98A patent/SK284783B6/sk not_active IP Right Cessation
- 1996-09-04 RU RU98107841/02A patent/RU2151227C1/ru not_active IP Right Cessation
- 1996-09-04 EP EP96931018A patent/EP0852634B1/de not_active Expired - Lifetime
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3977174A (en) * | 1974-02-12 | 1976-08-31 | Compagnie Generale Des Etablissements Michelin, Raison Sociale Michelin & Cie | Cable for reinforcing objects formed of elastic or easily deformable materials |
| DE2619086A1 (de) * | 1975-05-12 | 1976-11-25 | Akzo Gmbh | Verstaerkungsseil fuer elastomere erzeugnisse, verfahren und vorrichtung zur herstellung |
| US4022009A (en) * | 1975-05-12 | 1977-05-10 | Akzo N.V. | Metallic cable |
| US4030248A (en) * | 1975-05-12 | 1977-06-21 | Akzo N.V. | Method and apparatus for making filament cables |
| US4158946A (en) * | 1977-07-07 | 1979-06-26 | N. V. Bekaert S.A. | Metal cord |
| US4545190A (en) * | 1983-09-26 | 1985-10-08 | The Goodyear Tire & Rubber Company | Metallic cable and method and apparatus for making same |
| US4724663A (en) * | 1984-07-09 | 1988-02-16 | N.V. Bekaert S.A. | Steel cord twisting structure |
| US4651513B1 (cs) * | 1984-09-24 | 1990-03-13 | Bekaert Sa Nv | |
| US4651513A (en) * | 1984-09-24 | 1987-03-24 | N.V. Bekaert S.A. | Layered steel cord |
| DE3635298A1 (de) * | 1986-10-16 | 1988-04-21 | Akzo Gmbh | Luftreifen mit flachcorden bzw. flachcord |
| EP0363893A2 (en) * | 1988-10-11 | 1990-04-18 | Tokusen Kogyo Company Limited | Steel cord and tire reinforced with the same |
| US5162067A (en) * | 1988-10-11 | 1992-11-10 | Tokusen Kogyo Company Limited | Steel cord of substantially elliptical cross-section and tire reinforced with same |
| US4938015A (en) * | 1988-11-11 | 1990-07-03 | Bridgestone Bekaert Steel Cord Co., Ltd. | Reinforcing steel cords |
| US5323596A (en) * | 1990-11-05 | 1994-06-28 | The Goodyear Tire & Rubber Company | Open metallic cord for penetration by elastomer |
| EP0492682A1 (en) * | 1990-12-21 | 1992-07-01 | N.V. Bekaert S.A. | Steel strip |
| US5198307A (en) * | 1990-12-21 | 1993-03-30 | N. V. Bekaert S.A. | Steel strip and method of making |
| US5581990A (en) * | 1994-04-07 | 1996-12-10 | N.V. Bekaert S.A. | Twisting steel cord with wavy filament |
| US5797257A (en) * | 1995-12-21 | 1998-08-25 | Pirelli Coordinamento Pneumatici | Reinforcing metallic cord for elastomer-matrix composite articles, a process and apparatus for the manufacture thereof |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040134181A1 (en) * | 2001-04-26 | 2004-07-15 | Hans Cauwels | Steel cord for reinforcing rubber articles |
| US6904744B2 (en) * | 2001-04-26 | 2005-06-14 | N.V. Bekaert S.A. | Steel cord for reinforcing rubber articles |
| CZ304666B6 (cs) * | 2001-04-26 | 2014-08-27 | N. V. Bekaert S. A. | Ocelový kord |
| US20050034443A1 (en) * | 2003-08-14 | 2005-02-17 | Cook Thomas Christopher | Optical fibers twinning apparatus and process |
| US8986922B1 (en) | 2004-05-12 | 2015-03-24 | Cirrex Systems, Llc | Adjusting optical properties of optical thin films |
| US7901870B1 (en) | 2004-05-12 | 2011-03-08 | Cirrex Systems Llc | Adjusting optical properties of optical thin films |
| US7965949B1 (en) | 2004-09-15 | 2011-06-21 | Cirrex Systems Llc | Robustly stabilizing laser systems |
| US8521038B1 (en) | 2004-09-15 | 2013-08-27 | Cirrex Systems, Llc | Robustly stabilizing laser systems |
| US7565084B1 (en) | 2004-09-15 | 2009-07-21 | Wach Michael L | Robustly stabilizing laser systems |
| US9065572B1 (en) | 2004-09-15 | 2015-06-23 | Cirrex Systems, Llc | Robustly stabilizing laser systems |
| US20140027211A1 (en) * | 2011-04-14 | 2014-01-30 | Otis Elevator Company | Coated Rope or Belt for Elevator Systems |
| US9731938B2 (en) * | 2011-04-14 | 2017-08-15 | Otis Elevator Company | Coated rope or belt for elevator systems |
| US10378128B2 (en) * | 2014-11-25 | 2019-08-13 | Compagnie General des Etalissements Michelin | Splitting facility |
| US20170321376A1 (en) * | 2014-11-25 | 2017-11-09 | Compagnie Generale Des Etablissements Michelin | Splitting method |
| US20170321352A1 (en) * | 2014-11-25 | 2017-11-09 | Compagnie Generale Des Etablissements Michelin | Splitting facility |
| US10364529B2 (en) * | 2014-11-25 | 2019-07-30 | Compagnie Generale Des Etablissements Michelin | Splitting method |
| CN107044060A (zh) * | 2017-05-31 | 2017-08-15 | 东华大学 | 连续态超细金属长丝的加捻合股方法与设备 |
| US20220402302A1 (en) * | 2019-07-25 | 2022-12-22 | Compagnie Generale Des Etablissements Michelin | Method for separating and reassembling a dual layer assembly |
| US12006626B2 (en) * | 2019-07-25 | 2024-06-11 | Compagnie Generale Des Etablissements Michelin | Method for separating and reassembling a dual layer assembly |
| US12036830B2 (en) | 2019-07-25 | 2024-07-16 | Compagnie Generale Des Etablissements Michelin | Highly compressible open reinforcing cord |
| US12281438B2 (en) | 2019-07-25 | 2025-04-22 | Compagnie Generale Des Etablissements Michelin | Method for separation and reassembly |
| US11598027B2 (en) * | 2019-12-18 | 2023-03-07 | Patrick Yarn Mills, Inc. | Methods and systems for forming a composite yarn |
| US20240075772A1 (en) * | 2020-12-21 | 2024-03-07 | Nv Bekaert Sa | A steel cord for rubber reinforcement |
| US12257867B2 (en) * | 2020-12-21 | 2025-03-25 | Nv Bekaert Sa | Steel cord for rubber reinforcement |
Also Published As
| Publication number | Publication date |
|---|---|
| KR100434750B1 (ko) | 2004-09-04 |
| BR9610722A (pt) | 1999-07-13 |
| DE19535598A1 (de) | 1997-03-27 |
| CA2232549A1 (en) | 1997-04-03 |
| CN1079864C (zh) | 2002-02-27 |
| SK36998A3 (en) | 2000-02-14 |
| ATE187512T1 (de) | 1999-12-15 |
| DE59603883D1 (de) | 2000-01-13 |
| JPH11512787A (ja) | 1999-11-02 |
| WO1997012091A1 (de) | 1997-04-03 |
| EP0852634A1 (de) | 1998-07-15 |
| EP0852634B1 (de) | 1999-12-08 |
| KR19990063703A (ko) | 1999-07-26 |
| ES2142610T3 (es) | 2000-04-16 |
| CZ89298A3 (cs) | 1998-07-15 |
| SK284783B6 (sk) | 2005-11-03 |
| CZ294724B6 (cs) | 2005-03-16 |
| CN1202942A (zh) | 1998-12-23 |
| RU2151227C1 (ru) | 2000-06-20 |
| TR199800542T2 (xx) | 1998-07-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6076344A (en) | Process for producing a steel cord | |
| JP2659072B2 (ja) | ゴム補強用スチールコード | |
| EP2550392B1 (en) | Open off-the-road tire cord with preformed filaments | |
| JPH0367155B2 (cs) | ||
| JPH05230780A (ja) | 金属コード及びこれとゴムとの複合物 | |
| US6612354B2 (en) | Pneumatic tire | |
| JPH08232179A (ja) | ゴム補強用スチールコード及びそれを使用したラジアルタイヤ | |
| US6151879A (en) | Wire filament, especially for reinforcing rubber of plastic items, process for its production and device for implementing the process | |
| JP4093863B2 (ja) | ゴム製品を補強するスチールコード | |
| JP3759292B2 (ja) | ゴム物品補強用スチールコード及び空気入りタイヤ | |
| JP3686673B1 (ja) | ゴム物品補強用金属コード及びそのコードの製造方法 | |
| JPH09268485A (ja) | ゴム補強用スチールコードおよびラジアルタイヤ | |
| JP3368076B2 (ja) | タイヤ補強用スチールコード及びこれを用いたラジアルタイヤ | |
| JP3506279B2 (ja) | ゴム物品補強用スチールコードおよび空気入りタイヤ | |
| JPH09209283A (ja) | ゴム補強用スチールコードおよびラジアルタイヤ | |
| JPH04308287A (ja) | ゴム製品補強用スチールコード | |
| JPH08118907A (ja) | ゴム補強用スチールコードおよびこれを使用したラジアルタイヤ | |
| JPH0782680A (ja) | 金属コード及びこれとゴムとの複合物 | |
| JPH05302283A (ja) | ゴム補強用スチールコード | |
| JPH08127984A (ja) | ゴム物品補強用スチールコードおよび空気入りラジアルタイヤ | |
| JPH08218281A (ja) | ゴム物品補強用スチールコード | |
| JP2920469B2 (ja) | ラジアルタイヤ | |
| JP3156456B2 (ja) | 金属コード及びこれとゴムとの複合物 | |
| JPH1096181A (ja) | ゴム物品補強用スチ−ルコ−ド及びそれを用いた空気入りタイヤ | |
| JPH05140882A (ja) | ゴム物品補強用金属コード |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DRAHTCORD SAAR GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOUJAK, SIEGFRIED;REEL/FRAME:009330/0975 Effective date: 19980429 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |