US20180019382A9 - Optoelectronic element - Google Patents

Optoelectronic element Download PDF

Info

Publication number
US20180019382A9
US20180019382A9 US14/858,477 US201514858477A US2018019382A9 US 20180019382 A9 US20180019382 A9 US 20180019382A9 US 201514858477 A US201514858477 A US 201514858477A US 2018019382 A9 US2018019382 A9 US 2018019382A9
Authority
US
United States
Prior art keywords
layer
optoelectronic
transparent structure
metal layer
optoelectronic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/858,477
Other versions
US20160013371A1 (en
US9893244B2 (en
Inventor
Cheng-Nan HAN
Tsung-Xian Lee
Min-Hsun Hsieh
Hung-Hsuan Chen
Hsin-Mao Liu
Hsing-Chao Chen
Ching San TAO
Chih-Peng Ni
Tzer-Perng Chen
Jen-chau Wu
Masafumi Sano
Chih-Ming Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/604,245 external-priority patent/US6987287B2/en
Priority claimed from US11/249,680 external-priority patent/US7192797B2/en
Priority claimed from US11/160,588 external-priority patent/US7928455B2/en
Priority claimed from US11/674,371 external-priority patent/US20070126016A1/en
Priority claimed from TW98146171A external-priority patent/TWI474503B/en
Priority claimed from US12/840,848 external-priority patent/US8999736B2/en
Priority claimed from TW101115716A external-priority patent/TWI555239B/en
Priority to US14/858,477 priority Critical patent/US9893244B2/en
Application filed by Epistar Corp filed Critical Epistar Corp
Publication of US20160013371A1 publication Critical patent/US20160013371A1/en
Assigned to EPISTAR CORPORATION reassignment EPISTAR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, TSUNG-XIAN, WU, JEN-CHAU, SANO, MASAFUMI, TAO, CHING SAN, CHEN, HUNG-HSUAN, CHEN, HSING-CHAO, HAN, CHENG-NAN, NI, CHIH-PENG, CHEN, TZER-PERNG, HSIEH, MIN-HSUN, LIU, HSIN-MAO, WANG, CHIH-MING
Publication of US20180019382A9 publication Critical patent/US20180019382A9/en
Publication of US9893244B2 publication Critical patent/US9893244B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present disclosure relates to an optoelectronic element, and more particularly, to an optoelectronic element having a conductive structure.
  • An optoelectronic element such as a light-emitting diode (LED) package, has been applied widely in optical display devices, traffic signals, data storing devices, communication devices, illumination devices, and medical apparatuses. Similar to the trend of small and slim commercial electronic product, the development of the optoelectronic element also enters into an era of miniature package.
  • One promising packaging design for semiconductor and optoelectronic element is the Chip-Level Package (CLP).
  • FIG. 15 shows a schematic view of a conventional light-emitting device structure.
  • a conventional light-emitting device 150 includes a submount 152 with a circuit 154 ; a solder 156 on the submount 152 , wherein an LED 151 is adhesively fixed on the submount 152 by the solder 156 ; and an electrical-connecting structure 158 electrically connecting the electrode 155 with the circuit 154 .
  • the submount 152 can be a lead frame or a mounting substrate for circuit design and heat dissipation of the light-emitting device 150 .
  • An optoelectronic element includes an optoelectronic unit, a first metal layer, a second metal layer, a conductive layer and a transparent structure.
  • the optoelectronic unit has a central line in a top view, a top surface, and a bottom surface.
  • the second metal layer is formed on the top surface, and has an extension portion crossing over the central line and extending to the first metal layer.
  • the conductive layer covers the first metal layer and the extension portion.
  • the transparent structure covers the bottom surface without covering the top surface.
  • FIGS. 1A-1C illustrate flow charts of a manufacturing process of optoelectronic elements in accordance with an embodiment of the present application.
  • FIG. 2A illustrates a cross-sectional view of an optoelectronic element in accordance with an embodiment of the present application.
  • FIG. 2B illustrates a cross-sectional view of the optoelectronic unit shown in FIG. 2A .
  • FIG. 2C illustrates a top view of the optoelectronic element shown in FIG. 2A .
  • FIGS. 3A-3F illustrate flow charts of a manufacturing process of electroplating an electrode on optoelectronic elements in accordance with an embodiment of the present application.
  • FIG. 4 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 5 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 6 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 7 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 8 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 9A-9C illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 10A-10B illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 11 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 12 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 13 illustrates a cross-sectional view of a light-generating device in accordance with another embodiment of the present application.
  • FIG. 14 illustrates a cross-sectional view of a backlight module in accordance with another embodiment of the present application.
  • FIG. 15 illustrates a cross-sectional view of a conventional light-emitting device.
  • FIGS. 16A-16C illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 17A-17D illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 18A-18D illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 19 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 20A-20F illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 21 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 22 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 23A-23C illustrate flow charts of a manufacturing process of an optoelectronic element 2300 in accordance with another embodiment of the present application.
  • FIGS. 24A-24D illustrate a manufacturing method of an optoelectronic element 2400 in accordance with another embodiment of the present application.
  • FIG. 24E illustrates a detailed structure of the optoelectronic element 2400 in accordance with an embodiment of the present application.
  • FIGS. 1A-1C disclose flow charts of a manufacturing process of optoelectronic elements 1 in accordance with an embodiment of the present application.
  • a wafer including a temporary carrier 10 ; a bonding layer 12 formed on the temporary carrier 10 ; and a plurality of optoelectronic units 14 formed on the bonding layer 12 .
  • a first transparent structure 16 is formed on the bonding layer 12 and the plurality of optoelectronic units 14 .
  • the first transparent structure 16 can cover more than one surface of at least one of the plurality of optoelectronic units 14 .
  • a second transparent structure 18 is formed on the first transparent structure 16 . Referring to FIG.
  • the temporary carrier 10 and the bonding layer 12 are removed, and a plurality of conductive structures 2 is formed on the surfaces of the plurality of optoelectronic units 14 and the first transparent structure 16 .
  • the wafer can be separated to form the plurality of optoelectronic elements 1 .
  • the temporary carrier 10 and the second transparent structure 18 can support the optoelectronic unit 14 and the first transparent structure 16 .
  • the material of the temporary carrier 10 includes conductive material such as Diamond Like Carbon (DLC), graphite, carbon fiber, Metal Matrix Composite (MMC), Ceramic Matrix Composite (CMC), Polymer Matrix Composite (PMC), Ni, Cu, Al, Si, ZnSe, GaAs, SiC, GaP, GaAsP, ZnSe, InP, LiGaO 2 , LiAlO 2 , or the combination thereof, or insulating material such as sapphire, diamond, glass, epoxy, quartz, acryl, Al 2 O 3 , ZnO, AlN, or the combination thereof.
  • DLC Diamond Like Carbon
  • MMC Metal Matrix Composite
  • CMC Ceramic Matrix Composite
  • PMC Polymer Matrix Composite
  • Ni Cu, Al, Si, ZnSe, GaAs, SiC, GaP, GaAsP, ZnSe, InP, Li
  • the second transparent structure 18 can be transparent to the light generated from the optoelectronic unit 14 .
  • the material of the second transparent structure 18 can be transparent material such as sapphire, diamond, glass, epoxy, quartz, acryl, SiO x , Al 2 O 3 , ZnO, silicone, or the combination thereof.
  • the second transparent structure 18 can also be transparent to the light, like the sunlight, from the environment in another embodiment.
  • a thickness of the second transparent structure 18 is about 300 ⁇ m to 500 ⁇ m.
  • the bonding layer 12 can adhesively connect the temporary carrier 10 with the optoelectronic unit 14 , and be easily removed after the second transparent structure 18 is formed on the first transparent structure 16 .
  • the material of the bonding layer 12 can be insulating material, UV tape, or thermal release tape.
  • the insulating material includes but is not limited to benzocyclobutene (BCB), Su8, epoxy, or spin-on-glass (SOG).
  • the first transparent structure 16 covers the optoelectronic units 14 to fix and support the optoelectronic units 14 and enhances the mechanical strength of the optoelectronic elements 1 .
  • the first transparent structure 16 can be transparent to the light generated from the optoelectronic unit 14 .
  • the material of the first transparent structure 16 and the second transparent structure 18 can be the same or different.
  • the coefficient of thermal expansion (CTE) of the first transparent structure 16 is about 50 ppm/° C. ⁇ 400 ppm/° C.
  • the material of the first transparent structure 16 can be transparent material such as epoxy, polyimide (PI), BCB, perfluorocyclobutane (PFCB), Su8, acrylic resin, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, fluorocarbon polymer, glass, Al 2 O 3 , SINR, SOG, or the combination thereof.
  • the refractive indices of the first transparent structure 16 and the second transparent structure 18 can be the same or different.
  • a thickness of the first transparent structure 16 is about 200 ⁇ m to 300 ⁇ m.
  • the first transparent structure 16 can be transparent to the light from the environment such as the sunlight as well.
  • the optoelectronic unit 14 provides luminous energy, electric energy, or both, such as the LED or the solar cell.
  • a thickness of the optoelectronic unit 14 is about 100 ⁇ m.
  • the refractive index of the first transparent structure 16 is larger than that of the second transparent structure 18 to increase the probability of extracting the light out of the optoelectronic element 1 .
  • the refractive index of the first transparent structure 16 is smaller than that of the second transparent structure 18 to increase the probability of the light entering the optoelectronic element 1 .
  • the optoelectronic element 1 includes the second transparent structure 18 ; the first transparent structure 16 on the second transparent structure 18 ; the optoelectronic unit 14 on the first transparent structure 16 ; and the conductive structure 2 on the optoelectronic unit 14 and the first transparent structure 16 .
  • the optoelectronic unit 14 includes a first metal layer 142 and a second metal layer 144 formed on a first top surface 141 ; a first bottom surface 143 opposite to the first top surface 141 and close to the second transparent structure 18 ; and more than one lateral surface 140 between the first top surface 141 and the first bottom surface 143 .
  • the conductive structure 2 includes a first insulating layer 22 formed on the optoelectronic unit 14 and the first transparent structure 16 and covering portions of the first metal layer 142 and the second metal layer 144 ; a reflective layer 24 formed on the first insulating layer 22 ; a second insulating layer 26 formed on the first insulating layer 22 and the reflective layer 24 and covering the reflective layer 24 ; a first opening 212 and a second opening 214 formed in the first insulating layer 22 and the second insulating layer 26 to expose the first metal layer 142 and the second metal layer 144 respectively; and an electrode 28 including a first conductive layer 282 and a second conductive layer 284 which are formed on the second insulating layer 26 , and in the first opening 212 and the second opening 214 to electrically connect with the first metal layer 142 and the second metal layer 144 respectively.
  • the first insulating layer 22 can electrically isolate the optoelectronic unit 14 from the reflective layer 24 and protect the optoelectronic unit 14 from being damaged by the element diffused from the material of the reflective layer 24 .
  • the first transparent structure 16 includes a second top surface 162 under the first insulating layer 22 and a second bottom surface 166 close to the second transparent structure 18 .
  • the second top surface 162 is substantially lower than the first top surface 141 .
  • the second top surface 162 includes a slope 164 adjacent to the first top surface 141 . It is better that the slope 164 can be located over a region of the first top surface 141 between the first and the second metal layers 142 and 144 and the lateral surface 140 .
  • a distance between a portion of the second top surface 162 and the second bottom surface 166 can be the same as that between the second bottom surface 166 and the first top surface 141 in another embodiment.
  • the first insulating layer 22 can be adhesive to the first transparent structure 16 and/or to the reflective layer 24 .
  • the transparency of the first insulating layer 22 to the light generated from the optoelectronic unit 14 and/or from the environment is higher than 85%.
  • the CTE of the first insulating layer 22 is smaller than that of the first transparent structure 16 .
  • the CTE of the first insulating layer 22 can be between that of the first transparent structure 16 and the reflective layer 24 preferably.
  • the CTE of the first insulating layer 22 is about 3 ppm/° C. to 200 ppm/° C., preferably 20 ppm/° C. to 70 ppm/° C.
  • the material of the first insulating layer 22 can be the same as or different from that of the first transparent structure 16 .
  • the material of the first insulating layer 22 can be photoresist material for forming the openings so the first insulating layer 22 needs to be cured in the lithography process.
  • the curing temperature of the first insulating layer 22 is not more than 350° C. to avoid damaging the first transparent structure 16 in high temperature.
  • the photoresist material includes but is not limited to AL-polymer, BCB, SINR, Su8, or SOG.
  • the first insulating layer 22 can include a rough surface with a roughness higher than that of the first top surface 141 .
  • a thickness of the first insulating layer 22 is substantially constant, for example, about 2 ⁇ m to 3 ⁇ m.
  • the reflective layer 24 can reflect the light generated from the optoelectronic unit 14 or from the environment.
  • a thickness of the reflective layer 24 is substantially constant, for example, about 1 ⁇ m to 3 ⁇ m.
  • the reflective layer 24 overlaps portions of the first metal layer 142 and the second metal layer 144 .
  • the reflective layer 24 can further include a plurality of sub-layers (not shown).
  • the CTE of the reflective layer 24 is about 5 ppm/° C. to 25 ppm/° C.
  • the reflective layer 24 can have a reflectivity of 70% or above to the light generated from the optoelectronic unit 14 and/or from the environment.
  • the material of the reflective layer 24 includes but is not limited to metal material such as Cu, Al, Sn, Au, Ag, Ti, Ni, Ag—Ti, Ni—Sn, Au alloy, Ni—Ag, Ti—Al, and so on.
  • the reflective layer 24 can include a rough surface with a roughness higher than that of the first top surface 141 .
  • the second insulating layer 26 can electrically isolate the first conductive layer 282 and the second conductive layer 284 from the reflective layer 24 , and protect the reflective layer 24 from being damaged by the first conductive layer 282 and the second conductive layer 284 .
  • the second insulating layer 26 can fix the reflective layer 24 and enhances the mechanical strength of the conductive structure 2 as well.
  • the material of the second insulating layer 26 can be the same as and/or different from that of the first insulating layer 22 .
  • the material of the second insulating layer 26 includes but is not limited to photoresist material such as AL-polymer, BCB, SINR, Su8, SOG, PI, or DLC.
  • the second insulating layer 26 can include a rough surface with a roughness higher than that of the first top surface 141 .
  • a thickness of the second insulating layer 26 is substantially constant, for example, about 4 ⁇ m to 5 ⁇ m.
  • the electrode 28 can be integrally formed by evaporation or electroplating.
  • the ratio of the top surface area of the electrode 28 to that of the second transparent structure 18 is not smaller than 50%.
  • the first conductive and second conductive layers 282 and 284 are for receiving external voltage.
  • the material of the first conductive and second conductive layers 282 and 284 can be metal material.
  • the metal material includes but is not limited to Cu, Sn, Au, Ni, Ti, Pb, Cu—Sn, Cu—Zn, Cu—Cd, Sn—Pb—Sb, Sn—Pb—Zn, Ni—Sn, Ni—Co, Au alloy, Au—Cu—Ni—Au, the combination thereof, and so on.
  • the first conductive layer 282 and/or the second conductive layer 284 can include a plurality of sub-layers (not shown).
  • the first conductive layer 282 and/or the second conductive layer 284 can have a reflectivity of 70% or above to the light generated from the optoelectronic unit 14 and/or from the environment.
  • a thickness of the first conductive layer 282 is a substantially constant, for example, about 12 ⁇ m.
  • a thickness of the second conductive layer 284 is substantially constant, for example, about 12 ⁇ m.
  • the ratio of the top surface area of the first conductive layer 282 and the second conductive layer 284 to the area of the second bottom surface 166 is more than 50%.
  • the optoelectronic unit 14 can be an LED including a light emitting structure 145 , a first dielectric layer 149 a , a passivation layer 147 , a first bonding pad 146 , a second bonding pad 148 , the first metal layer 142 , the second metal layer 144 , and a second dielectric layer 149 b , as FIG. 2B shows.
  • the light emitting structure 145 includes a substrate 145 a , a first conductive type layer 145 b , an active layer 145 c , and a second conductive type layer 145 d .
  • the active layer 145 c is disposed on the first conductive type layer 145 b and is a light emitting layer.
  • the second conductive type layer 145 d is disposed on the active layer 145 c .
  • the first bonding pad 146 is disposed on the light emitting structure 145 and is electrically connected to the first conductive layer 145 b .
  • the second bonding pad 148 is disposed on the light emitting structure 145 and is electrically connected to the second conductive type layer 145 d .
  • the passivation layer 147 is disposed on the light emitting structure 145 and isolates the first bonding pad 146 from the active layer 145 c and the second conductive type layer 145 d .
  • the first dielectric layer 149 a is disposed on the light emitting structure 145 .
  • the first metal layer 142 is disposed on the light emitting structure 145 and is electrically connected to the first conductive type layer 145 b . A portion of the first metal layer 142 is disposed on the first dielectric layer 149 a .
  • the second metal layer 144 is disposed on the light emitting structure 145 and is electrically connected to the second conductive type layer 145 d . A portion of the second metal layer 144 is disposed on the first dielectric layer 149 a .
  • the second dielectric layer 149 b is disposed on the first dielectric layer 149 a .
  • the first dielectric layer 149 a and the second dielectric layer 149 b electrically isolate the first metal layer 142 from the second metal layer 144 .
  • a portion of the first dielectric layer 149 a is a transparent layer, and a surface of the first dielectric layer 149 a contacting the first metal layer 142 and/or the second metal layer 144 is for reflecting the light generated from the light emitting structure 145 .
  • the first dielectric layer 149 a can include a reflective structure in another embodiment.
  • the reflective structure includes distributed bragg reflector (DBR) and/or a reflective film.
  • the reflective film can includes metal material such as Cu, Al, Sn, Au, Ag, Ti, Ni, Ag—Ti, Ni—Sn, Au alloy, Ni—Ag, Ti—Al, and so on.
  • the first distance d 1 is larger than the second distance d 2 and the third distance d 3 .
  • the second distance d 2 and the third distance d 3 can be the same or difference.
  • the second distance d 2 is larger than the third distance d 3 in an embodiment.
  • the second distance d 2 can also be smaller than the third distance d 3 in another embodiment.
  • the third distance d 3 is about 100 ⁇ m to 300 ⁇ m.
  • the second transparent structure 18 contains a first width w 1 and the optoelectronic unit 14 contains a second width w 2 .
  • the ratio of the first width w 1 to the second width w 2 is about 1.5 to 3, preferably 2 to 2.5.
  • the first conductive layer 282 contains a truncated corner 286 at a side far from the second conductive layer 284 .
  • the optoelectronic element 1 can be bonded to a submount through an adhesive material in another embodiment.
  • the adhesive material can be metal material, transparent material, or an anisotropic conductive film.
  • the metal material includes but is not limited to Cu, Sn, Au, Ni, Ti, Pb, Cu—Sn, Cu—Zn, Cu—Cd, Sn—Pb—Sb, Sn—Pb—Zn, Ni—Sn, Ni—Co, Au alloy, Au—Cu—Ni—Au, or the combination thereof.
  • the transparent material includes but is not limited to BCB, Sub, epoxy, or SOG.
  • FIGS. 3A-3F disclose flow charts of a manufacturing process of electroplating the electrode 28 on the optoelectronic unit 14 .
  • a seed layer 30 is formed on the optoelectronic units 14 and the first transparent structure 16 .
  • a first photoresist 32 is formed on the seed layer 30 to expose portions of the seed layer 30 , as FIG. 3B shows.
  • An electroplating layer 34 is electroplated on the portions of the seed layer 30 where the first photoresist 32 does not cover, as FIG. 3C shows.
  • FIG. 3D the first photoresist 32 is removed to expose other portions of the seed layer 30 .
  • a second photoresist 36 is formed on the electroplating layer 34 .
  • the exposed portions of the seed layer 30 are removed, as FIG. 3E shows.
  • the second photoresist 36 is removed to expose the electroplating layer 34 for forming the electrode 28 , referring to FIG. 3F .
  • the optoelectronic element 4 is similar to the optoelectronic element 1 and further includes a recess 40 formed in the second transparent structure 18 such that the second transparent structure 18 , as an optical element, can process the light generated from the optoelectronic unit 14 or from the environment.
  • the recess 40 can be further formed in the first transparent structure 16 .
  • the shape of the recess 40 can be triangle in the cross-sectional view in this embodiment.
  • the second transparent structure 18 of an optoelectronic element 5 can be trapezoid in another embodiment.
  • the second transparent structure 18 further includes a third bottom surface 182 .
  • the third bottom surface 182 can be a rough surface with a roughness higher than that of the first top surface 141 , or a flat surface.
  • the shape of the second transparent structure 18 includes but is not limited to triangle, semicircle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view.
  • the first transparent structure 16 can also include the same or different shape of the second transparent structure 18 .
  • the second bottom surface 166 can also be a rough surface with a roughness higher than that of the first top surface 141 , or a flat surface in another embodiment.
  • An optoelectronic element 6 is similar to the optoelectronic element 5 and further includes a mirror 60 formed under the third bottom surface 182 , as FIG. 6 shows.
  • the mirror 60 can reflect the light generated from the optoelectronic unit 14 or from the environment.
  • an optoelectronic element 7 includes the optoelectronic unit 14 , the conductive structure 2 , the first transparent structure 16 , and the second transparent structure 18 .
  • the second transparent structure 18 contains a first side 184 which is not parallel to the first top surface 141 and a mirror 70 is formed under the first side 184 to reflect light generated from the optoelectronic unit 14 or from the environment, in another embodiment.
  • the first side 184 can be parabolic curve, arc, or bevel to the first top surface 141 in the cross-sectional view, for example.
  • an optoelectronic element 8 is similar to the optoelectronic element 7 and the first transparent structure 16 further includes a second side 168 which is not parallel to the first top surface 141 , as FIG. 8 shows.
  • a mirror 80 is formed under the first side 184 and the second side 168 to reflect light generated from the optoelectronic unit 14 or from the environment.
  • FIGS. 9A-9C disclose flow charts of a manufacturing process of an optoelectronic element 9 in accordance with another embodiment of the present application.
  • the optoelectronic unit 14 and the first transparent structure 16 are located on the second transparent structure 18 .
  • the passivation layer 147 is formed on the first top surface 141 and exposes the first metal layer 142 and the second metal layer 144 , wherein the passivation layer 147 can cover portions of the first metal layer 142 and the second metal layer 144 .
  • the passivation layer 147 can expose all the first metal layer 142 and the second metal layer 144 .
  • the passivation layer 147 can expose a portion of the first top surface 141 .
  • An optical layer 90 is formed on the optoelectronic unit 14 and the first transparent structure 16 .
  • the optical layer 90 covers at least portions of the optoelectronic unit 14 and the first transparent structure 16 and surrounds the first metal layer 142 and the second metal layer 144 . Referring to FIG. 9C , a portion of the optical layer 90 is removed to form the first opening 212 and the second opening 214 that expose the first metal layer 142 and the second metal layer 144 .
  • the first conductive layer 282 and the second conductive layer 284 are formed on the optical layer 90 and in the first opening 212 and the second opening 214 , wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively to form the optoelectronic element 9 .
  • the optical layer 90 can electrically insulate the first conductive layer 282 from the second conductive layer 284 .
  • the reflectivity of the optical layer 90 is at least 50% to the light generated from the optoelectronic unit 14 .
  • the optical layer 90 can be a single-layer structure.
  • the optical layer 90 includes a diffusing surface 92 far from the first conductive layer 282 .
  • the diffusing surface 92 includes a plurality of particles diffusing the light generated from the optoelectronic unit 14 .
  • the diffusion is a phenomenon that light emitted to a rough surface of an object can be reflected disorderly.
  • the optical layer 90 can include a plurality of insulating layers stacked to form a Distributed Bragg Reflector (DBR).
  • the thickness of the optical layer 90 is about 4 ⁇ m to 20 ⁇ m, preferably 5 ⁇ m to 10 ⁇ m.
  • the material of the optical layer 90 can be epoxy, SiO x , Al 2 O 3 , TiO 2 , silicone, resin, or the combination thereof.
  • the material of the particles can be Al 2 O 3 , TiO 2 , silicone, or the combination thereof.
  • a method of forming the optical layer 90 includes spin coating, screen printing, or stencil printing.
  • a method of removing the optical layer 90 includes etching.
  • the optical layer 90 can provide functions of diffusion, reflection, and insulation so the amount and cost of diffusing material, reflective material, and insulating material can be reduced, and the damage caused by the difference of the material characteristic, such as coefficient of thermal expansion or mechanical strength, can be avoided. Therefore, the yield can be enhanced. Furthermore, the optical layer 90 can prevent the moisture from entering the optoelectronic unit 14 so the reliability is improved.
  • the first conductive layer 282 includes a first plug region 281 above the first metal layer 142 and a first extended region 283 overlapping a portion of the optical layer 90 , wherein the distance between the first plug region 281 and the first top surface 141 might be smaller than that between the first extended region 283 and the first top surface 141 .
  • the distance between the first plug region 281 and the first top surface 141 is smaller than that between the top surface of the optical layer 90 and the first top surface 141 in another embodiment.
  • the top surface of the second conductive layer 284 includes a second plug region 285 above the second metal layer 144 and a second extended region 287 overlapping a portion of the optical layer 90 , wherein the distance between the second plug region 285 and the first top surface 141 is smaller than that between the second extended region 287 and the first top surface 141 .
  • the distance between the second plug region 285 and the first top surface 141 is smaller than that between the top surface of the optical layer 90 and the first top surface 141 in another embodiment.
  • the first conductive layer 282 and the second conductive layer 284 can further fill into the recesses 288 / 289 to enhance the adhesion between the first conductive layer 282 /the second conductive layer 284 and the optical layer 90 .
  • the recesses are formed when a portion of the optical layer 90 is removed to expose the first metal layer 142 and the second metal layer 144 .
  • the method of removing the optical layer 90 can be wet etching.
  • FIGS. 10A-10B disclose flow charts of a manufacturing process of an optoelectronic element 100 in accordance with another embodiment of the present application.
  • the optoelectronic unit 14 and the first transparent structure 16 are located on the second transparent structure 18 .
  • the first insulating layer 22 is formed on the optoelectronic unit 14 and the first transparent structure 16 , covers at least portions of the optoelectronic unit 14 and the first transparent structure 16 , and surrounds the first metal layer 142 and the second metal layer 144 .
  • the reflective layer 24 is formed on the first insulating layer 22 and the second insulating layer 26 is formed on the reflective layer 24 . Referring to FIG.
  • portions of the first insulating layer 22 , the second insulating layer 26 , and the reflective layer 24 are removed to form the first opening 212 and the second opening 214 and expose the first metal layer 142 and the second metal layer 144 .
  • the first conductive layer 282 and the second conductive layer 284 are formed on the second insulating layer 26 and in the first opening 212 and the second opening 214 , wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively to form the optoelectronic element 100 .
  • a portion of the reflective layer 24 between the first insulating layer 22 and the second insulating layer 26 is between the first metal layer 142 and the second metal layer 144 .
  • the probability of reflecting the light generated from the optoelectronic unit 14 is therefore enhanced to increase light-emitting efficiency. Furthermore, the moisture can be prevented from entering the optoelectronic unit 14 so the reliability is enhanced.
  • the reflective layer 24 can be electrically connected with the electrode 28 and/or the first metal layer 142 and the second metal layer 144 .
  • FIG. 11 illustrates a cross-sectional view of an optoelectronic element 110 in accordance with another embodiment of the present application.
  • the optoelectronic element 110 includes the first conductive layer 282 , the second conductive layer 284 , the optoelectronic unit 14 , and the first transparent structure 16 on the second transparent structure 18 .
  • the first transparent structure 16 includes a first transparent layer 161 covering the optoelectronic unit 14 ; a second transparent layer 163 covering the first transparent layer 161 ; a third transparent layer 165 covering the second transparent layer 163 ; a first wavelength-converting layer 112 located between the first transparent layer 161 and the second transparent layer 163 ; and a second wavelength-converting layer 114 located between the second transparent layer 163 and the third transparent layer 165 .
  • the first wavelength-converting layer 112 can be excited by the light generated from the optoelectronic unit 14 and emit light having a first wavelength.
  • the second wavelength-converting layer 114 can be excited by the light generated from the optoelectronic unit 14 and emit light having a second wavelength.
  • the light generated from the optoelectronic unit 14 has a third wavelength.
  • the third wavelength is smaller than the first wavelength and the second wavelength, and the first wavelength is larger than the second wavelength.
  • the bandgap of the first wavelength is smaller than the bandgap of the wavelength which can be absorbed by the second wavelength-converting layer 114 so the absorption of the light having the first wavelength by the second wavelength-converting layer 114 and the loss of conversion of the light having the first wavelength can be reduced.
  • the light-emitting efficiency of the optoelectronic element 110 is therefore increased.
  • the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 can absorb the light generated from the optoelectronic unit 14 and emit the excited light, and diffuse the light generated from the optoelectronic unit 14 and the excited light generated from the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 .
  • the structure of the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 can include quantum dot.
  • the material of the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 includes a semiconductor material or phosphor.
  • the phosphor includes yttrium aluminum garnet (YAG), silicate garnet, vanadate garnet, alkaline earth metal silicate, alkaline earth metal sulfides, alkaline earth metal selenides, alkaline earth metal thiogallates, metal nitrides, metal oxo-nitrides, mixed molybdate-tungstate, mixed oxides, mixed glass phosphors, or the combination thereof.
  • the semiconductor material contains more than one element selected from a group consisting of Ga, Al, In, As, P, N, Zn, Cd, and Se.
  • FIG. 12 illustrates a cross-sectional view of an optoelectronic element 120 in accordance with another embodiment of the present application.
  • the optoelectronic element 120 includes the first conductive layer 282 , the second conductive layer 284 , the optoelectronic unit 14 , the first transparent structure 16 on the second transparent structure 18 , and a window layer 122 on a side of the second transparent structure 18 opposite to the first transparent structure 16 .
  • the refraction index of the window layer 122 is between that of the second transparent structure 18 and the environment for reducing the probability of the total internal reflection at the interface of the second transparent structure 18 and the environment.
  • the refraction index of the window layer 122 is about larger than 1 and/or smaller than 2, preferably between 1.1 and 1.4.
  • the material of the window layer 122 can be formed on the second transparent structure 18 and proceeds with the reflow process to form the window layer 122 .
  • the window layer 122 can perform as lens to process the light from the optoelectronic unit 14 .
  • the shape of the window layer 122 includes but is not limited to triangle, semicircle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view.
  • the material of the window layer 122 can be epoxy, spin-on-glass (SOG), SiO x , silicone, polymethyl methacrylate (PMMA), or the combination thereof.
  • FIGS. 16A-16C disclose flow charts of a manufacturing process of an optoelectronic element 1600 in accordance with another embodiment of the present application.
  • FIG. 16A is a top view and FIGS. 16B and 16C are cross-sectional views of the optoelectronic element 1600 .
  • the first metal layer 142 includes a first extension part 142 a and/or the second metal layer 144 includes a second extension part 144 a .
  • a portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142 and the first extension part 142 a and/or the second metal layer 144 and the second extension part 144 a .
  • the optical layer 90 is formed on the optoelectronic unit 14 and a first transparent structure 16 as shown in FIG. 16B . A portion of the optical layer 90 is removed to expose the first metal layer 142 and the first extension part 142 a and/or the second metal layer 144 and the second extension part 144 a .
  • the first conductive layer 282 and the second conductive layer 284 are formed on the optical layer 90 and the optoelectronic unit 14 to form the optoelectronic element 1600 , wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively, as shown in FIG. 16C .
  • the first metal layer 142 and the second metal layer 144 of the optoelectronic element 1600 include the first extension part 142 a and the second extension part 144 a to enhance the current spreading and the light-emitting efficiency of the optoelectronic unit 14 is improved.
  • the first conductive layer 282 contacts the first extension part 142 a and/or the second conductive layer 284 contacts the second extension part 144 a to increase the contact area between the first conductive layer 282 and the first metal layer 142 and/or between the second conductive layer 284 and the second metal layer 144 .
  • the path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved.
  • FIGS. 17A-17D disclose flow charts of a manufacturing process of an optoelectronic element 1700 in accordance with another embodiment of the present application.
  • FIGS. 17A, 17B, and 17C are top views and FIG. 17D is a cross-sectional view of the optoelectronic element 1700 .
  • a portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142 , the second metal layer 144 , and the second extension part 144 a .
  • a first contact layer 170 is formed on the first transparent structure 16 and includes a connective part 170 a extending toward the optoelectronic unit 14 and electrically connected with the first metal layer 142 .
  • the connective part 170 a directly contacts with the first metal layer 142 .
  • An optical layer 172 is formed on the first contact layer 170 and a first transparent structure 16 and exposes a portion of the first contact layer 170 , as shown in FIG. 17B .
  • the first conductive layer 282 is formed on the optical layer 172 and the first contact layer 170 .
  • the second conductive layer 284 is formed on the optical layer 172 , the second metal layer 144 , and the second extension part 144 a , and is electrically connected with the second metal layer 144 and the second extension part 144 a to form the optoelectronic element 1700 , wherein the second conductive layer 284 is electrically insulated from the first contact layer 170 .
  • the second metal layer 144 of the optoelectronic unit 14 includes the second extension part 144 a to enhance the current spreading and the light-emitting efficiency of the optoelectronic unit 14 is improved.
  • the second conductive layer 284 contacts with the second extension part 144 a to increase the contact area between the second conductive layer 284 and the second metal layer 144 .
  • the path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved.
  • the optical layer 172 covering the first contact layer 170 electrically insulates the second conductive layer 284 and the first metal layer 142 so the second conductive layer 284 can extend above the first metal layer 142 to increase the upper surface area of the second conductive layer 284 .
  • Path of heat dissipation and current conduction of the optoelectronic element 1700 is therefore increased to improve efficiency.
  • the upper surface areas of the first conductive layer 282 and the second conductive layer 284 are different, for instance the upper surface area of the second conductive layer 284 is larger than that of the first conductive layer 282 , it is beneficial to the subsequent process such as alignment so the yield is increased.
  • the first contact layer 170 can reflect the light generated from the optoelectronic unit 14 to increase the light extraction efficiency of the optoelectronic element 1700 .
  • the material of the first contact layer 170 can be the same as that of the first metal layer or the reflective layer.
  • FIGS. 18A-18D disclose flow charts of a manufacturing process of an optoelectronic element 1800 in accordance with another embodiment of the present application.
  • FIGS. 18A, 18B, and 18C are top views and FIG. 18D is a cross-sectional view of the optoelectronic element 1800 .
  • a portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142 , the second metal layer 144 , and the second extension part 144 a .
  • the first contact layer 170 is formed on the first transparent structure 16 and includes the connective part 170 a extending toward the optoelectronic unit 14 and electrically connected with the first metal layer 142 .
  • a second contact layer 1802 is formed on the first transparent structure 16 and the passivation layer 147 and electrically connected with the second metal layer 144 and/or the second extension part 144 a , wherein the first contact layer 170 is separated from the second contact layer 1802 , as shown in FIG. 18B .
  • a first isolating layer 1804 is formed on the first contact layer 170 and the second contact layer 1802 to form the optoelectronic element 1800 , as shown in FIG. 18C .
  • the second metal layer 144 of the optoelectronic unit 14 includes the second extension part 144 a to enhance the current spreading of the optoelectronic unit 14 and the light-emitting efficiency is improved.
  • the second contact layer 1802 contacts with the second extension part 144 a to increase the contact area between the second contact layer 1802 and the second metal layer 144 .
  • the path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved.
  • the dimension such as length and width of the first isolating layer 1804 covering the first contact layer 170 and the second contact layer 1802 can be adjusted to change the exposed top surface areas of the first contact layer 170 and the second contact layer 1802 in another embodiment.
  • the exposed top surface areas of the first contact layer 170 and the second contact layer 1802 can be the same or different.
  • the first isolating layer 1804 can be further formed between the first contact layer 170 and the second contact layer 1802 to electrically insulate them so the probability of short is decreased and the yield is increased.
  • the material of the second contact layer 1802 can be the same as that of the first metal layer.
  • the material of the first isolating layer 1804 can be the same as that of the first insulating layer or the optical layer.
  • FIG. 19 illustrates a cross-sectional view of an optoelectronic element 1900 in accordance with another embodiment of the present application.
  • the optoelectronic element 1900 includes the first conductive layer 282 , the second conductive layer 284 , the optoelectronic unit 14 , and the first transparent structure 16 on the second transparent structure 18 , wherein the second transparent structure 18 includes a bevel 186 between the bottom surface and the lateral surface of the second transparent structure 18 to process the light generated from the optoelectronic unit 14 , for instance refracting or reflecting the light generated from the optoelectronic unit 14 .
  • the optoelectronic element 1900 further includes a first covering layer 1902 covering the second transparent structure 18 ; a second covering layer 1906 covering the first covering layer 1902 ; and a third wavelength-converting layer 1904 located between the first covering layer 1902 and the second covering layer 1906 .
  • the light from the optoelectronic unit 14 can be diffused by the third wavelength-converting layer 1904 to return to the optoelectronic unit 14 .
  • the diffused light can encounter total reflection at the interface between the second transparent structure 18 and the first covering layer 1902 so the absorption of the diffused light emitted to optoelectronic unit 14 is decreased and the light extraction efficiency of the optoelectronic element 1900 is increased.
  • the third wavelength-converting layer 1904 includes wavelength-converting particles.
  • a structure of the wavelength-converting particle can include quantum dot.
  • the material of the wavelength-converting particle includes phosphor or a semiconductor material.
  • the phosphor includes yttrium aluminum garnet (YAG), silicate garnet, vanadate garnet, alkaline earth metal silicate, alkaline earth metal sulfides, alkaline earth metal selenides, alkaline earth metal thiogallates, metal nitrides, metal oxo-nitrides, mixed molybdate-tungstate, mixed oxides, mixed glass phosphors, or the combination thereof.
  • the semiconductor material contains more than one element selected from a group consisting of Ga, Al, In, As, P, N, Zn, Cd, and Se.
  • FIGS. 20A-20F disclose flow charts of a manufacturing process of an optoelectronic element 2000 in accordance with another embodiment of the present application.
  • the bonding layer 12 is formed on the temporary carrier 10 .
  • the optoelectronic unit 14 is formed on the bonding layer 12 , wherein the optoelectronic unit 14 includes the first metal layer 142 and the second metal layer 144 .
  • First lead structures 2002 are formed on the bonding layer 12 and separated from the optoelectronic unit 14 , wherein the first lead structures 2002 can be located on the same side or the different sides of the optoelectronic unit 14 . Referring to FIG.
  • a first covering structure 2004 is formed on the bonding layer 12 and the optoelectronic unit 14 to cover the optoelectronic unit 14 and the first lead structures 2002 , and is between the optoelectronic unit 14 and the first lead structures 2002 .
  • a portion of the first covering structure 2004 is removed to expose the first metal layer 142 , the second metal layer 144 , and the first lead structures 2002 .
  • a first isolating layer 2006 is formed on the first covering structure 2003 and exposes the first metal layer 142 , the second metal layer 144 , and the first lead structures 2002 .
  • Second lead structures 2008 are formed on the first isolating layer 2006 , and electrically connect the first metal layer 142 and the second metal layer 144 with the first lead structures 2002 respectively, as shown in FIG. 20D .
  • the first transparent structure 16 is formed on the first isolating layer 2006 and the second lead structures 2008 , wherein the first transparent structure 16 includes a first wavelength-converting layer 2010 on the route where the light generated from the optoelectronic unit 14 passes.
  • the second transparent structure 18 is formed on the first transparent structure 16 , as shown in FIG. 20E . Referring to the FIG. 20 F, the temporary carrier 10 and the bonding layer 12 are removed.
  • a second isolating layer 2012 is formed under the first covering structure 2004 and the optoelectronic unit 14 , and exposes the first lead structures 2002 and a first bottom surface 143 .
  • a first conductive layer 2014 and a second conductive layer 2016 are formed under the second isolating layer 2012 to form the optoelectronic element 2000 , wherein the first conductive layer 2014 and the second conductive layer 2016 are electrically connected with the first lead structures 2002 respectively.
  • the second conductive layer 2016 can be direct contact with the first bottom surface 143 to improve the heat dissipation of the optoelectronic unit 14 and increasing the heat dissipation efficiency of the optoelectronic element 2000 .
  • the first lead structures 2002 can conduct current and electrically connect the first metal layer 142 with the first conductive layer 2014 and the second metal layer 144 with the second conductive layer 2016 .
  • the reflectivity of the first lead structures 2002 is 70% to the light from the optoelectronic unit 14 .
  • the material of the first lead structures 2002 can be the same as that of the first conductive layer and the reflective layer.
  • the first covering structure 2004 covers the optoelectronic unit 14 to fix and support the optoelectronic unit 14 , enhances the mechanical strength of the optoelectronic element 2000 , and electrically isolates the first lead structures 2002 and the optoelectronic unit 14 .
  • the first covering structure 2004 can be transparent to the light generated from the optoelectronic unit 14 , and the material of the first covering structure 2004 can be different from or the same as that of the second transparent structure 18 .
  • the first isolating layer 2006 can isolate the first lead structures 2002 from the optoelectronic unit 14 and the material of the first isolating layer 2006 can be the same as that of the first insulating layer.
  • the second isolating layer 2012 can isolate the first conductive layer 2014 from the second conductive layer 2016 and reflect or diffuse the light generated from the optoelectronic unit 14 .
  • the material of the second conductive layer 2016 can be the same as that of the first insulating layer or the optical layer.
  • the second lead structures 2008 can conduct current, and electrically connect the first metal layer 142 with the first conductive layer 2014 and the second metal layer 144 with the second conductive layer 2016 .
  • the material of the second lead structures 2008 can be the same as that of the first conductive layer.
  • the shape of the second transparent structure 18 of an optoelectronic element 2100 can include arc in a cross-sectional view in another embodiment.
  • the second transparent structure of an optoelectronic element 2200 can be trapezoid in a cross-sectional view, as shown in FIG. 22 .
  • the shape of the second transparent structure 18 can be adjusted to change the optical field of optoelectronic element based on the need of the application.
  • the shape of the second transparent structure 18 includes but is not limited to triangle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view.
  • the shape of the first transparent structure 16 can be the same as or different from that of the second transparent structure 18 .
  • FIGS. 23A-23C disclose flow charts of a manufacturing process of an optoelectronic element 2300 in accordance with another embodiment of the present application.
  • a wafer including the temporary carrier 10 ; the bonding layer 12 formed on the temporary carrier 10 ; the plurality of optoelectronic units 14 formed on the bonding layer 12 ; the first transparent structure 16 formed on the bonding layer 12 and the plurality of optoelectronic units 14 ; and the second transparent structure 18 formed on the first transparent structure 16 , wherein there is a plurality of intervals 2302 between each two of the optoelectronic units 14 .
  • FIG. 23A there is a wafer including the temporary carrier 10 ; the bonding layer 12 formed on the temporary carrier 10 ; the plurality of optoelectronic units 14 formed on the bonding layer 12 ; the first transparent structure 16 formed on the bonding layer 12 and the plurality of optoelectronic units 14 ; and the second transparent structure 18 formed on the first transparent structure 16 , wherein there is
  • a fourth wavelength-converting layer 2304 is formed on the plurality of optoelectronic units 14 , wherein the fourth wavelength-converting layer 2304 covers at least two sides of each optoelectronic unit 14 .
  • a transparent carrier 2306 is formed on the fourth wavelength-converting layer 2304 .
  • the transparent carrier 2306 can be precut to form a cavity 2308 between any two adjacent optoelectronic units 14 . It benefits the subsequent process such as cutting.
  • the shape of the cavity 2308 can be V shape in a cross-sectional view in another embodiment. Referring to FIG.
  • the temporary carrier 10 and the bonding layer 12 are removed, and a plurality of conductive layers 282 / 284 is formed under the surfaces of the plurality of optoelectronic units 14 and the first transparent structure 16 .
  • the wafer can be cut along the cavities 2308 to form the plurality of optoelectronic elements 2300 . Because there are the cavities 2308 formed on the transparent carrier 2306 , the wafer can be separated easier.
  • the material and the structure of the fourth wavelength-converting layer 2304 can be the same as that of the third wavelength-converting layer 1904 .
  • the material of the transparent carrier 2306 can be the same as that of the second transparent structure 18 .
  • FIGS. 24A-24D disclose a manufacturing method of an optoelectronic element 2400 in accordance with another embodiment of the present application. This embodiment is a variation of the embodiment shown in FIGS. 23A-23C .
  • the manufacturing method includes the steps of providing a temporary carrier 10 ; forming a bonding layer 12 on the temporary carrier 10 ; and attaching a plurality of optoelectronic units 14 ′ on temporary carrier 10 by the bonding layer 12 . Then, a first transparent structure 16 is formed on the bonding layer 12 and covering the plurality of optoelectronic units 14 ′; and a second transparent structure 18 is formed on the first transparent structure 16 . Referring to FIG.
  • the temporary carrier 10 and the bonding layer 12 are removed after the second transparent structure 18 is formed, and a plurality of conductive structures 2 ′ is formed on the surfaces of the plurality of optoelectronic units 14 ′ uncovered by the first transparent structure 16 and the surface 162 ′ of the first transparent structure 16 .
  • a support 2410 such as a tape, is adhered to the conductive structures 2 ′ and/or the first transparent structure 16 .
  • the first transparent structure 16 and the second transparent structure 18 is then cut by a cut blade in the region between two adjacent optoelectronic units 14 ′ to form cavities 2408 between two adjacent optoelectronic units 14 ′.
  • the cut blade cuts through the second transparent structure 18 and the first transparent structure 16 such that the inclined sidewalls 2407 approximately reach the bottom surface of the first transparent structure 16 , i.e., the surface of the first transparent structure 16 on which the conductive structures 2 ′ is formed.
  • the cut blade cuts through the second transparent structure 18 and cut into a portion of the first transparent structure 16 .
  • a portion of the first transparent structure 16 which is not cut is kept to connect two adjacent optoelectronic elements 14 ′, and may be separated with the wavelength-converting layer 2404 by a breaking step described below.
  • Each cavity 2408 has sidewalls 2407 , and in the embodiment, when the sidewalls 2407 are inclined, the shape of each cavity 2408 can be V shape in a cross-sectional view so the outer profile of the stack of the first transparent structure 16 and the second transparent structure 18 is substantially a trapezoid in a cross-sectional view for enhancing light extraction.
  • a wavelength-converting layer 2404 is conformably coated along the sidewalls 2407 and on the top surface of the second transparent structure 18 .
  • a breaking step is performed along the cavities 2408 to separate the wavelength-converting layer 2404 , and then expanding the support 2410 to expand the distance between two adjacent optoelectronic units 14 ′ for an encapsulating material to encapsulate the optoelectronic units 14 ′.
  • the encapsulating parts 2409 are formed by encapsulating the optoelectronic elements 14 ′ with the encapsulating material.
  • the encapsulating part 2409 covers the wavelength-converting layer 2404 and the optoelectronic units 14 ′ except the bottom surface of the first transparent structure 16 .
  • the encapsulating part 2409 functions as an optical element, and the shape of the encapsulating part 2409 may be a dome shape to reduce the total internal reflection (TIR) at the interface between the encapsulating part 2409 and the environment, such as air.
  • a material for the encapsulating part 2409 includes polymer material, such as epoxy resin or silicone.
  • the optoelectronic elements 2400 are separated from each other after being removed from the support 2410 in FIG. 24D .
  • the encapsulating part 2409 is formed one by one for each optoelectronic units 14 ′ after the optoelectronic units 14 ′ are separated from each other.
  • FIG. 24E illustrates a detailed structure of an embodiment of the optoelectronic element 2400 in accordance with an embodiment of the present application.
  • the optoelectronic element 2400 includes an optoelectronic unit 14 ′; a first transparent structure 16 covering the optoelectronic unit 14 ′; a second transparent structure 18 on the first transparent structure 16 ; a wavelength-converting layer 2404 on the second transparent structure 18 and covering the first transparent structure 16 and the second transparent structure 18 ; a conductive structures 2 ′ on the first surface 141 of the optoelectronic unit 14 ′ and on the first transparent structure 16 ; and an encapsulating part 2409 covering the wavelength-converting layer 2404 .
  • the optoelectronic unit 14 ′ includes a substrate 145 a , a first conductive layer 145 b , an active layer 145 c , and a second conductive layer 145 d .
  • the optoelectronic unit 14 ′ includes a top surface 141 , a bottom surface 143 opposite to the top surface 141 , and a lateral surface 140 between the top surface 141 and the bottom surface 143 .
  • the first transparent structure 16 is on the optoelectronic unit 14 ′ and covering the lateral surface 140 and the bottom surface 143 .
  • the second transparent structure 18 is on the first transparent structure 16 , and the outer profile of the stack of the first transparent structure 16 and the second transparent structure 18 is substantially a trapezoid in a cross-sectional view.
  • the wavelength-converting layer 2404 is on the second transparent structure 18 and covering the first transparent structure 16 and the second transparent structure 18 wherein a sidewall of the second transparent structure 18 and a sidewall of the first transparent structure 16 are inclined, and together forms a continuous inclined sidewall 2407 .
  • the material the wavelength-converting layer 2404 includes the materials of the third wavelength-converting layer 1904 .
  • the conductive structures 2 ′ includes a first insulating layer 22 , a first conductive layer 282 , and second conductive layer 284 .
  • the first insulating layer 22 is on the first top surface 141 of the optoelectronic unit 14 ′ and the surface 162 ′ of the first transparent structure 16 .
  • the material of the first insulating layer 22 can be the same as or different from that of the first transparent structure 16 .
  • a first opening 212 and a second opening 214 is through the first insulating layer 22 to expose the second conductive type layer 145 d and the first conductive type layer 145 b respectively.
  • the first conductive layer 282 is on the first insulating layer 22 and electrically connects to the first conductive type layer 145 b via the first opening 212 .
  • the second conductive layer 284 is on the first insulating layer 22 and electrically connects to the second conductive type layer 145 d via the second first opening 214 .
  • the encapsulating part 2409 encapsulates the wavelength-converting layer 2404 and exposes the bottom surface of the first transparent structure 16 .
  • the refractive index of the first transparent structure 16 , the second transparent structure 18 , and the encapsulating part 2409 is gradually changed, for example, gradually decreased to the environment for enhancing light extraction efficiency.
  • the refractive index of the first transparent structure 16 is larger than that of the second transparent structure 18
  • the refractive index of the second transparent structure 18 is larger than that of the encapsulating part 2409 .
  • the wavelength-converting layer 2404 covers the bottom surface 143 and the lateral surface 140 of the optoelectronic unit 14 ′ fully to assure that the light generated from the active layer 145 c is transmitted outside the optoelectronic element 2400 after passing through the wavelength-converting layer 2404 . Therefore, the light from the optoelectronic element 2400 has uniform color distribution.
  • FIG. 13 illustrates a schematic diagram of a light-generating device 130 .
  • the light-generating device 130 includes the light-emitting element of any one of the foregoing embodiments of the present application.
  • the light-generating device 130 can be an illumination device such as a street light, a lamp of vehicle, or an illustration source for interior.
  • the light-generating device 130 can be also a traffic sign or a backlight of a backlight module of an LCD.
  • the light-generating device 130 includes a light source 131 adopting any foregoing light-emitting devices; a power supplying system 132 providing current to the light source 131 ; and a control element 133 controlling the power supplying system 132 .
  • FIG. 14 illustrates a schematic diagram of a back light module 140 .
  • the back light module 140 includes the light-generating device 130 of the foregoing embodiment and an optical element 141 .
  • the optical element 141 can process the light generated by the light-generating device 130 for LCD application, such as scattering the light generated from the light-generating device 130 .

Abstract

An optoelectronic element includes an optoelectronic unit, a first metal layer, a second metal layer, a conductive layer and a transparent structure. The optoelectronic unit has a central line in a top view, a top surface, and a bottom surface. The second metal layer is formed on the top surface, and has an extension portion crossing over the central line and extending to the first metal layer. The conductive layer covers the first metal layer and the extension portion. The transparent structure covers the bottom surface without covering the top surface.

Description

    RELATED APPLICATION
  • This application is a continuation application of U.S. patent application of Ser. No. 13/886,083, filed on May 2, 2013, which is a continuation-in-part application of U.S. patent application of Ser. No. 11/674,371, filed on Feb. 13, 2007, which is a continuation-in-part application of U.S. patent application of Ser. No. 11/249,680, filed on Oct. 12, 2005, and the contents of which are incorporated herein by reference in their entireties.
  • This application is a continuation-in-part application of Ser. No. 12/840,848, filed Jul. 21, 2010, which is a continuation-in-part application of Ser. No. 11/160,588, filed Jun. 29, 2005, which is a continuation-in-part application of Ser. No. 10/604,245, filed Jul. 4, 2003, and claims the right of priority based on Taiwan application Ser. No. 098124681, filed Jul. 21, 2009, and Taiwan application Ser. No. 098146171, filed Dec. 30, 2009, and the content of which is hereby incorporated by reference in their entireties.
  • This application claims the right of priority based on Taiwan application Ser. No. 101115716, filed May 2, 2012, and the content of which is hereby incorporated by reference in its entirety.
  • This application claims the right of priority based on Taiwan application Ser. No. 101128707, filed Aug. 8, 2012, and the content of which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to an optoelectronic element, and more particularly, to an optoelectronic element having a conductive structure.
  • 2. Description of the Related Art
  • An optoelectronic element, such as a light-emitting diode (LED) package, has been applied widely in optical display devices, traffic signals, data storing devices, communication devices, illumination devices, and medical apparatuses. Similar to the trend of small and slim commercial electronic product, the development of the optoelectronic element also enters into an era of miniature package. One promising packaging design for semiconductor and optoelectronic element is the Chip-Level Package (CLP).
  • The LED can be further packaged and connected with other elements to form a light-emitting device. FIG. 15 shows a schematic view of a conventional light-emitting device structure. A conventional light-emitting device 150 includes a submount 152 with a circuit 154; a solder 156 on the submount 152, wherein an LED 151 is adhesively fixed on the submount 152 by the solder 156; and an electrical-connecting structure 158 electrically connecting the electrode 155 with the circuit 154. The submount 152 can be a lead frame or a mounting substrate for circuit design and heat dissipation of the light-emitting device 150.
  • SUMMARY OF THE DISCLOSURE
  • An optoelectronic element includes an optoelectronic unit, a first metal layer, a second metal layer, a conductive layer and a transparent structure. The optoelectronic unit has a central line in a top view, a top surface, and a bottom surface. The second metal layer is formed on the top surface, and has an extension portion crossing over the central line and extending to the first metal layer. The conductive layer covers the first metal layer and the extension portion. The transparent structure covers the bottom surface without covering the top surface.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide easy understanding of the application, are incorporated herein and constitute a part of this specification. The drawings illustrate embodiments of the application and, together with the description, serve to illustrate the principles of the application.
  • FIGS. 1A-1C illustrate flow charts of a manufacturing process of optoelectronic elements in accordance with an embodiment of the present application.
  • FIG. 2A illustrates a cross-sectional view of an optoelectronic element in accordance with an embodiment of the present application.
  • FIG. 2B illustrates a cross-sectional view of the optoelectronic unit shown in FIG. 2A.
  • FIG. 2C illustrates a top view of the optoelectronic element shown in FIG. 2A.
  • FIGS. 3A-3F illustrate flow charts of a manufacturing process of electroplating an electrode on optoelectronic elements in accordance with an embodiment of the present application.
  • FIG. 4 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 5 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 6 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 7 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 8 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 9A-9C illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 10A-10B illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 11 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 12 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 13 illustrates a cross-sectional view of a light-generating device in accordance with another embodiment of the present application.
  • FIG. 14 illustrates a cross-sectional view of a backlight module in accordance with another embodiment of the present application.
  • FIG. 15 illustrates a cross-sectional view of a conventional light-emitting device.
  • FIGS. 16A-16C illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 17A-17D illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 18A-18D illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 19 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 20A-20F illustrate flow charts of a manufacturing process of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 21 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIG. 22 illustrates a cross-sectional view of an optoelectronic element in accordance with another embodiment of the present application.
  • FIGS. 23A-23C illustrate flow charts of a manufacturing process of an optoelectronic element 2300 in accordance with another embodiment of the present application.
  • FIGS. 24A-24D illustrate a manufacturing method of an optoelectronic element 2400 in accordance with another embodiment of the present application.
  • FIG. 24E illustrates a detailed structure of the optoelectronic element 2400 in accordance with an embodiment of the present application.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • To better and concisely explain the disclosure, the same name or the same reference number given or appeared in different paragraphs or figures along the specification should has the same or equivalent meanings while it is once defined anywhere of the disclosure.
  • The following shows the description of the embodiments of the present disclosure in accordance with the drawings.
  • FIGS. 1A-1C disclose flow charts of a manufacturing process of optoelectronic elements 1 in accordance with an embodiment of the present application. Referring to FIG. 1A, there is a wafer including a temporary carrier 10; a bonding layer 12 formed on the temporary carrier 10; and a plurality of optoelectronic units 14 formed on the bonding layer 12. Referring to FIG. 1B, a first transparent structure 16 is formed on the bonding layer 12 and the plurality of optoelectronic units 14. The first transparent structure 16 can cover more than one surface of at least one of the plurality of optoelectronic units 14. A second transparent structure 18 is formed on the first transparent structure 16. Referring to FIG. 1C, the temporary carrier 10 and the bonding layer 12 are removed, and a plurality of conductive structures 2 is formed on the surfaces of the plurality of optoelectronic units 14 and the first transparent structure 16. The wafer can be separated to form the plurality of optoelectronic elements 1.
  • The temporary carrier 10 and the second transparent structure 18 can support the optoelectronic unit 14 and the first transparent structure 16. The material of the temporary carrier 10 includes conductive material such as Diamond Like Carbon (DLC), graphite, carbon fiber, Metal Matrix Composite (MMC), Ceramic Matrix Composite (CMC), Polymer Matrix Composite (PMC), Ni, Cu, Al, Si, ZnSe, GaAs, SiC, GaP, GaAsP, ZnSe, InP, LiGaO2, LiAlO2, or the combination thereof, or insulating material such as sapphire, diamond, glass, epoxy, quartz, acryl, Al2O3, ZnO, AlN, or the combination thereof.
  • The second transparent structure 18 can be transparent to the light generated from the optoelectronic unit 14. The material of the second transparent structure 18 can be transparent material such as sapphire, diamond, glass, epoxy, quartz, acryl, SiOx, Al2O3, ZnO, silicone, or the combination thereof. In addition, the second transparent structure 18 can also be transparent to the light, like the sunlight, from the environment in another embodiment. A thickness of the second transparent structure 18 is about 300 μm to 500 μm.
  • The bonding layer 12 can adhesively connect the temporary carrier 10 with the optoelectronic unit 14, and be easily removed after the second transparent structure 18 is formed on the first transparent structure 16. The material of the bonding layer 12 can be insulating material, UV tape, or thermal release tape. The insulating material includes but is not limited to benzocyclobutene (BCB), Su8, epoxy, or spin-on-glass (SOG).
  • The first transparent structure 16 covers the optoelectronic units 14 to fix and support the optoelectronic units 14 and enhances the mechanical strength of the optoelectronic elements 1. The first transparent structure 16 can be transparent to the light generated from the optoelectronic unit 14. The material of the first transparent structure 16 and the second transparent structure 18 can be the same or different. The coefficient of thermal expansion (CTE) of the first transparent structure 16 is about 50 ppm/° C.˜400 ppm/° C. The material of the first transparent structure 16 can be transparent material such as epoxy, polyimide (PI), BCB, perfluorocyclobutane (PFCB), Su8, acrylic resin, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide, fluorocarbon polymer, glass, Al2O3, SINR, SOG, or the combination thereof. The refractive indices of the first transparent structure 16 and the second transparent structure 18 can be the same or different. A thickness of the first transparent structure 16 is about 200 μm to 300 μm. In addition, the first transparent structure 16 can be transparent to the light from the environment such as the sunlight as well.
  • The optoelectronic unit 14 provides luminous energy, electric energy, or both, such as the LED or the solar cell. A thickness of the optoelectronic unit 14 is about 100 μm. When the optoelectronic unit 14 is the LED for emitting light, the refractive index of the first transparent structure 16 is larger than that of the second transparent structure 18 to increase the probability of extracting the light out of the optoelectronic element 1. When the optoelectronic unit 14 is the solar cell for absorbing light, the refractive index of the first transparent structure 16 is smaller than that of the second transparent structure 18 to increase the probability of the light entering the optoelectronic element 1.
  • Referring to FIG. 2A which shows a cross-sectional view of an optoelectronic element 1 in accordance with an embodiment of the present application, the optoelectronic element 1 includes the second transparent structure 18; the first transparent structure 16 on the second transparent structure 18; the optoelectronic unit 14 on the first transparent structure 16; and the conductive structure 2 on the optoelectronic unit 14 and the first transparent structure 16. The optoelectronic unit 14 includes a first metal layer 142 and a second metal layer 144 formed on a first top surface 141; a first bottom surface 143 opposite to the first top surface 141 and close to the second transparent structure 18; and more than one lateral surface 140 between the first top surface 141 and the first bottom surface 143. The conductive structure 2 includes a first insulating layer 22 formed on the optoelectronic unit 14 and the first transparent structure 16 and covering portions of the first metal layer 142 and the second metal layer 144; a reflective layer 24 formed on the first insulating layer 22; a second insulating layer 26 formed on the first insulating layer 22 and the reflective layer 24 and covering the reflective layer 24; a first opening 212 and a second opening 214 formed in the first insulating layer 22 and the second insulating layer 26 to expose the first metal layer 142 and the second metal layer 144 respectively; and an electrode 28 including a first conductive layer 282 and a second conductive layer 284 which are formed on the second insulating layer 26, and in the first opening 212 and the second opening 214 to electrically connect with the first metal layer 142 and the second metal layer 144 respectively.
  • The first insulating layer 22 can electrically isolate the optoelectronic unit 14 from the reflective layer 24 and protect the optoelectronic unit 14 from being damaged by the element diffused from the material of the reflective layer 24. The first transparent structure 16 includes a second top surface 162 under the first insulating layer 22 and a second bottom surface 166 close to the second transparent structure 18. The second top surface 162 is substantially lower than the first top surface 141. However, the second top surface 162 includes a slope 164 adjacent to the first top surface 141. It is better that the slope 164 can be located over a region of the first top surface 141 between the first and the second metal layers 142 and 144 and the lateral surface 140. Moreover, a distance between a portion of the second top surface 162 and the second bottom surface 166 can be the same as that between the second bottom surface 166 and the first top surface 141 in another embodiment.
  • The first insulating layer 22 can be adhesive to the first transparent structure 16 and/or to the reflective layer 24. The transparency of the first insulating layer 22 to the light generated from the optoelectronic unit 14 and/or from the environment is higher than 85%. The CTE of the first insulating layer 22 is smaller than that of the first transparent structure 16. The CTE of the first insulating layer 22 can be between that of the first transparent structure 16 and the reflective layer 24 preferably. The CTE of the first insulating layer 22 is about 3 ppm/° C. to 200 ppm/° C., preferably 20 ppm/° C. to 70 ppm/° C. The material of the first insulating layer 22 can be the same as or different from that of the first transparent structure 16. The material of the first insulating layer 22 can be photoresist material for forming the openings so the first insulating layer 22 needs to be cured in the lithography process. The curing temperature of the first insulating layer 22 is not more than 350° C. to avoid damaging the first transparent structure 16 in high temperature. The photoresist material includes but is not limited to AL-polymer, BCB, SINR, Su8, or SOG. The first insulating layer 22 can include a rough surface with a roughness higher than that of the first top surface 141. A thickness of the first insulating layer 22 is substantially constant, for example, about 2 μm to 3 μm.
  • The reflective layer 24 can reflect the light generated from the optoelectronic unit 14 or from the environment. A thickness of the reflective layer 24 is substantially constant, for example, about 1 μm to 3 μm. The reflective layer 24 overlaps portions of the first metal layer 142 and the second metal layer 144. The reflective layer 24 can further include a plurality of sub-layers (not shown). The CTE of the reflective layer 24 is about 5 ppm/° C. to 25 ppm/° C. The reflective layer 24 can have a reflectivity of 70% or above to the light generated from the optoelectronic unit 14 and/or from the environment. The material of the reflective layer 24 includes but is not limited to metal material such as Cu, Al, Sn, Au, Ag, Ti, Ni, Ag—Ti, Ni—Sn, Au alloy, Ni—Ag, Ti—Al, and so on. The reflective layer 24 can include a rough surface with a roughness higher than that of the first top surface 141.
  • The second insulating layer 26 can electrically isolate the first conductive layer 282 and the second conductive layer 284 from the reflective layer 24, and protect the reflective layer 24 from being damaged by the first conductive layer 282 and the second conductive layer 284. The second insulating layer 26 can fix the reflective layer 24 and enhances the mechanical strength of the conductive structure 2 as well. The material of the second insulating layer 26 can be the same as and/or different from that of the first insulating layer 22. The material of the second insulating layer 26 includes but is not limited to photoresist material such as AL-polymer, BCB, SINR, Su8, SOG, PI, or DLC. The second insulating layer 26 can include a rough surface with a roughness higher than that of the first top surface 141. A thickness of the second insulating layer 26 is substantially constant, for example, about 4 μm to 5 μm.
  • The electrode 28 can be integrally formed by evaporation or electroplating. The ratio of the top surface area of the electrode 28 to that of the second transparent structure 18 is not smaller than 50%. The first conductive and second conductive layers 282 and 284 are for receiving external voltage. The material of the first conductive and second conductive layers 282 and 284 can be metal material. The metal material includes but is not limited to Cu, Sn, Au, Ni, Ti, Pb, Cu—Sn, Cu—Zn, Cu—Cd, Sn—Pb—Sb, Sn—Pb—Zn, Ni—Sn, Ni—Co, Au alloy, Au—Cu—Ni—Au, the combination thereof, and so on. The first conductive layer 282 and/or the second conductive layer 284 can include a plurality of sub-layers (not shown). The first conductive layer 282 and/or the second conductive layer 284 can have a reflectivity of 70% or above to the light generated from the optoelectronic unit 14 and/or from the environment. A thickness of the first conductive layer 282 is a substantially constant, for example, about 12 μm. A thickness of the second conductive layer 284 is substantially constant, for example, about 12 μm. The ratio of the top surface area of the first conductive layer 282 and the second conductive layer 284 to the area of the second bottom surface 166 is more than 50%.
  • The optoelectronic unit 14 can be an LED including a light emitting structure 145, a first dielectric layer 149 a, a passivation layer 147, a first bonding pad 146, a second bonding pad 148, the first metal layer 142, the second metal layer 144, and a second dielectric layer 149 b, as FIG. 2B shows. The light emitting structure 145 includes a substrate 145 a, a first conductive type layer 145 b, an active layer 145 c, and a second conductive type layer 145 d. The active layer 145 c is disposed on the first conductive type layer 145 b and is a light emitting layer. The second conductive type layer 145 d is disposed on the active layer 145 c. The first bonding pad 146 is disposed on the light emitting structure 145 and is electrically connected to the first conductive layer 145 b. The second bonding pad 148 is disposed on the light emitting structure 145 and is electrically connected to the second conductive type layer 145 d. The passivation layer 147 is disposed on the light emitting structure 145 and isolates the first bonding pad 146 from the active layer 145 c and the second conductive type layer 145 d. The first dielectric layer 149 a is disposed on the light emitting structure 145. The first metal layer 142 is disposed on the light emitting structure 145 and is electrically connected to the first conductive type layer 145 b. A portion of the first metal layer 142 is disposed on the first dielectric layer 149 a. The second metal layer 144 is disposed on the light emitting structure 145 and is electrically connected to the second conductive type layer 145 d. A portion of the second metal layer 144 is disposed on the first dielectric layer 149 a. The second dielectric layer 149 b is disposed on the first dielectric layer 149 a. The first dielectric layer 149 a and the second dielectric layer 149 b electrically isolate the first metal layer 142 from the second metal layer 144. A portion of the first dielectric layer 149 a is a transparent layer, and a surface of the first dielectric layer 149 a contacting the first metal layer 142 and/or the second metal layer 144 is for reflecting the light generated from the light emitting structure 145. The first dielectric layer 149 a can include a reflective structure in another embodiment. The reflective structure includes distributed bragg reflector (DBR) and/or a reflective film. The reflective film can includes metal material such as Cu, Al, Sn, Au, Ag, Ti, Ni, Ag—Ti, Ni—Sn, Au alloy, Ni—Ag, Ti—Al, and so on.
  • There are a first distance d1 between the first bonding pad 146 and the second bonding pad 148, a second distance d2 between the first metal layer 142 and the second metal layer 144, and a third distance d3 between the first conductive layer 282 and the second conductive layer 284, as FIG. 2B shows. The first distance d1 is larger than the second distance d2 and the third distance d3. The second distance d2 and the third distance d3 can be the same or difference. The second distance d2 is larger than the third distance d3 in an embodiment. The second distance d2 can also be smaller than the third distance d3 in another embodiment. The third distance d3 is about 100 μm to 300 μm. The second transparent structure 18 contains a first width w1 and the optoelectronic unit 14 contains a second width w2. The ratio of the first width w1 to the second width w2 is about 1.5 to 3, preferably 2 to 2.5.
  • Referring to FIG. 2C which shows a top view of the optoelectronic element 1 shown in FIG. 2A, the first conductive layer 282 contains a truncated corner 286 at a side far from the second conductive layer 284. There is a fourth distance d4 between the first opening 212 and the reflective layer 24 that is about 25 μm to 75 μm.
  • The optoelectronic element 1 can be bonded to a submount through an adhesive material in another embodiment. The adhesive material can be metal material, transparent material, or an anisotropic conductive film. The metal material includes but is not limited to Cu, Sn, Au, Ni, Ti, Pb, Cu—Sn, Cu—Zn, Cu—Cd, Sn—Pb—Sb, Sn—Pb—Zn, Ni—Sn, Ni—Co, Au alloy, Au—Cu—Ni—Au, or the combination thereof. The transparent material includes but is not limited to BCB, Sub, epoxy, or SOG.
  • FIGS. 3A-3F disclose flow charts of a manufacturing process of electroplating the electrode 28 on the optoelectronic unit 14. Referring to FIG. 3A, a seed layer 30 is formed on the optoelectronic units 14 and the first transparent structure 16. A first photoresist 32 is formed on the seed layer 30 to expose portions of the seed layer 30, as FIG. 3B shows. An electroplating layer 34 is electroplated on the portions of the seed layer 30 where the first photoresist 32 does not cover, as FIG. 3C shows. Referring to FIG. 3D, the first photoresist 32 is removed to expose other portions of the seed layer 30. A second photoresist 36 is formed on the electroplating layer 34. Then, the exposed portions of the seed layer 30 are removed, as FIG. 3E shows. The second photoresist 36 is removed to expose the electroplating layer 34 for forming the electrode 28, referring to FIG. 3F.
  • Referring to FIG. 4 which shows a cross-sectional view of an optoelectronic element 4 in accordance with another embodiment of the present application, the optoelectronic element 4 is similar to the optoelectronic element 1 and further includes a recess 40 formed in the second transparent structure 18 such that the second transparent structure 18, as an optical element, can process the light generated from the optoelectronic unit 14 or from the environment. The recess 40 can be further formed in the first transparent structure 16. The shape of the recess 40 can be triangle in the cross-sectional view in this embodiment.
  • Referring to FIG. 5, the second transparent structure 18 of an optoelectronic element 5 can be trapezoid in another embodiment. The second transparent structure 18 further includes a third bottom surface 182. The third bottom surface 182 can be a rough surface with a roughness higher than that of the first top surface 141, or a flat surface. The shape of the second transparent structure 18 includes but is not limited to triangle, semicircle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view. The first transparent structure 16 can also include the same or different shape of the second transparent structure 18. The second bottom surface 166 can also be a rough surface with a roughness higher than that of the first top surface 141, or a flat surface in another embodiment.
  • An optoelectronic element 6 is similar to the optoelectronic element 5 and further includes a mirror 60 formed under the third bottom surface 182, as FIG. 6 shows. The mirror 60 can reflect the light generated from the optoelectronic unit 14 or from the environment. Referring to FIG. 7, an optoelectronic element 7 includes the optoelectronic unit 14, the conductive structure 2, the first transparent structure 16, and the second transparent structure 18. The second transparent structure 18 contains a first side 184 which is not parallel to the first top surface 141 and a mirror 70 is formed under the first side 184 to reflect light generated from the optoelectronic unit 14 or from the environment, in another embodiment. The first side 184 can be parabolic curve, arc, or bevel to the first top surface 141 in the cross-sectional view, for example. In another embodiment, an optoelectronic element 8 is similar to the optoelectronic element 7 and the first transparent structure 16 further includes a second side 168 which is not parallel to the first top surface 141, as FIG. 8 shows. A mirror 80 is formed under the first side 184 and the second side 168 to reflect light generated from the optoelectronic unit 14 or from the environment.
  • FIGS. 9A-9C disclose flow charts of a manufacturing process of an optoelectronic element 9 in accordance with another embodiment of the present application. Referring to FIGS. 9A-9B, the optoelectronic unit 14 and the first transparent structure 16 are located on the second transparent structure 18. The passivation layer 147 is formed on the first top surface 141 and exposes the first metal layer 142 and the second metal layer 144, wherein the passivation layer 147 can cover portions of the first metal layer 142 and the second metal layer 144. In another embodiment, the passivation layer 147 can expose all the first metal layer 142 and the second metal layer 144. Further, the passivation layer 147 can expose a portion of the first top surface 141. An optical layer 90 is formed on the optoelectronic unit 14 and the first transparent structure 16. The optical layer 90 covers at least portions of the optoelectronic unit 14 and the first transparent structure 16 and surrounds the first metal layer 142 and the second metal layer 144. Referring to FIG. 9C, a portion of the optical layer 90 is removed to form the first opening 212 and the second opening 214 that expose the first metal layer 142 and the second metal layer 144. The first conductive layer 282 and the second conductive layer 284 are formed on the optical layer 90 and in the first opening 212 and the second opening 214, wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively to form the optoelectronic element 9. The optical layer 90 can electrically insulate the first conductive layer 282 from the second conductive layer 284. The reflectivity of the optical layer 90 is at least 50% to the light generated from the optoelectronic unit 14. The optical layer 90 can be a single-layer structure. Optionally, the optical layer 90 includes a diffusing surface 92 far from the first conductive layer 282. The diffusing surface 92 includes a plurality of particles diffusing the light generated from the optoelectronic unit 14. The diffusion is a phenomenon that light emitted to a rough surface of an object can be reflected disorderly. In another embodiment, the optical layer 90 can include a plurality of insulating layers stacked to form a Distributed Bragg Reflector (DBR). The thickness of the optical layer 90 is about 4 μm to 20 μm, preferably 5 μm to 10 μm. The material of the optical layer 90 can be epoxy, SiOx, Al2O3, TiO2, silicone, resin, or the combination thereof. The material of the particles can be Al2O3, TiO2, silicone, or the combination thereof. A method of forming the optical layer 90 includes spin coating, screen printing, or stencil printing. A method of removing the optical layer 90 includes etching. The optical layer 90 can provide functions of diffusion, reflection, and insulation so the amount and cost of diffusing material, reflective material, and insulating material can be reduced, and the damage caused by the difference of the material characteristic, such as coefficient of thermal expansion or mechanical strength, can be avoided. Therefore, the yield can be enhanced. Furthermore, the optical layer 90 can prevent the moisture from entering the optoelectronic unit 14 so the reliability is improved. The first conductive layer 282 includes a first plug region 281 above the first metal layer 142 and a first extended region 283 overlapping a portion of the optical layer 90, wherein the distance between the first plug region 281 and the first top surface 141 might be smaller than that between the first extended region 283 and the first top surface 141. The distance between the first plug region 281 and the first top surface 141 is smaller than that between the top surface of the optical layer 90 and the first top surface 141 in another embodiment. The top surface of the second conductive layer 284 includes a second plug region 285 above the second metal layer 144 and a second extended region 287 overlapping a portion of the optical layer 90, wherein the distance between the second plug region 285 and the first top surface 141 is smaller than that between the second extended region 287 and the first top surface 141. The distance between the second plug region 285 and the first top surface 141 is smaller than that between the top surface of the optical layer 90 and the first top surface 141 in another embodiment. Furthermore, there might be recesses 288/289 formed between the optical layer 90 and the first metal layer 142/the second metal layer 144 so the first conductive layer 282 and the second conductive layer 284 can further fill into the recesses 288/289 to enhance the adhesion between the first conductive layer 282/the second conductive layer 284 and the optical layer 90. The recesses are formed when a portion of the optical layer 90 is removed to expose the first metal layer 142 and the second metal layer 144. The method of removing the optical layer 90 can be wet etching.
  • FIGS. 10A-10B disclose flow charts of a manufacturing process of an optoelectronic element 100 in accordance with another embodiment of the present application. Referring to FIG. 10A, the optoelectronic unit 14 and the first transparent structure 16 are located on the second transparent structure 18. The first insulating layer 22 is formed on the optoelectronic unit 14 and the first transparent structure 16, covers at least portions of the optoelectronic unit 14 and the first transparent structure 16, and surrounds the first metal layer 142 and the second metal layer 144. The reflective layer 24 is formed on the first insulating layer 22 and the second insulating layer 26 is formed on the reflective layer 24. Referring to FIG. 10B, portions of the first insulating layer 22, the second insulating layer 26, and the reflective layer 24 are removed to form the first opening 212 and the second opening 214 and expose the first metal layer 142 and the second metal layer 144. The first conductive layer 282 and the second conductive layer 284 are formed on the second insulating layer 26 and in the first opening 212 and the second opening 214, wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively to form the optoelectronic element 100. A portion of the reflective layer 24 between the first insulating layer 22 and the second insulating layer 26 is between the first metal layer 142 and the second metal layer 144. The probability of reflecting the light generated from the optoelectronic unit 14 is therefore enhanced to increase light-emitting efficiency. Furthermore, the moisture can be prevented from entering the optoelectronic unit 14 so the reliability is enhanced. The reflective layer 24 can be electrically connected with the electrode 28 and/or the first metal layer 142 and the second metal layer 144.
  • FIG. 11 illustrates a cross-sectional view of an optoelectronic element 110 in accordance with another embodiment of the present application. The optoelectronic element 110 includes the first conductive layer 282, the second conductive layer 284, the optoelectronic unit 14, and the first transparent structure 16 on the second transparent structure 18. The first transparent structure 16 includes a first transparent layer 161 covering the optoelectronic unit 14; a second transparent layer 163 covering the first transparent layer 161; a third transparent layer 165 covering the second transparent layer 163; a first wavelength-converting layer 112 located between the first transparent layer 161 and the second transparent layer 163; and a second wavelength-converting layer 114 located between the second transparent layer 163 and the third transparent layer 165. The first wavelength-converting layer 112 can be excited by the light generated from the optoelectronic unit 14 and emit light having a first wavelength. The second wavelength-converting layer 114 can be excited by the light generated from the optoelectronic unit 14 and emit light having a second wavelength. The light generated from the optoelectronic unit 14 has a third wavelength. The third wavelength is smaller than the first wavelength and the second wavelength, and the first wavelength is larger than the second wavelength. The bandgap of the first wavelength is smaller than the bandgap of the wavelength which can be absorbed by the second wavelength-converting layer 114 so the absorption of the light having the first wavelength by the second wavelength-converting layer 114 and the loss of conversion of the light having the first wavelength can be reduced. The light-emitting efficiency of the optoelectronic element 110 is therefore increased. The first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 can absorb the light generated from the optoelectronic unit 14 and emit the excited light, and diffuse the light generated from the optoelectronic unit 14 and the excited light generated from the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114. The structure of the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 can include quantum dot. The material of the first wavelength-converting layer 112 and/or the second wavelength-converting layer 114 includes a semiconductor material or phosphor. The phosphor includes yttrium aluminum garnet (YAG), silicate garnet, vanadate garnet, alkaline earth metal silicate, alkaline earth metal sulfides, alkaline earth metal selenides, alkaline earth metal thiogallates, metal nitrides, metal oxo-nitrides, mixed molybdate-tungstate, mixed oxides, mixed glass phosphors, or the combination thereof. The semiconductor material contains more than one element selected from a group consisting of Ga, Al, In, As, P, N, Zn, Cd, and Se.
  • FIG. 12 illustrates a cross-sectional view of an optoelectronic element 120 in accordance with another embodiment of the present application. The optoelectronic element 120 includes the first conductive layer 282, the second conductive layer 284, the optoelectronic unit 14, the first transparent structure 16 on the second transparent structure 18, and a window layer 122 on a side of the second transparent structure 18 opposite to the first transparent structure 16. The refraction index of the window layer 122 is between that of the second transparent structure 18 and the environment for reducing the probability of the total internal reflection at the interface of the second transparent structure 18 and the environment. The refraction index of the window layer 122 is about larger than 1 and/or smaller than 2, preferably between 1.1 and 1.4. The material of the window layer 122 can be formed on the second transparent structure 18 and proceeds with the reflow process to form the window layer 122. The window layer 122 can perform as lens to process the light from the optoelectronic unit 14. The shape of the window layer 122 includes but is not limited to triangle, semicircle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view. The material of the window layer 122 can be epoxy, spin-on-glass (SOG), SiOx, silicone, polymethyl methacrylate (PMMA), or the combination thereof.
  • FIGS. 16A-16C disclose flow charts of a manufacturing process of an optoelectronic element 1600 in accordance with another embodiment of the present application. FIG. 16A is a top view and FIGS. 16B and 16C are cross-sectional views of the optoelectronic element 1600. Referring to FIG. 16A, the first metal layer 142 includes a first extension part 142 a and/or the second metal layer 144 includes a second extension part 144 a. A portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142 and the first extension part 142 a and/or the second metal layer 144 and the second extension part 144 a. The optical layer 90 is formed on the optoelectronic unit 14 and a first transparent structure 16 as shown in FIG. 16B. A portion of the optical layer 90 is removed to expose the first metal layer 142 and the first extension part 142 a and/or the second metal layer 144 and the second extension part 144 a. The first conductive layer 282 and the second conductive layer 284 are formed on the optical layer 90 and the optoelectronic unit 14 to form the optoelectronic element 1600, wherein the first conductive layer 282 and the second conductive layer 284 are electrically connected with the first metal layer 142 and the second metal layer 144 respectively, as shown in FIG. 16C. The first metal layer 142 and the second metal layer 144 of the optoelectronic element 1600 include the first extension part 142 a and the second extension part 144 a to enhance the current spreading and the light-emitting efficiency of the optoelectronic unit 14 is improved. The first conductive layer 282 contacts the first extension part 142 a and/or the second conductive layer 284 contacts the second extension part 144 a to increase the contact area between the first conductive layer 282 and the first metal layer 142 and/or between the second conductive layer 284 and the second metal layer 144. The path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved.
  • FIGS. 17A-17D disclose flow charts of a manufacturing process of an optoelectronic element 1700 in accordance with another embodiment of the present application. FIGS. 17A, 17B, and 17C are top views and FIG. 17D is a cross-sectional view of the optoelectronic element 1700. Referring to FIG. 17A, a portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142, the second metal layer 144, and the second extension part 144 a. A first contact layer 170 is formed on the first transparent structure 16 and includes a connective part 170 a extending toward the optoelectronic unit 14 and electrically connected with the first metal layer 142. The connective part 170 a directly contacts with the first metal layer 142. An optical layer 172 is formed on the first contact layer 170 and a first transparent structure 16 and exposes a portion of the first contact layer 170, as shown in FIG. 17B. As shown in FIGS. 17C and 17D, the first conductive layer 282 is formed on the optical layer 172 and the first contact layer 170. The second conductive layer 284 is formed on the optical layer 172, the second metal layer 144, and the second extension part 144 a, and is electrically connected with the second metal layer 144 and the second extension part 144 a to form the optoelectronic element 1700, wherein the second conductive layer 284 is electrically insulated from the first contact layer 170. The second metal layer 144 of the optoelectronic unit 14 includes the second extension part 144 a to enhance the current spreading and the light-emitting efficiency of the optoelectronic unit 14 is improved. The second conductive layer 284 contacts with the second extension part 144 a to increase the contact area between the second conductive layer 284 and the second metal layer 144. The path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved. The optical layer 172 covering the first contact layer 170 electrically insulates the second conductive layer 284 and the first metal layer 142 so the second conductive layer 284 can extend above the first metal layer 142 to increase the upper surface area of the second conductive layer 284. Path of heat dissipation and current conduction of the optoelectronic element 1700 is therefore increased to improve efficiency. When the upper surface areas of the first conductive layer 282 and the second conductive layer 284 are different, for instance the upper surface area of the second conductive layer 284 is larger than that of the first conductive layer 282, it is beneficial to the subsequent process such as alignment so the yield is increased. The first contact layer 170 can reflect the light generated from the optoelectronic unit 14 to increase the light extraction efficiency of the optoelectronic element 1700. The material of the first contact layer 170 can be the same as that of the first metal layer or the reflective layer.
  • FIGS. 18A-18D disclose flow charts of a manufacturing process of an optoelectronic element 1800 in accordance with another embodiment of the present application. FIGS. 18A, 18B, and 18C are top views and FIG. 18D is a cross-sectional view of the optoelectronic element 1800. Referring to FIG. 18A, a portion of the passivation layer 147 of the optoelectronic unit 14 is removed to expose the first metal layer 142, the second metal layer 144, and the second extension part 144 a. The first contact layer 170 is formed on the first transparent structure 16 and includes the connective part 170 a extending toward the optoelectronic unit 14 and electrically connected with the first metal layer 142. A second contact layer 1802 is formed on the first transparent structure 16 and the passivation layer 147 and electrically connected with the second metal layer 144 and/or the second extension part 144 a, wherein the first contact layer 170 is separated from the second contact layer 1802, as shown in FIG. 18B. A first isolating layer 1804 is formed on the first contact layer 170 and the second contact layer 1802 to form the optoelectronic element 1800, as shown in FIG. 18C. Referring to FIGS. 18A and 18D, the second metal layer 144 of the optoelectronic unit 14 includes the second extension part 144 a to enhance the current spreading of the optoelectronic unit 14 and the light-emitting efficiency is improved. The second contact layer 1802 contacts with the second extension part 144 a to increase the contact area between the second contact layer 1802 and the second metal layer 144. The path of heat dissipation and current conduction is increased and the efficiency of heat dissipation is therefore improved. The dimension such as length and width of the first isolating layer 1804 covering the first contact layer 170 and the second contact layer 1802 can be adjusted to change the exposed top surface areas of the first contact layer 170 and the second contact layer 1802 in another embodiment. The exposed top surface areas of the first contact layer 170 and the second contact layer 1802 can be the same or different. When the exposed upper surface areas of the first contact layer 170 and the second contact layer 1802 are different, for instance the exposed upper surface area of the second contact layer 1802 is larger than that of the first contact layer 170, it is beneficial to the subsequent process such as alignment so the yield is increased. Referring to FIG. 18D, the first isolating layer 1804 can be further formed between the first contact layer 170 and the second contact layer 1802 to electrically insulate them so the probability of short is decreased and the yield is increased. The material of the second contact layer 1802 can be the same as that of the first metal layer. The material of the first isolating layer 1804 can be the same as that of the first insulating layer or the optical layer.
  • FIG. 19 illustrates a cross-sectional view of an optoelectronic element 1900 in accordance with another embodiment of the present application. The optoelectronic element 1900 includes the first conductive layer 282, the second conductive layer 284, the optoelectronic unit 14, and the first transparent structure 16 on the second transparent structure 18, wherein the second transparent structure 18 includes a bevel 186 between the bottom surface and the lateral surface of the second transparent structure 18 to process the light generated from the optoelectronic unit 14, for instance refracting or reflecting the light generated from the optoelectronic unit 14. The optoelectronic element 1900 further includes a first covering layer 1902 covering the second transparent structure 18; a second covering layer 1906 covering the first covering layer 1902; and a third wavelength-converting layer 1904 located between the first covering layer 1902 and the second covering layer 1906. The light from the optoelectronic unit 14 can be diffused by the third wavelength-converting layer 1904 to return to the optoelectronic unit 14. The diffused light can encounter total reflection at the interface between the second transparent structure 18 and the first covering layer 1902 so the absorption of the diffused light emitted to optoelectronic unit 14 is decreased and the light extraction efficiency of the optoelectronic element 1900 is increased. The third wavelength-converting layer 1904 includes wavelength-converting particles. A structure of the wavelength-converting particle can include quantum dot. The material of the wavelength-converting particle includes phosphor or a semiconductor material. The phosphor includes yttrium aluminum garnet (YAG), silicate garnet, vanadate garnet, alkaline earth metal silicate, alkaline earth metal sulfides, alkaline earth metal selenides, alkaline earth metal thiogallates, metal nitrides, metal oxo-nitrides, mixed molybdate-tungstate, mixed oxides, mixed glass phosphors, or the combination thereof. The semiconductor material contains more than one element selected from a group consisting of Ga, Al, In, As, P, N, Zn, Cd, and Se.
  • FIGS. 20A-20F disclose flow charts of a manufacturing process of an optoelectronic element 2000 in accordance with another embodiment of the present application. Referring to FIG. 20A, the bonding layer 12 is formed on the temporary carrier 10. The optoelectronic unit 14 is formed on the bonding layer 12, wherein the optoelectronic unit 14 includes the first metal layer 142 and the second metal layer 144. First lead structures 2002 are formed on the bonding layer 12 and separated from the optoelectronic unit 14, wherein the first lead structures 2002 can be located on the same side or the different sides of the optoelectronic unit 14. Referring to FIG. 20B, a first covering structure 2004 is formed on the bonding layer 12 and the optoelectronic unit 14 to cover the optoelectronic unit 14 and the first lead structures 2002, and is between the optoelectronic unit 14 and the first lead structures 2002. Referring to FIG. 20C, a portion of the first covering structure 2004 is removed to expose the first metal layer 142, the second metal layer 144, and the first lead structures 2002. A first isolating layer 2006 is formed on the first covering structure 2003 and exposes the first metal layer 142, the second metal layer 144, and the first lead structures 2002. Second lead structures 2008 are formed on the first isolating layer 2006, and electrically connect the first metal layer 142 and the second metal layer 144 with the first lead structures 2002 respectively, as shown in FIG. 20D. The first transparent structure 16 is formed on the first isolating layer 2006 and the second lead structures 2008, wherein the first transparent structure 16 includes a first wavelength-converting layer 2010 on the route where the light generated from the optoelectronic unit 14 passes. The second transparent structure 18 is formed on the first transparent structure 16, as shown in FIG. 20E. Referring to the FIG. 20 F, the temporary carrier 10 and the bonding layer 12 are removed. A second isolating layer 2012 is formed under the first covering structure 2004 and the optoelectronic unit 14, and exposes the first lead structures 2002 and a first bottom surface 143. A first conductive layer 2014 and a second conductive layer 2016 are formed under the second isolating layer 2012 to form the optoelectronic element 2000, wherein the first conductive layer 2014 and the second conductive layer 2016 are electrically connected with the first lead structures 2002 respectively. The second conductive layer 2016 can be direct contact with the first bottom surface 143 to improve the heat dissipation of the optoelectronic unit 14 and increasing the heat dissipation efficiency of the optoelectronic element 2000.
  • The first lead structures 2002 can conduct current and electrically connect the first metal layer 142 with the first conductive layer 2014 and the second metal layer 144 with the second conductive layer 2016. The reflectivity of the first lead structures 2002 is 70% to the light from the optoelectronic unit 14. The material of the first lead structures 2002 can be the same as that of the first conductive layer and the reflective layer. The first covering structure 2004 covers the optoelectronic unit 14 to fix and support the optoelectronic unit 14, enhances the mechanical strength of the optoelectronic element 2000, and electrically isolates the first lead structures 2002 and the optoelectronic unit 14. The first covering structure 2004 can be transparent to the light generated from the optoelectronic unit 14, and the material of the first covering structure 2004 can be different from or the same as that of the second transparent structure 18. The first isolating layer 2006 can isolate the first lead structures 2002 from the optoelectronic unit 14 and the material of the first isolating layer 2006 can be the same as that of the first insulating layer. The second isolating layer 2012 can isolate the first conductive layer 2014 from the second conductive layer 2016 and reflect or diffuse the light generated from the optoelectronic unit 14. The material of the second conductive layer 2016 can be the same as that of the first insulating layer or the optical layer. The second lead structures 2008 can conduct current, and electrically connect the first metal layer 142 with the first conductive layer 2014 and the second metal layer 144 with the second conductive layer 2016. The material of the second lead structures 2008 can be the same as that of the first conductive layer. Referring to FIG. 21, the shape of the second transparent structure 18 of an optoelectronic element 2100 can include arc in a cross-sectional view in another embodiment. In another embodiment, the second transparent structure of an optoelectronic element 2200 can be trapezoid in a cross-sectional view, as shown in FIG. 22. The shape of the second transparent structure 18 can be adjusted to change the optical field of optoelectronic element based on the need of the application. The shape of the second transparent structure 18 includes but is not limited to triangle, quarter circle, trapezoid, pentagon, or rectangle in the cross-sectional view. The shape of the first transparent structure 16 can be the same as or different from that of the second transparent structure 18.
  • FIGS. 23A-23C disclose flow charts of a manufacturing process of an optoelectronic element 2300 in accordance with another embodiment of the present application. Referring to FIG. 23A, there is a wafer including the temporary carrier 10; the bonding layer 12 formed on the temporary carrier 10; the plurality of optoelectronic units 14 formed on the bonding layer 12; the first transparent structure 16 formed on the bonding layer 12 and the plurality of optoelectronic units 14; and the second transparent structure 18 formed on the first transparent structure 16, wherein there is a plurality of intervals 2302 between each two of the optoelectronic units 14. Referring to FIG. 23B, a fourth wavelength-converting layer 2304 is formed on the plurality of optoelectronic units 14, wherein the fourth wavelength-converting layer 2304 covers at least two sides of each optoelectronic unit 14. A transparent carrier 2306 is formed on the fourth wavelength-converting layer 2304. The transparent carrier 2306 can be precut to form a cavity 2308 between any two adjacent optoelectronic units 14. It benefits the subsequent process such as cutting. The shape of the cavity 2308 can be V shape in a cross-sectional view in another embodiment. Referring to FIG. 23C, the temporary carrier 10 and the bonding layer 12 are removed, and a plurality of conductive layers 282/284 is formed under the surfaces of the plurality of optoelectronic units 14 and the first transparent structure 16. The wafer can be cut along the cavities 2308 to form the plurality of optoelectronic elements 2300. Because there are the cavities 2308 formed on the transparent carrier 2306, the wafer can be separated easier. The material and the structure of the fourth wavelength-converting layer 2304 can be the same as that of the third wavelength-converting layer 1904. The material of the transparent carrier 2306 can be the same as that of the second transparent structure 18.
  • FIGS. 24A-24D disclose a manufacturing method of an optoelectronic element 2400 in accordance with another embodiment of the present application. This embodiment is a variation of the embodiment shown in FIGS. 23A-23C. Referring to FIG. 24A, the manufacturing method includes the steps of providing a temporary carrier 10; forming a bonding layer 12 on the temporary carrier 10; and attaching a plurality of optoelectronic units 14′ on temporary carrier 10 by the bonding layer 12. Then, a first transparent structure 16 is formed on the bonding layer 12 and covering the plurality of optoelectronic units 14′; and a second transparent structure 18 is formed on the first transparent structure 16. Referring to FIG. 24B, the temporary carrier 10 and the bonding layer 12 are removed after the second transparent structure 18 is formed, and a plurality of conductive structures 2′ is formed on the surfaces of the plurality of optoelectronic units 14′ uncovered by the first transparent structure 16 and the surface 162′ of the first transparent structure 16. A support 2410, such as a tape, is adhered to the conductive structures 2′ and/or the first transparent structure 16. The first transparent structure 16 and the second transparent structure 18 is then cut by a cut blade in the region between two adjacent optoelectronic units 14′ to form cavities 2408 between two adjacent optoelectronic units 14′. In one example, the cut blade cuts through the second transparent structure 18 and the first transparent structure 16 such that the inclined sidewalls 2407 approximately reach the bottom surface of the first transparent structure 16, i.e., the surface of the first transparent structure 16 on which the conductive structures 2′ is formed. In another example, the cut blade cuts through the second transparent structure 18 and cut into a portion of the first transparent structure 16. A portion of the first transparent structure 16 which is not cut is kept to connect two adjacent optoelectronic elements 14′, and may be separated with the wavelength-converting layer 2404 by a breaking step described below. Each cavity 2408 has sidewalls 2407, and in the embodiment, when the sidewalls 2407 are inclined, the shape of each cavity 2408 can be V shape in a cross-sectional view so the outer profile of the stack of the first transparent structure 16 and the second transparent structure 18 is substantially a trapezoid in a cross-sectional view for enhancing light extraction. Referring to FIG. 24C, a wavelength-converting layer 2404 is conformably coated along the sidewalls 2407 and on the top surface of the second transparent structure 18. Then, a breaking step is performed along the cavities 2408 to separate the wavelength-converting layer 2404, and then expanding the support 2410 to expand the distance between two adjacent optoelectronic units 14′ for an encapsulating material to encapsulate the optoelectronic units 14′. The encapsulating parts 2409 are formed by encapsulating the optoelectronic elements 14′ with the encapsulating material. The encapsulating part 2409 covers the wavelength-converting layer 2404 and the optoelectronic units 14′ except the bottom surface of the first transparent structure 16. The encapsulating part 2409 functions as an optical element, and the shape of the encapsulating part 2409 may be a dome shape to reduce the total internal reflection (TIR) at the interface between the encapsulating part 2409 and the environment, such as air. A material for the encapsulating part 2409 includes polymer material, such as epoxy resin or silicone. The optoelectronic elements 2400 are separated from each other after being removed from the support 2410 in FIG. 24D. In an alternative embodiment, the encapsulating part 2409 is formed one by one for each optoelectronic units 14′ after the optoelectronic units 14′ are separated from each other.
  • FIG. 24E illustrates a detailed structure of an embodiment of the optoelectronic element 2400 in accordance with an embodiment of the present application. The optoelectronic element 2400 includes an optoelectronic unit 14′; a first transparent structure 16 covering the optoelectronic unit 14′; a second transparent structure 18 on the first transparent structure 16; a wavelength-converting layer 2404 on the second transparent structure 18 and covering the first transparent structure 16 and the second transparent structure 18; a conductive structures 2′ on the first surface 141 of the optoelectronic unit 14′ and on the first transparent structure 16; and an encapsulating part 2409 covering the wavelength-converting layer 2404.
  • The optoelectronic unit 14′ includes a substrate 145 a, a first conductive layer 145 b, an active layer 145 c, and a second conductive layer 145 d. The optoelectronic unit 14′ includes a top surface 141, a bottom surface 143 opposite to the top surface 141, and a lateral surface 140 between the top surface 141 and the bottom surface 143. The first transparent structure 16 is on the optoelectronic unit 14′ and covering the lateral surface 140 and the bottom surface 143. The second transparent structure 18 is on the first transparent structure 16, and the outer profile of the stack of the first transparent structure 16 and the second transparent structure 18 is substantially a trapezoid in a cross-sectional view. The wavelength-converting layer 2404 is on the second transparent structure 18 and covering the first transparent structure 16 and the second transparent structure 18 wherein a sidewall of the second transparent structure 18 and a sidewall of the first transparent structure 16 are inclined, and together forms a continuous inclined sidewall 2407. The material the wavelength-converting layer 2404 includes the materials of the third wavelength-converting layer 1904. The conductive structures 2′ includes a first insulating layer 22, a first conductive layer 282, and second conductive layer 284. The first insulating layer 22 is on the first top surface 141 of the optoelectronic unit 14′ and the surface 162′ of the first transparent structure 16. The material of the first insulating layer 22 can be the same as or different from that of the first transparent structure 16. A first opening 212 and a second opening 214 is through the first insulating layer 22 to expose the second conductive type layer 145 d and the first conductive type layer 145 b respectively. The first conductive layer 282 is on the first insulating layer 22 and electrically connects to the first conductive type layer 145 b via the first opening 212. The second conductive layer 284 is on the first insulating layer 22 and electrically connects to the second conductive type layer 145 d via the second first opening 214. The encapsulating part 2409 encapsulates the wavelength-converting layer 2404 and exposes the bottom surface of the first transparent structure 16. In one example, the refractive index of the first transparent structure 16, the second transparent structure 18, and the encapsulating part 2409 is gradually changed, for example, gradually decreased to the environment for enhancing light extraction efficiency. For example, the refractive index of the first transparent structure 16 is larger than that of the second transparent structure 18, and the refractive index of the second transparent structure 18 is larger than that of the encapsulating part 2409. When the optoelectronic element 2400 is mounted to a sub-mount with the first top surface 141 of the optoelectronic unit 14′ facing the sub-mount, the wavelength-converting layer 2404 covers the bottom surface 143 and the lateral surface 140 of the optoelectronic unit 14′ fully to assure that the light generated from the active layer 145 c is transmitted outside the optoelectronic element 2400 after passing through the wavelength-converting layer 2404. Therefore, the light from the optoelectronic element 2400 has uniform color distribution.
  • FIG. 13 illustrates a schematic diagram of a light-generating device 130. The light-generating device 130 includes the light-emitting element of any one of the foregoing embodiments of the present application. The light-generating device 130 can be an illumination device such as a street light, a lamp of vehicle, or an illustration source for interior. The light-generating device 130 can be also a traffic sign or a backlight of a backlight module of an LCD. The light-generating device 130 includes a light source 131 adopting any foregoing light-emitting devices; a power supplying system 132 providing current to the light source 131; and a control element 133 controlling the power supplying system 132.
  • FIG. 14 illustrates a schematic diagram of a back light module 140. The back light module 140 includes the light-generating device 130 of the foregoing embodiment and an optical element 141. The optical element 141 can process the light generated by the light-generating device 130 for LCD application, such as scattering the light generated from the light-generating device 130.
  • It will be apparent to those having ordinary skill in the art that various modifications and variations can be made to the devices in accordance with the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure covers modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents

Claims (11)

What is claimed is:
1. An optoelectronic element comprising:
an optoelectronic unit having a central line in a top view, a top surface, and a bottom surface;
a first metal layer;
a second metal layer formed on the top surface, and having an extension portion crossing over the central line and extending to the first metal layer;
a conductive layer covering the first metal layer and the extension portion; and
a transparent structure covering the bottom surface without covering the top surface.
2. The optoelectronic element of claim 1, wherein the first metal layer having a portion crossing over the central line and extending toward the second metal in the top view.
3. The optoelectronic element of claim 1, wherein the transparent structure has a flat bottom surface.
4. The optoelectronic element of claim 1, further comprising a passivation layer formed on the extension portion and exposing an area of the second metal layer.
5. The optoelectronic element of claim 4, further comprising an optical layer formed on the passivation layer and having a part overlapping the extension portion.
6. The optoelectronic element of claim 5, wherein the optical layer comprises a Distributed Bragg Reflector.
7. The optoelectronic element of claim 5, wherein the passivation layer has a side surface covered by the optical layer.
8. The optoelectronic element of claim 1, wherein the second metal layer comprises a base portion wider than the extension portion.
9. The optoelectronic element of claim 1, wherein the conductive layer directly contacts the first metal layer.
10. The optoelectronic element of claim 1, wherein the transparent structure comprises a transparent layer and a wavelength-converting layer.
11. The optoelectronic element of claim 10, wherein the wavelength-converting layer comprises quantum dot or phosphor.
US14/858,477 2003-07-04 2015-09-18 Optoelectronic element Expired - Lifetime US9893244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/858,477 US9893244B2 (en) 2003-07-04 2015-09-18 Optoelectronic element

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US10/604,245 US6987287B2 (en) 2002-07-15 2003-07-04 Light emitting diode having an adhesive layer and a reflective layer
US11/249,680 US7192797B2 (en) 2005-02-03 2005-05-12 Light emitting device and manufacture method thereof
US11/160,588 US7928455B2 (en) 2002-07-15 2005-06-29 Semiconductor light-emitting device and method for forming the same
US11/674,371 US20070126016A1 (en) 2005-05-12 2007-02-13 Light emitting device and manufacture method thereof
TW098124681 2009-07-21
TW98124681 2009-07-21
TW098146171 2009-12-30
TW98146171A TWI474503B (en) 2009-07-21 2009-12-30 Optoelectronic system
US12/840,848 US8999736B2 (en) 2003-07-04 2010-07-21 Optoelectronic system
TW101115716 2012-05-02
TW101115716A TWI555239B (en) 2011-08-09 2012-05-02 Optoelectronic element and manufacturing method thereof
TW101128707 2012-08-08
TW101128707A TWI515925B (en) 2011-08-09 2012-08-08 Optoelectronic element and manufacturing method thereof
US13/886,083 US9142740B2 (en) 2003-07-04 2013-05-02 Optoelectronic element and manufacturing method thereof
US14/858,477 US9893244B2 (en) 2003-07-04 2015-09-18 Optoelectronic element

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/840,848 Continuation-In-Part US8999736B2 (en) 2003-07-04 2010-07-21 Optoelectronic system
US13/886,083 Continuation US9142740B2 (en) 2003-07-04 2013-05-02 Optoelectronic element and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11674371 Continuation-In-Part 2017-02-13
US15/678,885 Continuation US10529898B2 (en) 2003-07-04 2017-08-16 Optoelectronic element

Publications (3)

Publication Number Publication Date
US20160013371A1 US20160013371A1 (en) 2016-01-14
US20180019382A9 true US20180019382A9 (en) 2018-01-18
US9893244B2 US9893244B2 (en) 2018-02-13

Family

ID=49620906

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/886,083 Expired - Lifetime US9142740B2 (en) 2003-07-04 2013-05-02 Optoelectronic element and manufacturing method thereof
US14/858,477 Expired - Lifetime US9893244B2 (en) 2003-07-04 2015-09-18 Optoelectronic element
US15/678,885 Expired - Fee Related US10529898B2 (en) 2003-07-04 2017-08-16 Optoelectronic element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/886,083 Expired - Lifetime US9142740B2 (en) 2003-07-04 2013-05-02 Optoelectronic element and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/678,885 Expired - Fee Related US10529898B2 (en) 2003-07-04 2017-08-16 Optoelectronic element

Country Status (1)

Country Link
US (3) US9142740B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309114A1 (en) * 2008-01-16 2009-12-17 Luminus Devices, Inc. Wavelength converting light-emitting devices and methods of making the same
JP2012199231A (en) 2011-03-04 2012-10-18 Semiconductor Energy Lab Co Ltd Display device
DE102012110836A1 (en) * 2012-11-12 2014-02-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for producing optoelectronic semiconductor chips
US20140262443A1 (en) * 2013-03-14 2014-09-18 Cambrios Technologies Corporation Hybrid patterned nanostructure transparent conductors
KR20160032236A (en) * 2013-07-19 2016-03-23 코닌클리케 필립스 엔.브이. Pc led with optical element and without substrate carrier
TWI613842B (en) * 2014-04-08 2018-02-01 晶元光電股份有限公司 Light emitting device
CN105023994B (en) * 2014-04-15 2019-02-22 晶元光电股份有限公司 Light emitting device
US10439111B2 (en) 2014-05-14 2019-10-08 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
TWI557952B (en) 2014-06-12 2016-11-11 新世紀光電股份有限公司 Light emitting component
CN105280780A (en) * 2014-07-10 2016-01-27 邱罗利士公司 Package structure, method for fabricating the same and carrier thereof
TWI578574B (en) * 2014-07-14 2017-04-11 新世紀光電股份有限公司 Light emitting device structure
JP6484982B2 (en) * 2014-09-30 2019-03-20 日亜化学工業株式会社 Method for manufacturing light emitting device
KR20160141063A (en) * 2015-05-27 2016-12-08 삼성전자주식회사 Light emitting device package and manufacturing method of the same
CN106549092A (en) 2015-09-18 2017-03-29 新世纪光电股份有限公司 Light emitting device and method for manufacturing the same
US10840420B2 (en) * 2015-10-30 2020-11-17 Nichia Corporation Method for manufacturing light emitting device
US10693046B2 (en) * 2015-12-30 2020-06-23 Maven Optronics Co., Ltd. Chip scale packaging light emitting device and manufacturing method of the same
US9941230B2 (en) * 2015-12-30 2018-04-10 International Business Machines Corporation Electrical connecting structure between a substrate and a semiconductor chip
TWI581465B (en) * 2015-12-30 2017-05-01 行家光電股份有限公司 Chip scale packaging light emitting device and manufacturing method of the same
CN106952991B (en) * 2016-01-07 2019-04-12 行家光电股份有限公司 Wafer-level package light emitting device and its manufacturing method
JP2017204640A (en) * 2016-05-11 2017-11-16 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting device and method for manufacturing the same
DE102016108931A1 (en) 2016-05-13 2017-11-16 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
TWI651870B (en) 2016-10-19 2019-02-21 新世紀光電股份有限公司 Light emitting device and method of manufacturing same
DE102017104742A1 (en) 2017-03-07 2018-09-13 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
DE102017106410A1 (en) 2017-03-24 2018-09-27 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and optoelectronic component
TW201919261A (en) 2017-11-05 2019-05-16 新世紀光電股份有限公司 Light emitting device
JP6870592B2 (en) * 2017-11-24 2021-05-12 豊田合成株式会社 Light emitting device
DE102018116327A1 (en) * 2018-07-05 2020-01-09 Osram Opto Semiconductors Gmbh Radiation-emitting component and method for producing a radiation-emitting component
CN109473519A (en) * 2018-11-15 2019-03-15 湘能华磊光电股份有限公司 Flip LED structure and its manufacturing method
TWI671558B (en) * 2019-02-21 2019-09-11 友達光電股份有限公司 Light emitting device and liquid crystal display device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054716A (en) * 1997-01-10 2000-04-25 Rohm Co., Ltd. Semiconductor light emitting device having a protecting device
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6885035B2 (en) * 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
EP1113506A3 (en) 1999-12-28 2005-03-16 Toyoda Gosei Co., Ltd. Light emitting diode
WO2002035890A1 (en) 2000-10-25 2002-05-02 Matsushita Electric Industrial Co., Ltd. Luminous element, and display device and lighting device using it
US6642652B2 (en) * 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
JP2004071895A (en) 2002-08-07 2004-03-04 Sony Corp Mold for forming conductive layer and its manufacturing method
EP2596948B1 (en) * 2003-03-10 2020-02-26 Toyoda Gosei Co., Ltd. Method of making a semiconductor device
JP4443188B2 (en) 2003-10-30 2010-03-31 京セラ株式会社 Light emitting element storage package and light emitting device
JP2005252222A (en) 2004-02-03 2005-09-15 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device, lighting module, lighting device, display device, and method of manufacturing semiconductor light-emitting device
JP4330476B2 (en) 2004-03-29 2009-09-16 スタンレー電気株式会社 Semiconductor light emitting device
US7166483B2 (en) * 2004-06-17 2007-01-23 Tekcore Co., Ltd. High brightness light-emitting device and manufacturing process of the light-emitting device
CN1750280B (en) 2004-09-15 2010-05-05 晶元光电股份有限公司 Light emitting element and its producing method
US7554126B2 (en) 2004-09-27 2009-06-30 Panasonic Corporation Semiconductor light-emitting element, manufacturing method and mounting method of the same and light-emitting device
TWI352437B (en) 2007-08-27 2011-11-11 Epistar Corp Optoelectronic semiconductor device
JP2008060542A (en) * 2006-08-03 2008-03-13 Toyoda Gosei Co Ltd Light-emitting device, method of manufacturing same, and light source device provided with the same
US20080237828A1 (en) 2007-03-30 2008-10-02 Advanced Chip Engineering Technology Inc. Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for wlp and method of the same
US7791093B2 (en) * 2007-09-04 2010-09-07 Koninklijke Philips Electronics N.V. LED with particles in encapsulant for increased light extraction and non-yellow off-state color
DE102007052181A1 (en) * 2007-09-20 2009-04-02 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
DE102008025756B4 (en) 2008-05-29 2023-02-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung semiconductor device
KR100982990B1 (en) 2008-09-03 2010-09-17 삼성엘이디 주식회사 wavelength conversion plate and light emitting device using the same
JP4799606B2 (en) 2008-12-08 2011-10-26 株式会社東芝 Optical semiconductor device and method for manufacturing optical semiconductor device
JP4724222B2 (en) 2008-12-12 2011-07-13 株式会社東芝 Method for manufacturing light emitting device
TW201025657A (en) 2008-12-16 2010-07-01 Gio Optoelectronics Corp Light-emitting apparatus
KR20100076083A (en) 2008-12-17 2010-07-06 서울반도체 주식회사 Light emitting diode having plurality of light emitting cells and method of fabricating the same
CN101771112B (en) 2009-01-06 2011-12-07 宏齐科技股份有限公司 Sealing structure of wafer LED cable of increasing luminous efficiency and preparing method thereof
JP2011009572A (en) 2009-06-26 2011-01-13 Citizen Electronics Co Ltd Flip-chip packaging type led and method for manufacturing flip-chip packaging type led
CN201514954U (en) 2009-08-03 2010-06-23 金芃 Encapsulation of semiconductor light-emitting diode with roughing surface
JP5775002B2 (en) 2010-01-29 2015-09-09 シチズン電子株式会社 Method for manufacturing light emitting device
US8552454B2 (en) 2010-11-29 2013-10-08 Epistar Corporation Light-emitting device and light mixing device
JP5949294B2 (en) 2011-08-31 2016-07-06 日亜化学工業株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
US20160013371A1 (en) 2016-01-14
US9893244B2 (en) 2018-02-13
US20170365750A1 (en) 2017-12-21
US9142740B2 (en) 2015-09-22
US10529898B2 (en) 2020-01-07
US20130313594A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
US10529898B2 (en) Optoelectronic element
JP6679776B2 (en) Photoelectric module and manufacturing method thereof
KR101997247B1 (en) Light emitting device and light apparatus having thereof
US20170256683A1 (en) Light-emitting device
TWI423467B (en) Semiconductor light emitting device
US11482651B2 (en) Optoelectronic element having reflective layer in contact with transparent layer covering side and bottom surfaces of the optoelectronic element
US20150214449A1 (en) Optoelectronic element
KR20170052207A (en) Optical plate, lighting device, and lighting module
KR20170052209A (en) Optical plate, lighting device, and lighting module

Legal Events

Date Code Title Description
AS Assignment

Owner name: EPISTAR CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAN, CHENG-NAN;LEE, TSUNG-XIAN;HSIEH, MIN-HSUN;AND OTHERS;SIGNING DATES FROM 20160826 TO 20170316;REEL/FRAME:042000/0944

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR)

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4