JP2011009572A - Flip-chip packaging type led and method for manufacturing flip-chip packaging type led - Google Patents

Flip-chip packaging type led and method for manufacturing flip-chip packaging type led Download PDF

Info

Publication number
JP2011009572A
JP2011009572A JP2009152823A JP2009152823A JP2011009572A JP 2011009572 A JP2011009572 A JP 2011009572A JP 2009152823 A JP2009152823 A JP 2009152823A JP 2009152823 A JP2009152823 A JP 2009152823A JP 2011009572 A JP2011009572 A JP 2011009572A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
type nitride
side electrode
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009152823A
Other languages
Japanese (ja)
Other versions
JP2011009572A5 (en
Inventor
Kazuhiko Terajima
寺嶋  一彦
Hisato Hiraishi
久人 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009152823A priority Critical patent/JP2011009572A/en
Publication of JP2011009572A publication Critical patent/JP2011009572A/en
Publication of JP2011009572A5 publication Critical patent/JP2011009572A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that although a conventional FC packaging type LED is high in emission efficiency, it is difficult to actualize the FC packaging type LED of which the reliability of electrical connection is high when positioning and packaging in flip-chip packaging.SOLUTION: An FC packaging type LED 10 having an n-type nitride semiconductor layer 2 and a p-type nitride semiconductor layer 3 formed on a transparent substrate 1, and an n-side electrode 4 and a p-side electrode 5 formed on the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3, has on the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 an insulating layer 6 which is formed so as to have a penetrating hole in the portion of the n-side electrode 4 and the p-side electrode 5, and two roughly rectangle shape electrodes 7, 8 for external connection formed in parallel on the upper plane of the insulating layer 6, wherein these two electrodes 7, 8 for external connection are configured so as to be connected to the n-side electrode 4 and the p-side electrode 5 through the penetrating hole.

Description

本発明はフリップチップ実装型LEDの構成及び製造方法に関するものであり、詳しくはフリップチップ実装に適した外部接続用電極を有し、かつ発光効率の高いフリップチップ実装型LEDの構成及び製造方法に関する。   The present invention relates to a configuration and a manufacturing method of a flip chip mounting type LED, and more particularly to a configuration and a manufacturing method of a flip chip mounting type LED having an external connection electrode suitable for flip chip mounting and having high luminous efficiency. .

近年、LED素子(以下LEDと略記する)は半導体素子であるため、長寿命で優れた駆動特性を有し、さらに小型で発光効率が良く鮮やかな発光色を有することから、カラー表示装置のバックライトや照明等に広く利用されるようになってきた。   In recent years, since an LED element (hereinafter abbreviated as LED) is a semiconductor element, it has a long life, excellent driving characteristics, a small size, high luminous efficiency, and a bright emission color. Widely used for lights and lighting.

特に近年、青色LEDとYAG蛍光体との組み合わせによる白色発光素子が開発されるに至り、そのLED構成としてフリップチップ実装型LEDが適することから、このフリップチップ実装に適したLEDの構成が提案されている(例えば特許文献1、特許文献2)。   In particular, in recent years, white light emitting elements using a combination of a blue LED and a YAG phosphor have been developed, and since a flip chip mounting type LED is suitable as the LED configuration, an LED configuration suitable for this flip chip mounting has been proposed. (For example, Patent Document 1 and Patent Document 2).

[特許文献1のFC実装型LEDの構成の説明(図7−図9)]
以下に、従来のフリップチップ実装型LED(以下、「FC実装型LED」と略記する)について説明する。図7は、特許文献1におけるFC実装型LEDの断面図である。図8は、FC実装型LEDの下面図であり、図9が、そのLEDから絶縁層を除去して電極構成を露出させた下面図である。
[Description of Configuration of FC-Mounted LED in Patent Document 1 (FIGS. 7 to 9)]
A conventional flip chip mounting type LED (hereinafter abbreviated as “FC mounting type LED”) will be described below. FIG. 7 is a cross-sectional view of the FC-mounted LED in Patent Document 1. FIG. 8 is a bottom view of the FC-mounted LED, and FIG. 9 is a bottom view in which the electrode configuration is exposed by removing the insulating layer from the LED.

図7に示す様に、FC実装型LED100は、透明基板101上に形成されたn型窒化物半導体層102及びp型窒化物半導体層103と、n型窒化物半導体層102及びp型窒化物半導体層103上にn側電極104及びp側電極105が形成された構成となっている。また、樹脂材料より構成される絶縁層106には、スルーホール106a,106bが設けられており、絶縁層106の下側に設けられて外部接続電極107,108は、スルーホール106a,106bの内部に設けられた接続電極111,112を介して、n側電極104及びp側電極105に接続され、外部からLEDに電流供給出来る様になっている。   As shown in FIG. 7, the FC-mounted LED 100 includes an n-type nitride semiconductor layer 102 and a p-type nitride semiconductor layer 103 formed on a transparent substrate 101, and an n-type nitride semiconductor layer 102 and a p-type nitride. An n-side electrode 104 and a p-side electrode 105 are formed on the semiconductor layer 103. The insulating layer 106 made of a resin material is provided with through holes 106a and 106b. The external connection electrodes 107 and 108 are provided on the lower side of the insulating layer 106 so that the inside of the through holes 106a and 106b. Are connected to the n-side electrode 104 and the p-side electrode 105 via the connection electrodes 111 and 112 provided on the LED, and current can be supplied to the LED from the outside.

なお、図8に示す如くこの外部接続電極107,108は、絶縁層106の下面に、フリップチップボンディングに必要な面積を確保するために、略正方形または円形に構成されている。   As shown in FIG. 8, the external connection electrodes 107 and 108 are formed in a substantially square or circular shape on the lower surface of the insulating layer 106 in order to secure an area necessary for flip chip bonding.

また、図9に示す様に、透明基板101の略全面に形成されたn型窒化物半導体層102のコーナー部分には、小さな露出部分102aを残して、p型窒化物半導体層103が形成されており、このn型窒化物半導体層102とp型窒化物半導体層103とが積層された部分(p型窒化物半導体層103の同じ面積)が、LEDとしての発光面Hとなる。   Further, as shown in FIG. 9, the p-type nitride semiconductor layer 103 is formed at the corner portion of the n-type nitride semiconductor layer 102 formed on the substantially entire surface of the transparent substrate 101, leaving a small exposed portion 102a. A portion where the n-type nitride semiconductor layer 102 and the p-type nitride semiconductor layer 103 are stacked (the same area of the p-type nitride semiconductor layer 103) is a light emitting surface H as an LED.

そして、一般に製造販売されているFC実装型LEDの構成は、発光面の面積を出来るだけ大きくして発光効率を上げる必要があるために、n型窒化物半導体層102のコーナー部分に設けられた、n型窒化物半導体層102と、p型窒化物半導体層103とが積層されない部分、すなわち、非積層部分102aの面積を出来るだけ小さくする高光利用効率の構成が採用されている。このため、この従来のFC実装型LED構成では、n側電極104の面積が大きくできず、外部接続電極107,108もあまり大きくできなかった。   In general, the configuration of the FC mounting type LED manufactured and sold is provided at the corner portion of the n-type nitride semiconductor layer 102 because it is necessary to increase the area of the light emitting surface as much as possible to increase the luminous efficiency. A configuration with high light utilization efficiency is adopted in which the area where the n-type nitride semiconductor layer 102 and the p-type nitride semiconductor layer 103 are not stacked, that is, the non-stacked portion 102a is made as small as possible. For this reason, in this conventional FC-mounted LED configuration, the area of the n-side electrode 104 cannot be increased, and the external connection electrodes 107 and 108 cannot be increased too much.

[特許文献2のFC実装型LEDの構成の説明(図10−図12)]
次に、特許文献2に記載されているFC実装型LEDについて説明する。
図10は、特許文献2におけるFC実装型LEDの断面図を示し、図11は、その下面図を、図12が、図11における絶縁層を除去した下面図を示している。
[Description of Configuration of FC-Mounted LED in Patent Document 2 (FIGS. 10 to 12)]
Next, the FC mounted LED described in Patent Document 2 will be described.
10 shows a cross-sectional view of the FC-mounted LED in Patent Document 2, FIG. 11 shows a bottom view thereof, and FIG. 12 shows a bottom view in which the insulating layer in FIG. 11 is removed.

図10において、この従来のFC実装型LED200は、透明基板201上に形成されたn型窒化物半導体層202及びp型窒化物半導体層203と、n型窒化物半導体層202及びp型窒化物半導体層203上に、n側電極204及びp側電極205が形成された構成となっている。そして、このn側電極204及びp側電極205が、それぞれ長方形になるように形成されている。   In FIG. 10, this conventional FC-mounted LED 200 includes an n-type nitride semiconductor layer 202 and a p-type nitride semiconductor layer 203 formed on a transparent substrate 201, and an n-type nitride semiconductor layer 202 and a p-type nitride. An n-side electrode 204 and a p-side electrode 205 are formed on the semiconductor layer 203. The n-side electrode 204 and the p-side electrode 205 are each formed to be rectangular.

また、SiO2等からなる絶縁性の保護膜206は、n型窒化物半導体層202及びp型窒化物半導体層203を保護すると共に、n側電極204及びp側電極205上に、長方形の開口部206a、206bが形成されている。そして、図11に示す如く、外部接続電極207,208は、絶縁層206の下面に開口部206a、206bに規制されて長方形に形成されている。   The insulating protective film 206 made of SiO 2 or the like protects the n-type nitride semiconductor layer 202 and the p-type nitride semiconductor layer 203 and has a rectangular opening on the n-side electrode 204 and the p-side electrode 205. 206a and 206b are formed. As shown in FIG. 11, the external connection electrodes 207 and 208 are formed in a rectangular shape on the lower surface of the insulating layer 206 by being restricted by the openings 206 a and 206 b.

また、図12に示す様に、透明基板201の略全面に形成されたn型窒化物半導体層202には、片側の辺に沿って長方形の露出部分202aを残して、p型窒化物半導体層203が形成されており、このn型窒化物半導体層202とp型窒化物半導体層203とが積層された部分(p型窒化物半導体層203と同じ面積)が、LEDとしての発光面Hとなる。   Also, as shown in FIG. 12, the n-type nitride semiconductor layer 202 formed on the substantially entire surface of the transparent substrate 201 leaves a rectangular exposed portion 202a along one side, leaving a p-type nitride semiconductor layer. 203 is formed, and a portion where the n-type nitride semiconductor layer 202 and the p-type nitride semiconductor layer 203 are stacked (the same area as the p-type nitride semiconductor layer 203) is a light emitting surface H as an LED. Become.

特開2006−114820号公報(図1,図2)JP 2006-114820 A (FIGS. 1 and 2) 特開2001−127348号公報(図1,図2)JP 2001-127348 A (FIGS. 1 and 2)

図7〜図9に示した特許文献1に記載のFC実装型LEDは、LEDの発光面の構成として、非積層部分の面積を出来るだけ小さくした高効率構成を採用しており、n型窒化物半導体層102、p型窒化物半導体層103、n側電極104、p側電極105が形成されている発光素子形成面を、樹脂材料よりなる絶縁層106で被覆し、この絶縁層106の下面側にスルーホール106a,106bを介して外部接続電極107,108を設けているため、発光効率の良いFC実装型LEDを得ることができるという長所を有する。ところが、この従来の構成では、外部接続電極107,108の形状として四角形の小型電極としているため、フリップチップ実装における位置決めが困難で、実装のときの電気的接続の信頼性に問題がある。   The FC-mounted LED described in Patent Document 1 shown in FIGS. 7 to 9 adopts a high-efficiency configuration in which the area of the non-stacked portion is made as small as possible as the configuration of the light emitting surface of the LED, and n-type nitriding The light-emitting element formation surface on which the oxide semiconductor layer 102, the p-type nitride semiconductor layer 103, the n-side electrode 104, and the p-side electrode 105 are formed is covered with an insulating layer 106 made of a resin material. Since the external connection electrodes 107 and 108 are provided on the side through the through holes 106a and 106b, there is an advantage that an FC-mounted LED with good luminous efficiency can be obtained. However, in this conventional configuration, since the external connection electrodes 107 and 108 are small rectangular electrodes, positioning in flip chip mounting is difficult, and there is a problem in the reliability of electrical connection during mounting.

つまり、この従来のFC実装型LEDを実装するときに、素子形状が大きく、外部接続電極の形状も大きい場合にはあまり問題にならないが、現在の市場動向に従って素子の外形形状が小型化されると、それに伴って外部接続電極の形状が小さくなり、フリップチップ実装における位置決め、及び実装のときの電気的接続の信頼性が、大きな問題となる。   In other words, when mounting this conventional FC-mounting LED, if the element shape is large and the external connection electrode is also large, it will not be a problem, but the outer shape of the element is reduced in accordance with the current market trend. Along with this, the shape of the external connection electrode is reduced, and positioning in flip chip mounting and reliability of electrical connection at the time of mounting become serious problems.

また、図10〜図12に示した特許文献2に記載のFC実装型LEDは、外部接続電極207,208の形状を、絶縁層206の下面の開口部206a、206bに合わせて長方形に形成しており、この2本の長方形状を有する外部接続電極207,208を平行に並べる構成によって、フリップチップ実装における位置決めが容易で、実装のときの電気的接続の信頼性を高めるという長所を有する。ところが、この従来の構成は、長方形の外部接続電極207を、n型窒化物半導体層202の露出部分202aに直接形成しているため、n型窒化物半導体層202とp型窒化物半導体層203との積層部分、すなわちLEDとしての発光面Hの面積が小さくなり、LED外形サイズに比してLEDとしての発光効率が低くなるという問題がある。   Also, in the FC-mounted LED described in Patent Document 2 shown in FIGS. 10 to 12, the external connection electrodes 207 and 208 are formed in a rectangular shape in accordance with the openings 206a and 206b on the lower surface of the insulating layer 206. In addition, the configuration in which the two external connection electrodes 207 and 208 having a rectangular shape are arranged in parallel facilitates positioning in flip-chip mounting, and has an advantage of improving the reliability of electrical connection during mounting. However, in this conventional configuration, since the rectangular external connection electrode 207 is formed directly on the exposed portion 202a of the n-type nitride semiconductor layer 202, the n-type nitride semiconductor layer 202 and the p-type nitride semiconductor layer 203 are formed. Therefore, there is a problem that the area of the light emitting surface H as the LED is reduced, and the light emission efficiency as the LED is lower than the LED outer size.

そこで、本発明の目的は上記問題点を解決しようとするものであり、FC実装型LEDにおいて、発光効率が高く、フリップチップ実装における位置決め、及び実装のときの電気的接続の信頼性が高い、FC実装型LED及びその製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and in the FC mounting type LED, the luminous efficiency is high, the positioning in flip chip mounting, and the reliability of electrical connection at the time of mounting is high. An object of the present invention is to provide an FC-mounted LED and a manufacturing method thereof.

上記目的を達成するため、本発明においては、透明基板の上面に形成された、n型窒化物半導体層及びp型窒化物半導体層と、n型窒化物半導体層及びp型窒化物半導体層上に形成された、n側電極及びp側電極とを有するFC実装型LEDにおいて、n型窒化物半導体層及びp型窒化物半導体層上に、n側電極及びp側電極の部分に貫通孔を有して形成された絶縁層と、絶縁層の上面に平行に形成された2個の略長方形の外部接続用電極とを有し、この2個の外部接続用電極は、貫通孔を通してn側電極及びp側電極にそれぞれ接続されていることを特徴とする。   In order to achieve the above object, in the present invention, an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and an n-type nitride semiconductor layer and a p-type nitride semiconductor layer formed on the upper surface of the transparent substrate. In the FC-mounting LED having an n-side electrode and a p-side electrode, a through-hole is formed in the n-side electrode and the p-side electrode on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer. And two substantially rectangular external connection electrodes formed in parallel to the upper surface of the insulation layer, and these two external connection electrodes are connected to the n side through the through holes. It is connected to the electrode and the p-side electrode, respectively.

上記構成によれば、絶縁層の上面に2個の平行配置された略長方形の外部接続用電極を形成し、この2個の外部接続用電極を絶縁層に形成された貫通孔を通してn側電極及びp側電極に接続しているので、発光効率が高く、フリップチップ実装における位置決め及び実装のときの電気的接続の信頼性が高いFC実装型LEDを提供することができる。   According to the above configuration, two substantially rectangular external connection electrodes arranged in parallel are formed on the upper surface of the insulating layer, and the two external connection electrodes are connected to the n-side electrode through the through-hole formed in the insulating layer. In addition, since it is connected to the p-side electrode, it is possible to provide an FC-mounted LED with high light emission efficiency and high electrical connection reliability during positioning and mounting in flip-chip mounting.

また、n側電極が、n型窒化物半導体層のコーナー部分に形成された、n型窒化物半導体層とp型窒化物半導体層との非積層部分に設けられていると良く、さらに絶縁層が、樹脂絶縁層であると良い。   The n-side electrode may be provided in a non-stacked portion of the n-type nitride semiconductor layer and the p-type nitride semiconductor layer formed at the corner portion of the n-type nitride semiconductor layer. However, a resin insulating layer is preferable.

また、FC実装型LEDの透明基板の下面と、n型窒化物半導体層及びp型窒化物半導体層の形成された側面を、蛍光体を分散させた樹脂で被覆すると良い。それに代えて、透明基板および絶縁層の側面を反射性樹脂で囲み、当該反射性樹脂から露出する前記透明基板の表面に、蛍光体層が設けられた構成としても良い。   Further, the lower surface of the transparent substrate of the FC-mounted LED and the side surface on which the n-type nitride semiconductor layer and the p-type nitride semiconductor layer are formed may be covered with a resin in which a phosphor is dispersed. Alternatively, the side surfaces of the transparent substrate and the insulating layer may be surrounded by a reflective resin, and a phosphor layer may be provided on the surface of the transparent substrate exposed from the reflective resin.

上記目的を達成するため、本発明においては、透明基板上にn型窒化物半導体層及びp型窒化物半導体層を形成する工程と、n型窒化物半導体層及びp型窒化物半導体層上に、n側電極及びp側電極を形成する工程と、n型窒化物半導体層及びp型窒化物半導体層上に、n側電極及びp側電極の部分に貫通孔を有する絶縁層を形成する工程と、絶縁層上の貫通孔の位置に2個の略長方形の開口を有するメッキレジスト層を形成する工程と、貫通孔及び開口内に金属層を形成するメッキ工程と、メッキレジスト層を除去して開口内の金属層を外部接続用電極として形成する工程とを有することを特徴とする。   To achieve the above object, in the present invention, a step of forming an n-type nitride semiconductor layer and a p-type nitride semiconductor layer on a transparent substrate, and an n-type nitride semiconductor layer and a p-type nitride semiconductor layer are formed. , Forming an n-side electrode and a p-side electrode, and forming an insulating layer having through holes in the n-side electrode and the p-side electrode on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer. A step of forming a plating resist layer having two substantially rectangular openings at the position of the through hole on the insulating layer, a plating step of forming a metal layer in the through hole and the opening, and removing the plating resist layer And forming a metal layer in the opening as an external connection electrode.

また、大判の透明基板上に、FC実装型LEDを複数個形成し、切断分離工程により複数のFC実装型LEDを同時に製造すると良い。   Also, it is preferable to form a plurality of FC-mounted LEDs on a large transparent substrate and simultaneously manufacture a plurality of FC-mounted LEDs by a cutting and separating process.

上記の如く、本発明によれば、絶縁層の上面に2個の平行配置された略長方形の外部接続用電極を形成し、この2個の外部接続用電極を絶縁層に形成された貫通孔を通して、n側電極及びp側電極に接続しているので、発光効率が高く、フリップチップ実装における位置決め及び実装のときの電気的接続の信頼性が高いFC実装型LED及びその製造方法を提供することができる。   As described above, according to the present invention, two parallel external connection electrodes arranged in parallel are formed on the upper surface of the insulating layer, and the two external connection electrodes are formed in the insulating layer. Through the connection to the n-side electrode and the p-side electrode, there is provided an FC-mounting LED having high luminous efficiency and high reliability in electrical connection during positioning and mounting in flip-chip mounting, and a method for manufacturing the same be able to.

本発明の第1の実施形態におけるFC実装型LEDの構成を示す断面図である。It is sectional drawing which shows the structure of FC mounting type LED in the 1st Embodiment of this invention. 図1に示すFC実装型LEDの下面図である。It is a bottom view of FC mounting type LED shown in FIG. 図1に示すFC実装型LEDの絶縁層を除去した下面図である。It is the bottom view which removed the insulating layer of FC mounting type LED shown in FIG. 本発明の第2の実施形態である、集合方式によるFC実装型LEDの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of FC mounting type LED by the assembly system which is the 2nd Embodiment of this invention. 図4−1の続きの工程を示す工程図である。FIG. 4 is a process diagram illustrating a process subsequent to that of FIG. 4-1. 本発明の蛍光型LEDの構成を示す断面図である。It is sectional drawing which shows the structure of fluorescent type LED of this invention. 本発明の他の蛍光型LEDの構成を示す断面図である。It is sectional drawing which shows the structure of the other fluorescent type LED of this invention. 従来のFC実装型LEDの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional FC mounting type LED. 図7に示すFC実装型LEDの下面図である。It is a bottom view of FC mounting type LED shown in FIG. 図7に示すFC実装型LEDの絶縁層を除去した下面図である。It is the bottom view which removed the insulating layer of FC mounting type LED shown in FIG. 従来のFC実装型LEDの他の構成を示す断面図である。It is sectional drawing which shows the other structure of the conventional FC mounting type LED. 図10に示すFC実装型LEDの下面図である。It is a bottom view of FC mounting type LED shown in FIG. 図10に示すFC実装型LEDの絶縁層を除去した下面図である。It is the bottom view which removed the insulating layer of FC mounting type LED shown in FIG.

[第1の実施形態:FC実装型LEDの構成の説明(図1−図3)]
以下図面により、本発明の実施形態を説明する。図1は、本発明の第1の実施形態における、FC実装型LEDの断面図である。図2は、そのLED下面図であり、図3が、図2における絶縁層を除去して、n型窒化物半導体層及びp型窒化物半導体層と、n側電極及びp側電極の構成を見えるようにした、LED下面図である。
[First Embodiment: Description of Configuration of FC-Mounted LED (FIGS. 1 to 3)]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an FC-mounted LED in the first embodiment of the present invention. FIG. 2 is a bottom view of the LED, and FIG. 3 shows the configuration of the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, and the n-side electrode and the p-side electrode after removing the insulating layer in FIG. It is LED bottom view made visible.

図1において、FC実装型LED10は、透明基板1であるサファイア基板上に形成された、n型窒化物半導体層2及びp型窒化物半導体層3と、このn型窒化物半導体層2及びp型窒化物半導体層3上に形成された、n側電極4及びp側電極5を有して構成されている。また、これら半導体層は、樹脂材料より構成される絶縁層6で被覆されている。なお、この絶縁層6には、スルーホール6a,6bが設けられており、絶縁層6の下面側に設けられた外部接続電極7,8は、スルーホール6a,6bの内部に設けられた接続電極11,12を介して、n側電極4及びp側電極5にそれぞれ接続されている。   In FIG. 1, an FC-mounted LED 10 includes an n-type nitride semiconductor layer 2 and a p-type nitride semiconductor layer 3 formed on a sapphire substrate, which is a transparent substrate 1, and the n-type nitride semiconductor layer 2 and p. The n-side electrode 4 and the p-side electrode 5 are formed on the type nitride semiconductor layer 3. These semiconductor layers are covered with an insulating layer 6 made of a resin material. The insulating layer 6 is provided with through holes 6a and 6b, and the external connection electrodes 7 and 8 provided on the lower surface side of the insulating layer 6 are connected to the inside of the through holes 6a and 6b. The electrodes 11 and 12 are connected to the n-side electrode 4 and the p-side electrode 5, respectively.

また、図2に示す様に、この外部接続電極7,8は、絶縁層6の下面に長方形状に、FC実装型LED10の側方に沿って平行に配設されている。なお、図中の点線で示す矩形形状は、LEDで発光する光を反射する部材で形成された、n側電極4及びp側電極5を示し、点線で示す円形形状は、絶縁層6に設けたスルーホール6a,6bを示している。   In addition, as shown in FIG. 2, the external connection electrodes 7 and 8 are arranged in a rectangular shape on the lower surface of the insulating layer 6 in parallel along the side of the FC-mounted LED 10. In addition, the rectangular shape shown by the dotted line in the figure shows the n-side electrode 4 and the p-side electrode 5 formed of a member that reflects light emitted from the LED, and the circular shape shown by the dotted line is provided in the insulating layer 6. The through holes 6a and 6b are shown.

なお、このp側電極は、n型窒化物半導体層2とp型窒化物半導体層3間で発生する光を、図1の矢印で示す方向に効率良く導き出すために、p型窒化物半導体層3表面の略全面に形成してある。また、ここで外部接続電極7,8の形状は、素子の外形サイズが小さくなったとしても、実装基板との接続が容易とする為に、p型窒化物半導体層3表面の略全面に形成した。その理由については、後段で詳細に説明する。   Note that this p-side electrode is used to efficiently derive light generated between the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 in the direction indicated by the arrow in FIG. 3 formed on substantially the entire surface. In addition, the external connection electrodes 7 and 8 are formed on substantially the entire surface of the p-type nitride semiconductor layer 3 in order to facilitate connection with the mounting substrate even if the external size of the element is reduced. did. The reason will be described in detail later.

また、図3に示す様に、透明基板1の略全面に形成されたn型窒化物半導体層2のコーナー部分には、小さな露出部分2aを残して、p型窒化物半導体層3が形成されており、このn型窒化物半導体層2とp型窒化物半導体層3とが積層された部分(p型窒化物半導体層3の同じ面積であって、p側電極が形成された領域)が、LEDとしての発光面Hとなる。そして、n型窒化物半導体層2の露出部分2aに形成されたn側電極4と、p型窒化物半導体層3に形成されたp側電極5は、図1に示す如く、接続電極11,12を介して外部接続電極7,8に接続される。   Further, as shown in FIG. 3, a p-type nitride semiconductor layer 3 is formed at a corner portion of the n-type nitride semiconductor layer 2 formed on substantially the entire surface of the transparent substrate 1 leaving a small exposed portion 2a. A portion where the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 are stacked (a region where the p-type nitride semiconductor layer 3 has the same area and the p-side electrode is formed) The light emitting surface H as an LED. As shown in FIG. 1, the n-side electrode 4 formed on the exposed portion 2a of the n-type nitride semiconductor layer 2 and the p-side electrode 5 formed on the p-type nitride semiconductor layer 3 are connected as shown in FIG. 12 is connected to the external connection electrodes 7 and 8.

すなわち、本実施形態におけるLEDの構成は、図3に示す如く、n型窒化物半導体層2の露出部分2aの面積を小さくし、発光面Hの面積を出来るだけ大きくして発光効率を上げられるLED構成としている。そして、外部接続電極7,8の構成は、図1、図2に示す如く、絶縁層6の下面側に、大面積で長方形の電極をFC実装型LED10の側方に沿って平行に配設されて、この外部接続電極7,8が、スルーホール6a,6bの内部に設けられた接続電極11,12を介して、小面積のn側電極4及びp側電極5に接続されている。   That is, in the configuration of the LED in this embodiment, as shown in FIG. 3, the area of the exposed portion 2 a of the n-type nitride semiconductor layer 2 can be reduced and the area of the light emitting surface H can be increased as much as possible to increase the luminous efficiency. The LED configuration is used. As shown in FIGS. 1 and 2, the external connection electrodes 7 and 8 are arranged in parallel on the lower surface side of the insulating layer 6 along the side of the FC-mounted LED 10 on the lower surface side of the insulating layer 6. The external connection electrodes 7 and 8 are connected to the n-side electrode 4 and the p-side electrode 5 having a small area through the connection electrodes 11 and 12 provided in the through holes 6a and 6b.

上記構成によれば、FC実装型LED10を外部装置の回路基板に実装するときに、FC実装型LED10の側方に沿って平行に配設された外部接続電極7,8が、外部装置の回路基板に設けられた電極パターン上に平行に載置されるため、フリップチップ実装におけるLEDの位置決めが容易となる。また本構成は、LED素子外形に対して外部接続端子7,8を十分大きくすることができる形態であるので、回路基板との電気的接続の信頼性が、極めて高いものとなる。また、本発明の構成は、FC実装型LED10の形状が小さくて、回路基板との実装が難しい場合に、特に有効となる。   According to the above configuration, when the FC-mounted LED 10 is mounted on the circuit board of the external device, the external connection electrodes 7 and 8 arranged in parallel along the side of the FC-mounted LED 10 are connected to the circuit of the external device. Since the electrodes are placed in parallel on the electrode pattern provided on the substrate, positioning of the LED in flip chip mounting is facilitated. Moreover, since this structure is a form which can make the external connection terminals 7 and 8 large enough with respect to a LED element external shape, the reliability of the electrical connection with a circuit board becomes a very high thing. The configuration of the present invention is particularly effective when the shape of the FC-mounted LED 10 is small and mounting on a circuit board is difficult.

なお、このp型窒化物半導体層3が除去されたエリアは、LEDが発光しない領域となるが、この部分には反射性の高い材料で形成されたn側電極が形成してあるので、発光面Hで発生する光の漏れ光を、図1の矢印の方向に反射させることが出来る。   The area where the p-type nitride semiconductor layer 3 is removed is a region where the LED does not emit light, but the n-side electrode made of a highly reflective material is formed in this portion, so that the light emission Light leaking from the surface H can be reflected in the direction of the arrow in FIG.

また、上記説明では、図1に示す様に、p側電極5をp型窒化物半導体層3の略全面に形成した例を示したが、ここでは図示しないが、このp側電極5をn側電極4程度の大きさとし、絶縁層6の表面に設ける外部接続電極7,8を、反射性が高い金属材料でもって絶縁層6の略全面に形成した形態としても良い。   In the above description, as shown in FIG. 1, an example in which the p-side electrode 5 is formed on substantially the entire surface of the p-type nitride semiconductor layer 3 is shown. The external connection electrodes 7 and 8 provided on the surface of the insulating layer 6 may be approximately the same size as the side electrode 4 and may be formed on a substantially entire surface of the insulating layer 6 with a highly reflective metal material.

上記構成すれば、回路基板との電気的接続の信頼性をより向上させるだけでなく、図1の矢印とは反対側に導出される漏れ光を、絶縁層6表面に大きく形成された外部接続電極7,8でもって矢印方向に導くことができる。これにより、従来の構成に比べ、自発光する光の光利用効率がより向上する。さらに、上記構成によれば、外部接続電極7、8を介して接続する、外部回路の回路基板に対する発光面の水平を容易に確保できるので、FC実装型LEDを実装した後の光指向特性が、常に一定となるという利点もある。   With the above configuration, not only the reliability of the electrical connection with the circuit board is further improved, but also the external connection in which the leakage light led out on the side opposite to the arrow in FIG. The electrodes 7 and 8 can guide the direction of the arrow. Thereby, compared with the conventional structure, the light use efficiency of the self-light-emitting light improves more. Furthermore, according to the above configuration, since the light emitting surface connected to the circuit board of the external circuit connected via the external connection electrodes 7 and 8 can be easily secured, the light directivity characteristic after mounting the FC mounted LED is improved. There is also an advantage that it is always constant.

[第2の実施形態:FC実装型LEDの製造方法の説明(図4−1、図4−2、図5)]
次に、図4−1、図4−2、および図5により、本発明の第2の実施形態である、集合方式によるFC実装型LEDの製造方法について説明する。図4−1は、本発明の第2の実施形態である、集合方式によるFC実装型LEDの製造方法を示す工程図である。図4−2は、図4−1の続きの工程図である。また、図5は、本実施形態におけるFC実装型LEDの完成体を示す断面図である。
[Second Embodiment: Description of Manufacturing Method of FC-Mounted LED (FIGS. 4-1, 4-2, FIG. 5)]
Next, with reference to FIGS. 4-1, 4-2, and 5, a method for manufacturing an FC-mounted LED according to the collective system, which is the second embodiment of the present invention, will be described. FIGS. 4-1 is process drawing which shows the manufacturing method of FC mounting type LED by the collective system which is the 2nd Embodiment of this invention. FIG. 4-2 is a process diagram subsequent to FIG. 4-1. FIG. 5 is a cross-sectional view showing a completed FC-mounted LED according to this embodiment.

まず、図4−1において、まず(A)半導体層形成工程により、サファイア基板である透明基板1上に、n型窒化物半導体層2及びp型窒化物半導体層3を、MOCVD法により順次形成する。なお、このとき集合方式によるFC実装型LEDの製造方法を採用する場合には、大判の透明基板1上に複数個のLEDを形成できるように、n型窒化物半導体層2及びp型窒化物半導体層3を設ける必要がある。したがって、ここでは透明基板1上の略全面にn型窒化物半導体層2とp型窒化物半導体層3を形成した後に、フォトリソグラフィー法により、このn型窒化物半導体層2の露出部分2aを形成している。   First, in FIG. 4A, first, an n-type nitride semiconductor layer 2 and a p-type nitride semiconductor layer 3 are sequentially formed by MOCVD on a transparent substrate 1 that is a sapphire substrate by (A) semiconductor layer formation step. To do. At this time, when the manufacturing method of the FC mounting type LED by the collective method is adopted, the n-type nitride semiconductor layer 2 and the p-type nitride are formed so that a plurality of LEDs can be formed on the large transparent substrate 1. It is necessary to provide the semiconductor layer 3. Therefore, here, after forming the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 on substantially the entire surface of the transparent substrate 1, the exposed portion 2a of the n-type nitride semiconductor layer 2 is formed by photolithography. Forming.

次に、(B)素子面電極形成工程により、n型窒化物半導体層2の露出部分2aにn側電極4を形成し、p型窒化物半導体層3表面の略全面にp側電極5を形成する。次に、(C)絶縁層形成工程により、素子及び電極が形成された全面を覆うように絶縁層6を形成し、フォトグラフィー法によりスルーホール6a,6bを形成する。なお、本実施形態においては絶縁層6としてポリイミド樹脂を用いたが、本発明はこれに限定されず、他の樹脂層や、SiO2やセラミック等の無機系絶縁層を使用しても良い。   Next, by (B) element surface electrode forming step, the n-side electrode 4 is formed on the exposed portion 2 a of the n-type nitride semiconductor layer 2, and the p-side electrode 5 is formed on substantially the entire surface of the p-type nitride semiconductor layer 3. Form. Next, the insulating layer 6 is formed so as to cover the entire surface on which the elements and electrodes are formed by (C) insulating layer forming step, and the through holes 6a and 6b are formed by photolithography. In the present embodiment, polyimide resin is used as the insulating layer 6. However, the present invention is not limited to this, and other resin layers or inorganic insulating layers such as SiO2 and ceramics may be used.

次に、(D)メッキレジスト形成工程により、絶縁層6の上面にメッキレジスト膜15を形成する。メッキレジスト膜15の材料としては、ネガ型またはポジ型の感光性レジストを用いることができる。この感光性レジストは、スピンコートやスプレーコート等の知られた方法で塗布したのち、乾燥することで10μm程度の膜厚に制膜できる。その後、フォトマスクを使った露光現像処理を行うことで、所望のパターンのメッキレジスト膜15を得ることができる。なお、このメッキレジスト膜15には、絶縁層6のスルーホール6a,6bの位置に電極形成用開口15a,15bが形成されている。   Next, a plating resist film 15 is formed on the upper surface of the insulating layer 6 by (D) a plating resist forming step. As a material of the plating resist film 15, a negative or positive photosensitive resist can be used. This photosensitive resist can be coated to a film thickness of about 10 μm by applying it by a known method such as spin coating or spray coating and then drying. Thereafter, an exposure development process using a photomask is performed, whereby a plating resist film 15 having a desired pattern can be obtained. In the plating resist film 15, electrode forming openings 15a and 15b are formed at the positions of the through holes 6a and 6b of the insulating layer 6.

次に、図4−2に示す(E)メッキ工程により、Ni、Au等の金属メッキを行うことにより、メッキレジスト膜15の電極形成用開口15a,15bの部分に金属層16を形成する。   Next, the metal layer 16 is formed in the electrode forming openings 15a and 15b of the plating resist film 15 by performing metal plating of Ni, Au or the like by the (E) plating process shown in FIG.

次に、(F)レジスト剥離工程により、剥離液浴槽に所定の時間浸漬することで、不要となったメッキレジスト膜15を除去することにより、絶縁層6の上面に、金属層16を露出させる。なお、前述のネガ型感光性レジストの剥離液としては、アルキルベンゼンスルフォン酸を主成分とする有機薬液を用いることができる。また、アルカリ可溶樹脂を主成分とするポジ型感光性レジストの剥離液としては、有機アミンと極性溶剤の混合物を用いることができる。これにより、メッキレジスト膜15の電極形成用開口15aの位置には外部接続電極7が、電極形成用開口15bの位置には外部接続電極8が形成される。なお、この外部接続電極7、8は、金属層16を形成するメッキ金属によって、n側電極4及びp側電極5にそれぞれ接続されている。   Next, the metal layer 16 is exposed on the upper surface of the insulating layer 6 by removing the unnecessary plating resist film 15 by immersing in a stripping solution bath for a predetermined time by (F) resist stripping step. . In addition, as a stripping solution for the above-mentioned negative photosensitive resist, an organic chemical solution mainly composed of alkylbenzene sulfonic acid can be used. Moreover, as a stripping solution for a positive photosensitive resist mainly composed of an alkali-soluble resin, a mixture of an organic amine and a polar solvent can be used. Thus, the external connection electrode 7 is formed at the position of the electrode formation opening 15a of the plating resist film 15, and the external connection electrode 8 is formed at the position of the electrode formation opening 15b. The external connection electrodes 7 and 8 are connected to the n-side electrode 4 and the p-side electrode 5 by plating metal forming the metal layer 16, respectively.

次に、(G)切断分離工程により、(F)工程にて形成された構造体をブレード17によって切断することにより、大判の透明基板1から単個のLEDを分離する。上記工程を経ることで、(H)工程に示した複数のFC実装型LED10を得ることが出来る。   Next, a single LED is separated from the large transparent substrate 1 by cutting the structure formed in the (F) step with the blade 17 in the (G) cutting and separating step. By passing through the said process, the some FC mounting type LED10 shown to the (H) process can be obtained.

最後に、図5に示す様に、単個に切断したFC実装型LED10の透明基板1の外周および上部表面に、蛍光粒子を含有する樹脂キャップ(蛍光樹脂21)を被せて固定することで、目的の蛍光型LED20が完成する。なおここでは、LEDとして青色LEDを、蛍光樹脂として、YAG蛍光粒子を混入した樹脂を用いているので、この蛍光型LED20が疑似白色LEDとなる。   Finally, as shown in FIG. 5, by covering and fixing the resin cap (fluorescent resin 21) containing fluorescent particles on the outer periphery and upper surface of the transparent substrate 1 of the FC-mounted LED 10 cut into pieces, The target fluorescent LED 20 is completed. Here, since the blue LED is used as the LED and the resin mixed with YAG fluorescent particles is used as the fluorescent resin, the fluorescent LED 20 is a pseudo white LED.

この様に、上述した図4−1、図4−2および図5に示した上記集合方式によるFC実装型LEDの製造方法によれば、メッキレジスト膜15を用いた金属メッキにより、メッキレジスト膜15の電極形成用開口15a,15bの部分に、金属層16を形成することができ、外部接続電極7、8と接続電極11,12を同時に形成することができる。この結果、大面積で長方形の外部接続電極7、8を備えた複数のFC実装型LED10を、容易に量産製造することができる。   As described above, according to the method of manufacturing the FC-mounted LED by the collective method shown in FIGS. 4A, 4B, and 5 described above, the plating resist film is obtained by metal plating using the plating resist film 15. The metal layer 16 can be formed on the 15 electrode forming openings 15a and 15b, and the external connection electrodes 7 and 8 and the connection electrodes 11 and 12 can be formed simultaneously. As a result, it is possible to easily mass-produce and manufacture a plurality of FC-mounted LEDs 10 having the large area and rectangular external connection electrodes 7 and 8.

[第3の実施形態:蛍光型LEDの他の構成の説明(図6)]
次に、図6により本発明の第3の実施形態について説明する。図6は、本発明の第3の実施形態における蛍光型LED30の構成を示す断面図である。
[Third Embodiment: Description of Other Configuration of Fluorescent LED (FIG. 6)]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view showing the configuration of the fluorescent LED 30 according to the third embodiment of the present invention.

図6に示す様に、本実施形態の蛍光型LED30は、第1の実施形態と同様に、透明基板1の一方の主面上にn型窒化物半導体層2、p型窒化物反動体層3、n側電極4、p側電極5、絶縁層6、接続電極11、12、外部接続電極7、8を備えたFC実装型LED10を有する。このFC実装型LED10の構成は、図1に示すFC実装型LED10と同じであり、同一部材には同一番号を付し、ここでの重複する説明は省略する。   As shown in FIG. 6, the fluorescent LED 30 of the present embodiment has an n-type nitride semiconductor layer 2 and a p-type nitride reaction body layer on one main surface of the transparent substrate 1, as in the first embodiment. 3, an FC-mounted LED 10 having an n-side electrode 4, a p-side electrode 5, an insulating layer 6, connection electrodes 11 and 12, and external connection electrodes 7 and 8. The configuration of the FC-mounted LED 10 is the same as that of the FC-mounted LED 10 shown in FIG. 1, and the same members are denoted by the same reference numerals, and redundant description is omitted here.

更に、本実施形態の蛍光型LED30は、FC実装型LED10の透明基板1及び絶縁層6の側面を、LEDからの発光を反射する、例えば白色顔料を混入した反射性樹脂32でもって囲み、図中の透明基板1の最表面から露出する透明基板1を、蛍光粒子を混入する蛍光樹脂31で被覆した形態としている。なおここでは、LEDとして青色LEDを、蛍光樹脂として、YAG蛍光粒子を混入した樹脂を用いているので、蛍光型LED30は疑似白色LEDとなる。   Furthermore, the fluorescent LED 30 of the present embodiment surrounds the side surfaces of the transparent substrate 1 and the insulating layer 6 of the FC-mounted LED 10 with a reflective resin 32 that reflects light emitted from the LED, for example, mixed with a white pigment. The transparent substrate 1 exposed from the outermost surface of the transparent substrate 1 is coated with a fluorescent resin 31 mixed with fluorescent particles. Here, since the blue LED is used as the LED and the resin mixed with YAG fluorescent particles is used as the fluorescent resin, the fluorescent LED 30 is a pseudo white LED.

上記形態とすれば、反射性樹脂32と、発光面Hの殆どを覆って形成されたn側電極4およびp側電極5でもって、LEDからの発光を効率良く図中の上部方向に向けて出射させることが出来る。   If it is set as the said form, with the reflective resin 32 and the n side electrode 4 and the p side electrode 5 which were formed covering most light emitting surfaces H, the light emission from LED will be efficiently directed to the upper direction in a figure. It can be emitted.

次に、上記蛍光型LED30の製造方法を示す。
まず、第2の実施形態に示したと同様に、図4−1(A)〜(D)工程、図4−2(E)〜(F)工程を行い、(F)工程の構成体を得る。
Next, a method for manufacturing the fluorescent LED 30 will be described.
First, similarly to the second embodiment, the steps of FIGS. 4-1 (A) to (D) and FIGS. 4-2 (E) to (F) are performed to obtain the structure of the step (F). .

次に、ここでは図示しないが、ブレード17で、発光面および電極形成領域を避けて、隣り合うLEDの中間の位置から(図の上側から)、透明基板1が露出する程度までの溝(ハーフダイシング溝)を設ける。なお、ここで形成する溝は、LEDの外周を囲んで形成される。その後、この溝に白色顔料を混入した反射性樹脂をスクリーン印刷法等により充填する。   Next, although not shown here, the blade 17 avoids the light emitting surface and the electrode formation region, and from the middle position between adjacent LEDs (from the upper side of the figure) to a groove (half half) to the extent that the transparent substrate 1 is exposed. Dicing grooves) are provided. In addition, the groove | channel formed here is formed surrounding the outer periphery of LED. Thereafter, the groove is filled with a reflective resin mixed with a white pigment by a screen printing method or the like.

次に、この溝に充填された反射性樹脂の表面と、露出している透明基板1の表面に、YAG蛍光粒子を含む樹脂材料をスクリーン印刷法により塗布する。なおここで用いる樹脂材料は、熱硬化性樹脂材料である。その後、加熱処理等を行うことで、この樹脂材料を完全に硬化させて、FC実装型LED10の表面に蛍光樹脂31を固着させる。   Next, a resin material containing YAG fluorescent particles is applied to the surface of the reflective resin filled in the groove and the exposed surface of the transparent substrate 1 by screen printing. The resin material used here is a thermosetting resin material. Thereafter, the resin material is completely cured by performing a heat treatment or the like, and the fluorescent resin 31 is fixed to the surface of the FC-mounted LED 10.

その後の工程は、第2の実施形態と同じで、図4における工程(G)切断分離工程で、上記溝に充填した反射性樹脂の直上から、ハーフダイシングのときの溝幅よりも狭幅のブレードで個々のFC実装型LED10の分離することで、透明基板1の外周が反射性樹脂で囲まれた、目的の蛍光型LED30(図6)が完成する。   The subsequent steps are the same as in the second embodiment, and in the step (G) cutting / separating step in FIG. 4, the width is narrower than the groove width at the time of half dicing from directly above the reflective resin filled in the groove. By separating the individual FC-mounted LEDs 10 with a blade, the target fluorescent LED 30 (FIG. 6) in which the outer periphery of the transparent substrate 1 is surrounded by a reflective resin is completed.

上記製造工程によれば、第2の実施形態で示した製造方法と同様に、大面積で長方形の外部接続電極7、8を備えた複数の蛍光型LED30を、容易に製造することができる。   According to the manufacturing process, as in the manufacturing method shown in the second embodiment, it is possible to easily manufacture a plurality of fluorescent LEDs 30 including the large-area and rectangular external connection electrodes 7 and 8.

1、101,201 透明基板
2、102,202 n型窒化物半導体層
2a,102a、202a 露出部
3,103,203 p型窒化物半導体層
4,104,204 n側電極
5,105,205 p側電極
6,106,206 絶縁層
6a、6b、106a、106b スルーホール
7,107,207 外部接続電極
8,108,208 外部接続電極
10,100,200 FC実装型LED
11、12、111,112 接続電極
15 メッキレジスト膜
15a,15b 電極形成用開口
16 金属層
17 ブレード
20、30 蛍光型LED
21、31 蛍光樹脂
32 反射性樹脂
206a,206b 開口部
1, 101, 201 Transparent substrate 2, 102, 202 n-type nitride semiconductor layer 2a, 102a, 202a Exposed portion 3, 103, 203 p-type nitride semiconductor layer 4, 104, 204 n-side electrode 5, 105, 205 p Side electrode 6, 106, 206 Insulating layer 6a, 6b, 106a, 106b Through hole 7, 107, 207 External connection electrode 8, 108, 208 External connection electrode 10, 100, 200 FC mounting type LED
11, 12, 111, 112 Connection electrode 15 Plating resist film 15a, 15b Electrode forming opening 16 Metal layer 17 Blade 20, 30 Fluorescent LED
21, 31 Fluorescent resin 32 Reflective resin 206a, 206b Opening

Claims (7)

透明基板の上面に形成された、n型窒化物半導体層及びp型窒化物半導体層と、前記n型窒化物半導体層及びp型窒化物半導体層上に形成された、n側電極及びp側電極とを有するフリップチップ実装型LEDにおいて、
前記n型窒化物半導体層及びp型窒化物半導体層上に、n側電極及びp側電極の部分に貫通孔を有して形成された絶縁層と、前記絶縁層の上面に平行に形成された2個の略長方形の外部接続用電極とを有し、
前記2個の外部接続用電極は、前記貫通孔を通して前記n側電極及びp側電極にそれぞれ接続されていることを特徴とするフリップチップ実装型LED。
An n-type nitride semiconductor layer and a p-type nitride semiconductor layer formed on the upper surface of the transparent substrate, and an n-side electrode and a p-side formed on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer. In a flip chip mounting type LED having an electrode,
An insulating layer formed on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer with through-holes in the n-side electrode and the p-side electrode, and is formed in parallel with the upper surface of the insulating layer. Two substantially rectangular external connection electrodes,
The flip-chip mounted LED, wherein the two external connection electrodes are respectively connected to the n-side electrode and the p-side electrode through the through hole.
前記n側電極が、前記n型窒化物半導体層のコーナー部分に形成された、前記n型窒化物半導体層とp型窒化物半導体層との非積層部分に設けられていることを特徴とする請求項1に記載のフリップチップ実装型LED。   The n-side electrode is provided in a non-stacked portion of the n-type nitride semiconductor layer and the p-type nitride semiconductor layer formed at a corner portion of the n-type nitride semiconductor layer. The flip chip mounting type LED according to claim 1. 前記絶縁層が、樹脂絶縁層であることを特徴とする請求項1または2に記載のフリップチップ実装型LED。   The flip-chip mounted LED according to claim 1, wherein the insulating layer is a resin insulating layer. 前記フリップチップ実装型LEDの透明基板の下面と、n型窒化物半導体層及びp型窒化物半導体層の形成された側面を、蛍光体を分散させた樹脂で被覆したことを特徴とする請求項1から3の何れか一項に記載のフリップチップ実装型LED。   The lower surface of the transparent substrate of the flip chip mounting LED and the side surface on which the n-type nitride semiconductor layer and the p-type nitride semiconductor layer are formed are covered with a resin in which a phosphor is dispersed. The flip chip mounting type LED according to any one of claims 1 to 3. 前記透明基板および前記絶縁層の側面を反射性樹脂で囲み、当該反射性樹脂から露出する前記透明基板の表面に、蛍光体層が設けられていることを特徴とする請求項1から3のいずれか一項に記載のフリップチップ実装型LED。   4. The phosphor layer is provided on a surface of the transparent substrate that surrounds side surfaces of the transparent substrate and the insulating layer with a reflective resin and is exposed from the reflective resin. 5. The flip chip mounting type LED according to claim 1. 透明基板の上面にn型窒化物半導体層及びp型窒化物半導体層を形成する工程と、
前記n型窒化物半導体層及びp型窒化物半導体層上に、n側電極及びp側電極を形成する工程と、
前記n型窒化物半導体層及びp型窒化物半導体層上に、前記n側電極及びp側電極の部分に貫通孔を有する絶縁層を形成する工程と、
前記絶縁層上の前記貫通孔の位置に、2個の略長方形の開口を有するメッキレジスト層を形成する工程と、
前記貫通孔及び開口内に、金属層を形成するメッキ工程と、
前記メッキレジスト層を除去して、前記開口内の前記金属層を、外部接続用電極として形成する工程とを有する
ことを特徴とするフリップチップ実装型LEDの製造方法。
Forming an n-type nitride semiconductor layer and a p-type nitride semiconductor layer on the upper surface of the transparent substrate;
Forming an n-side electrode and a p-side electrode on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer;
Forming an insulating layer having a through hole in the n-side electrode and the p-side electrode on the n-type nitride semiconductor layer and the p-type nitride semiconductor layer;
Forming a plating resist layer having two substantially rectangular openings at the positions of the through holes on the insulating layer;
A plating step of forming a metal layer in the through hole and the opening;
Removing the plating resist layer, and forming the metal layer in the opening as an electrode for external connection. A method for manufacturing a flip-chip mounting type LED.
大判の透明基板上に、前記フリップチップ実装型LEDを複数個形成し、切断分離工程により複数のフリップチップ実装型LEDを同時に製造することを特徴とする請求項6に記載のフリップチップ実装型LEDの製造方法。   7. The flip chip mounted LED according to claim 6, wherein a plurality of the flip chip mounted LEDs are formed on a large transparent substrate, and the plurality of flip chip mounted LEDs are manufactured simultaneously by a cutting and separating process. Manufacturing method.
JP2009152823A 2009-06-26 2009-06-26 Flip-chip packaging type led and method for manufacturing flip-chip packaging type led Pending JP2011009572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152823A JP2011009572A (en) 2009-06-26 2009-06-26 Flip-chip packaging type led and method for manufacturing flip-chip packaging type led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152823A JP2011009572A (en) 2009-06-26 2009-06-26 Flip-chip packaging type led and method for manufacturing flip-chip packaging type led

Publications (2)

Publication Number Publication Date
JP2011009572A true JP2011009572A (en) 2011-01-13
JP2011009572A5 JP2011009572A5 (en) 2012-04-05

Family

ID=43565869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152823A Pending JP2011009572A (en) 2009-06-26 2009-06-26 Flip-chip packaging type led and method for manufacturing flip-chip packaging type led

Country Status (1)

Country Link
JP (1) JP2011009572A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227470A (en) * 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013069765A (en) * 2011-09-21 2013-04-18 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013089644A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device
JP2013106048A (en) * 2011-11-16 2013-05-30 Lg Innotek Co Ltd Light-emitting device, and light-emitting device provided with the same
JP2013135125A (en) * 2011-12-27 2013-07-08 Citizen Holdings Co Ltd Semiconductor light-emitting element
JP2013197310A (en) * 2012-03-19 2013-09-30 Toshiba Corp Light-emitting device
WO2013168802A1 (en) * 2012-05-11 2013-11-14 シチズンホールディングス株式会社 Led module
JP2013251417A (en) * 2012-06-01 2013-12-12 Nichia Chem Ind Ltd Light-emitting device
JP2014022705A (en) * 2012-07-24 2014-02-03 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
EP2701214A1 (en) * 2011-04-20 2014-02-26 Elm Inc. Light emitting device and method for manufacturing same
JP2014507804A (en) * 2011-01-28 2014-03-27 ソウル バイオシス カンパニー リミテッド Wafer level light emitting diode package and method of manufacturing the same
JP2014067876A (en) * 2012-09-26 2014-04-17 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
WO2014132979A1 (en) * 2013-02-27 2014-09-04 日亜化学工業株式会社 Light emitting device, method for mounting light emitting element, and mounting device for light emitting elements
KR20140133565A (en) * 2012-02-10 2014-11-19 코닌클리케 필립스 엔.브이. Molded lens forming a chip scale led package and method of manufacturing the same
JP2015012081A (en) * 2013-06-27 2015-01-19 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2015502666A (en) * 2011-12-08 2015-01-22 コーニンクレッカ フィリップス エヌ ヴェ Semiconductor light emitting device having a thick metal layer
KR20150062729A (en) * 2013-11-29 2015-06-08 서울반도체 주식회사 Light emitting device, vehicle lamp including the same and back light unit
US9136447B2 (en) 2012-07-30 2015-09-15 Nichia Corporation Light emitting device and method of manufacturing the same
KR20160037964A (en) * 2013-07-24 2016-04-06 쿨레지 라이팅 인크. Light-emitting dies incorporating wavelength-conversion materials and related methods
JP2016072435A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light emitting device
US9484511B2 (en) 2013-05-13 2016-11-01 Nichia Corporation Light emitting device and method for manufacturing same
US9559006B2 (en) 2014-08-08 2017-01-31 Nichia Corporation Light emitting device and method of manufacturing light emitting device
CN106972095A (en) * 2017-05-26 2017-07-21 厦门市东太耀光电子有限公司 A kind of LED wafer structure
JP2017199939A (en) * 2011-08-09 2017-11-02 晶元光▲電▼股▲ふん▼有限公司 Photoelectric module and manufacturing method thereof
JP2017532786A (en) * 2014-11-05 2017-11-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component manufacturing method and optoelectronic component
JP2017533590A (en) * 2014-10-27 2017-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Directional light emitting device and manufacturing method thereof
JP2018050082A (en) * 2017-12-28 2018-03-29 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2018514950A (en) * 2015-05-13 2018-06-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method for creating optoelectronic component and surface mountable optoelectronic component
US10529898B2 (en) 2003-07-04 2020-01-07 Epistar Corporation Optoelectronic element
US10686106B2 (en) 2003-07-04 2020-06-16 Epistar Corporation Optoelectronic element
US10784415B2 (en) 2013-05-13 2020-09-22 Seoul Semiconductor Co., Ltd. Light-emitting device package, manufacturing method thereof, and vehicle lamp and backlight unit including same
CN113644176A (en) * 2021-07-29 2021-11-12 厦门三安光电有限公司 LED chip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007929A (en) * 2001-06-27 2003-01-10 Nichia Chem Ind Ltd Semiconductor chip and manufacturing method therefor
JP2003282957A (en) * 2002-03-20 2003-10-03 Nichia Chem Ind Ltd Flip chip semiconductor element and method for manufacturing the same
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
WO2006035664A1 (en) * 2004-09-27 2006-04-06 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, manufacturing method and mounting method of the same and light emitting device
JP2006519500A (en) * 2003-02-26 2006-08-24 クリー インコーポレイテッド Synthetic white light source and manufacturing method thereof
WO2008091319A2 (en) * 2007-01-22 2008-07-31 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
WO2008115213A2 (en) * 2007-01-22 2008-09-25 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2009130237A (en) * 2007-11-27 2009-06-11 Panasonic Corp Light emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007929A (en) * 2001-06-27 2003-01-10 Nichia Chem Ind Ltd Semiconductor chip and manufacturing method therefor
JP2003282957A (en) * 2002-03-20 2003-10-03 Nichia Chem Ind Ltd Flip chip semiconductor element and method for manufacturing the same
JP2006519500A (en) * 2003-02-26 2006-08-24 クリー インコーポレイテッド Synthetic white light source and manufacturing method thereof
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
WO2006035664A1 (en) * 2004-09-27 2006-04-06 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, manufacturing method and mounting method of the same and light emitting device
WO2008091319A2 (en) * 2007-01-22 2008-07-31 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
WO2008115213A2 (en) * 2007-01-22 2008-09-25 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2009130237A (en) * 2007-11-27 2009-06-11 Panasonic Corp Light emitting device

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482651B2 (en) 2003-07-04 2022-10-25 Epistar Corporation Optoelectronic element having reflective layer in contact with transparent layer covering side and bottom surfaces of the optoelectronic element
US10686106B2 (en) 2003-07-04 2020-06-16 Epistar Corporation Optoelectronic element
US10529898B2 (en) 2003-07-04 2020-01-07 Epistar Corporation Optoelectronic element
JP2014507804A (en) * 2011-01-28 2014-03-27 ソウル バイオシス カンパニー リミテッド Wafer level light emitting diode package and method of manufacturing the same
EP2701214A4 (en) * 2011-04-20 2014-11-26 Elm Inc Light emitting device and method for manufacturing same
EP2701214A1 (en) * 2011-04-20 2014-02-26 Elm Inc. Light emitting device and method for manufacturing same
JP2012227470A (en) * 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2017199939A (en) * 2011-08-09 2017-11-02 晶元光▲電▼股▲ふん▼有限公司 Photoelectric module and manufacturing method thereof
US9159887B2 (en) 2011-09-21 2015-10-13 Citizen Electronics Co., Ltd. Light-emitting device, lighting device including the light-emitting device, and method of manufacturing the light-emitting device
JP2013069765A (en) * 2011-09-21 2013-04-18 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013089644A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device
US9893235B2 (en) 2011-11-16 2018-02-13 Lg Innotek Co., Ltd Light emitting device and light emitting apparatus having the same
JP2013106048A (en) * 2011-11-16 2013-05-30 Lg Innotek Co Ltd Light-emitting device, and light-emitting device provided with the same
JP2015502666A (en) * 2011-12-08 2015-01-22 コーニンクレッカ フィリップス エヌ ヴェ Semiconductor light emitting device having a thick metal layer
US9484513B2 (en) 2011-12-08 2016-11-01 Koninklijke Philips N.V. Semiconductor light emitting device with thick metal layers
JP2013135125A (en) * 2011-12-27 2013-07-08 Citizen Holdings Co Ltd Semiconductor light-emitting element
JP2018014509A (en) * 2012-02-10 2018-01-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. LED structure
JP2015507371A (en) * 2012-02-10 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ Molded lens for forming chip scale LED package and method for manufacturing the molded lens
KR20140133565A (en) * 2012-02-10 2014-11-19 코닌클리케 필립스 엔.브이. Molded lens forming a chip scale led package and method of manufacturing the same
KR102032392B1 (en) * 2012-02-10 2019-10-16 루미리즈 홀딩 비.브이. Molded lens forming a chip scale led package and method of manufacturing the same
US9312457B2 (en) 2012-03-19 2016-04-12 Kabushiki Kaisha Toshiba Light emitting device and method for manufacturing the same
JP2013197310A (en) * 2012-03-19 2013-09-30 Toshiba Corp Light-emitting device
US9512968B2 (en) 2012-05-11 2016-12-06 Citizen Holdings Co., Ltd. LED module
WO2013168802A1 (en) * 2012-05-11 2013-11-14 シチズンホールディングス株式会社 Led module
JP2013251417A (en) * 2012-06-01 2013-12-12 Nichia Chem Ind Ltd Light-emitting device
JP2014022705A (en) * 2012-07-24 2014-02-03 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
US9136447B2 (en) 2012-07-30 2015-09-15 Nichia Corporation Light emitting device and method of manufacturing the same
US9324925B2 (en) 2012-07-30 2016-04-26 Nichia Corporation Light emitting device having a metal film extending from the first electrode
JP2014067876A (en) * 2012-09-26 2014-04-17 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
WO2014132979A1 (en) * 2013-02-27 2014-09-04 日亜化学工業株式会社 Light emitting device, method for mounting light emitting element, and mounting device for light emitting elements
CN105009314B (en) * 2013-02-27 2019-11-05 日亚化学工业株式会社 Light emitting device, light-emitting component installation method and light-emitting component mounting device
JPWO2014132979A1 (en) * 2013-02-27 2017-02-02 日亜化学工業株式会社 Light emitting device, light emitting element mounting method, and light emitting element mounting apparatus
US9955619B2 (en) 2013-02-27 2018-04-24 Nichia Corporation Light emitting device, light emitting element mounting method, and light emitting element mounter
CN105009314A (en) * 2013-02-27 2015-10-28 日亚化学工业株式会社 Light emitting device, method for mounting light emitting element, and mounting device for light emitting elements
USRE49047E1 (en) 2013-05-13 2022-04-19 Nichia Corporation Light emitting device
US10784415B2 (en) 2013-05-13 2020-09-22 Seoul Semiconductor Co., Ltd. Light-emitting device package, manufacturing method thereof, and vehicle lamp and backlight unit including same
US9484511B2 (en) 2013-05-13 2016-11-01 Nichia Corporation Light emitting device and method for manufacturing same
US10121946B2 (en) 2013-05-13 2018-11-06 Nichia Corporation Light emitting device
JP2015012081A (en) * 2013-06-27 2015-01-19 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
CN105580144A (en) * 2013-07-24 2016-05-11 柯立芝照明有限公司 Method for producing glass substrate for magnetic disc, method for producing magnetic disc, and grinding tool
KR20160037964A (en) * 2013-07-24 2016-04-06 쿨레지 라이팅 인크. Light-emitting dies incorporating wavelength-conversion materials and related methods
KR102237168B1 (en) 2013-07-24 2021-04-07 에피스타 코포레이션 Light-emitting dies incorporating wavelength-conversion materials and related methods
EP3025379A4 (en) * 2013-07-24 2017-05-24 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
EP3796402A1 (en) 2013-07-24 2021-03-24 Epistar Corporation Light-emitting dies incorporating wavelength-conversion materials and related methods
KR20150062729A (en) * 2013-11-29 2015-06-08 서울반도체 주식회사 Light emitting device, vehicle lamp including the same and back light unit
KR102135625B1 (en) * 2013-11-29 2020-07-21 서울반도체 주식회사 Light emitting device, vehicle lamp including the same and back light unit
US9893238B2 (en) 2014-08-08 2018-02-13 Nichia Corporation Light emitting device and method of manufacturing light emitting device
US9559006B2 (en) 2014-08-08 2017-01-31 Nichia Corporation Light emitting device and method of manufacturing light emitting device
JP2016072435A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light emitting device
JP2017533590A (en) * 2014-10-27 2017-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Directional light emitting device and manufacturing method thereof
US10256380B2 (en) 2014-11-05 2019-04-09 Osram Opto Seiconductors Gmbh Method of producing an optoelectronic component, and optoelectronic component
JP2017532786A (en) * 2014-11-05 2017-11-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component manufacturing method and optoelectronic component
US10243117B2 (en) 2015-05-13 2019-03-26 Osram Opto Semiconductors Gmbh Method for producing optoelectronic devices and surface-mountable optoelectronic device
JP2018514950A (en) * 2015-05-13 2018-06-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method for creating optoelectronic component and surface mountable optoelectronic component
CN106972095A (en) * 2017-05-26 2017-07-21 厦门市东太耀光电子有限公司 A kind of LED wafer structure
JP2018050082A (en) * 2017-12-28 2018-03-29 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
CN113644176A (en) * 2021-07-29 2021-11-12 厦门三安光电有限公司 LED chip

Similar Documents

Publication Publication Date Title
JP2011009572A (en) Flip-chip packaging type led and method for manufacturing flip-chip packaging type led
US8581291B2 (en) Semiconductor device and method for manufacturing the same
JP5175488B2 (en) LED package having multilayer reflective surface structure
TWI513064B (en) A light emitting device and a manufacturing method thereof
JP5398644B2 (en) Light source device using semiconductor light emitting device
JP5426481B2 (en) Light emitting device
JPWO2005106978A1 (en) Light emitting device and manufacturing method thereof
TW201507219A (en) Optical semiconductor device and method for manufacturing same
JP2011258667A (en) Semiconductor light-emitting device and method for producing the sane
JP2005005604A (en) Method for manufacturing white light emitting diode device
JP4116960B2 (en) Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device
KR20140127457A (en) Semiconductor device structure and method of manufacutruing the same
TWI500186B (en) Wavelength converter and semiconductor light emitting device
US20140063822A1 (en) Wiring board, light-emitting device, and method of manufacturing the wiring board
KR101291092B1 (en) Method of manufacutruing semiconductor device structure
KR101360324B1 (en) Method of manufacutruing semiconductor device structure
JP2007027638A (en) Light emitting device
JP5278175B2 (en) Light emitting device
JP2020004882A (en) Method of manufacturing light-emitting module
TWI467808B (en) Light emitting device, method of manufacturing the same and light emitting apparatus
JP2015043462A (en) Semiconductor light-emitting device and method of manufacturing the same
JP5592963B2 (en) Light source device using semiconductor light emitting device
CN112002791B (en) Micro-LED chip, manufacturing method thereof and display panel
KR101464326B1 (en) Method of manufacutruing semiconductor device structure
JP2006196572A (en) Light emitting diode and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130830