US20150197605A1 - Polyarylene sulfide and a preparation method thereof - Google Patents

Polyarylene sulfide and a preparation method thereof Download PDF

Info

Publication number
US20150197605A1
US20150197605A1 US14/420,017 US201314420017A US2015197605A1 US 20150197605 A1 US20150197605 A1 US 20150197605A1 US 201314420017 A US201314420017 A US 201314420017A US 2015197605 A1 US2015197605 A1 US 2015197605A1
Authority
US
United States
Prior art keywords
polyarylene sulfide
reaction
compound
carboxyl group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/420,017
Other languages
English (en)
Inventor
Se-Ho Lee
Sung-Gi Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Chemicals Co Ltd
Original Assignee
SK Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Chemicals Co Ltd filed Critical SK Chemicals Co Ltd
Assigned to SK CHEMICALS CO., LTD. reassignment SK CHEMICALS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SUNG-GI, LEE, SE-HO
Publication of US20150197605A1 publication Critical patent/US20150197605A1/en
Priority to US15/228,832 priority Critical patent/US20160340473A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • C08G75/029Modification with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/02Polyureas

Definitions

  • the present invention relates to a polyarylene sulfide having more improved compatibility with other polymer materials or fillers, and a method of preparing the same.
  • polyarylene sulfide is a representative engineering plastic, and the demand for the products being used in a high temperature and corrosive environment or the electronic goods is increasing due to its high heat resistance and chemical resistance, flame resistance, electric insulation, and so on.
  • polyphenylene sulfide is one and only commercially on sale now.
  • the commercial preparation process of PPS being applicable until now is the method of carrying out a solution polymerization of p-dichlorobenzene (pDCB) and sodium sulfide in a polar organic solvent such as N-methylpyrrolidone.
  • the method is known as Macallum process.
  • the polyarylene sulfide is prepared by such Macallum process
  • a salt type by-product may be formed in a solution polymerization process using sodium sulfide, and thus there is a disadvantage of requiring a washing or drying process for eliminating a salt type by-product or a residual organic solvent.
  • the polyarylene sulfide prepared by such Macallum process is a powder form, the post processability and workability may decrease.
  • the present invention provides a polyarylene sulfide of which at least part of end groups of the main chain is carboxyl group (—COOH) or amine group (—NH 2 ).
  • the present invention also provides a method of preparing polyarylene sulfide, including the steps of: polymerizing a reactant including a diiodoaromatic compound and sulfur element; and adding a compound having carboxyl group or amine group thereto while carrying out the polymerization step.
  • the present invention also provides a shaped article including the polyarylene sulfide resin.
  • a polyarylene sulfide of which at least part of end groups of the main chain is carboxyl group (—COOH) or amine group (—NH 2 ) is provided.
  • the present inventors accomplished the present invention, in the course of studying the method of preparing a polyarylene sulfide having better compatibility with other polymer materials or fillers which can be compounded with various materials and can realize optimized properties suitable to various uses, in the process of preparing a polyarylene sulfide by melt-polymerizing a reactant including a diiodoaromatic compound and sulfur element.
  • the polyarylene sulfide prepared by prior melt-polymerization method has the ends of the main chain composed of iodine and most aryl groups (representatively, benzene) and there is substantially no functional group in the main chain, and thus there is a disadvantage of that such polyarylene sulfide is inferior in the compatibility with other polymer materials, all sorts of reinforcements such as glass fiber and the like, or fillers.
  • the polyarylene sulfide of one embodiment shows good compatibility with other polymer materials or fillers, since reactive functional groups such as carboxyl group (—COOH) or amine group (—NH 2 ) are introduced to at least part of the ends of the main chain of the same. Consequently, the polyarylene sulfide of one embodiment can be suitably compounded with various polymer materials or fillers, and makes it possible to provide a resin composition and a shaped article showing the optimized properties suitable to various uses. Simultaneously with this, the polyarylene sulfide can show good heat resistance and chemical resistance, and excellent mechanical properties unique to the polyarylene sulfide.
  • the polyarylene sulfide of one embodiment may show the peak of about 1600 to 1800 cm ⁇ 1 derived from carboxyl groups of the ends of the main chain or the peak of about 3300 to 3500 cm ⁇ 1 derived from amine group, in a FT-IR spectrum, when it is analyzed with FT-IR spectroscopy.
  • the intensity of the peak of 1600 to 1800 cm ⁇ 1 or the peak of 3300 to 3500 cm ⁇ 1 may correspond to the amount of carboxyl groups or amine groups connected to the ends of main chain.
  • the relative height intensity of the peak of about 1600 to 1800 cm ⁇ 1 or about 3300 to 3500 cm ⁇ 1 may be about 0.001 to 10%, about 0.01 to 7%, about 0.1 to 4%, or about 0.5 to 3.5%.
  • the ring stretch peak shown at 1400 to 1600 cm ⁇ 1 may be what is derived from the arylene group such as phenylene and the like included in the main chain of the polyarylene sulfide.
  • the polyarylene sulfide of one embodiment can show good compatibility with other polymer materials or fillers and can maintain excellent properties unique to the polyarylene sulfide.
  • the melting temperature of the polyarylene sulfide of one embodiment may be about 265 to 290° C., about 270 to 285° C., or about 275 to 283° C. Because of such melting temperature range, the polyarylene sulfide of one embodiment obtained by melt-polymerization method, to which carboxyl group or amine group is introduced, can show excellent heat resistance and flame retardance.
  • the number average molecular weight of the polyarylene sulfide may be about 5,000 to 50,000, about 8,000 to 40,000, or about 10,000 to 30,000.
  • the polydispersity index defined as the weight average molecular weight divided by the number average molecular weight may be about 2.0 to 4.5, about 2.0 to 4.0, or about 2.0 to 3.5. Because the polyarylene sulfide of one embodiment has such polydispersity index and molecular weight range, it can show excellent mechanical properties and processability and can be processed into various shaped articles for various uses.
  • polyarylene sulfide of one embodiment may have the melt viscosity of about 10 to 50,000 poise, about 100 to 20,000, or about 300 to 10,000, which is measured with a rotational viscometer at 300° C.
  • the polyarylene sulfide of one embodiment having such melt viscosity can show superior mechanical properties in company with excellent processability.
  • the polyarylene sulfide of one embodiment may have the tensile strength of about 100 to 900 kgf/cm 2 , about 200 to 800 kgf/cm 2 , or about 300 to 700 kgf/cm 2 , which is measured according to ASTM D 638, and the elongation of about 1 to 10%, about 1 to 8%, or about 1 to 6%, which is measured according to ASTM D 638.
  • the polyarylene sulfide of one embodiment may have the flexural strength of about 100 to 2,000 kgf/cm 2 , about 500 to 2,000 kgf/cm 2 , or about 1,000 to 2,000 kgf/cm 2 , which is measured according to ASTM D 790, and the impact strength of about 1 to 100 J/m, about 5 to 50 J/m, or about 10 to 20 J/m, which is measured according to ASTM D 256.
  • the polyarylene sulfide of one embodiment can show good compatibility with other polymer materials or fillers and can exhibit excellent properties.
  • the polyarylene sulfide of one embodiment may show good compatibility with various thermoplastic resins such as polyvinylalcohol-based resins, vinylchloride-based resins, polyamide-based resins, polyolefin-based resins, polyester-based resins, and the like; various thermoplastic elastomers such as polyvinylchloride-based elastomers, polyolefin-based elastomers, polyurethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, polybutadiene-based elastomers, and the like; or various reinforcements/fillers such as glass fiber, carbon fiber, boron fiber, glass bead, glass flake, talc, calcium carbonate, and the like. Therefore, above polyarylene sulfide of one embodiment can be compounded with other various polymer materials or fillers and show excellent synergistic effect, and it becomes possible to realize the properties optimized to various purposes.
  • the elongation was elevated about 10 times from about 2.2% to about 25.2%
  • the impact strength was elevated about 3 times from about 17 J/m to about 54 J/m by compounding about 90 weight % of the polyarylene sulfide of one embodiment of which carboxyl group is introduced to the end group of the main chain, and about 10 weight % of thermoplastic elastomer.
  • the tensile strength was largely elevated from about 602 kgf/cm 2 to about 1750 kgf/cm 2 by compounding about 60 weight % of the polyarylene sulfide of one embodiment of which amine group is introduced to the end group of the main chain, and about 40 weight % of glass fiber. Therefore, it can be known from the improved properties caused by such compounding that the polyarylene sulfide of one embodiment can show good compatibility with other various polymer materials or fillers, and consequently can exhibit excellent synergistic effects.
  • polyarylene sulfide of one embodiment is compounded with other polymer materials or fillers, it is preferable to mix about 10 to 99 weight % or about 50 to 90 weight % of the polyarylene sulfide and about 1 to 90 weight % or about 10 to 50 weight % of one or more components selected from the group consisting of thermoplastic resin, thermoplastic elastomers, and fillers.
  • a shaped article having excellent properties preferable to various uses can be prepared by shaping such mixture with a method of biaxial extrusion and the like.
  • a method of preparing the polyarylene sulfide is provided.
  • Such method of another embodiment may include the steps of polymerizing a reactant including a diiodoaromatic compound and sulfur element; and adding a compound having carboxyl group or amine group thereto while carrying out the polymerization step.
  • the compound having carboxyl group or amine group may be added thereto when the degree of polymerization reaction of the diiodoaromatic compound and sulfur element is progressed about 90% or more, or about 90% or more and less than 100%, (for example, in the latter part of the polymerization reaction), wherein the degree of polymerization reaction is determined by the ratio of present viscosity to target viscosity.
  • the degree of polymerization reaction can be determined as the ratio of present viscosity to target viscosity. For this, an objective molecular weight of the polyarylene sulfide and a target viscosity corresponding to the objective molecular weight are set up, and the present viscosity according to the degree of polymerization reaction is measured.
  • the present viscosity may be differently measured by a method well-known to a person skilled in the art in accordance with the scale of reactor.
  • a method well-known to a person skilled in the art in accordance with the scale of reactor.
  • the polymerization is carried out in a relatively small polymerization reactor, it may be measured by using a viscometer after taking a sample from the reactor where the polymerization reaction is progressing.
  • the reaction is carried out in a huge continuous polymerization reaction, the present viscosity may be measured continuously in real time with a viscometer installed in the reactor itself.
  • the polyarylene sulfide of one embodiment of which carboxyl group (—COOH) or amine group (—NH 2 ) is introduced to at least part of end groups of the main chain can be prepared by adding and reacting the compound having carboxyl group or amine group in the latter part of the polymerization reaction of the reactant including the diiodoaromatic compound and sulfur element.
  • the compound having carboxyl group or amine group is added in the latter part of the polymerization reaction, proper amount of carboxyl group or amine group can be introduced to the end groups of the main chain, and the polyarylene sulfide of one embodiment having not only good compatibility with other polymer materials or fillers but also excellent properties unique to the polyarylene sulfide can be prepared effectively.
  • an arbitrary monomer compound having carboxyl group or amine group may be used as the compound having carboxyl group or amine group.
  • the compound having carboxyl group or amine group 2-iodobenzoic acid, 3-iodobenzoic acid, 4-iodobenzoic acid, 2,2′-dithiobenzoic acid, 2-iodoaniline, 3-iodoaniline, 4-iodoaniline, 2,2′-dithiodianiline, or 4,4′-dithiodianiline may be used, and various compounds having carboxyl group or amine group can be used in addition.
  • the compound having carboxyl group or amine group may be added thereto in the amount of about 0.0001 to 5 parts by weight, about 0.001 to 3 parts by weight, or about 0.01 to 2 parts by weight, based on 100 parts by weight of the diiodoaromatic compound.
  • Proper amount of carboxyl group or amine group can be introduced to the end groups of the main chain by adding such amount of the compound having carboxyl group or amine group, and consequently, the polyarylene sulfide of one embodiment having not only good compatibility with other polymer materials or fillers but also excellent properties unique to the polyarylene sulfide can be prepared effectively.
  • the polyarylene sulfide is prepared basically by the method of polymerizing the reactant including the diiodoaromatic compound and sulfur element, and consequently, the polyarylene sulfide having superior mechanical properties to prior Macallum process can be prepared.
  • the diiodoaromatic compound may be one or more compounds selected from the group consisting of diiodobenzene (DIB), diiodonaphthalene, diiodobiphenyl, diiodobisphenol, and diiodobenzophenone, but not limited to or by them, diiodoaromatic compounds that alkyl group or sulfone group is connected to above compounds as a substituent or an oxygen or nitrogen atom is included in the aromatic group may also be used.
  • DIB diiodobenzene
  • diiodonaphthalene diiodobiphenyl
  • diiodobisphenol diiodobisphenol
  • diiodobenzophenone diiodobenzophenone
  • diiodocompound isomers of diiodoaromatic compounds depending on the position of iodine atoms, and a compound having iodine at para-position like para-diiodobenzene (pDIB), 2,6-diiodonaphthalene, or p,p′-diiodobiphenyl may be used more preferably.
  • pDIB para-diiodobenzene
  • 2,6-diiodonaphthalene 2,6-diiodonaphthalene
  • p,p′-diiodobiphenyl may be used more preferably.
  • sulfur element which reacts with the diiodoaromatic compound is not limited particularly.
  • sulfur elements exist in a cyclooctasulur (S8) form in which 8 atoms are connected at room temperature.
  • S8 cyclooctasulur
  • any solid type or liquid type sulfur which can be used commercially may be used without particular limitation.
  • the reactant may further include a polymerization initiator, a stabilizer, or a mixture thereof.
  • a polymerization initiator one or more initiator selected from the group consisting of 1,3-diiodo-4-nitrobenzene, mercaptobenzothiazole, 2,2′-dithiobenzothiazole, cyclohexylbenzothiazole sulfenamide, and butylbenzothiazole sulfonamide may be used, for example, but it is not limited to or by them.
  • a polymerization inhibitor may be added thereto at the time when the polymerization is somewhat progressed.
  • any polymerization inhibitor which can terminate the polymerization by eliminating iodine group included in the polymerized polymer can be used without particular limitation.
  • one or more compounds selected from the group consisting of diphenyl suldife, diphenyl ether, diphenyl, benzophenone, dibenzothiazole disulfide, monoiodoaryl compound, benzothiazoles, benzothiazolesulfenamides, thiurams, dithiocarbamates, and diphenyl disulfide may be used.
  • the polymerization inhibitor may be one or more compounds selected from the group consisting of iodobiphenyl, iodophenol, iodoaniline, iodobenzophenone, 2-mercaptobenzothiazole, 2,2′-dithiobisbenzothiazole, N-cyclohexylbenzothiazole-2-sulfenamide, 2-morpholinothiobenzothiazole, N,N-dicyclohexylbenzothiazole-2-sulfenamide, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, and diphenyl disulfide may be used.
  • the time of adding the polymerization inhibitor may be determined by considering the molecular weight of the polyarylene sulfide to be polymerized finally.
  • the inhibitor may be added at the time of that about 70 to 100 wt % of the diiodoaromatic compound included in the initial reactant are reacted and exhausted.
  • the polymerization reaction may be carried out in any condition which can initiate the polymerization of the reactants including the diiodoaromatic compound and sulfur element.
  • the polymerization reaction may be carried out in a temperature-rising and pressure-reducing reaction condition.
  • the condition may be carried out for about 1 to 30 hrs while varying the temperature and pressure condition from the initial reaction condition of about 180 to 250° C. and about 50 to 450 torr to the final reaction condition of about 270 to 350° C. and about 0.001 to 20 torr.
  • the polymerization reaction may be carried out with the final reaction condition of about 280 to 300° C. and 0.1 to 0.5 torr.
  • the preparation method of the polyarylene sulfide according to another embodiment may further include the step of melt-compounding the reactants including the diiodoaromatic compound and sulfur element before the polymerization reaction.
  • the condition of the melt-compounding is not limited as long as all of the reactants are melted and compounded, and for example, the process may be carried out at the temperature of about 130° C. to 200° C. , or about 160° C. to 190° C.
  • the polymerization reaction may be carried out in the presence of a nitrobenzene-based catalyst.
  • the catalyst may be added in the melt-compounding step.
  • 1,3-diiodo-4-nitrobenzene, or 1-iodo-4-nitrobenzene may be used but it is not limited to or by them.
  • a shaped article including the polyarylene sulfide of above embodiment is provided.
  • the shaped article may solely consist of the polyarylene sulfide or may further include other polymer materials and/or reinforcements/fillers.
  • the polyarylene sulfide shows excellent compatibility with other polymer materials and/or reinforcements/fillers, and makes it possible to provide a resin composition or a shaped article having superior properties by being mixed (for example, compounded) with them.
  • the polymer materials and/or reinforcements/fillers which can be compounded with the polyarylene sulfide are same as disclosed above.
  • Such shaped article may include about 10 to 99 weight % or about 50 to 90 weight % of the polyarylene sulfide and about 1 to 90 weight % or about 10 to 50 weight % of one or more components selected from the group consisting of thermoplastic resin, thermoplastic elastomers, and fillers. And, by shaping the resin composition satisfying above content range with a method such as biaxial extrusion, the shaped article having excellent properties and applicable to various uses can be obtained.
  • the shaped article of still another embodiment may be various shapes of film, sheet, fiber, and the like.
  • the shaped article may be an injection molded article, an extruded article, or a blown article.
  • the mold temperature may be about 50° C. or more, about 60° C. or more, or about 80° C. or more in the aspect of crystallization, and the temperature may be about 190° C. or less, about 170° C. or less, or about 160° C. or less in the aspect of deformation of specimen.
  • the shaped article is a film or a sheet, it may be made into an undrawn, a uniaxially drawn, or a biaxially drawn film or sheet. If it is a fiber, it may be made into an undrawn, a drawn, or an ultradrawn fiber, and it may be used to a fabric, a knit, a nonwoven (spunbond, meltblown, or staple), a rope, or a net.
  • Such shaped articles may be used to electric & electronic parts such as computer parts, architectural elements, car parts, machine parts, daily necessities, coating parts to which chemical materials contact, industrial chemical resistant fiber, and the like.
  • the present invention can provide a melt-polymerized polyarylene sulfide having excellent compatibility with other polymer materials or reinforcements/fillers because of carboxyl group or amine group included at the end of the main chain.
  • Such polyarylene sulfide can exhibit excellent properties optimized to various uses and excellent properties unique to the polyarylene sulfide by being compounded with other various polymer materials or fillers.
  • polyarylene sulfide can be applied to various uses including the use of compounding, and can exhibit excellent properties and effects.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 1 was analyzed by FT-IR spectroscopy. At this time, the carboxyl group peak was recognized at about 1600 to 1800 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 1600 to 1800cm ⁇ 1 was about 3.4% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 2 was analyzed by FT-IR spectroscopy. At this time, the amine group peak was recognized at about 3300 to 3500 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 3300 to 3500 cm ⁇ 1 was about 1.4% when the height intensity of the ring stretch peak shown at about 1400 to 1600cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the reaction was further progressed with slowly vacuumizing to 0.5 torr or less for 1 hr, and terminated.
  • the polyarylene sulfide resin having carboxyl group or amine group at the end of the main chain was synthesized.
  • the final resin obtained by the reaction was prepared into pellets by using a small strand cutter.
  • the polyarylene sulfide resin of Example 3 was analyzed by FT-IR spectroscopy. At this time, the carboxyl group peak was recognized at about 1600 to 1800 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 1600 to 1800 cm ⁇ 1 was about 2.1% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 4 was analyzed by FT-IR spectroscopy. At this time, the amine group peak was recognized at about 3300 to 3500 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 3300 to 3500 cm ⁇ 1 was about 1.1% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 5 was analyzed by FT-IR spectroscopy. At this time, the carboxyl group peak was recognized at about 1600 to 1800 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 1600 to 1800 cm ⁇ 1 was about 3.2% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 6 was analyzed by FT-IR spectroscopy. At this time, the amine group peak was recognized at about 3300 to 3500 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 3300 to 3500 cm ⁇ 1 was about 1.3% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 7 was analyzed by FT-IR spectroscopy. At this time, the carboxyl group peak was recognized at about 1600 to 1800 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 1600 to 1800 cm ⁇ 1 was about 1.9% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Example 8 was analyzed by FT-IR spectroscopy. At this time, the amine group peak was recognized at about 3300 to 3500 cm ⁇ 1 in the spectrum. It was also recognized that the relative height intensity of the peak at about 3300 to 3500 cm ⁇ 1 was about 1.0% when the height intensity of the ring stretch peak shown at about 1400 to 1600 cm ⁇ 1 was assumed as 100%.
  • the polymerization reaction was proceeded by carrying out temperature-rising and pressure reducing step by step from the initial reaction condition of 220° C. and 350 torr to the final reaction temperature of 300° C. and the pressure of 1 torr or less.
  • the polyarylene sulfide resin of Comparative Example 1 was analyzed by FT-IR spectroscopy. At this time, it was recognized that there was neither carboxyl group peak nor amine group peak at about 1600 to 1800 cm ⁇ 1 or about 3300 to 3500 cm ⁇ 1 in the spectrum.
  • DSC differential scanning calorimeter
  • the polyarylene sulfide was divided in order in the column of a high temperature gel permeation chromatography (GPC) system (210° C.) by flowing the solution with the flow rate of 1 mL/min, and the intensity corresponding to the molecular weight of the divided polyarylene sulfide was measure by using a RI detector.
  • GPC gel permeation chromatography
  • melt viscosity (hereinafter, ‘M.V.’) was measured at 300° C. by using a rotating disk viscometer. In frequency sweep measuring method, angular frequency was measured from 0.6 to 500 rad/s, and the viscosity at 1.84 rad/s was defined as the melt viscosity (M.V.).
  • Example 1 278.6 17,667 2.9 2,940
  • Example 2 278.3 17,614 2.9 2,200
  • Example 3 278.8 17,435 2.8 2,830
  • Example 4 278.6 17,224 2.8 2,770
  • Example 5 277.5 17,338 2.9 2,350
  • Example 6 277.7 17,152 2.9 2,930
  • Example 7 278.3 17,531 2.8 2,470
  • Example 8 278.7 17,582 2.8 2,530 Comparative 280.5 17,267 2.8 2,420
  • Example 1 278.6 17,667 2.9 2,940
  • Example 3 278.8 17,435 2.8 2,830
  • Example 4 278.6 17,224 2.8 2,770
  • Example 5 277.5 17,338 2.9 2,350
  • Example 6 277.7 17,152 2.9 2,930
  • Example 7 278.3 17,531 2.8 2,470
  • Example 8 278.7 17,582 2.8 2,530 Comparative 280.5 17,2
  • the flexural strength of the polyarylene sulfide specimens prepared according to Examples 1 to 8 and Comparative Example 1 were measured according to ASTM D 790 method.
  • the impact strength of the polyarylene sulfide specimens prepared according to Examples 1 to 8 and Comparative Example 1 was measured according to ASTM D 256 method.
  • Example 1 612 2.2 1,430 17
  • Example 2 602 1.2 1,422 20
  • Example 3 622 2.1 1,433 18
  • Example 4 614 1.3 1,442 17
  • Example 5 628 2.2 1,455 18
  • Example 6 605 1.2 1,428 17
  • Example 7 611 2.3 1,435 17
  • Example 8 618 1.3 1,447 19 Comparative 605 1.2 1,453 19
  • Example 1
  • the specimens were prepared by compounding the polyarylene sulfide of Examples 1 to 8 and Comparative Example 1 with other components according to the following methods:
  • the compounding was carried out with a small twin-screw extruder under the condition of the extrusion die temperature of 300° C. and the screw speed of 200 rpm while adding 40 parts by weight of glass fiber to 60 parts by weight of the resin.
  • the mixing extrusion was carried out under the condition of the extrusion die temperature of 300° C. and the screw speed of 200 rpm while adding 10 parts by weight of Lotader (Grade AX-8840, made by Arkema), the elastomer, to 90 parts by weight of the resin.
  • the compounded specimen of Comparative Example 2 was a commercialized specimen prepared by compounding the polyarylene sulfide which was obtained by Macallum process and was known to be good in the compatibility with other polymer materials and several % of elastomer.
  • such compounded specimen of Comparative Example 2 also showed not enough elongation improvement by compounding with elastomer, in comparison with Examples, and it seems to have the problems (deterioration in processability and workability due to the powder form) of polyarylene sulfide obtained by Macallum process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US14/420,017 2012-08-07 2013-08-06 Polyarylene sulfide and a preparation method thereof Abandoned US20150197605A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/228,832 US20160340473A1 (en) 2012-08-07 2016-08-04 Polyarylene sulfide and a preparation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20120086423 2012-08-07
KR10-2012-0086423 2012-08-07
PCT/KR2013/007081 WO2014025190A1 (ko) 2012-08-07 2013-08-06 폴리아릴렌 설파이드 수지 및 그의 제조 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007081 A-371-Of-International WO2014025190A1 (ko) 2012-08-07 2013-08-06 폴리아릴렌 설파이드 수지 및 그의 제조 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/228,832 Continuation US20160340473A1 (en) 2012-08-07 2016-08-04 Polyarylene sulfide and a preparation method thereof
US16/175,485 Continuation US10875966B2 (en) 2012-08-07 2018-10-30 Polyarylene sulfide and a preparation method thereof

Publications (1)

Publication Number Publication Date
US20150197605A1 true US20150197605A1 (en) 2015-07-16

Family

ID=50068360

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/420,017 Abandoned US20150197605A1 (en) 2012-08-07 2013-08-06 Polyarylene sulfide and a preparation method thereof
US15/228,832 Abandoned US20160340473A1 (en) 2012-08-07 2016-08-04 Polyarylene sulfide and a preparation method thereof
US16/175,485 Active 2033-10-22 US10875966B2 (en) 2012-08-07 2018-10-30 Polyarylene sulfide and a preparation method thereof
US17/100,448 Abandoned US20210079166A1 (en) 2012-08-07 2020-11-20 Polyarylene sulfide and a preparation method thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/228,832 Abandoned US20160340473A1 (en) 2012-08-07 2016-08-04 Polyarylene sulfide and a preparation method thereof
US16/175,485 Active 2033-10-22 US10875966B2 (en) 2012-08-07 2018-10-30 Polyarylene sulfide and a preparation method thereof
US17/100,448 Abandoned US20210079166A1 (en) 2012-08-07 2020-11-20 Polyarylene sulfide and a preparation method thereof

Country Status (9)

Country Link
US (4) US20150197605A1 (de)
EP (1) EP2883900B1 (de)
JP (2) JP6467343B2 (de)
KR (2) KR20140020201A (de)
CN (2) CN108178926B (de)
ES (1) ES2885765T3 (de)
HK (2) HK1205526A1 (de)
TW (2) TWI665235B (de)
WO (1) WO2014025190A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688817B2 (en) 2013-03-25 2017-06-27 DIC Corporation (Tokyo) Method for producing polyarylene sulfide resin and polyarylene sulfide resin composition
US20190177485A1 (en) * 2016-05-31 2019-06-13 Initz Co., Ltd. Polyarylene sulfide resin composition having excellent ductility and dimensional stability
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
US10875966B2 (en) 2012-08-07 2020-12-29 Sk Chemicals Co., Ltd Polyarylene sulfide and a preparation method thereof
US11383491B2 (en) * 2016-03-24 2022-07-12 Ticona Llc Composite structure

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944898B1 (ko) 2012-06-11 2019-02-01 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 조성물 및 이의 제조 방법
CN104640929B (zh) * 2012-09-19 2018-01-23 Sk化学株式会社 聚亚芳基硫醚树脂组合物及成形的物品
WO2015020142A1 (ja) * 2013-08-09 2015-02-12 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及びその成形品
WO2015020143A1 (ja) * 2013-08-09 2015-02-12 Dic株式会社 ポリアリーレンスルフィド樹脂組成物及びその成形品
JP6237773B2 (ja) * 2013-08-30 2017-11-29 Dic株式会社 水回り部品用樹脂組成物及び流体用配管
JP6315289B2 (ja) * 2013-09-05 2018-04-25 Dic株式会社 ポリアリーレンスルフィド繊維及びその製造方法
CN105579529A (zh) 2013-09-26 2016-05-11 Dic株式会社 聚芳硫醚树脂组合物及其成形品、以及表面安装电子部件
KR102668078B1 (ko) * 2013-10-01 2024-05-23 디아이씨 가부시끼가이샤 폴리아릴렌설피드 수지 조성물 및 그 성형품, 그리고 전기 자동차 부품
CN105980480B (zh) 2014-02-05 2018-11-20 帝人株式会社 聚芳硫醚树脂组合物
JP2016222851A (ja) * 2015-06-02 2016-12-28 住友精化株式会社 ポリフェニレンスルフィド樹脂組成物
TWI723082B (zh) 2015-11-23 2021-04-01 南韓商Sk化學公司 聚芳硫醚及其製備方法
WO2017090959A1 (ko) * 2015-11-23 2017-06-01 에스케이케미칼주식회사 폴리아릴렌 설파이드계 수지 조성물 및 성형품
KR20170105269A (ko) * 2016-03-09 2017-09-19 이니츠 주식회사 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
KR101887654B1 (ko) * 2017-04-28 2018-08-10 한국화학연구원 폴리페닐렌 설파이드 공중합체의 제조방법 및 이로부터 제조된 폴리페닐렌 설파이드 공중합체
KR102296583B1 (ko) * 2018-08-29 2021-08-31 주식회사 엘지화학 폴리아릴렌 설파이드의 정제 방법
WO2021033140A1 (en) * 2019-08-19 2021-02-25 Sabic Global Technologies B.V. Polyolefin-based vitrimer materials containing disulfide units
KR20210152726A (ko) * 2020-06-09 2021-12-16 에스케이케미칼 주식회사 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155183A (en) * 1991-04-16 1992-10-13 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide) having an enhanced rate of crystallization
US20090203872A1 (en) * 2006-08-24 2009-08-13 Young Rok Lee Manufacturing process for poly (arylene sulphide)

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790018A (en) * 1980-11-27 1982-06-04 Toray Ind Inc Stabilized polyphenylene sulfide and its production
US4769424A (en) * 1987-06-01 1988-09-06 General Electric Company Polyarylene sulfide block copolymers, method for making, and use
EP0403534B1 (de) * 1988-03-07 1993-11-24 Eastman Chemical Company Verfahren zur herstellung von copolyarylensulfiden
US4826956A (en) * 1988-05-20 1989-05-02 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide) using an oxygen-containing gas
US4877851A (en) * 1988-07-25 1989-10-31 Eastman Kodak Company Blends of copoly(arylene sulfide) and poly(arylene sulfide)
JP2732891B2 (ja) * 1989-04-28 1998-03-30 東ソー株式会社 アミノ基含有ポリフェニレンスルフィルドの製造方法
US4977236A (en) * 1989-06-12 1990-12-11 Eastman Kodak Company Terminated copoly(arylene sulfide) of low molecular weight
US5175243A (en) * 1990-11-14 1992-12-29 Phillips Petroleum Company Process for preparing arylene sulfide polymers with halo benzene containing deactivating group
EP0549977A1 (de) * 1991-12-25 1993-07-07 Mitsubishi Petrochemical Co., Ltd. Carboxylgruppenhaltiges Polyphenylensulfid, Verfahren zur Herstellung und Harzmischung
US5328980A (en) * 1992-12-03 1994-07-12 Phillips Petroleum Company Method of preparing poly(arylene sulfide) polymers, polymers and polymer blends
JP3475063B2 (ja) * 1997-12-16 2003-12-08 出光興産株式会社 ポリアリーレンスルフィドの製造方法
JP3540583B2 (ja) * 1997-12-16 2004-07-07 出光石油化学株式会社 ポリアリーレンスルフィド及びその製造方法
JP4307908B2 (ja) 2003-06-05 2009-08-05 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物および塗装成形品
JP5023682B2 (ja) * 2006-12-08 2012-09-12 東ソー株式会社 ポリアリーレンスルフィド組成物
EP2115035B1 (de) * 2007-01-04 2018-04-25 SK Chemicals Co., Ltd. Polyarylensulfidharz mit hervorragender helligkeit und herstellungsverfahren dafür
CN104086770A (zh) * 2007-01-05 2014-10-08 Sk化学株式会社 具有出色发光度的聚亚芳基硫醚树脂的制备方法以及聚亚芳基硫醚树脂
EP2305737A4 (de) 2008-07-22 2015-03-04 Kureha Corp Verfahren zur herstellung von polyarylensulfid mit reduziertem halogenendgruppenanteil
KR101554010B1 (ko) * 2008-12-31 2015-09-18 에스케이케미칼 주식회사 유리 요오드 저감 폴리아릴렌 설파이드의 제조 방법
EP2511344B1 (de) * 2009-12-10 2015-04-08 Polyplastics Co., Ltd. Polyarylensulfidharzzusammensetzung und umspritzartikel
JP5969925B2 (ja) * 2010-03-09 2016-08-17 エスケー ケミカルズ カンパニー リミテッド 再利用可能なポリアリーレンスルフィドの製造方法
KR101727258B1 (ko) * 2010-03-10 2017-04-27 에스케이케미칼주식회사 아웃 가스 발생량이 적은 폴리아릴렌 설파이드 및 이의 제조 방법
WO2011111982A2 (ko) * 2010-03-10 2011-09-15 에스케이케미칼주식회사 폴리아릴렌 설파이드 및 이의 제조 방법
KR101750014B1 (ko) * 2010-05-12 2017-06-23 에스케이케미칼 주식회사 가공성이 우수한 폴리아릴렌 설파이드 및 이의 제조 방법
JP4936034B2 (ja) * 2010-05-26 2012-05-23 Dic株式会社 ブロー中空成形品用樹脂組成物、ブロー中空成形品および製造方法
JP5182435B2 (ja) * 2010-10-29 2013-04-17 東レ株式会社 ポリアリーレンスルフィドの製造方法およびポリアリーレンスルフィド
KR101944898B1 (ko) 2012-06-11 2019-02-01 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 조성물 및 이의 제조 방법
JP6467343B2 (ja) 2012-08-07 2019-02-13 エスケー ケミカルズ カンパニー リミテッド ポリアリーレンスルフィドの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155183A (en) * 1991-04-16 1992-10-13 Eastman Kodak Company Process for the preparation of copoly(arylene sulfide) having an enhanced rate of crystallization
US20090203872A1 (en) * 2006-08-24 2009-08-13 Young Rok Lee Manufacturing process for poly (arylene sulphide)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875966B2 (en) 2012-08-07 2020-12-29 Sk Chemicals Co., Ltd Polyarylene sulfide and a preparation method thereof
US9688817B2 (en) 2013-03-25 2017-06-27 DIC Corporation (Tokyo) Method for producing polyarylene sulfide resin and polyarylene sulfide resin composition
US10450461B2 (en) 2015-12-11 2019-10-22 Ticona Llc Crosslinkable polyarylene sulfide composition
US10590273B2 (en) 2015-12-11 2020-03-17 Ticona Llc Polyarylene sulfide composition
US11383491B2 (en) * 2016-03-24 2022-07-12 Ticona Llc Composite structure
US20220355576A1 (en) * 2016-03-24 2022-11-10 Ticona Llc Composite Structure
US11919273B2 (en) * 2016-03-24 2024-03-05 Ticona Llc Composite structure
US20190177485A1 (en) * 2016-05-31 2019-06-13 Initz Co., Ltd. Polyarylene sulfide resin composition having excellent ductility and dimensional stability

Also Published As

Publication number Publication date
WO2014025190A1 (ko) 2014-02-13
EP2883900A1 (de) 2015-06-17
EP2883900A4 (de) 2016-04-27
KR102210479B1 (ko) 2021-02-01
TW201412825A (zh) 2014-04-01
TWI675050B (zh) 2019-10-21
HK1205526A1 (en) 2015-12-18
CN104520352A (zh) 2015-04-15
CN108178926A (zh) 2018-06-19
TW201802145A (zh) 2018-01-16
US20160340473A1 (en) 2016-11-24
CN108178926B (zh) 2020-12-25
JP2019039015A (ja) 2019-03-14
HK1255667A1 (zh) 2019-08-23
US20210079166A1 (en) 2021-03-18
US20190062505A1 (en) 2019-02-28
CN104520352B (zh) 2019-12-03
JP6467343B2 (ja) 2019-02-13
EP2883900B1 (de) 2021-07-14
US10875966B2 (en) 2020-12-29
KR20200002730A (ko) 2020-01-08
KR20140020201A (ko) 2014-02-18
KR102210479B9 (ko) 2022-12-09
TWI665235B (zh) 2019-07-11
ES2885765T3 (es) 2021-12-15
JP2015524510A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
US10875966B2 (en) Polyarylene sulfide and a preparation method thereof
US11370915B2 (en) Polyarylene sulfide resin composition and formed article
US9650515B2 (en) Polyarylene sulfide resin composition and a preparation method thereof
US11390714B2 (en) Polyarylene sulfide resin and preparation method thereof
TWI740858B (zh) 聚芳硫醚樹脂組合物及成形物件
KR20220007274A (ko) 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
AS Assignment

Owner name: SK CHEMICALS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SE-HO;KIM, SUNG-GI;REEL/FRAME:034905/0677

Effective date: 20150115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION