US20130192811A1 - Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube - Google Patents

Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube Download PDF

Info

Publication number
US20130192811A1
US20130192811A1 US13/807,478 US201113807478A US2013192811A1 US 20130192811 A1 US20130192811 A1 US 20130192811A1 US 201113807478 A US201113807478 A US 201113807478A US 2013192811 A1 US2013192811 A1 US 2013192811A1
Authority
US
United States
Prior art keywords
tube
wall
internal separator
clearance
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/807,478
Other languages
English (en)
Inventor
Laurent Moreau
Alain Bauerheim
Philippe Metayer
Yoann Naudin
Kevin Gahon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1002773A external-priority patent/FR2962203B1/fr
Priority claimed from FR1002767A external-priority patent/FR2962202B1/fr
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of US20130192811A1 publication Critical patent/US20130192811A1/en
Assigned to VALEO SYSTEMES THERMIQUES reassignment VALEO SYSTEMES THERMIQUES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: METAYER, PHILIPPE, BAUERHEIM, ALAIN, GAHON, KEVIN, NAUDIN, YOANN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • B21C37/225Making finned or ribbed tubes by fixing strip or like material to tubes longitudinally-ribbed tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means

Definitions

  • the present invention concerns a heat exchanger tube, a heat exchanger including such tubes and a method of producing such a tube.
  • the heat exchangers concerned are intended for equipping vehicles and, in a preferred application, correspond to the condensers provided in the air conditioning loops or circuits of the vehicles. There may nevertheless be envisaged, without departing from the scope of the invention, an application of these exchangers as radiators in engine cooling loops or circuits.
  • the air conditioning loop of the passenger compartment of a vehicle generally consists primarily, in the direction of flow of the coolant fluid (for example freon, CO 2 , 1234YF fluid) passing through it, a compressor compressing the fluid at this point in the form of vapor, a condenser receiving the fluid to convert it to liquid form thanks to a flow of external air sweeping it, an expander reducing the pressure and an evaporator, in which the expanded and condensed fluid exchanges heat with a flow of external air to be directed into the passenger compartment.
  • the fluid is converted to the vapor phase at the outlet of the evaporator to be fed into the compressor for a new cycle, while the flow of external air passing through the evaporator is cooled to supply conditioned air in the passenger compartment.
  • the condenser forming the heat exchanger includes a bundle of parallel tubes and two manifolds (or collector boxes) into which the corresponding ends of the tubes are fixedly connected in sealed manner, by brazing them. Accordingly, the coolant fluid in the loop is able to flow through the tubes, the fluid being converted from its vapor phase to its liquid phase by the flow of external air sweeping the tubes.
  • the invention relates to heat exchanger tubes produced using the bending technology.
  • Such tubes are generally produced from a spool of sheet metal which, after it is paid out in strip form, is progressively shaped to the required cross section by dedicated bending tools or the like, and then cut to the required length, in sections corresponding to the finished tubes.
  • the heat exchanger tubes may be subjected to numerous loads such as a high-speed impact with an object (for example a stone) from the exterior environment.
  • the tube must be able to withstand any such impact so as to prevent any leaking of fluid.
  • the tube In the case of a bent tube, the tube cannot be reinforced by an increased thickness of material as is the case for an extruded tube. It is however necessary to increase the thickness of the wall of the bent tube locally as the latter thickness is generally around 0.2 mm, which is insufficient from the point of view of withstanding stone impacts.
  • the wall of the tube is bent horizontally on itself several times at the level of one side or nose of the tube, increasing the thickness of material in the tube nose.
  • a drawback is that the height of the tube is thus a function of the thickness of material thereof and corresponds to the number of bends.
  • the tube is open beforehand along one of its sides that is then closed by overlapping plane on plane two thicknesses of wall.
  • a drawback of a solution of this kind is the risk of defective sealing at the level of the side closed in this way.
  • the patent DE102006006670 describes a solution including sides having numerous vertical bends. A major drawback of this solution is that it leads to excess consumption of material.
  • tubes with an internal separator there are also known, notably from the patent DE102005043093, tubes with an internal separator.
  • a tube and an internal separator it is not possible to proceed to cut the tube and the internal separator to length with conventional means (for example cutting with a knife), because the internal separator tends to be compressed during this operation.
  • the tube is first shaped and then cut to length, the internal separator is also shaped and then cut to length, and the tube and the internal separator are then assembled. In this configuration it is necessary to leave a functional clearance between the tube and the internal separator to be able to insert the latter. This clearance is not favorable for correct brazing of the components to each other.
  • An object of the present invention is to remedy these drawbacks and the present invention concerns a fluid circulation tube the design of which enables the internal separator to reinforce the tube and notably at least one side of the tube.
  • the heat exchanger tube comprises a bent wall defining a housing and an internal, for example corrugated, separator inserted into the housing.
  • the internal separator defines a plurality of fluid circulation channels.
  • the wall of the tube has large surfaces connected by radii.
  • the internal separator extends in the lengthwise direction, for example, from one orifice to the other of the tube.
  • the large surfaces are notably plane and parallel to each other.
  • the tube is configured so that the clearance between the wall and the internal separator is filled along the length of at least one radius.
  • the clearance between the internal separator and the wall of the tube is filled along the radius, over all or part of the length of the internal separator. The effect of this is to increase the overall area of contact between the separator and the walls of the tube, and therefore the thickness of the tube, at least at the level of the nose of the tube.
  • the internal separator includes at least one flat at one apex, said flat being in contact with the wall. This has the advantage of increasing the mechanical strength, including at the level of its plane faces.
  • the internal separator includes a flat at each of its vertices, said flat being in contact with the wall.
  • the tube is configured so that the clearance between the wall and the internal separator is filled along each radius. This has the advantage of reinforcing the tube noses on each side of the tube and thus avoiding the necessity to mark the reinforced side.
  • the tube has a section in the shape of a B and said wall comprises legs that meet at the level of a central portion of said B-shaped section. At least one of said legs is in contact with the internal separator. This has the advantage of increasing the mechanical strength of the tube.
  • the invention also concerns a heat exchanger that includes tubes as defined above.
  • the heat exchanger with these fluid circulation tubes preferably defines the condenser of a motor vehicle air conditioning loop or the like.
  • a heat exchanger finds a particular application in the field of motor vehicles, for example to produce an air conditioning condenser.
  • the exchanger has the structure referred to above, for example.
  • the invention also concerns a method of producing a heat exchanger tube, in particular the condenser of a motor vehicle air conditioning system.
  • the tube comprises a bent wall defining a housing and an internal separator, which is for example corrugated, inserted into the housing with a clearance.
  • the internal separator defines a plurality of fluid circulation channels and the wall of the tube has large surfaces, notably plane surfaces, of length L connected by radii of height H.
  • the method comprises the steps of inserting the internal separator in the housing and compressing the tube in the direction of its height.
  • the compression is characterized in that it compresses the tube from a height H 1 to a height H 2 with H2 ⁇ H1 and from a length L 1 to a length L 2 with L1 ⁇ L2, so that the clearance between the wall and the internal separator is at least partially filled.
  • the compression By compressing the tube from a height H 1 to a height H 2 with H2 ⁇ H1 and from a length L 1 to a length L 2 with L1 ⁇ L2, the compression enables the overall area of contact between the insert and the walls of the tube to be increased, notably at the level of at least one tube nose. This has the advantage of enabling better brazing between the internal separator and the walls of the tube in contact with the internal separator.
  • Another advantage of the method of the invention is that the compression (i.e. deformation) enables linear and homogeneous reshaping of the tube including the internal separator.
  • the method includes a preliminary step wherein the wall of the tube is produced by bending a sheet of material, for example, and has, after bending, a substantially closed section in which the internal separator is inserted.
  • the compression is exerted in a direction substantially orthogonal to the plane faces of the tube.
  • the compression step is configured so that the tube and its components, wall and/or insert, have the features referred to above.
  • FIG. 1A represents a tube bent into the shape of a B before compression in accordance with one embodiment of the invention and including an internal separator inserted between the walls of the tube.
  • FIG. 1B represents the tube from FIG. 1A after compression.
  • a heat exchanger tube 100 notably of an air conditioning condenser for motor vehicles, comprises a bent wall 105 , defining a housing 115 , and an internal separator 130 , inserted in the housing.
  • the internal separator 130 which is notably corrugated, defines a plurality of fluid circulation channels 136 .
  • the wall 105 has large, for example plane, surfaces connected by radii 110 .
  • the wall of the tube notably has a cross section in the shape of a B.
  • This inner spacer or each of these inner spacers notably also has the function of improving the thermal performance of the condenser and the mechanical strength of the tubes, which must resist not only the operating pressure when the loop is operating, which is of the order of 20 bar, but also that imposed by the specification, notably a tube bursting rating of up to 100 bar, for coolant fluids based on freon.
  • the tube 100 is configured so that the clearance is filled along at least one radius 110 between the wall 105 and the internal separator 130 .
  • the clearance is defined by the space that exists between the internal radius of the radius 110 of the tube 100 and the curvature of the end 134 of the internal separator 130 . This means that the contact is continuous so that the clearance between the wall 105 and the internal separator 130 is entirely filled over all the length of the radius (i.e. along all the curvature of the radius).
  • the tube is configured so that the clearance between the wall 105 and the internal separator 130 is for example filled along each radius 110 .
  • the internal separator 130 includes at least one flat at a vertex 132 , notably at each vertex 132 , said flat being in contact with the wall.
  • the tube 100 has, for example, a section in the shape of a B and the wall has legs 120 joined at the level of the central part of said B-shaped section, at least one of the legs 120 being in contact with the internal separator 130 .
  • the tube 100 comprises a wall 105 defining a housing 115 and an internal separator 130 inserted in the housing 115 .
  • the internal separator 130 defines a plurality of fluid circulation channels 136 .
  • the wall has large, notably plane, faces of length L connected by radii of height H.
  • the length L corresponds to the dimension of the tube 100 in the direction of its longitudinal section.
  • the height H corresponds to the overall thickness of the tube 100 , i.e. its thickness in the direction of its cross section.
  • the tube extends along its longitudinal axis, orthogonal to the plane of FIGS. 1A and 1B .
  • the method of the invention includes a first step in which the internal separator 130 is inserted into the housing 115 of the tube 100 with a clearance.
  • the method of the invention includes a second step in which the tube 100 is compressed in the direction of the height H.
  • This compression is characterized in that it enables the tube to be compressed from a height H 1 to a height H 2 with H2 ⁇ H1 and from a length L 1 to a length L 2 with L1 ⁇ L2, the tube 100 being configured after compression so that the clearance between the wall 105 and the internal separator 130 is at least partially filled.
  • the compression step may be generalized to a deformation step without limiting the scope of the protection of the present invention.
  • the compression or deformation step enables the wall 105 and the internal separator 130 to be calibrated.
  • This step enables reshaping of the tube 100 , the dimensions of which are modified.
  • the dimensions of the wall 105 and the internal separator 130 can be defined beforehand so that this clearance exists despite the manufacturing tolerances of the two parts.
  • a reshaping dimension is then defined in order to calibrate the tube 100 and the internal separator 130 and to fill at least one clearance or even all of the clearances provided for the purpose of this insertion.
  • the compression step enables the height H to be reduced and the length L to be increased.
  • the effect of this is to fill the clearance along the radius between the wall 105 and the internal separator 130 and to enable brazing of the components.
  • the increase in the dimension L of the wall 105 will be less than that of the internal separator 130 .
  • the compression step makes it possible to increase the length dimension L of the internal separator 130 more than that of the wall 105 .
  • This makes it possible to fill the assembly clearance between the internal separator 130 and the inside radius of the tube nose 110 .
  • This moreover makes possible the brazing of the two components (i.e. wall 105 and internal separator 130 ) and thus to increase the mechanical strength, notably at the level of the tube nose 110 .
  • the method could include a preliminary step in which the wall of the tube is produced by bending a sheet of material, for example, and after bending has a substantially closed section into which the internal separator is inserted.
  • the compression is exerted in a direction substantially orthogonal to the plane faces of the tube.
  • the compression step is configured so that the tube and its components, wall and/or internal separator, have the features referred to above, for example.
  • the compression step could be configured so that, after compression, the internal separator 130 includes a flat at one at least of its vertices 136 , said flat being in contact with the wall.
  • the compression step thus enables the production of the plane areas at some or all of the vertices 136 of the internal separator 130 .
  • the consequences of the reduction in the height are crushing of the internal separator 130 generating a flat at its vertex and, depending on the magnitude of the calibration, modifying the angles of the bends of the internal separator 130 .
  • the effect of this is to guarantee the brazing between the internal wall of the wall 105 and the internal separator insert 130 as well as to increase the mechanical strength of this combination.
  • the compression step could also be configured so that the clearance between the wall 105 and the internal separator 130 is filled along each radius 110 .
  • the compression step could further be configured so that, after compression, at least one of said legs 120 is in contact with the internal separator 130 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
US13/807,478 2010-06-30 2011-06-14 Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube Abandoned US20130192811A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
FR1002773A FR2962203B1 (fr) 2010-06-30 2010-06-30 Tube pour echangeur de chaleur et echangeur de chaleur equipe d'un tel tube
FR1002767A FR2962202B1 (fr) 2010-06-30 2010-06-30 Tube pour echangeur de chaleur et echangeur de chaleur equipe d'un tel tube
FRFR1002773 2010-06-30
FRFR1002767 2010-06-30
FR1060044A FR2962204B1 (fr) 2010-06-30 2010-12-02 Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube.
FRFR1060044 2010-12-02
PCT/EP2011/059825 WO2012000779A2 (fr) 2010-06-30 2011-06-14 Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube

Publications (1)

Publication Number Publication Date
US20130192811A1 true US20130192811A1 (en) 2013-08-01

Family

ID=43757841

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/807,478 Abandoned US20130192811A1 (en) 2010-06-30 2011-06-14 Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube
US13/807,435 Active 2034-06-08 US10987720B2 (en) 2010-06-30 2011-06-21 Fluid circulation tube and a heat exchanger comprising such tubes
US15/427,757 Abandoned US20170144212A1 (en) 2010-06-30 2017-02-08 Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/807,435 Active 2034-06-08 US10987720B2 (en) 2010-06-30 2011-06-21 Fluid circulation tube and a heat exchanger comprising such tubes
US15/427,757 Abandoned US20170144212A1 (en) 2010-06-30 2017-02-08 Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube

Country Status (8)

Country Link
US (3) US20130192811A1 (pl)
EP (3) EP2588825A2 (pl)
JP (2) JP6069194B2 (pl)
KR (3) KR20130098292A (pl)
CN (2) CN103080685B (pl)
FR (1) FR2962204B1 (pl)
PL (2) PL2725317T3 (pl)
WO (2) WO2012000779A2 (pl)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200088474A1 (en) * 2018-09-13 2020-03-19 Denso International America, Inc. Impact resistant structural radiator tube

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962204B1 (fr) 2010-06-30 2014-11-21 Valeo Systemes Thermiques Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube.
FR2973490B1 (fr) * 2011-03-31 2018-05-18 Valeo Systemes Thermiques Tube pour echangeur thermique, echangeur thermique et procede d'obtention correspondants
FR2986314A1 (fr) * 2012-01-31 2013-08-02 Valeo Systemes Thermiques Tube d'echangeur thermique, echangeur thermique et procede d'obtention correspondant
US9194389B2 (en) * 2012-10-10 2015-11-24 Tricore Corporation Highly airtight gas pump
CN104792210A (zh) * 2014-01-16 2015-07-22 泰安鼎鑫冷却器有限公司 三部件组合散热管
KR102189621B1 (ko) * 2015-01-29 2020-12-11 한온시스템 주식회사 열교환기용 튜브
KR102191901B1 (ko) * 2014-03-05 2020-12-17 한온시스템 주식회사 열교환기용 튜브
US10113813B2 (en) 2014-02-21 2018-10-30 Hanon Systems Tube for heat exchanger
WO2015126105A1 (ko) * 2014-02-21 2015-08-27 한라비스테온공조 주식회사 열교환기용 튜브
JP6170016B2 (ja) * 2014-06-18 2017-07-26 株式会社ユタカ技研 熱交換器用フィンケースの製造方法
CN105484853B (zh) * 2014-09-17 2018-07-06 泰安鼎鑫冷却器有限公司 一种双波内翅片结构中冷器
CN104668921A (zh) * 2014-12-15 2015-06-03 上海德尔福汽车空调系统有限公司 可随炉钎焊的折叠式散热管及其生产方法
KR102371382B1 (ko) * 2015-07-24 2022-03-08 한온시스템 주식회사 열교환기용 튜브
NL2015996B1 (en) * 2015-12-21 2017-06-30 Recair Holding B V Heat exchanger.
CN106949769A (zh) * 2016-01-07 2017-07-14 上海交通大学 组合式折叠热交换扁管
KR102289749B1 (ko) * 2017-05-10 2021-08-13 현대모비스 주식회사 열교환기용 튜브
DE102018111585A1 (de) * 2017-06-22 2018-12-27 Hanon Systems Vorrichtung zur Wärmeübertragung sowie Verfahren zum Herstellen der Vorrichtung
EP3650799B1 (en) * 2018-11-07 2021-12-15 Borgwarner Emissions Systems Spain, S.L.U. A fin body for a heat exchange tube
KR102660499B1 (ko) 2019-01-08 2024-04-24 현대모비스 주식회사 열관리장치의 튜브 어셈블리 및 그 제조방법
KR102174251B1 (ko) * 2019-06-14 2020-11-04 한온시스템 주식회사 열교환기
CN112103421B (zh) * 2019-06-18 2021-10-22 宁德时代新能源科技股份有限公司 温控组件及电池包
LU500125B1 (en) 2021-05-05 2022-11-08 Estra Automotive Systems Luxembourg S A R L Exchanger tube for a heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441106A (en) * 1992-06-24 1995-08-15 Llanelli Radiators Limited Heat exchange tubes
JP2000329488A (ja) * 1999-05-20 2000-11-30 Toyo Radiator Co Ltd 熱交換器用偏平チューブ
US20070163768A1 (en) * 2005-12-27 2007-07-19 Calsonic Kansei Corporation Core structure of heat exchanger
US7921559B2 (en) * 2006-01-19 2011-04-12 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912749A (en) * 1956-01-13 1959-11-17 Modine Mfg Co Method of making a heat exchanger
GB1149923A (en) * 1966-07-01 1969-04-23 Karl Sten Bertil Lundberg Improvements in or relating to methods of manufacturing lamellae for heat exchangers
JPS6167531A (ja) * 1984-09-07 1986-04-07 Showa Alum Corp インナ−フインを備えた熱交換管の製造法
JPH04129678U (ja) * 1991-04-30 1992-11-27 日野自動車工業株式会社 インタークーラ
JPH0552565U (ja) * 1991-12-20 1993-07-13 サンデン株式会社 熱交換器
FR2690513B1 (fr) * 1992-04-24 1994-07-29 Valeo Thermique Moteur Sa Tube de section allongee pour echangeur de chaleur, notamment de vehicule automobile, et echangeur de chaleur comprenant de tels tubes.
US5579837A (en) * 1995-11-15 1996-12-03 Ford Motor Company Heat exchanger tube and method of making the same
JP3799671B2 (ja) * 1996-08-07 2006-07-19 株式会社デンソー 熱交換器、熱交換器用チューブ及び熱交換器の製造方法
US5934365A (en) * 1997-08-21 1999-08-10 Ford Motor Company Heat exchanger
US6192977B1 (en) 1999-09-29 2001-02-27 Valeo Thermique Moteur Tube for heat exchanger
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
JP2001263976A (ja) * 2000-03-15 2001-09-26 Zexel Valeo Climate Control Corp 熱交換器
JP2002096132A (ja) * 2000-07-25 2002-04-02 Manto Kucho Kk 熱交換器用冷媒チューブの製造装置及び製造方法
US20040182559A1 (en) * 2001-03-22 2004-09-23 Kent Scott Edward Heat exchanger tube
FR2823840B1 (fr) * 2001-04-20 2004-01-23 Valeo Thermique Moteur Sa Tube plie pour echangeur de chaleur et procede pour sa conformation
FR2836546B1 (fr) * 2002-02-22 2004-05-07 Valeo Thermique Moteur Sa Tube plie poue echangeur de chaleur
JP2003302186A (ja) 2002-04-05 2003-10-24 Zexel Valeo Climate Control Corp 熱交換器用チューブ及びその製造方法並びに熱交換器
JP2004333023A (ja) * 2003-05-08 2004-11-25 Toyo Radiator Co Ltd アルミニューム製熱交換器用偏平チューブ
DE10328001A1 (de) * 2003-06-21 2005-01-05 Modine Manufacturing Co., Racine Flaches Wärmetauscherrohr
CN101061362B (zh) * 2004-07-28 2011-11-09 瓦莱奥公司 具有内部翅片的汽车换热器装置及其制造方法
DE102004049809A1 (de) * 2004-10-12 2006-04-13 Behr Gmbh & Co. Kg Flachrohr für Wärmetauscher
US7182128B2 (en) * 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
DE102005013777A1 (de) * 2005-03-22 2006-09-28 Behr Gmbh & Co. Kg Rohr für einen Wärmetauscher
DE102005043093A1 (de) 2005-09-10 2007-03-15 Modine Manufacturing Co., Racine Wärmetauscherrohr
DE102006006670B4 (de) 2006-02-14 2014-02-13 Modine Manufacturing Co. Flachrohr für Wärmetauscher
JP2007298201A (ja) * 2006-04-28 2007-11-15 Denso Corp 熱交換器、加工装置および熱交換器の製造方法
DE102007039292A1 (de) * 2007-08-20 2009-02-26 Behr Gmbh & Co. Kg Mehrkammer-Flachrohr, Wärmetauscher und Verwendung eines Wärmetauschers
JP2010008018A (ja) * 2008-06-30 2010-01-14 Showa Denko Kk インナーフィン付き熱交換管およびこれを用いた熱交換器
FR2962204B1 (fr) 2010-06-30 2014-11-21 Valeo Systemes Thermiques Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441106A (en) * 1992-06-24 1995-08-15 Llanelli Radiators Limited Heat exchange tubes
JP2000329488A (ja) * 1999-05-20 2000-11-30 Toyo Radiator Co Ltd 熱交換器用偏平チューブ
US20070163768A1 (en) * 2005-12-27 2007-07-19 Calsonic Kansei Corporation Core structure of heat exchanger
US7921559B2 (en) * 2006-01-19 2011-04-12 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIKUCHI, KOICHIRO, JP 2000329488TRANS (English Translation) , 11-2000 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200088474A1 (en) * 2018-09-13 2020-03-19 Denso International America, Inc. Impact resistant structural radiator tube

Also Published As

Publication number Publication date
EP2588824B1 (fr) 2019-07-31
KR20130100245A (ko) 2013-09-10
WO2012000779A3 (fr) 2012-10-18
EP2588824A2 (fr) 2013-05-08
US20170144212A1 (en) 2017-05-25
EP2725317A1 (fr) 2014-04-30
US20140000853A1 (en) 2014-01-02
CN103080685B (zh) 2015-05-06
WO2012000842A2 (fr) 2012-01-05
WO2012000779A2 (fr) 2012-01-05
WO2012000842A3 (fr) 2013-01-10
KR20130098292A (ko) 2013-09-04
JP2013530373A (ja) 2013-07-25
CN103080686B (zh) 2016-03-02
FR2962204A1 (fr) 2012-01-06
US10987720B2 (en) 2021-04-27
PL2588824T3 (pl) 2020-06-01
EP2588825A2 (fr) 2013-05-08
EP2725317B1 (fr) 2021-04-21
KR102018675B1 (ko) 2019-09-05
CN103080686A (zh) 2013-05-01
FR2962204B1 (fr) 2014-11-21
JP5837582B2 (ja) 2015-12-24
JP6069194B2 (ja) 2017-02-01
PL2725317T3 (pl) 2021-08-23
KR20180110189A (ko) 2018-10-08
CN103080685A (zh) 2013-05-01
JP2013536390A (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
US20170144212A1 (en) Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube
JP4724594B2 (ja) 熱交換器
US20070131392A1 (en) Heat exchanger and method of manufacturing outside plate used for header tanks of heat exchanger
US20080017364A1 (en) Heat exchanger
JP5861549B2 (ja) チューブ及び該チューブを備えた熱交換器
JP6437987B2 (ja) 熱交換管、ならびに対応する熱交換器および製造方法
US20080264620A1 (en) Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
JP2006322699A (ja) 熱交換器
JP6002421B2 (ja) 熱交換器
EP1726907A1 (en) Heat exchanger
JP2006078163A (ja) 偏平管、偏平管製造用板状体および熱交換器
JP2006200881A (ja) 熱交換器
JP2011163666A (ja) 熱交換器
US20080245518A1 (en) Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger
JP4898672B2 (ja) 熱交換器
JP2007032952A (ja) 熱交換器用ヘッダタンクおよびこれを用いた熱交換器
JP2006297472A (ja) 熱交換器の製造方法、熱交換器のフィン、及び熱交換器のチューブ
CN104302999B (zh) 热交换器管道、热交换器和相应的生产方法
JP2010107147A (ja) 熱交換器およびその製造方法
JP2005291693A (ja) 偏平管製造用板状体、偏平管、熱交換器および熱交換器の製造方法
JP2008089188A (ja) 熱交換器
JP2006029765A (ja) 熱交換器
JP4334311B2 (ja) 熱交換器
JP5402527B2 (ja) 複式熱交換器
JP2005114316A (ja) 熱交換器

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO SYSTEMES THERMIQUES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUERHEIM, ALAIN;METAYER, PHILIPPE;NAUDIN, YOANN;AND OTHERS;SIGNING DATES FROM 20130306 TO 20130410;REEL/FRAME:031997/0578

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION