US2912749A - Method of making a heat exchanger - Google Patents

Method of making a heat exchanger Download PDF

Info

Publication number
US2912749A
US2912749A US558942A US55894256A US2912749A US 2912749 A US2912749 A US 2912749A US 558942 A US558942 A US 558942A US 55894256 A US55894256 A US 55894256A US 2912749 A US2912749 A US 2912749A
Authority
US
United States
Prior art keywords
sheets
sides
fluid
sheet
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US558942A
Inventor
Norman G Bauernfeind
Homer D Huggins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Priority to US558942A priority Critical patent/US2912749A/en
Application granted granted Critical
Publication of US2912749A publication Critical patent/US2912749A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet

Definitions

  • This invention relates to a method of making a heat exchanger.
  • One type of heat exchanger is the type having the usual two separate fluid pass sections with each section divided into small spaced apart fluid pass elements and with the elements of each section alternately disposed within the spacings of the other section.
  • This type of heat exchanger is the conventional plate type having alternate layers of the enclosed elements of the two separate fluid pass sections extending through the heat exchanger.
  • the enclosed elements are formed of a sheet material having certain physical properties and being sufliciently thin to permit a maximum amount of heat transfer through the material. The thickness of the sheet is partly determined to render the enclosure strong enough to resist the pressure of the fluids as well as pressure from foreign objects which might strike against the enclosure. Also, it has been a problem in the manufacture of heat exchangers to provide a heat exchanger enclosed element with the precision spacing required between the oppositely disposed sheets of an element, and also it is diflicult to fluid tightly seal the sides of the element.
  • Another previously known type of enclosed element of a heat exchanger is that type where the opposite sides of one of the sheets are bent to meet with the other sheet and lap therewith and thus present only one seam where the sides must and can be soldered or welded together.
  • a variation of this type is that where both sheets have their sides bent toward the side of the other sheet to have the bent sides overlap, and this is, therefore, the wellknown type of construction.
  • the known problems in this lap type construction include the fact that an element of only a low strength results since the thin sheets themselves form the sides of the element. and these sides are thus vulnerable in the heat exchanger. Also, one seam on each side of the element must be welded or soldered to render tre element fluid tight.
  • Still another disadvantage of the above-mentioned type and other types is a problem of spacing the top and bottom sheets of an element a precise distance apart and thus requiring a side enclosure of the element to be disposed between the sheets to occupy exactly the precise distance.
  • Another object of this invention is to make a fluid pass element which is sufliciently strong to resist the pressure of the fluid as well as forces created by external foreign objects which might strike against the exposed sides of the heat exchanger.
  • Still another object of this invention is to make a fluid pass element which eliminates a separate welding or soldering step, such as that required in the above-mentioned previous type of fluid pass elements.
  • Still a further object of this invention is to make a fluid pass element wherein the spacing between the portions defining the passage of the element is precisely attained, as required.
  • Another further object ofthis invention is to make a fluid pass element wherein the element is less susceptible to permitting leakage of the fluid. This object is attained in part by the fact that the sides of the element are interlocked and pressed in the final condition of the element.
  • a further object of this invention is to provide a method of making a fluid pass element having the advantages referred to in the foregoing and the characteristics mentioned in the following description.
  • Fig. 1 is an exploded perspective View of a heat exchanger incorporating preferred embodiments of the fluid pass elements of this invention.
  • Fig. 2 is an enlarged end view of one of the fluid pass elements incorporated in Fig. 1.
  • Fig. 3 is an enlarged end view of the other element shown in Fig. 1.
  • Fig. 4 is an enlarged end view of another embodiment of the element shown in Fig. 2.
  • Fig. 5 is an enlarged end view of still another embodiment of the element shown in Fig. 2.
  • Fig. 6 is an enlarged end view of still another embodiment of the element shown in Fig. 2.
  • Fig. 7 is an enlarged end view of a fragment of the side of the element shown in Fig. 2 but prior to final compression of the element and with the coating substance shown.
  • Fig. 1 shows a heat exchanger in an exploded view with a core 10 and the usual header 11 shown separated from the core for the purpose of clearly showing the invention.
  • the header 11 includes a nipple 13 which serves to conduct fluid into or out of the exchanger. Assuming that fluid would flow into the exchange through the header ii, the fluid flows to the core 10 where it enters the alternate layers of the heat exchanger elements 14. In the usual manner, the fluid continues to flow through the elements 14- and out the opposite side of the exchanger core where it is suitably .conducted away from the core.
  • the second fluid passes through the interspersed elements 15 of the heat exchanger core in a path transverse to the path of the first fluid, and the second fluid is also suitably conducted away from the core, in any well-known manner, on the side opposite the side of its entry into the core.
  • the usual cross flow of two fluids is conducted in the core 1i; and the desired exchange of heat between the fluids is accomplished.
  • the important feature of this invention is the fluid pass element and its method of manufacture.
  • the elements or tubes 14 and 15 are made of a thin metal, of high heat transfer characteristics, and a fin or diverter l6 and 17 is diagrammatically shown disposed within the passageway of each element.
  • the fin 16 is shown to be pleated and formed of straight sections while the fin 17 is shown to be formed of curved sections.
  • the fins are of a serpentine shape with their crests in contact with the opposite walls of the tube to conduct heat to or from the walls, as the case may be, and thereby increase the emciency of the exchanger.
  • the fins are bonded to the walls, in a manner explained later, and thus support the walls of the element against fluid pressures and other forces.
  • the thickness of the sheet metal forming the elements generally varies from .010 of an inch to .125 of an inch depending upon the application of the heat exchanger.
  • aluminum, steel, copper, and brass sheets are known to be acceptable materials for the sheet but any metal of sheet form can be employed.
  • the sheet is coated with a coating substance of, for example, an aluminum brazing alloy or solder for the aluminum sheet, and solder or copper for the steel sheet. It is, therefore, preferred that the sheet base substance 18, as shown in Fig. 7, have a coating metal 19 applied thereto in any well-known manner. The melting point of the coating is lower than that of the base metal for a reason mentioned later.
  • Figs. 2 through 6 show embodiments of the elements all formed with interlocking side or sides by folding or pleating the two sides of each element, as shown.
  • the folded sides present a spacer between the intermediate parallel or planular portions of the element and the folded sides are sufficiently thick to resist the formation of leaks such as those caused by foreign objects striking the sides.
  • Fig. 2 shows the element 15 composed of two sheets 21 and Z2 folded into different forms while Figs. 3 and 4 show elements 14 and 24 composed of single sheets 26 and 27.
  • Fig. shows an element 28 composed of sheets 31 and 32 folded or formed in two different shapes, and
  • Fig. 6 shows element 33 composed of sheets 34 and 35 folded into the same form but with the two ends of each sheet folded differently.
  • Fig. 2 shows the element formed of the sheets 21 and 22 with the respective ends 36 and 37 of the sheets interlocked by each being disposed within the folds of the opposite sheet.
  • the folded portions of the sheets form the sides of the element while the remainder of the sheets form parallel intermediate portions 38.
  • the folded sides and the portions 38 define the fluid passageway 39 in which the fin 17 is preferably disposed.
  • the folds form a solid mass at both sides of the element and the number of the folds determine the height of the passageway which can, therefore, be the selected desired dimension.
  • the sheets of the element 15' are folded by rolling substantially into the form shown Fig. 7, and they are interlocked as shown.
  • the fin K7 is also disposed as shown and it should be noted that the original height of the fin is preferably slightly greater than the final height of the passageway 3'3 when the element is in the Fig. 2 condition.
  • the element is then compressed together until the folded sides form compact masses and are fluid tight, and, at that point, the fin is in contact with both of sheets. Subsequently, the element is heated to cause the coating material to bond the folded sides fluid tightly together and to bond the sheets and the fin together.
  • Fig. 3 shows the element 14 having one side 4ft formed of a continuous portion of the single sheet 25 with the opposite side 41 interlocked at the free ends of the sheet.
  • the element can otherwise be formed in the manner described in connection with the element 15.
  • the fluid must flow past three layers of the folded side if there is any fluid leaking at the seam of the folds, and only one seam is present in the entire element.
  • Fig. 4 is similar to Fig. 3 except that the fold is formed in the different manner shown and the end 4-2 is folded around the opposite free end of the sheet 2'7. Since both the elements 14 and 2 5- have four layers of fold at each side, the height of their passageway will be the same and the fin 16 can also be employed in the element 24.
  • the element 28 of Fig. 5 has the multi-folded sheet 31 while the sheet 32 is substantially a flat sheet disposed within the folds of the sheet 31. It is preferred that the ends 43 of the sheet 31 do not project beyond the plane of the intermediate portion of the sheet 32, and, there fore, the latter can be formed to receive the free ends 43 of the sheet 31.
  • a shallower fin 45 is disposed in the element 28.
  • Pig. 6 shows the element 33 with most of the layers of the folded sides disposed transverse to the intermediate portions 46 of the sheets 34 and 35'. Of course, the sides are interlocked, and they are in abutting contact with the parallel intermediate portions. The folds form spacers between the sheets and, if a leak is to develop, it is obvious from the drawing that the leaking fluid must flow the extended length along the seam. This element is also compressed to achieve its final form and a fin 47 is shown disposed in the passageway formed.
  • a method of making a fluid pass element for a heat exchanger comprising folding the opposite edges of two fiat heat transfer sheets having a coating metal and a base metal with the melting point of said coating metal being lower than the melting point of said base metal, the folding of said sheets being suitable for disposing the layers of the folds in planes parallel to the planes of said sheets and within the limits of the portions intermediate said edges and being suitable for interlocking said sheets together and being of suflicient number of layers to present a total thickness equal to the desired final height of the pass when said layers are fully compressed together, interlocking said sheets together at said folds, folding a sheet into a serpentine shaped fin of a height slightly larger than the desired final height of said element, disposing said fin between said sheets, pressing said sheets toward each other to press said layers of said folds together, and heating said element to melt said coating metal for bonding said folds together to fluid tightly seal said sides.
  • a heat exchanger fluid pass element of the type having fluid tight sides and open ends and an intermediate passageway defined by said sides and parallel portions of the sheets of said element with said passageway being a certain height
  • the steps comprising folding the two sides of each of two thin metal heat transfer sheets having a coating of a bonding metal with a melting point lower than the melting point of the base metal of said sheets, the folding of the sides of said sheets being suitable for disposing the layers of the folds in extents parallel to and between the planes of said parallel portions of said sheets defining said passageway, and the number of the folds being a certain amount dependent upon the final thickness of each of said layers of said sheets at said folds and said certain height of said passageway so that the total of said final thicknesses equals said certain height when said layers are compressed together
  • the folding of said sides of said sheets being further suitable for interlocking said sheets together, interlocking said sheets together at said folds, forming a sheet into a serpentine shaped fin of a height slightly greater than said certain height
  • folding being further suitable for defining the interior 7 of said element and for interlocking one of said sides of said element, forming a sheet into a serpentine shape of a height greater than said certain height to provide a fin, disposing said fin in the interior of said element, interlocking one of said sides together, and pressing said element together to reduce the height of said sides until the final height of said passageway is said certain height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Nov. 17, 1959 N. G. BAUERNFEIND ETAL 2,
METHOD OF MAKING A HEAT EXCHANGER Filed Jan. 13, 1956 2 Sheets-Sheet 1' J #vvavrom: NORMAN G. BAUERNFEIND HOMER D. HUGGINS ATTORNEY Nov; 17, 1959 N. G. BAUERNFEIND ETAL 2,912,749
METHOD OF MAKING A HEAT EXCHANGER 2 Sheets-Sheet 2 Filed Jan. 13. 1956 /Nl ENTOR$: NORMAN G. BAUERNFEIND HOMER D.' HUGGINS y; ATTORNEY 2,912,749 Patented Nov. 17, 1959 2,912,749 METHOD OF MAKING A HEAT EXCHANGER Norman G. Bauernfeind and Homer D. Huggins, Racine, Wis., assignors to Modine Manufacturing Company, Racine, Wis., a corporation of Wisconsin Application January 13, 1956, Serial No. 558,942
3 Claims. (Cl. 29-1573) This invention relates to a method of making a heat exchanger.
One type of heat exchanger is the type having the usual two separate fluid pass sections with each section divided into small spaced apart fluid pass elements and with the elements of each section alternately disposed within the spacings of the other section. This type of heat exchanger is the conventional plate type having alternate layers of the enclosed elements of the two separate fluid pass sections extending through the heat exchanger. In most of this type of heat exchanger, the enclosed elements are formed of a sheet material having certain physical properties and being sufliciently thin to permit a maximum amount of heat transfer through the material. The thickness of the sheet is partly determined to render the enclosure strong enough to resist the pressure of the fluids as well as pressure from foreign objects which might strike against the enclosure. Also, it has been a problem in the manufacture of heat exchangers to provide a heat exchanger enclosed element with the precision spacing required between the oppositely disposed sheets of an element, and also it is diflicult to fluid tightly seal the sides of the element.
In certain previous types of the enclosed elements, either a solid bar or a channel piece of the sheet material has been disposed between the top and bottom sheets of the element to enclose the sides thereof. In both of the foregoing instances, a separate piece is required at each side of the element, and, therefore, four pieces are required to form one complete enclosed element. Further, each side piece must be soldered or welded to the sheet along two seams, and thus a total of four seams must be made fluid tight in each element, and this has been an obvious problem in the construction of heat exchangers. Further, where separate side pieces are employed, there are the additional problems of aligning the pieces with the sides of the sheets, and also the handling of four separate pieces for each element is required. An example of the above-mentioned solid bar type of heat exchanger is disclosed in U.S. Patent No. 2,547,668.
Another previously known type of enclosed element of a heat exchanger is that type where the opposite sides of one of the sheets are bent to meet with the other sheet and lap therewith and thus present only one seam where the sides must and can be soldered or welded together. A variation of this type is that where both sheets have their sides bent toward the side of the other sheet to have the bent sides overlap, and this is, therefore, the wellknown type of construction. The known problems in this lap type construction include the fact that an element of only a low strength results since the thin sheets themselves form the sides of the element. and these sides are thus vulnerable in the heat exchanger. Also, one seam on each side of the element must be welded or soldered to render tre element fluid tight.
Still another disadvantage of the above-mentioned type and other types is a problem of spacing the top and bottom sheets of an element a precise distance apart and thus requiring a side enclosure of the element to be disposed between the sheets to occupy exactly the precise distance.
It is a general object of this invention to make a fluid pass element which is an improvement over the abovementioned types of elements and, particularly, overcomes the disadvantages mentioned with respect to those elements. 1
It is a specific object of this invention to make a fluid pass element wherein each element requires not more than two pieces for the formation of the complete element. Thus, the problem of aligning the heretofore employed separate side pieces with the sheets of the element is overcome, and the handling of extra side pieces is eliminated.
Another object of this invention is to make a fluid pass element which is sufliciently strong to resist the pressure of the fluid as well as forces created by external foreign objects which might strike against the exposed sides of the heat exchanger.
Still another object of this invention is to make a fluid pass element which eliminates a separate welding or soldering step, such as that required in the above-mentioned previous type of fluid pass elements.
Still a further object of this invention is to make a fluid pass element wherein the spacing between the portions defining the passage of the element is precisely attained, as required.
Another further object ofthis invention is to make a fluid pass element wherein the element is less susceptible to permitting leakage of the fluid. This object is attained in part by the fact that the sides of the element are interlocked and pressed in the final condition of the element.
A further object of this invention is to provide a method of making a fluid pass element having the advantages referred to in the foregoing and the characteristics mentioned in the following description.
Similar reference numerals refer to similar parts throughout the several views wherein: V
Fig. 1 is an exploded perspective View of a heat exchanger incorporating preferred embodiments of the fluid pass elements of this invention.
Fig. 2 is an enlarged end view of one of the fluid pass elements incorporated in Fig. 1.
Fig. 3 is an enlarged end view of the other element shown in Fig. 1.
Fig. 4 is an enlarged end view of another embodiment of the element shown in Fig. 2.
Fig. 5 is an enlarged end view of still another embodiment of the element shown in Fig. 2.
Fig. 6 is an enlarged end view of still another embodiment of the element shown in Fig. 2.
Fig. 7 is an enlarged end view of a fragment of the side of the element shown in Fig. 2 but prior to final compression of the element and with the coating substance shown.
Fig. 1 shows a heat exchanger in an exploded view with a core 10 and the usual header 11 shown separated from the core for the purpose of clearly showing the invention. Of course, different sizes of the core could be made and the number of plates or elements disposed between the top and the bottom plates 12 could also be changed from that shown. The header 11 includes a nipple 13 which serves to conduct fluid into or out of the exchanger. Assuming that fluid would flow into the exchange through the header ii, the fluid flows to the core 10 where it enters the alternate layers of the heat exchanger elements 14. In the usual manner, the fluid continues to flow through the elements 14- and out the opposite side of the exchanger core where it is suitably .conducted away from the core. Similarly, the second fluid passes through the interspersed elements 15 of the heat exchanger core in a path transverse to the path of the first fluid, and the second fluid is also suitably conducted away from the core, in any well-known manner, on the side opposite the side of its entry into the core. Thus, the usual cross flow of two fluids is conducted in the core 1i; and the desired exchange of heat between the fluids is accomplished.
The important feature of this invention is the fluid pass element and its method of manufacture. The elements or tubes 14 and 15 are made of a thin metal, of high heat transfer characteristics, and a fin or diverter l6 and 17 is diagrammatically shown disposed within the passageway of each element. in one instance the fin 16 is shown to be pleated and formed of straight sections while the fin 17 is shown to be formed of curved sections. in both instances the fins are of a serpentine shape with their crests in contact with the opposite walls of the tube to conduct heat to or from the walls, as the case may be, and thereby increase the emciency of the exchanger. Also, the fins are bonded to the walls, in a manner explained later, and thus support the walls of the element against fluid pressures and other forces.
The thickness of the sheet metal forming the elements generally varies from .010 of an inch to .125 of an inch depending upon the application of the heat exchanger. Also, aluminum, steel, copper, and brass sheets are known to be acceptable materials for the sheet but any metal of sheet form can be employed. Further, the sheet is coated with a coating substance of, for example, an aluminum brazing alloy or solder for the aluminum sheet, and solder or copper for the steel sheet. It is, therefore, preferred that the sheet base substance 18, as shown in Fig. 7, have a coating metal 19 applied thereto in any well-known manner. The melting point of the coating is lower than that of the base metal for a reason mentioned later.
Figs. 2 through 6 show embodiments of the elements all formed with interlocking side or sides by folding or pleating the two sides of each element, as shown. In all embodiments the folded sides present a spacer between the intermediate parallel or planular portions of the element and the folded sides are sufficiently thick to resist the formation of leaks such as those caused by foreign objects striking the sides. Fig. 2 shows the element 15 composed of two sheets 21 and Z2 folded into different forms while Figs. 3 and 4 show elements 14 and 24 composed of single sheets 26 and 27. Fig. shows an element 28 composed of sheets 31 and 32 folded or formed in two different shapes, and Fig. 6 shows element 33 composed of sheets 34 and 35 folded into the same form but with the two ends of each sheet folded differently.
Fig. 2 shows the element formed of the sheets 21 and 22 with the respective ends 36 and 37 of the sheets interlocked by each being disposed within the folds of the opposite sheet. The folded portions of the sheets form the sides of the element while the remainder of the sheets form parallel intermediate portions 38. Thus the folded sides and the portions 38 define the fluid passageway 39 in which the fin 17 is preferably disposed. The folds form a solid mass at both sides of the element and the number of the folds determine the height of the passageway which can, therefore, be the selected desired dimension.
in the preferred formation of the elements, the sheets of the element 15', for example, are folded by rolling substantially into the form shown Fig. 7, and they are interlocked as shown. The fin K7 is also disposed as shown and it should be noted that the original height of the fin is preferably slightly greater than the final height of the passageway 3'3 when the element is in the Fig. 2 condition. The element is then compressed together until the folded sides form compact masses and are fluid tight, and, at that point, the fin is in contact with both of sheets. Subsequently, the element is heated to cause the coating material to bond the folded sides fluid tightly together and to bond the sheets and the fin together. In this manner, a sturdy and efficient element is made out of only two pieces of material and no final welding or soldering is required such as that required in the US. Patent No. 1,945,287 to L. M. Monroe. Also, the interlock results in a joint which requires that the fluid flow through the bonded sides for a length three times the length of the abutting folds of the Monroe type if the fluid is to leak, and no direct or single path of flow is possible for any leaking, and no free end of the sheet is exposed.
Fig. 3 shows the element 14 having one side 4ft formed of a continuous portion of the single sheet 25 with the opposite side 41 interlocked at the free ends of the sheet. The element can otherwise be formed in the manner described in connection with the element 15. Here also the fluid must flow past three layers of the folded side if there is any fluid leaking at the seam of the folds, and only one seam is present in the entire element.
Fig. 4 is similar to Fig. 3 except that the fold is formed in the different manner shown and the end 4-2 is folded around the opposite free end of the sheet 2'7. Since both the elements 14 and 2 5- have four layers of fold at each side, the height of their passageway will be the same and the fin 16 can also be employed in the element 24.
The element 28 of Fig. 5 has the multi-folded sheet 31 while the sheet 32 is substantially a flat sheet disposed within the folds of the sheet 31. It is preferred that the ends 43 of the sheet 31 do not project beyond the plane of the intermediate portion of the sheet 32, and, there fore, the latter can be formed to receive the free ends 43 of the sheet 31. A shallower fin 45 is disposed in the element 28.
Pig. 6 shows the element 33 with most of the layers of the folded sides disposed transverse to the intermediate portions 46 of the sheets 34 and 35'. Of course, the sides are interlocked, and they are in abutting contact with the parallel intermediate portions. The folds form spacers between the sheets and, if a leak is to develop, it is obvious from the drawing that the leaking fluid must flow the extended length along the seam. This element is also compressed to achieve its final form and a fin 47 is shown disposed in the passageway formed.
It should also be obvious that the precise form of the folds of the elements could vary from those forms shown; therefore, the scope of this invention should be limited only by the scope of the appended claims.
We claim:
1. In a method of making a fluid pass element for a heat exchanger, the steps comprising folding the opposite edges of two fiat heat transfer sheets having a coating metal and a base metal with the melting point of said coating metal being lower than the melting point of said base metal, the folding of said sheets being suitable for disposing the layers of the folds in planes parallel to the planes of said sheets and within the limits of the portions intermediate said edges and being suitable for interlocking said sheets together and being of suflicient number of layers to present a total thickness equal to the desired final height of the pass when said layers are fully compressed together, interlocking said sheets together at said folds, folding a sheet into a serpentine shaped fin of a height slightly larger than the desired final height of said element, disposing said fin between said sheets, pressing said sheets toward each other to press said layers of said folds together, and heating said element to melt said coating metal for bonding said folds together to fluid tightly seal said sides.
2. In a method of making a heat exchanger fluid pass element of the type having fluid tight sides and open ends and an intermediate passageway defined by said sides and parallel portions of the sheets of said element with said passageway being a certain height, the steps comprising folding the two sides of each of two thin metal heat transfer sheets having a coating of a bonding metal with a melting point lower than the melting point of the base metal of said sheets, the folding of the sides of said sheets being suitable for disposing the layers of the folds in extents parallel to and between the planes of said parallel portions of said sheets defining said passageway, and the number of the folds being a certain amount dependent upon the final thickness of each of said layers of said sheets at said folds and said certain height of said passageway so that the total of said final thicknesses equals said certain height when said layers are compressed together, the folding of said sides of said sheets being further suitable for interlocking said sheets together, interlocking said sheets together at said folds, forming a sheet into a serpentine shaped fin of a height slightly greater than said certain height, disposing said fin between said sheets within the limits of said sides, pressing said sheets toward each other to compress said folds of said sides and to press said sheets against said fin to reduce said height of said fin until the distance between said parallel portions of said sheets is equal to said certain height, and heating said element to melt said bonding metal for fluid tightly sealing said folds together and for cohering said sheets with said fin.
3. In a method of making a heat exchanger fluid pass element of the type having fluid tight sides and open ends and an intermediate passageway defined by said sides and parallel portions of said element with said passageway being a certain height, the steps comprising folding a side portion of a thin metal heat transfer sheet a certain number of times to form one of said sides of said element,
folding being further suitable for defining the interior 7 of said element and for interlocking one of said sides of said element, forming a sheet into a serpentine shape of a height greater than said certain height to provide a fin, disposing said fin in the interior of said element, interlocking one of said sides together, and pressing said element together to reduce the height of said sides until the final height of said passageway is said certain height.
References Cited in the file of this patent UNITED STATES PATENTS 583,683 Gersant June 1, 1897 811,853 Lamplough Feb. 6, 1906 1,142,711 Isaacs June 8, 1915 1,276,197 Fedders Aug. 20, 1918 1,613,306 Bell Jan. 4, 1927 1,796,114 Meadowcroft Mar. 10, 1931 1,825,498 Wogan Sept. 29, 1931 1,840,318 Horvath Jan. 12, 1932 1,945,287 Monroe Jan. 30, 1934 2,170,639 Hopkins Aug. 22, 1939 2,339,284 Modine Jan. 18, 1944 2,360,123 Gerstung et al Sept. 10, 1944 2,566,310 Burns Sept. 4, 1951 2,576,213 Chausson Nov. 27, 1951 2,784,947 Peterson Mar. 12, 1957
US558942A 1956-01-13 1956-01-13 Method of making a heat exchanger Expired - Lifetime US2912749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US558942A US2912749A (en) 1956-01-13 1956-01-13 Method of making a heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US558942A US2912749A (en) 1956-01-13 1956-01-13 Method of making a heat exchanger

Publications (1)

Publication Number Publication Date
US2912749A true US2912749A (en) 1959-11-17

Family

ID=24231626

Family Applications (1)

Application Number Title Priority Date Filing Date
US558942A Expired - Lifetime US2912749A (en) 1956-01-13 1956-01-13 Method of making a heat exchanger

Country Status (1)

Country Link
US (1) US2912749A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079994A (en) * 1956-01-30 1963-03-05 Daimler Benz Ag Heat transfer plate construction
US3212572A (en) * 1961-06-21 1965-10-19 United Aircraft Prod Plate type heat exchanger
US3258832A (en) * 1962-05-14 1966-07-05 Gen Motors Corp Method of making sheet metal heat exchangers
US3265126A (en) * 1963-11-14 1966-08-09 Borg Warner Heat exchanger
US3295192A (en) * 1964-09-08 1967-01-03 Modine Mfg Co Heat exchanger and method of making same
US3341925A (en) * 1963-06-26 1967-09-19 Gen Motors Corp Method of making sheet metal heat exchangers with air centers
US3361198A (en) * 1965-08-19 1968-01-02 Eaton Mfg Co Heat exchanger
US3967354A (en) * 1963-03-26 1976-07-06 U.S. Philips Corporation Heat exchanger
US4099928A (en) * 1975-07-18 1978-07-11 Aktiebolaget Carl Munters Method of manufacturing a heat exchanger body for recuperative exchangers
US4254827A (en) * 1974-04-30 1981-03-10 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung End closure arrangement for heat exchanger element
WO1981002060A1 (en) * 1980-01-14 1981-07-23 Caterpillar Tractor Co Low stress heat exchanger and method of making the same
US4501321A (en) * 1982-11-10 1985-02-26 Blackstone Corporation After cooler, charge air cooler and turbulator assemblies and methods of making the same
US4579172A (en) * 1983-04-08 1986-04-01 Reheat Ab Plate heat exchanger and edge seal
US4681155A (en) * 1986-05-01 1987-07-21 The Garrett Corporation Lightweight, compact heat exchanger
US4688311A (en) * 1986-03-03 1987-08-25 Modine Manufacturing Company Method of making a heat exchanger
EP0283937A1 (en) * 1987-03-25 1988-09-28 Nihon Radiator Co., Ltd. Flat tube for heat exchanger with inner fin inserted therein
US5369883A (en) * 1989-02-24 1994-12-06 Long Manufacturing Ltd. Method for making an in tank oil cooler
US5538077A (en) * 1989-02-24 1996-07-23 Long Manufacturing Ltd. In tank oil cooler
US5586598A (en) * 1993-12-21 1996-12-24 Sanden Corporation Heat exchanger
US5590707A (en) * 1993-03-31 1997-01-07 Contaminant Separations, Inc. Heat exchanger
WO2000052410A1 (en) 1999-02-26 2000-09-08 Zexel Valeo Climate Control Corporation Heat exchanger, method of manufacturing the heat exchanger, and method of manufacturing tube for heat exchange
US6192977B1 (en) * 1999-09-29 2001-02-27 Valeo Thermique Moteur Tube for heat exchanger
US6470964B1 (en) * 2000-01-21 2002-10-29 Mitsubishi Heavy Industries, Ltd. Heat exchanger tube
US20020186538A1 (en) * 2001-06-08 2002-12-12 Hiroaki Kase Cooling module and the system using the same
FR2827373A1 (en) * 2001-07-16 2003-01-17 Denso Corp Exhaust gas heat exchanger used in exhaust gas recirculation system, has tube made of two U-shaped plates which are fitted facing each other with level difference is formed on portions of second plate
EP1065466A3 (en) * 1999-07-01 2003-09-10 Ford Motor Company Flat turbulator for a tube and method of making same
US6739385B2 (en) * 2000-08-31 2004-05-25 Behr Gmbh & Co. Plate-type heat exchanger
US20050056411A1 (en) * 2003-09-11 2005-03-17 Roland Dilley Heat exchanger
US20060219394A1 (en) * 2005-04-01 2006-10-05 Martin Michael A Stacked-tube heat exchanger
US20070095514A1 (en) * 2005-10-28 2007-05-03 Denso Corporation Tube for heat exchanger and method of manufacturing the same
DE102006002789A1 (en) * 2006-01-20 2007-07-26 Modine Manufacturing Co., Racine Heat exchanger tube has internal chamber extends from center of tube past location to interior surface of second narrow side
EP1835250A2 (en) * 2006-03-14 2007-09-19 Behr GmbH & Co. KG Method for manufacturing a laminated heat exchanger and laminated heat exchanger
DE102006016711A1 (en) * 2006-04-08 2007-10-11 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006035210A1 (en) * 2006-07-29 2008-01-31 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006041270A1 (en) * 2006-09-02 2008-03-06 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006054814A1 (en) * 2006-11-22 2008-05-29 Modine Manufacturing Co., Racine Soldered flat tube for capacitors and / or evaporators
DE102007023361A1 (en) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Heat exchanger core, manufacturing process, roller mill
EP1994352A2 (en) * 2006-01-19 2008-11-26 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090014164A1 (en) * 2006-01-19 2009-01-15 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090014165A1 (en) * 2006-01-19 2009-01-15 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090020277A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019694A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019689A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090020278A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019695A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019696A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
ES2332026A1 (en) * 2007-11-22 2010-01-22 Radiadores Ordoñez S.A. Heat exchanger (Machine-translation by Google Translate, not legally binding)
US20100115771A1 (en) * 2008-11-10 2010-05-13 Mark Johnson Heat exchanger, heat exchanger tubes and method
FR2962204A1 (en) * 2010-06-30 2012-01-06 Valeo Systemes Thermiques HEAT EXCHANGER TUBE, HEAT EXCHANGER HAVING SUCH TUBES AND METHOD OF OBTAINING SUCH TUBE.
CN101377392B (en) * 2007-08-27 2012-02-22 Abb研究有限公司 Heat exchanger
US20120118544A1 (en) * 2010-11-17 2012-05-17 Denso Marston Ltd Adjustable tank for bar-plate heat exchanger
US8434227B2 (en) 2006-01-19 2013-05-07 Modine Manufacturing Company Method of forming heat exchanger tubes
US20130140010A1 (en) * 2011-12-05 2013-06-06 Autokuhler Gmbh & Co. Kg Heat exchanger
US8561451B2 (en) 2007-02-01 2013-10-22 Modine Manufacturing Company Tubes and method and apparatus for producing tubes
DE102006006670B4 (en) * 2006-02-14 2014-02-13 Modine Manufacturing Co. Flat tube for heat exchanger
US9038267B2 (en) 2010-06-10 2015-05-26 Modine Manufacturing Company Method of separating heat exchanger tubes and an apparatus for same
EP3141860A1 (en) * 2015-09-14 2017-03-15 Bosal Emission Control Systems NV Plate heat exchanger and method for producing same
US10302370B2 (en) * 2014-09-22 2019-05-28 Mahle International Gmbh Heat exchanger
US10330399B2 (en) 2015-05-22 2019-06-25 Modine Manufacturing Company Heat exchanger and heat exchanger tank
US20200116432A1 (en) * 2018-10-12 2020-04-16 Yen-Chu Chi Channel fin heat exchangers and methods of manufacturing the same
US11421944B2 (en) * 2017-05-02 2022-08-23 Valeo Systemes Thermiques Flat tube for a heat exchanger and a heat exchanger that is more resistant to debris
DE102006052581B4 (en) 2006-11-08 2024-06-13 Innerio Heat Exchanger GmbH Flat heat exchanger tube and manufacturing process

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US583683A (en) * 1897-06-01 Jules gersant
US811853A (en) * 1905-04-26 1906-02-06 Frederick Lamplough Radiator, steam-condenser, and the like.
US1142711A (en) * 1909-06-12 1915-06-08 Simmons Mfg Co Finishing metal joints.
US1276197A (en) * 1917-10-23 1918-08-20 Fedders Mfg Co Inc Radiator.
US1613306A (en) * 1925-01-22 1927-01-04 Sinclair Refining Co Oil still
US1796114A (en) * 1927-10-18 1931-03-10 Budd Edward G Mfg Co Door and method of constructing same
US1825498A (en) * 1929-04-22 1931-09-29 Selmer F Wogan Unit for heating, cooling, and ventilating system
US1840318A (en) * 1929-03-07 1932-01-12 Geza M Horvath Radiator core
US1945287A (en) * 1932-08-12 1934-01-30 Leo M Monree Oil cooler
US2170639A (en) * 1936-10-20 1939-08-22 Mckeesport Tin Plate Corp Soldered metal seam for sheet metal cans and method of making same
US2339284A (en) * 1941-07-14 1944-01-18 Arthur B Modine Heat transfer element
US2360123A (en) * 1942-09-18 1944-10-10 Gen Motors Corp Oil cooler
US2566310A (en) * 1946-01-22 1951-09-04 Hydrocarbon Research Inc Tray type heat exchanger
US2576213A (en) * 1943-07-29 1951-11-27 Chausson Usines Sa Heat exchanger
US2784947A (en) * 1954-09-13 1957-03-12 Air Preheater Heat exchange assembly

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US583683A (en) * 1897-06-01 Jules gersant
US811853A (en) * 1905-04-26 1906-02-06 Frederick Lamplough Radiator, steam-condenser, and the like.
US1142711A (en) * 1909-06-12 1915-06-08 Simmons Mfg Co Finishing metal joints.
US1276197A (en) * 1917-10-23 1918-08-20 Fedders Mfg Co Inc Radiator.
US1613306A (en) * 1925-01-22 1927-01-04 Sinclair Refining Co Oil still
US1796114A (en) * 1927-10-18 1931-03-10 Budd Edward G Mfg Co Door and method of constructing same
US1840318A (en) * 1929-03-07 1932-01-12 Geza M Horvath Radiator core
US1825498A (en) * 1929-04-22 1931-09-29 Selmer F Wogan Unit for heating, cooling, and ventilating system
US1945287A (en) * 1932-08-12 1934-01-30 Leo M Monree Oil cooler
US2170639A (en) * 1936-10-20 1939-08-22 Mckeesport Tin Plate Corp Soldered metal seam for sheet metal cans and method of making same
US2339284A (en) * 1941-07-14 1944-01-18 Arthur B Modine Heat transfer element
US2360123A (en) * 1942-09-18 1944-10-10 Gen Motors Corp Oil cooler
US2576213A (en) * 1943-07-29 1951-11-27 Chausson Usines Sa Heat exchanger
US2566310A (en) * 1946-01-22 1951-09-04 Hydrocarbon Research Inc Tray type heat exchanger
US2784947A (en) * 1954-09-13 1957-03-12 Air Preheater Heat exchange assembly

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079994A (en) * 1956-01-30 1963-03-05 Daimler Benz Ag Heat transfer plate construction
US3212572A (en) * 1961-06-21 1965-10-19 United Aircraft Prod Plate type heat exchanger
US3258832A (en) * 1962-05-14 1966-07-05 Gen Motors Corp Method of making sheet metal heat exchangers
US3967354A (en) * 1963-03-26 1976-07-06 U.S. Philips Corporation Heat exchanger
US3341925A (en) * 1963-06-26 1967-09-19 Gen Motors Corp Method of making sheet metal heat exchangers with air centers
US3265126A (en) * 1963-11-14 1966-08-09 Borg Warner Heat exchanger
US3295192A (en) * 1964-09-08 1967-01-03 Modine Mfg Co Heat exchanger and method of making same
US3361198A (en) * 1965-08-19 1968-01-02 Eaton Mfg Co Heat exchanger
US4254827A (en) * 1974-04-30 1981-03-10 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung End closure arrangement for heat exchanger element
US4099928A (en) * 1975-07-18 1978-07-11 Aktiebolaget Carl Munters Method of manufacturing a heat exchanger body for recuperative exchangers
WO1981002060A1 (en) * 1980-01-14 1981-07-23 Caterpillar Tractor Co Low stress heat exchanger and method of making the same
US4501321A (en) * 1982-11-10 1985-02-26 Blackstone Corporation After cooler, charge air cooler and turbulator assemblies and methods of making the same
US4579172A (en) * 1983-04-08 1986-04-01 Reheat Ab Plate heat exchanger and edge seal
US4688311A (en) * 1986-03-03 1987-08-25 Modine Manufacturing Company Method of making a heat exchanger
US4681155A (en) * 1986-05-01 1987-07-21 The Garrett Corporation Lightweight, compact heat exchanger
EP0283937A1 (en) * 1987-03-25 1988-09-28 Nihon Radiator Co., Ltd. Flat tube for heat exchanger with inner fin inserted therein
US5369883A (en) * 1989-02-24 1994-12-06 Long Manufacturing Ltd. Method for making an in tank oil cooler
US5538077A (en) * 1989-02-24 1996-07-23 Long Manufacturing Ltd. In tank oil cooler
US5590707A (en) * 1993-03-31 1997-01-07 Contaminant Separations, Inc. Heat exchanger
US5797184A (en) * 1993-12-21 1998-08-25 Sanden Corporation Method of making a heat exchanger
US5586598A (en) * 1993-12-21 1996-12-24 Sanden Corporation Heat exchanger
WO2000052410A1 (en) 1999-02-26 2000-09-08 Zexel Valeo Climate Control Corporation Heat exchanger, method of manufacturing the heat exchanger, and method of manufacturing tube for heat exchange
EP1158260A1 (en) * 1999-02-26 2001-11-28 Zexel Valeo Climate Control Corporation Heat exchanger, method of manufacturing the heat exchanger, and method of manufacturing tube for heat exchange
EP1158260A4 (en) * 1999-02-26 2002-09-25 Zexel Valeo Climate Contr Corp Heat exchanger, method of manufacturing the heat exchanger, and method of manufacturing tube for heat exchange
EP1065466A3 (en) * 1999-07-01 2003-09-10 Ford Motor Company Flat turbulator for a tube and method of making same
US6192977B1 (en) * 1999-09-29 2001-02-27 Valeo Thermique Moteur Tube for heat exchanger
US6470964B1 (en) * 2000-01-21 2002-10-29 Mitsubishi Heavy Industries, Ltd. Heat exchanger tube
US20040194939A1 (en) * 2000-08-31 2004-10-07 Behr Gmbh & Co. Plate-type heat exchanger
US6739385B2 (en) * 2000-08-31 2004-05-25 Behr Gmbh & Co. Plate-type heat exchanger
US7108053B2 (en) 2000-08-31 2006-09-19 Behr Gmbh & Co. Plate-type heat exchanger
US20020186538A1 (en) * 2001-06-08 2002-12-12 Hiroaki Kase Cooling module and the system using the same
FR2827373A1 (en) * 2001-07-16 2003-01-17 Denso Corp Exhaust gas heat exchanger used in exhaust gas recirculation system, has tube made of two U-shaped plates which are fitted facing each other with level difference is formed on portions of second plate
US20050121179A1 (en) * 2001-07-16 2005-06-09 Kazuhiro Shibagaki Exhaust gas heat exchanger
US20060225872A1 (en) * 2001-07-16 2006-10-12 Kazuhiro Shibagaki Exhaust gas heat exchanger
US7152671B2 (en) * 2001-07-16 2006-12-26 Denso Corporation Exhaust gas heat exchanger
US20050056411A1 (en) * 2003-09-11 2005-03-17 Roland Dilley Heat exchanger
US7108054B2 (en) 2003-09-11 2006-09-19 Honeywell International, Inc. Heat exchanger
US20060219394A1 (en) * 2005-04-01 2006-10-05 Martin Michael A Stacked-tube heat exchanger
US7195060B2 (en) 2005-04-01 2007-03-27 Dana Canada Corporation Stacked-tube heat exchanger
US20070095514A1 (en) * 2005-10-28 2007-05-03 Denso Corporation Tube for heat exchanger and method of manufacturing the same
US20090014164A1 (en) * 2006-01-19 2009-01-15 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019694A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20100288481A1 (en) * 2006-01-19 2010-11-18 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US8438728B2 (en) * 2006-01-19 2013-05-14 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8434227B2 (en) 2006-01-19 2013-05-07 Modine Manufacturing Company Method of forming heat exchanger tubes
US8683690B2 (en) * 2006-01-19 2014-04-01 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8726508B2 (en) * 2006-01-19 2014-05-20 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
EP1994352A2 (en) * 2006-01-19 2008-11-26 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US20100243225A1 (en) * 2006-01-19 2010-09-30 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090014165A1 (en) * 2006-01-19 2009-01-15 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090020277A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US7921559B2 (en) 2006-01-19 2011-04-12 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019689A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090020278A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019695A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019696A1 (en) * 2006-01-19 2009-01-22 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090056927A1 (en) * 2006-01-19 2009-03-05 Werner Zobel Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090218085A1 (en) * 2006-01-19 2009-09-03 Charles James Rogers Flat tube, flat tube heat exchanger, and method of manufacturing same
US8281489B2 (en) 2006-01-19 2012-10-09 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
US8191258B2 (en) * 2006-01-19 2012-06-05 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
EP1994352A4 (en) * 2006-01-19 2010-06-02 Modine Mfg Co Flat tube, flat tube heat exchanger, and method of manufacturing same
US8091621B2 (en) * 2006-01-19 2012-01-10 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
DE102006002789A1 (en) * 2006-01-20 2007-07-26 Modine Manufacturing Co., Racine Heat exchanger tube has internal chamber extends from center of tube past location to interior surface of second narrow side
DE102006006670B4 (en) * 2006-02-14 2014-02-13 Modine Manufacturing Co. Flat tube for heat exchanger
EP1835250A2 (en) * 2006-03-14 2007-09-19 Behr GmbH & Co. KG Method for manufacturing a laminated heat exchanger and laminated heat exchanger
EP1835250A3 (en) * 2006-03-14 2012-08-01 Behr GmbH & Co. KG Method for manufacturing a laminated heat exchanger and laminated heat exchanger
DE102006016711B4 (en) * 2006-04-08 2016-11-03 Modine Manufacturing Co. Flat tube for heat exchanger
DE102006016711A1 (en) * 2006-04-08 2007-10-11 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006035210A1 (en) * 2006-07-29 2008-01-31 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006035210B4 (en) * 2006-07-29 2016-10-06 Modine Manufacturing Co. Flat heat exchanger tube and manufacturing process
DE102006041270A1 (en) * 2006-09-02 2008-03-06 Modine Manufacturing Co., Racine Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006041270B4 (en) 2006-09-02 2022-09-29 Innerio Heat Exchanger GmbH Heat exchanger tube with two narrow sides and two broad sides
DE102006052581B4 (en) 2006-11-08 2024-06-13 Innerio Heat Exchanger GmbH Flat heat exchanger tube and manufacturing process
DE102006054814A1 (en) * 2006-11-22 2008-05-29 Modine Manufacturing Co., Racine Soldered flat tube for capacitors and / or evaporators
US20110005738A1 (en) * 2006-11-22 2011-01-13 Modine Manufacturing Company Soldered flat tube for condensers and/or evaporators
DE102006054814B4 (en) * 2006-11-22 2010-07-01 Modine Manufacturing Co., Racine Soldered flat tube for capacitors and / or evaporators
US8561451B2 (en) 2007-02-01 2013-10-22 Modine Manufacturing Company Tubes and method and apparatus for producing tubes
DE102007023361A1 (en) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Heat exchanger core, manufacturing process, roller mill
CN101377392B (en) * 2007-08-27 2012-02-22 Abb研究有限公司 Heat exchanger
ES2332026A1 (en) * 2007-11-22 2010-01-22 Radiadores Ordoñez S.A. Heat exchanger (Machine-translation by Google Translate, not legally binding)
US20100115771A1 (en) * 2008-11-10 2010-05-13 Mark Johnson Heat exchanger, heat exchanger tubes and method
US9038267B2 (en) 2010-06-10 2015-05-26 Modine Manufacturing Company Method of separating heat exchanger tubes and an apparatus for same
US20170144212A1 (en) * 2010-06-30 2017-05-25 Valeo Systemes Thermiques Heat Exchanger Tube, Heat Exchanger Comprising Such Tubes And Method For Producing One Such Tube
CN103080685A (en) * 2010-06-30 2013-05-01 法雷奥热系统公司 Heat exchanger tube, heat exchanger comprising such tubes and method for producing one such tube
WO2012000779A3 (en) * 2010-06-30 2012-10-18 Valeo Systemes Thermiques Heat exchanger tube, heat exchanger comprising such tubes and method for producing one such tube
US10987720B2 (en) 2010-06-30 2021-04-27 Valeo Systemes Thermiques Fluid circulation tube and a heat exchanger comprising such tubes
CN103080685B (en) * 2010-06-30 2015-05-06 法雷奥热系统公司 Heat exchanger tube, heat exchanger comprising such tubes and method for producing one such tube
FR2962204A1 (en) * 2010-06-30 2012-01-06 Valeo Systemes Thermiques HEAT EXCHANGER TUBE, HEAT EXCHANGER HAVING SUCH TUBES AND METHOD OF OBTAINING SUCH TUBE.
US9022100B2 (en) * 2010-11-17 2015-05-05 Denso Marston Ltd. Adjustable tank for bar-plate heat exchanger
US20120118544A1 (en) * 2010-11-17 2012-05-17 Denso Marston Ltd Adjustable tank for bar-plate heat exchanger
US20130140010A1 (en) * 2011-12-05 2013-06-06 Autokuhler Gmbh & Co. Kg Heat exchanger
US10302370B2 (en) * 2014-09-22 2019-05-28 Mahle International Gmbh Heat exchanger
US10371463B2 (en) 2015-05-22 2019-08-06 Modine Manufacturing Company Heat exchanger, heat exchanger tank, and method of making the same
US10330399B2 (en) 2015-05-22 2019-06-25 Modine Manufacturing Company Heat exchanger and heat exchanger tank
EP3141860A1 (en) * 2015-09-14 2017-03-15 Bosal Emission Control Systems NV Plate heat exchanger and method for producing same
US11421944B2 (en) * 2017-05-02 2022-08-23 Valeo Systemes Thermiques Flat tube for a heat exchanger and a heat exchanger that is more resistant to debris
US20200116432A1 (en) * 2018-10-12 2020-04-16 Yen-Chu Chi Channel fin heat exchangers and methods of manufacturing the same
US11168943B2 (en) 2018-10-12 2021-11-09 Api Heat Transfer Thermasys Corporation Channel fin heat exchangers and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
US2912749A (en) Method of making a heat exchanger
US2959401A (en) Plate-fin type heat exchanger and method of making the same
EP1136782B1 (en) Plate type heat exchanger and method of manufacturing the heat exchanger
US2959400A (en) Prime surface heat exchanger with dimpled sheets
US2573161A (en) Heat exchanger
US2595457A (en) Pin fin heat exchanger
US5186250A (en) Tube for heat exchangers and a method for manufacturing the tube
US5996633A (en) Heat-exchanging conduit tubes for laminated heat exchanger and method for producing same
US5137082A (en) Plate-type refrigerant evaporator
US5172759A (en) Plate-type refrigerant evaporator
US2129300A (en) Spiral heat interchanger
JP3043066B2 (en) Brazing plate heat exchanger
US3372743A (en) Heat exchanger
US2961222A (en) Heat exchanger
JPH0663710B2 (en) Heat exchanger with integrated fin unit and method of manufacturing the same
US6874571B2 (en) Spiral heat exchangers
US4006776A (en) Plate type heat exchanger
US3732921A (en) Heat exchanger
JP3299148B2 (en) Tube for heat exchanger and method for producing the same
JPS60263088A (en) Heat exchanger
CN105121988A (en) Folded tube multiple bank heat exchange unit
US3545062A (en) Method of fabricating a heat exchanger from corrugated sheets
US3024003A (en) Heat exchanger
JPS6350612Y2 (en)
US4254827A (en) End closure arrangement for heat exchanger element