US20130079280A1 - Fibronectin type iii domain-based multimeric scaffolds - Google Patents

Fibronectin type iii domain-based multimeric scaffolds Download PDF

Info

Publication number
US20130079280A1
US20130079280A1 US13/640,057 US201113640057A US2013079280A1 US 20130079280 A1 US20130079280 A1 US 20130079280A1 US 201113640057 A US201113640057 A US 201113640057A US 2013079280 A1 US2013079280 A1 US 2013079280A1
Authority
US
United States
Prior art keywords
seq
scaffolds
fniii
scaffold
beta strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/640,057
Other languages
English (en)
Inventor
Manuel Baca
Thomas Thisted
Jeffrey Swers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MedImmune LLC
Original Assignee
MedImmune LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MedImmune LLC filed Critical MedImmune LLC
Priority to US13/640,057 priority Critical patent/US20130079280A1/en
Assigned to MEDIMMUNE, LLC reassignment MEDIMMUNE, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACA, MANUEL, SWERS, JEFFREY, THISTED, THOMAS
Publication of US20130079280A1 publication Critical patent/US20130079280A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2318/00Antibody mimetics or scaffolds
    • C07K2318/20Antigen-binding scaffold molecules wherein the scaffold is not an immunoglobulin variable region or antibody mimetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor

Definitions

  • the present invention relates in general to the field of antibody mimetics, specifically to multimeric scaffolds based on the fibronectin type III (Fn3) domain useful, for example, for the generation of products having novel binding characteristics.
  • Fn3 fibronectin type III
  • Biomolecules capable of specific binding to a desired target epitope are of great importance as therapeutics, research, and medical diagnostic tools.
  • a well known example of this class of molecules is the antibody.
  • Antibodies can be selected that bind specifically and with affinity to almost any structural epitope.
  • classical antibodies are structurally complex heterotetrameric molecules with are difficult to express in simple eukaryotic systems. As a result, most antibodies are produced using complex and expensive mammalian cell expression systems.
  • Proteins having relatively defined three-dimensional structures may be used as reagents for the design of engineered products. These scaffolds typically contain one or more regions which are amenable to specific or random sequence variation, and such sequence randomization is often carried out to produce libraries of proteins from which desired products may be selected.
  • Antibody mimetics i.e., small, non-antibody protein therapeutics, capitalize on the advantages of antibodies and antibody fragments, such as high affinity binding of targets and low immunogenicity and toxicity, while avoiding some of the shortfalls, such as the tendency for antibody fragments to aggregate and be less stable than full-length IgGs.
  • an scaffold-based antibody mimetic is based on the structure of a fibronectin module of type III (FnIII), a domain found widely across phyla and protein classes, such as in mammalian blood and structural proteins.
  • the FnIII domain occurs often in various proteins, including fibronectins, tenascin, intracellular cytoskeletal proteins, cytokine receptors and prokaryotic enzymes (Bork and Doolittle, Proc. Natl. Acad. Sci. USA 89:8990-8894, 1992; Bork et al., Nature Biotechnol. 15:553-557, 1997; Meinke et al., J. Bacteriol.
  • FnIII domains comprise seven beta strands, designated N-terminus to C-terminus A, B, C, D, E, F, and G strands, each strand separated by a loop region wherein the loop regions are designated N-terminus to C-terminus, AB, BC, CD, DE, EF, and FG loops.
  • the FnIII domain is not an immunoglobulin
  • the overall fold of the third FnIII domain of human tenascin C domain is closely related to that of the smallest functional antibody fragment, the variable region of the heavy chain, which comprises the entire antigen recognition unit in camel and llama IgG. This makes it possible to display the three fibronectin loops on each opposite side of a FnIII domain, e.g., the third FnIII domain of human tenascin C in relative orientations similar to those of CDRs in native antibodies.
  • the invention provides recombinant multimeric scaffold comprising two fibronectin type III (FnIII) monomer scaffolds derived from one or more FnIII domains of interest (FOI), wherein (a) each FnIII monomer scaffold comprises a plurality of beta strands linked to a plurality of loop regions, (b) the FnIII monomer scaffolds are connected in tandem, wherein at least one of the monomers comprises a non-naturally occurring intramolecular disulfide bond, (c) the recombinant multimeric scaffold specifically binds to at least one target, and (d) the action on the target is improved over that of a cognate FnIII monomer scaffold.
  • FnIII fibronectin type III
  • the invention also provides recombinant multimeric scaffold comprising 3 fibronectin type III (FnIII) monomer scaffolds derived from one or more FnIII domains of interest (FOI) wherein (a) each FnIII monomer scaffold comprises a plurality of beta strands linked to a plurality of loop regions, (b) the recombinant multimeric FnIII scaffold specifically binds to at least one target, and (c) the action on the target is improved over that of a cognate FnIII monomer scaffold.
  • FnIII fibronectin type III
  • the multimeric scaffolds of the invention comprise 3, 4, 5, 6, 7, or 8 FnIII monomer scaffolds. In some embodiments, all of the FnIII monomer scaffolds in the multimeric scaffold are in tandem. In other embodiments, at least two FnIII monomer scaffolds in a multimeric scaffold comprise a non-naturally occurring intramolecular disulfide bond. In some other embodiments, the multimeric scaffold of the invention binds to at least 2 targets. In some embodiments, at least one FnIII monomer scaffold in a multimeric scaffold is connected directly, by a linker, or by a heterologous moiety to 2, 3, 4, 5, or 6 other FnIII monomer scaffolds. In some embodiments, the multimeric scaffold of the invention comprises 7, 8, 9, 10, 11 or 12 FnIII monomer scaffolds, which in some embodiments can all be in tandem.
  • At least two FnIII monomer scaffolds in a multimeric scaffold are connected by a linker. In other embodiments, at least two FnIII monomer scaffolds in a multimeric scaffold are directly connected without a linker interposed between the FnIII monomer scaffolds.
  • the plurality of beta strands in at least one FnIII monomer scaffold in the multimeric scaffold comprises seven beta strands designated A, B, C, D, E, F, and G.
  • the plurality of loop regions in at least one FnIII monomer scaffold in the multimeric scaffold comprises six loop regions designated AB, BC, CD, DE, EF, and FG.
  • At least one FnIII monomer scaffold in a multimeric scaffold of the invention there is an improvement in binding over that of a cognate FnIII monomer scaffold wherein the improvement is in binding affinity and/or avidity.
  • binding affinity for the target and protein stability are improved in the multimeric scaffold over those of a cognate FnIII monomer scaffold.
  • the binding avidity for the target and the protein stability of a multimeric scaffold are improved over those of a cognate FnIII monomer scaffold.
  • At least one FnIII monomer scaffold in a multimeric scaffold of the invention comprises at least two non-naturally occurring intramolecular disulfide bonds.
  • the multimeric scaffold comprises a peptide linker.
  • the peptide linker can be a flexible peptide linker.
  • the linker comprises a functional moiety, which is some cases can be an immunoglobulin or a fragment thereof.
  • At least one of the FnIII monomer scaffolds in a multimeric scaffold is fused to a heterologous moiety, such as a protein, a peptide, a protein domain, a linker, a drug, a toxin, a cytotoxic agent, an imaging agent, a radionuclide, a radioactive compound, an organic polymer, an inorganic polymer, a polyethylene glycol (PEG), biotin, a human serum albumin (HSA), a HSA FcRn binding portion, an antibody, a domain of an antibody, an antibody fragment, a single chain antibody, a domain antibody, an albumin binding domain, an enzyme, a ligand, a receptor, a binding peptide, a non-FnIII scaffold, an epitope tag, a recombinant polypeptide polymer, a cytokine, and a combination of two or more of said moieties.
  • a heterologous moiety such as a protein, a peptide
  • more than two of the FnIII monomer scaffolds in a multimeric scaffold are connected by linkers, and at least one linker is structurally and/or functionally different from the other linkers.
  • the FnIII monomer scaffolds in a multimeric FnIII scaffold are connected in a branched format.
  • some FnIII monomer scaffolds in the multimeric scaffold are connected in a linear tandem format and some FnIII monomer scaffolds are connected in a branched format.
  • At least two FnIII monomer scaffolds in the multimeric scaffold are identical, whereas is some other embodiments at least two FnIII monomer scaffolds are different.
  • the multimeric scaffold is a receptor agonist. In other embodiments, the multimeric scaffold is a receptor antagonist.
  • At least two FnIII monomer scaffolds in the multimeric scaffold bind the same target at the same epitope. In other embodiments, at least two FnIII monomer scaffolds in a multimeric scaffold bind the same target at different epitopes. In some embodiments, the different epitopes are non-overlapping epitopes, whereas in other embodiments the different epitopes are overlapping epitopes.
  • At least one FOI is selected from the group consisting of: an animal FnIII domain, a bacterial FnIII domain, an archaea FnIII domain, and a viral FnIII domain.
  • This at least one FOI can comprise a sequence selected from the group consisting of any one of SEQ ID NOs: 1-34, 59, 69, and any of the sequences presented in FIG. 16 .
  • the at least one FOI is an FnIII domain from a hyperthermophilic archaea.
  • the FOI comprises the third FnIII domain of human tenascin C (SEQ ID NO: 4) or a functional fragment thereof. In some embodiments, the FOI comprises the 14th FnIII domain of human fibronectin (SEQ ID NO: 69) or a functional fragment thereof, or the 10th FnIII domain of human fibronectin (SEQ ID NO: 54) or a functional fragment thereof.
  • the FOI for each FnIII monomer in a multimeric scaffold comprises the third FnIII domain of human tenascin C (SEQ ID NO: 4) or a functional fragment thereof.
  • the functional fragment of the third FnIII domain of human tenascin C is an N-terminal truncated form (SEQ ID NO: 14).
  • the beta strands of at least one of the FnIII monomer scaffolds in a multimeric scaffold have at least 90% sequence identity to the cognate beta strands in SEQ ID NO: 4.
  • the A beta strand domain comprises SEQ ID NOs: 41 or 42
  • the B beta strand comprises SEQ ID NO: 43
  • the C beta strand comprises SEQ ID NO: 44 or 131
  • the D beta strand comprises SEQ ID NO: 46
  • the E beta strand comprises SEQ ID NO: 47
  • the F beta strand comprises SEQ ID NO: 48
  • the G beta strand comprises SEQ ID NO: 52.
  • the AB loop comprises SEQ ID NO: 35
  • the CD loop comprises SEQ ID NO: 37
  • the EF loop comprises SEQ ID NO: 39.
  • the BC loop comprises SEQ ID NO: 36
  • the DE loop comprises SEQ ID NO: 38
  • the FG loop comprises SEQ ID NO: 40.
  • the AB loop comprises SEQ ID NO: 35
  • the BC loop comprises SEQ ID NO: 97, 98, 99, 100, or 101
  • the CD loop comprises SEQ ID NO: 37
  • the DE loop comprises SEQ ID NO: 38, 102, 103, 104, or 105
  • the EF loop comprises SEQ ID NO: 39
  • the FG loop comprises SEQ ID NO:106, 107, 108, 109, 110, or 111.
  • the A beta strand comprises SEQ ID NO: 41 or 42
  • the B beta strand comprises SEQ ID NO: 43
  • the C beta strand comprises SEQ ID NO: 44, 45, or 131
  • the D beta strand comprises SEQ ID NO: 46
  • the E beta strand comprises SEQ ID NO:47
  • the F beta strand comprises SEQ ID NO: 49, 50 or 51
  • the G beta strand comprises SEQ ID NO: 52 or 53.
  • the FOI of at least one FnIII monomer scaffold comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO: 2 and SEQ ID NO: 3.
  • At least one FnIII monomer scaffold in a multimeric scaffold comprises the amino acid sequence:
  • At least one FnIII monomer scaffold in a multimeric scaffold comprises the amino acid sequence:
  • At least one FnIII monomer scaffold in a multimeric scaffold comprises the amino acid sequence:
  • At least one FnIII monomer scaffold in a multimeric scaffold comprises an AB loop comprising SEQ ID NO: 35, a CD loop comprising SEQ ID NO: 37, and an EF loop comprising SEQ ID NO: 39.
  • at least one FnIII monomer scaffold in a multimeric scaffold comprises a BC loop comprising SEQ ID NO: 36, a DE loop comprising SEQ ID NO: 38, and an FG loop comprising SEQ ID NO: 40.
  • At least one FnIII monomer scaffold in a multimeric scaffold comprises at least one BC loop, DE, loop or FG loop variant.
  • the BC loop variant comprises SEQ ID NO: 97, 98, or 168.
  • the DE loop variant comprises SEQ ID NO: 102, or 103.
  • the FG loop variant comprises SEQ ID NO: 106, 108, 109, 169, or 170.
  • the BC loop, DE, loop or FG loop variant comprises the amino acid sequence of the respective BC, DE, or FG loop of SEQ ID NO: 178, 195, 196, 197, 198, 199, 200, 205, 206, 207, or 208.
  • the increased protein stability of at least one FnIII monomer scaffold is measured by differential scanning calorimetry (DSC), circular dichroism (CD), polyacrylamide gel electrophoresis (PAGE), protease resistance, isothermal calorimetry (ITC), nuclear magnetic resonance (NMR), urea denaturation, or guanidine denaturation.
  • DSC differential scanning calorimetry
  • CD circular dichroism
  • PAGE polyacrylamide gel electrophoresis
  • protease resistance isothermal calorimetry
  • ITC isothermal calorimetry
  • NMR nuclear magnetic resonance
  • urea denaturation urea denaturation
  • guanidine denaturation guanidine denaturation
  • At least one FnIII monomer scaffold in a multimeric scaffold is affinity matured.
  • the invention also provides a method for obtaining a recombinant multimeric scaffold comprising: expressing, fusing or conjugating 2 fibronectin type III (FnIII) monomer scaffolds derived from one or more wild-type FnIII domains of interest (FOI), wherein (a) each FnIII monomer scaffold comprises a plurality of beta strands linked to a plurality of loop regions, (b) the FnIII monomer scaffolds are connected in tandem, wherein at least one of the FnIII monomer scaffolds comprises one non-naturally occurring intramolecular disulfide bond, (c) the recombinant multimeric scaffold specifically binds to at least one target, and (d) the binding for the target is improved over that of a cognate FnIII monomer scaffold.
  • FnIII fibronectin type III
  • the invention also provides a method for obtaining a recombinant multimeric scaffold comprising: expressing, fusing or conjugating at least 3 fibronectin type III (FnIII) monomer scaffolds derived from one or more wild-type FnIII domains of interest (FOI) wherein (a) each FnIII monomer scaffold comprises a plurality of beta strands linked to a plurality of loop regions, (b) the recombinant multimeric FnIII scaffold specifically binds to at least one target, and (c) the binding for the target is improved over that of a cognate FnIII monomer scaffold.
  • FnIII fibronectin type III
  • At least one of the FOIs used in the methods described above comprises a sequence selected from the group consisting of any one of SEQ ID NOs:1-34, 54, 69, and any of the sequences presented in FIG. 16 .
  • the invention also provides a nucleic acid encoding any of the multimeric scaffolds described above.
  • a vector is operably linked to the nucleic acid.
  • a host cell can comprise the vector.
  • the invention also provides a method of producing a recombinant multimeric scaffold comprising culturing a host cell under conditions in which the multimeric scaffold encoded by the nucleic acid molecule is expressed.
  • the scaffolds of the invention are combined with a pharmaceutically acceptable excipient to yield a pharmaceutical composition.
  • the invention also provides a method for treating a cancer, an autoimmune disorder, an inflammatory disorder, or an infection in a patient in need thereof comprising administering an effective amount of the composition of a pharmaceutical composition comprising a scaffold of the invention.
  • the invention also provides a method of detecting a protein in a sample comprising labeling a multimeric FnIII scaffold of the invention or a conjugate comprising a scaffold of the invention, contacting the labeled multimeric FnIII scaffold or conjugate with a sample, and detecting complex formation between the multimeric FnIII scaffold or conjugate with the protein.
  • FIG. 1 shows linear, antibody-like and fusion formats of multivalent Tn3 scaffolds.
  • Multivalent Tn3 scaffolds contain two or more Tn3 modules attached by a spacer indicated by a black octagonal block, where the spacer can be, e.g., a linker.
  • FIG. 2 shows TRAIL R2-specific multivalent Tn3 scaffolds, designated as A2 to A9, which were generated according to the three different molecular formats shown in FIG. 1 with valencies (number of Tn3 modules) varying from 2 to 8.
  • FIG. 3 shows non reducing SDS-PAGE analysis of crude bacterial media (right gel) and affinity purified samples (left gel) corresponding to linear tandem constructs designated A1 to A5, with valencies varying from 1 to 8, expressed in E. coli.
  • FIG. 4 shows a competition ELISA measuring binding of monovalent (A1) and multivalent (A2, A3) Tn3 scaffolds to TRAIL R2.
  • FIG. 5 shows a flow cytometry histogram of the TRAIL R2-specific multivalent scaffold A9 binding to H2122 cells compared to a cognate control scaffold (B9) that does not bind TRAIL R2.
  • FIG. 6A shows the effect of valency on the specific killing of the TRAIL R2-expressing cell line H2122 by multivalent scaffolds.
  • FIG. 6B shows the specificity of H2122 tumor cell killing by TRAIL R2-specific multivalent scaffolds.
  • FIG. 7A shows the effect of molecular format on killing of H2122 cells by TRAIL R2-specific multivalent scaffolds comprising 4 Tn3 modules.
  • FIG. 7B shows the effect of molecular format on killing of H2122 cells by TRAIL R2-specific multivalent scaffolds comprising 8 Tn3 modules.
  • FIG. 8A shows the specific killing of colorectal adenocarcinoma cell line Colo205 cells expressing TRAIL R2 by linearly fused tetra-(A3) and octavalent (A5) TRAIL R2-specific Tn3 scaffolds.
  • FIG. 8B shows the specific killing of leukemic line Jurkat cells expressing TRAIL R2 by linearly fused tetra-(A3) and octavalent (A5) TRAIL R2-specific Tn3 scaffolds.
  • FIG. 9A shows the design of murine CD40L-specific tandem bivalent Tn3 scaffolds (M13 constructs).
  • FIG. 9B shows the SDS-PAGE analysis of a purified monovalent M13 construct (CD40L-specific Tn3 construct), or tandem bivalent scaffolds with linkers containing 1, 3, 5 or 7 Gly 4 Ser units (denoted as GS) joining two M13 modules.
  • Monovalent M13 construct was run in lane 2, Construct C1 in lanes 3 and 7, Construct C2 in lanes 4 and 8, construct C3 in lanes 5 and 9, and construct C4 in lanes 6 and 10. Samples were run either non-reduced conditions (lanes 2-6) or reduced conditions (lanes 7-10).
  • FIG. 9C shows the competitive inhibition of MuCD40L binding to Murine CD40 receptor immobilized on a biosensor chip by MuCD40L-specific monovalent (M13) or bivalent tandem scaffolds.
  • the half maximal inhibitory concentration (IC 50 ) for the various constructs is indicated.
  • FIG. 9D shows the inhibitory effect of MuCD40L-specific monovalent (M13) Tn3, bivalent tandem scaffolds, or antibody MR1 (an anti-MuCD40L antibody) on MuCD40L-induced CD86 expression on B cells.
  • FIG. 10 shows the expression levels of soluble monovalent and TRAIL R2/CD40L-bispecific tandem bivalent Tn3 scaffold constructs recombinantly expressed in E. coli analyzed by SDS-PAGE of the bacterial culture media.
  • Monovalent scaffolds, A1 and 79 are shown in lanes 2 and 3, respectively.
  • Tandem scaffold constructs comprising A1 and 79, joined in tandem by a Gly 4 Ser amino acid linker of increasing length (cognate to constructs C5, C6, C7 and C8) are shown in lanes 4-7.
  • the expressed constructs are indicated on the stained gel by an asterisk.
  • FIG. 11A shows the binding of bispecific Tn3 scaffolds to TRAIL R2 assayed using capture ELISA.
  • FIG. 11B shows the binding of bispecific Tn3 scaffolds to Human CD40L assayed using capture ELISA.
  • FIG. 12 shows the simultaneous binding of bispecific tandem Tn3 scaffolds C5, C6, C7, and C8 to TRAIL R2 and CD40L assayed using an AlphaScreenTM assay.
  • FIG. 13 shows the stability of Tn3 scaffolds in the present of guanidine-HCl. C m (midpoint value) for each tested scaffold is indicated.
  • FIG. 14 shows the thermostability of three different Tn3 scaffolds with different loop sequences, but the same length FG loop (nine amino acids) compared to the parental Tn3 scaffold which has a longer FG loop analyzed by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • FIG. 15 shows the increase in stability in the presence of guanidine-HCl of Tn3 scaffolds having a nine amino acid length FG loop (P1C01, A6, and 71) compared to the parental (WT) Tn3 scaffold.
  • FIG. 16 shows a multiple sequence alignment of 103 different FnIII scaffolds based on structural analysis.
  • Each FnIII sequence corresponds to a different FnIII three dimensional structure, identified according to its respective Protein Data Bank (PDB) structure and chain (e.g., 1V5J_A, corresponds to the sequence of chain A in the 1V5J PDB structure).
  • the entire sequence for each FnIII sequence is shown over four consecutive panels starting with the A strand, and ending with the G strand.
  • the loop regions are indicated at the top of the alignments with a solid line.
  • the sequences are displayed in groups with the AB loop of each group indicated on FIGS. 16A , 16 E, 16 I, and 16 M; the BC and CD loops of each group are indicated on FIGS.
  • FIGS. 16B , 16 F, 16 J, and 16 N the DE and EF loops are indicated on FIGS. 16C , 16 G, 16 K, and 16 O; and the FG loop is indicated on FIGS. 16D , 16 H, 16 L, and 16 P.
  • FIG. 17A shows a schematic representation and expression of a trispecific/trivalent Tn3 scaffold.
  • the D1-1E11-79 scaffold contains a Synagis®-binding domain (D1), followed by a TRAIL R2-Fc binding domain (1E11), and a C-terminal Tn3 domain specific for human CD40L (79).
  • a flexible (Gly 4 Ser) 3 linker separates each domain.
  • FIG. 17B shows a SDS-PAGE (4-12% Bis-Tris) gel of the expressed and purified D1-1E11-79 scaffold.
  • the expected molecular weight of this construct is approximately 34,081 Daltons.
  • FIG. 18A shows the simultaneous binding of the trispecific/trivalent Tn3 scaffold D1-1E11-79 to huCD40L and TRAIL R2-Fc using AlphaScreen binding analysis.
  • AlphaScreen signal shown as a function of TrailR2-Fc concentration.
  • FIG. 18B shows the simultaneous binding of the trispecific/trivalent Tn3 scaffold D1-1E11-79 to huCD40L and Synagis® using AlphaScreen binding analysis.
  • AlphaScreen signal (ASS) shown as a function of Synagis® concentration.
  • FIG. 19 shows the simultaneous binding of the trispecific/trivalent Tn3 scaffold D1-1E11-79 to TRAIL R2-Fc and Synagis® using ELISA.
  • FIG. 20 shows a sequence alignment of parental TRAIL R2 binding clone 1C12 and its affinity matured derivatives.
  • the position of the engineered disulfide bond is highlighted, the arrow indicates the location of the one framework mutation, and changes in the loops that arise during affinity maturation are shown in highlighted blocks A, B, C, and D.
  • FIG. 21 shows a CellTiter-Glo cell viability assay of the 1C12 clone and its affinity matured derivatives.
  • FIG. 22 shows concentration of G6 tandems as a function of time in mouse serum.
  • FIG. 23A shows a sequence alignment corresponding to the engineered enhancement of cyno cross reactivity for clone F4.
  • the common feature among all of these clones is a mutation from D to G two amino acids before the DE loop.
  • FIG. 23B shows ELISA measurements of the inhibition of binding of either human or cyno TRAIL R2-Fc to F4 mod 1 coated plates by F4 or F4 mod 1 monomer.
  • FIG. 24A shows a sequence alignment corresponding to germlining of the clone F4 mod 1, specifically a comparison of F4, F4 mod 1 and F4 mod 12 to the TN3 germline.
  • FIG. 24B shows ELISA measurements of the inhibition of binding of either human or cyno TRAIL-R2-Fc to F4 mod 1 coated plates by F4, F4 mod 1, or F4 mod 12 monomer.
  • FIG. 24C shows a Colo205 cell killing assay comparing G6 tandem 6 to F4 mod 12 tandem 6.
  • FIG. 24D shows a Colo205 cell killing assay comparing G6 tandem 8 to F4 mod 12 tandem 8.
  • FIG. 25 shows an HT29 cell killing assay comparing the activity of G6 tandem 8 to F4 mod 12 tandem 8 in the TRAIL resistant cell line HT29.
  • FIG. 26 shows a sequence alignment corresponding to the clones tested in Antitope EpiScreen Immunogenicity analyses. Differences with respect to clone F4 mod 12 are highlighted.
  • FIG. 27A shows SEC traces of non-SEC-purified G6 tandem 8.
  • FIG. 27B shows SEC traces of SEC-purified G6 tandem 8.
  • FIG. 28 shows changes in tumor volume in Colo205 colorectal cancer xenograft models in response to different doses of the Tn3 TRAIL R2 agonists G6 tandem 6 and G6 tandem 8.
  • FIG. 29 shows changes in body weight in Colo205 colorectal xenograft models in response to different doses of the Tn3 TRAIL R2 agonists G6 tandem 6 and G6 tandem 8.
  • Amino acids are referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, are referred to by their commonly accepted single-letter codes.
  • epitope refers to a protein determinant capable of binding to a scaffold of the invention.
  • Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and non-conformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.
  • fibronectin type III (FnIII) domain refers to polypeptides homologous to the human fibronectin type III domain having at least 7 beta strands which are distributed between two beta sheets, which themselves pack against each other to form the core of the protein, and further containing solvent exposed loops which connect the beta strands to each other. There are at least three such loops at each edge of the beta sheet sandwich, where the edge is the boundary of the protein perpendicular to the direction of the beta strands.
  • an FnIII domain comprises 7 beta strands designated A, B, C, D, E, F, and G linked to six loop regions designated AB, BC, CD, DE, EF, and FG, wherein a loop region connects each beta strand.
  • FIG. 16 provides the primary sequence locations for the beta strands and loops for numerous FnIII domains based on analysis of their three dimensional structures. It should be noted that alternative definitions of these regions are known in the art. However, for these FnIII domains, the definitions in FIG. 16 will be used herein unless the context clearly dictates otherwise except that it will be understood that the N-terminus of the A strand and/or the C-terminus of the G strand may be truncated.
  • fibronectin type III (FnIII) domain and “FnIII domain” also comprise protein domains recognized to contain the Interpro IPRO08957 fibronectin type III domain signature as determined using the InterProScan program, or recognized to contain the Pfam PF00041 fibronectin type III domain signature as determined using Pfam_scan, HMMER, or any other program known in the art capable of comparing a protein sequence to a Hidden Markov model describing an FnIII domain.
  • the terms include functional fragments and engineered FnIII domains, e.g., core-engineered FnIII domains (see, e.g., Ng et al., Nanotechnology 19: 384023, 2008).
  • Fibronectin type III (FnIII) scaffold or “FnIII scaffold” refers to a polypeptide comprising an FnIII domain, or functional fragment thereof, wherein at least one loop is a non-naturally occurring variant of a FnIII domain/scaffold of interest, and wherein said FnIII scaffold, or functional fragment thereof is capable of binding a target, wherein the term “binding” herein preferably relates to a specific binding.
  • non-naturally occurring variant can vary by deletion, substitution or addition by at least one amino acid from the cognate sequences in a starting protein sequence (e.g., an FnIII domain/scaffold of interest), which may be a native FnIII domain sequence or a previously identified FnIII scaffold sequence.
  • a starting protein sequence e.g., an FnIII domain/scaffold of interest
  • the A beta strand is truncated, for example one or more N-terminal residues of the A beta strand can be absent.
  • the G beta strand is truncated, for example one or more C-terminal residues of the G beta strand may be absent.
  • an FnIII scaffold comprises a non-naturally occurring variant of one or more beta strands.
  • the beta strands of the FnIII scaffold exhibit at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more sequence identity to the primary sequences of the cognate beta strands of any one of SEQ ID NOs: 1-34, 54, or 69 or to the primary sequences of the beta strands of any of the FnIII domains shown in FIG.
  • DNA refers to a sequence of two or more covalently bonded, naturally occurring or modified deoxyribonucleotides.
  • fusion protein refers to protein that includes (i) one or more scaffolds of the invention joined to (ii) a second, different protein (i.e., a “heterologous” protein).
  • heterologous moiety is used herein to indicate the addition of a composition to a scaffold of the invention wherein the composition is not normally part of an FnIII domain.
  • exemplary heterologous moieties include proteins, peptides, protein domains, linkers, drugs, toxins, imaging agents, radioactive compounds, organic and inorganic polymers, and any other compositions which might provide an activity that is not inherent in the FnIII domain itself, including, but are not limited to, polyethylene glycol (PEG), a cytotoxic agent, a radionuclide, imaging agent, biotin, a dimerization domain (e.g.
  • HSA human serum albumin
  • FcRn binding portion thereof a domain or fragment of an antibody (e.g., antibody variable domain, a CH1 domain, a Ckappa domain, a Clambda domain, a CH2, or a CH3 domain), a single chain antibody, a domain antibody, an albumin binding domain, an IgG molecule, an enzyme, a ligand, a receptor, a binding peptide, a non-FnIII scaffold, an epitope tag, a recombinant polypeptide polymer, a cytokine, and the like.
  • an antibody e.g., antibody variable domain, a CH1 domain, a Ckappa domain, a Clambda domain, a CH2, or a CH3 domain
  • a single chain antibody e.g., antibody variable domain, a CH1 domain, a Ckappa domain, a Clambda domain, a CH2, or a CH3 domain
  • a single chain antibody
  • linker refers to any molecular assembly that joins or connects two or more scaffolds.
  • the linker can be a molecule whose function is to act as a “spacer” between modules in a scaffold, or it can also be a molecule with additional function (i.e., a “functional moiety’).
  • a molecule included in the definition of “heterologous moiety” can also function as a linker.
  • multimer refers to a molecule that comprises at least two FnIII scaffolds in association.
  • the scaffolds forming a multimeric scaffold can be linked through a linker that permits each scaffold to function independently.
  • “Multimeric” and “multivalent” can be used interchangeably herein.
  • a multivalent scaffold can be monospecific or bispecific.
  • domain refers to a region of a protein that can fold into a stable three-dimensional structure, often independently of the rest of the protein, and which can be endowed with a particular function. This structure maintains a specific function associated with the domain's function within the original protein, e.g., enzymatic activity, creation of a recognition motif for another molecule, or to provide necessary structural components for a protein to exist in a particular environment of proteins. Both within a protein family and within related protein superfamilies, protein domains can be evolutionarily conserved regions. When describing the component of a multimeric scaffold, the terms “domain,” “monomeric scaffold,” and “module” can be used interchangeably.
  • native FnIII domain is meant any non-recombinant FnIII domain that is encoded by a living organism.
  • sequence homology in relation to protein sequences refers to the similarity between two or more protein sequences, i.e., the percentage of amino acid residues that are either identical or conservative amino acid substitutions.
  • Percent (%) sequence similarity and “Percent (%) homology” as used herein are considered equivalent and are defined as the percentage of amino acid residues in a candidate sequence that are identical with or conservative substitutions of the amino acid residues in a selected sequence, after aligning the amino acid sequences and introducing gaps in the candidate and/or selected sequences, if necessary, to achieve the maximum percent sequence similarity.
  • Percent (%) identity is defined herein as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in a selected sequence, after aligning the sequences and introducing gaps in the candidate and/or selected sequence, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative amino acid substitutions as part of the sequence identity.
  • conservative substitution denotes the replacement of an amino acid residue by another, biologically similar residue.
  • conservative substitutions include the substitution of one hydrophobic amino acid residue such as isoleucine, valine, leucine, alanine, cysteine, glycine, phenylalanine, proline, tryptophan, tyrosine, norleucine, or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine and vice versa, of glutamic acid for aspartic acid, and vice versa, glutamine for asparagine, and vice versa, and the like.
  • Neutral hydrophilic amino acids which can be substituted for one another include asparagine, glutamine, serine and threonine.
  • the term “conservative substitution” also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that the biologic activity of the peptide is maintained.
  • Biological similarity between amino acid residues refers to similarities between properties such as, but not limited to, hydrophobicity, mutation frequency, charge, side chain length, size chain volume, pKa, polarity, aromaticity, solubility, surface area, peptide bond geometry, secondary structure propensity, average solvent accessibility, etc.
  • Alignment for purposes of determining percent homology (i.e., sequence similarity) or percent identity can be achieved in various ways that are within the skill in the art, for instance, using publicly or proprietary algorithms. For instance, sequence similarity can be determined using pairwise alignment methods, e.g., BLAST, BLAST-2, ALIGN, or ALIGN-2 or multiple sequence alignment methods such as Megalign (DNASTAR), ClustalW or T-Coffee software. Those skilled in the art can determine appropriate scoring functions, e.g., gap penalties or scoring matrices for measuring alignment, including any algorithms needed to achieve optimal alignment quality over the full-length of the sequences being compared.
  • sequence similarity can be determined using pairwise alignment methods, e.g., BLAST, BLAST-2, ALIGN, or ALIGN-2 or multiple sequence alignment methods such as Megalign (DNASTAR), ClustalW or T-Coffee software.
  • scoring functions e.g., gap penalties or scoring matrices for measuring alignment, including any algorithms
  • sequence alignment can be achieved using structural alignment methods (e.g., methods using secondary or tertiary structure information to align two or more sequences), or hybrid methods combining sequence, structural, and phylogenetic information to identify and optimally align candidate protein sequences.
  • a “protein sequence” or “amino acid sequence” means a linear representation of the amino acid constituents in a polypeptide in an amino-terminal to carboxyl-terminal direction in which residues that neighbor each other in the representation are contiguous in the primary structure of the polypeptide.
  • nucleic acid refers to any two or more covalently bonded nucleotides or nucleotide analogs or derivatives. As used herein, this term includes, without limitation, DNA, RNA, and PNA. “Nucleic acid” and “polynucleotide” are used interchangeably herein.
  • polynucleotide is intended to encompass a singular nucleic acid as well as plural nucleic acids, and refers to an isolated nucleic acid molecule or construct, e.g., messenger RNA (mRNA) or plasmid DNA (pDNA).
  • isolated nucleic acid or polynucleotide refers to a nucleic acid molecule, DNA or RNA, that has been removed from its native environment.
  • a recombinant polynucleotide encoding e.g., a scaffold of the invention contained in a vector is considered isolated for the purposes of the present invention.
  • an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution.
  • Isolated RNA molecules include in vivo or in vitro RNA transcripts of polynucleotides of the present invention.
  • Isolated polynucleotides or nucleic acids according to the present invention further include such molecules produced synthetically.
  • a polynucleotide or a nucleic acid can be or can include a regulatory element such as a promoter, ribosome binding site, or a transcription terminator.
  • pharmaceutically acceptable refers to a compound or protein that can be administered to an animal (for example, a mammal) without significant adverse medical consequences.
  • physiologically acceptable carrier refers to a carrier which does not have a significant detrimental impact on the treated host and which retains the therapeutic properties of the compound with which it is administered.
  • One exemplary physiologically acceptable carrier is physiological saline.
  • Other physiologically acceptable carriers and their formulations are known to one skilled in the art and are described, for example, in Remington's Pharmaceutical Sciences, (18 th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, Pa., incorporated herein by reference.
  • polypeptide By a “polypeptide” is meant any sequence of two or more amino acids linearly linked by amide bonds (peptide bonds) regardless of length, post-translation modification, or function. “Polypeptide,” “peptide,” and “protein” are used interchangeably herein. Thus, peptides, dipeptides, tripeptides, or oligopeptides are included within the definition of “polypeptide,” and the term “polypeptide” can be used instead of, or interchangeably with any of these terms.
  • polypeptide is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-naturally occurring amino acids.
  • a polypeptide can be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence.
  • a polypeptide can be generated in any manner, including by chemical synthesis.
  • polypeptides of the present invention are fragments, derivatives, analogs, or variants of the foregoing polypeptides, and any combination thereof.
  • Variants can occur naturally or be non-naturally occurring. Non-naturally occurring variants can be produced using art-known mutagenesis techniques.
  • Variant polypeptides can comprise conservative or non-conservative amino acid substitutions, deletions, or additions.
  • derivatives are those peptides that contain one or more naturally occurring amino acid derivatives of the twenty standard amino acids.
  • derived from means that a protein or polynucleotide is related to a reference protein or polynucleotide.
  • the relation can be, for example, one of sequence or structural similarity.
  • a protein or polynucleotide can be derived from a reference protein or polynucleotide via one or more of, e.g., mutation (e.g., deletion or substitution), chemical manipulation (e.g., chemical conjugation of a scaffold to PEG or to another protein), genetic fusion (e.g., genetic fusion of two or more scaffolds to a linker, a heterologous moiety, or combinations thereof), de novo synthesis based on sequence or structural similarity, or recombinant production in a heterologous organism.
  • mutation e.g., deletion or substitution
  • chemical manipulation e.g., chemical conjugation of a scaffold to PEG or to another protein
  • genetic fusion e.g., genetic fusion of two or more scaffolds to a linker, a heterologous moiety, or combinations thereof
  • de novo synthesis based on sequence or structural similarity, or recombinant production in a heterologous organism.
  • Randomizing or “mutating” is meant including one or more amino acid alterations, including deletion, substitution or addition, relative to a template sequence.
  • randomizing or “mutating” is meant the process of introducing, into a sequence, such an amino acid alteration. Randomization or mutation can be accomplished through intentional, blind, or spontaneous sequence variation, generally of a nucleic acid coding sequence, and can occur by any technique, for example, PCR, error-prone PCR, or chemical DNA synthesis.
  • randomizing”, “randomized”, “mutating”, “mutated” and the like are used interchangeably herein.
  • cognate or “cognate, non-mutated protein” is meant a protein that is identical in sequence to a variant protein, except for the amino acid mutations introduced into the variant protein, wherein the variant protein is randomized or mutated.
  • RNA is meant a sequence of two or more covalently bonded, naturally occurring or modified ribonucleotides.
  • a modified RNA included within this term is phosphorothioate RNA.
  • scaffold of the invention refers to multimeric scaffolds as well as monomeric FnIII scaffolds.
  • target refers to a compound recognized by a specific scaffold of the invention. Typical targets include proteins, polysaccharides, polynucleotides and small molecules.
  • target and antigen are used interchangeably herein.
  • telomere binding domains refers to the relative affinity by which a scaffold of the invention binds to one or more antigens via one or more antigen binding domains, and that binding entails some complementarity between one or more antigen binding domains and one or more antigens.
  • a scaffold of the invention is said to “specifically bind” to an epitope when it binds to that epitope more readily than it would bind to a random, unrelated epitope.
  • affinity refers to a measure of the strength of the binding of a certain scaffold of the invention to an individual epitope.
  • the term “avidity” as used herein refers to the overall stability of the complex between a population of scaffolds of the invention and a certain epitope, i.e., the functionally combined strength of the binding of a plurality of scaffolds with the antigen. Avidity is related to both the affinity of individual antigen-binding domains with specific epitopes, and also the valency of the scaffold of the invention.
  • reaction on the target refers to the binding of a multimeric scaffold of the invention to one or more targets and to the biological effects resulting from such binding.
  • multiple antigen binding units in a multimeric scaffold can interact with a variety of targets and/or epitopes and, for example, bring two targets physically closer, trigger metabolic cascades through the interaction with distinct targets, etc.
  • valency refers to the number of potential antigen-binding modules, e.g., the number of FnIII modules in a scaffold of the invention.
  • each binding module can specifically bind, e.g., the same epitope or a different epitope, in the same target or different targets.
  • disulfide bond as used herein includes the covalent bond formed between two sulfur atoms.
  • the amino acid cysteine comprises a thiol group that can form a disulfide bond or bridge with a second thiol group.
  • Tn3 module and “Tn3 scaffold” as used herein, refers to a FnIII scaffold wherein the A beta strand comprises SEQ ID NO: 42, the B beta strand comprises SEQ ID NO: 43, the C beta strand SEQ ID NO: 45 or 131, the D beta strand comprises SEQ ID NO: 46, the E beta strand comprises SEQ ID NO: 47, the F beta strand comprises SEQ ID NO: 49, and the beta strand G comprises SEQ ID NO: 52, wherein at least one loop is a non-naturally occurring variant of the loops in the “wild type Tn3 scaffold.”
  • one or more of the beta strands of a Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand (e.g., the cysteine in SEQ ID NOs: 45 or 131) and F beta strands (SEQ ID NO: 49) are not substituted.
  • wild type Tn3 scaffold refers to an FnIII scaffold comprising SEQ ID NO: 1, i.e., an engineered FnIII scaffold derived from the 3 rd FnIII of human tenascin C.
  • immunoglobulin and “antibody” comprises various broad classes of polypeptides that can be distinguished biochemically. Those skilled in the art will appreciate that heavy chains are classified as gamma, mu, alpha, delta, or epsilon. It is the nature of this chain that determines the “class” of the antibody as IgG, IgM, IgA IgG, or IgE, respectively. Modified versions of each of these classes are readily discernable to the skilled artisan.
  • antibody includes but not limited to an intact antibody, a modified antibody, an antibody VL or VL domain, a CH1 domain, a Ckappa domain, a Clambda domain, an Fc domain (see supra), a CH2, or a CH3 domain.
  • modified antibody includes synthetic forms of antibodies which are altered such that they are not naturally occurring, e.g., antibodies that comprise at least two heavy chain portions but not two complete heavy chains (as, e.g., domain deleted antibodies or minibodies); multispecific forms of antibodies (e.g., bispecific, trispecific, etc.) altered to bind to two or more antigens or to different epitopes of a single antigen).
  • modified antibody includes multivalent forms of antibodies (e.g., trivalent, tetravalent, etc., antibodies that to three or more copies of the same antigen). (See, e.g., Antibody Engineering, Kontermann & Dubel, eds., 2010 Springer Protocols, Springer).
  • TRAIL R2 or “TRAIL R2 receptor” are used interchangeably herein to refer to the full length TRAIL receptor sequence and soluble, extracellular domain forms of the receptor described in Sheridan et al., Science, 277:818-821 (1997); Pan et al., Science, 277:815-818 (1997), U.S. Pat. Nos. 6,072,047 and 6,342,369: PCT Publ. Nos. WO98/51793, WO98/41629, WO98/35986, WO99/02653, WO99/09165, WO98/46643, and WO99/11791; Screaton et al., Curr.
  • TRAIL receptor sequences are available at GenBank Accession Nos. AAC51778.1 and 014763.2.
  • TRAIL or “TRAIL polypeptide” refers to a ligand that binds to one or more TRAIL receptors, including TRAIL R2, as well as biologically active fragments thereof. Representative TRAIL sequences are available at GenBank Accession Nos. AAH32722.1 and P50591.1.
  • CD40L refers to the CD40 ligand protein also known as CD154, gp39 or TBAM. CD40L a 33 kDa, Type II membrane glycoprotein. Additionally, shorter 18 kDa CD154 soluble forms exist, (also known as sCD40L). Representative human CD40L sequences are available at GenBank Accession No. AAA35662.1 and at UniProt Accession No. P29965. Representative murine CD40L sequences are available at GenBank Accession No. AAI19226.1 and at UniProt Accession No. P27548.
  • in vivo half-life is used in its normal meaning, i.e., the time at which 50% of the biological activity of a polypeptide is still present in the body/target organ, or the time at which the activity of the polypeptide is 50% of its initial value.
  • serum half-life may be determined, i.e., the time at which 50% of the polypeptide molecules circulate in the plasma or bloodstream prior to being cleared. Determination of serum-half-life is often more simple than determining functional in vivo half-life and the magnitude of serum-half-life is usually a good indication of the magnitude of functional in vivo half-life.
  • serum half-life examples include plasma half-life, circulating half-life, circulatory half-life, serum clearance, plasma clearance, and clearance half-life.
  • the functionality to be retained is normally selected from procoagulant, proteolytic, co-factor binding, receptor binding activity, or other type of biological activity associated with the particular protein.
  • the term “increased” with respect to the functional in vivo half-life or plasma half-life is used to indicate that the relevant half-life of the polypeptide is statistically significantly increased relative to that of a reference molecule (for example an unmodified polypeptide), as determined under comparable conditions.
  • the relevant half-life may be increased by at least about 25%, such as by at least about 50%, e.g., by at least about 100%, at least about 150%, at least about 200%, at least about 250%, or at least about 500% compared to an unmodified reference molecule.
  • the half-life may be increased by about at least 1 fold, at least 2 fold, at least 3 fold, at least 4 fold, at least 5 fold, at least 10 fold, at least 20 fold, or at least 50 fold as compared to an unmodified reference molecule.
  • expression refers to a process by which a gene produces a biochemical, for example, a scaffold of the invention or a fragment thereof.
  • the process includes any manifestation of the functional presence of the gene within the cell including, without limitation, gene knockdown as well as both transient expression and stable expression. It includes without limitation transcription of the gene into one or more mRNAs, and the translation of such mRNAs into one or more polypeptides. If the final desired product is a biochemical, expression includes the creation of that biochemical and any precursors.
  • An “expression product” can be either a nucleic acid, e.g., a messenger RNA produced by transcription of a gene, or a polypeptide.
  • Expression products described herein further include nucleic acids with post transcriptional modifications, e.g., polyadenylation, or polypeptides with post translational modifications, e.g., methylation, glycosylation, the addition of lipids, association with other protein subunits, proteolytic cleavage, and the like.
  • vector or “expression vector” is used herein to mean vectors used in accordance with the present invention as a vehicle for introducing into and expressing a desired expression product in a host cell.
  • vectors can easily be selected from the group consisting of plasmids, phages, viruses and retroviruses.
  • vectors compatible with the instant invention will comprise a selection marker, appropriate restriction sites to facilitate cloning of the desired nucleic acid and the ability to enter and/or replicate in eukaryotic or prokaryotic cells.
  • host cells refers to cells that harbor vectors constructed using recombinant DNA techniques and encoding at least one expression product.
  • the terms “cell” and “cell culture” are used interchangeably to denote the source of the expression product unless it is clearly specified otherwise, i.e., recovery of the expression product from the “cells” means either recovery from spun down whole cells, or recovery from the cell culture containing both the medium and the suspended cells.
  • treat or “treatment” as used herein refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder in a subject, such as the progression of an inflammatory disease or condition.
  • beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
  • treatment also means prolonging survival as compared to expected survival if not receiving treatment.
  • Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
  • subject refers to any individual, patient or animal, in particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired.
  • Mammalian subjects include humans, domestic animals, farm animals, and zoo, sports, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and so on.
  • scaffold engineering is the introduction of at least one non-naturally occurring intramolecular disulfide bond in an FnIII scaffold.
  • the multimeric scaffolds of the invention comprise tandem repeats of these FnIII scaffolds wherein at least one FnIII scaffold comprises one non-naturally occurring intramolecular disulfide bond.
  • the tandem scaffolds are fused by a peptide linker, thereby allowing expression as a single construct.
  • the FnIII scaffolds that make up the multimeric scaffolds correctly fold independently of each other, retain their binding specificity and affinity, and each of the scaffold domains retains its functional properties.
  • the FnIII scaffolds that make up the multimeric scaffolds are assembled in high valency multimeric scaffolds, e.g., hexavalent or octavalent scaffolds, the scaffolds correctly fold independently of each other, retain their binding specificity and affinity, and each of the scaffold domains retains its functional properties.
  • Multimeric scaffolds including high valency scaffolds (e.g., hexavalent or octavalent), fold correctly even when the topology of construct is not linear, e.g., when the monomeric FnIII or multimeric FnIII scaffolds are assembled in complex branched structures (e.g., Fc fusion constructs or antibody-like constructs).
  • high valency scaffolds e.g., hexavalent or octavalent
  • Native FnIII domains such as the 10th FnIII domain of human fibronectin (10FnIII) and the vast majority of naturally occurring FnIII domains contain no disulfide bonds or free cysteines.
  • multidomain proteins are engineered by introducing multiple cysteines, lack of protein expression, precipitation of the resulting proteins, or production of non-functional proteins, are common occurrences.
  • These deleterious effects are due to the incorrect formation of intramolecular intradomain and/or interdomain disulfide bonds, and/or the incorrect formation of intermolecular disulfide bonds, which result in incorrect protein folding. These effects are generally intensified when the number of cysteines and/or protein domains is increased.
  • a linear FnIII scaffold comprising 8 wild type Tn3 scaffolds (SEQ ID NO: 1) would contain 16 cysteines along a single polypeptide amino acid sequence.
  • an antibody-like construct comprising 4 Tn3 modules, wherein two Tn3 modules are linked to IgG heavy chains and two Tn3 are linked to IgG light chains, would comprise 32 cysteines distributed among 4 different polypeptide chains. Accordingly, it is highly unexpected that multimeric FnIII scaffolds comprising such number of cysteines and such structural complexity will fold correctly and display improved stability and target binding properties when compared to their respective FnIII monomeric domains.
  • each individual monomer scaffold folds correctly retaining its binding specificity and affinity, as well as its functional properties.
  • the monomeric scaffolds are capable of forming stable, functional, and correctly folded multimeric scaffolds.
  • An advantage of the multimeric scaffolds of the invention is their ability to bind to multiple epitopes, e.g., (i) binding to multiple epitopes in a single target, (ii) binding to a single epitope in multiple targets, (iii) binding to multiple epitopes located on different subunits of one target, or (iv) binding to multiple epitopes on multiple targets, thus increasing avidity.
  • the multimeric scaffolds are capable of binding to multiple target molecules on a surface (either on the same cell/surface or in different cells/surfaces).
  • the multimeric scaffolds of the invention can be used to modulate multiple pathways, cross-link receptors on a cell surface, bind cell surface receptors on separate cells, and/or bind target molecules or cells to a substrate.
  • the present invention provides FnIII scaffolds having improved stability, which vary in amino acid sequence but which comprise an FG loop having a shorter length than that of a FnIII domain/scaffold of interest. Although the amino acids sequences of FnIII domains tend to show low sequence similarity, their overall three dimensional structure is similar. Accordingly, using known techniques, such as sequence analysis and tertiary structure overlay, the specific locations of FG loops of FnIII scaffolds from different species and different proteins, even when overall sequence similarity is low, can be identified and be subjected to mutation.
  • the engineered FG loop has an amino acid sequence length that is at least one amino acid shorter than the length of the starting FG loop. It has been observed that shortening the FG loops results in a mutated FnIII scaffold that has increased stability. Consequently, another aspect of the invention provides FnIII variants having increased protein stability.
  • the scaffold of the invention comprises an FG loop having 9 amino acids and an increased stability compared to a scaffold comprising the native third FnIII domain of human tenascin C which has an FG loop length of 10 amino acids. Additionally the present invention provides libraries of diverse FnIII scaffolds having specified FG loop lengths which are useful for isolating FnIII scaffolds having increased stability as compared to a FnIII domain/scaffold of interest.
  • the present invention provides multispecific scaffolds that can bind to two or more different targets, affinity matured scaffolds wherein the affinity of a scaffold for a specific target is modulated via mutation, and scaffolds whose immunogenicity and/or cross-reactivity among animal species is modulated via mutation.
  • the invention provides methods to produce the scaffolds of the invention as well as methods to engineer scaffolds with desirable physicochemical, pharmacological, or immunological properties.
  • the present invention provides uses for such scaffolds and methods for therapeutic, prophylactic, and diagnostic use.
  • the scaffolds of the present invention are based on the structure of a fibronectin module of type III (FnIII), a domain found widely across all three domains of life and viruses, and in multitude of protein classes.
  • the FnIII domain is found in fibronectins, multidomain-proteins found in soluble form in blood plasma and in insoluble form in loose connective tissue and basement proteins This domain is found in numerous proteins sequenced to date.
  • the FnIII domain superfamily represents at least 45 different protein families, the majority of which are involved in cell surface binding in some manner, or function as receptors.
  • proteins containing FnIII domains include fibronectins, tenascins, intracellular cytoskeletal proteins, cytokine receptors, receptor protein tyrosine kinases, and prokaryotic enzymes (Bork and Doolittle, Proc. Natl. Acad. Sci. USA 89:8990-8894, 1992; Bork et al., Nature Biotechnol. 15:553-557, 1997; Meinke et al., J. Bacteriol. 175:1910-1918, 1993; Watanabe et al., J. Biol. Chem. 265:15659-15665, 1990).
  • Naturally occurring protein sequences comprising FnIII domains include but are not limited to fibronectin, tenascin C, growth hormone receptor, ⁇ -common receptor, IL-5R, tenascin XB, and collagen type XIV. Although the domain appears widely distributed in nature, the percentage of amino acid sequence similarity between the amino acid sequences of highly divergent FnIII domains can be very low.
  • the scaffolds of the invention are derived from the third FnIII domain of human tenascin C (SEQ ID NO: 4).
  • the scaffolds of the invention comprise a Tn3 module. The overall three dimensional fold of this domain is closely related to that of the smallest functional antibody fragment, the variable region of the heavy chain (VH), which in the single domain antibodies of camels and camelids (e.g., llamas) comprises the entire antigen recognition unit.
  • VH variable region of the heavy chain
  • the FnIII scaffolds of the invention and the native FnIII domains are characterized by the same three dimensional structure, namely a beta-sandwich structure with three beta strands (A, B, and E) on one side and four beta strands (C, D, F, and G) on the other side, connected by six loop regions. These loop regions are designated according to the beta-strands connected to the N- and C-terminus of each loop.
  • the AB loop is located between beta strands A and B
  • the BC loop is located between strands B and C
  • the CD loop is located between beta strands C and D
  • the DE loop is located between beta strands D and E
  • the EF loop is located between beta strands E and F
  • the FG loop is located between beta strands F and G.
  • FnIII domains possess solvent exposed loops tolerant of randomization, which facilitates the generation of diverse pools of protein scaffolds capable of binding specific targets with high affinity.
  • the multiple sequence alignment shown in FIG. 16 identifies the positions of the beta strands and loops for numerous native FnIII domains based on the analysis of their three dimensional structures and amino acid sequences. These FnIII domains can be utilized to design proteins which are capable of binding to virtually any target compound, for example, any protein of interest.
  • the alignment shown in FIG. 16 is exemplary and non-limiting. For example, the alignment of FIG.
  • 16 may be expanded by incorporating protein domains recognized to contain the Interpro IPRO08957 fibronectin type III domain signature as determined using the InterProScan program, or recognized to contain the Pfam PF00041 fibronectin type III domain signature as determined using Pfam_scan, HMMER, or any other program capable of comparing a protein sequence to a Hidden Markov model.
  • protein scaffold engineering and design can be based on, e.g.,
  • FnIII domains are used as scaffolds which are subjected to directed evolution designed to randomize one or more of the loops which are analogous to the complementarity-determining regions (CDRs) of an antibody variable region.
  • CDRs complementarity-determining regions
  • the scaffolds described herein can be used to display defined exposed loops (for example, loops previously randomized and selected on the basis of target binding) in order to direct the evolution of molecules that bind to such introduced loops. This type of selection can be carried out to identify recognition molecules for any individual CDR-like loop or, alternatively, for the recognition of two or all three CDR-like loops combined into a nonlinear epitope binding moiety.
  • the scaffolds of the invention are molecules based on the third FnIII domain of human tenascin C structural motif described in PCT Publication No: WO 2009/058379.
  • a set of three loops (designated BC, DE, and FG), which can confer specific target binding, run between the B and C strands; the D and E strands, and the F and G beta strands, respectively.
  • the BC, DE, and FG loops of the third FnIII domain of human tenascin C are 9, 6, and 10 amino acid residues long, respectively.
  • the length of these loops falls within the narrow range of the cognate antigen-recognition loops found in antibody heavy chains, that is, 7-10, 4-8, and 4-28 amino acids in length, respectively.
  • a second set of loops run between the A and B beta strands; the C and D beta strands; and the E and F beta strands, respectively.
  • molecules based on the tenth FnIII (“10FnIII”) domain derived from human fibronectin can be used as scaffolds.
  • the AB loop corresponds to SEQ ID NO: 55
  • the BC loop corresponds to SEQ ID NO:56
  • the CD loop corresponds to SEQ ID NO: 57
  • the DE loop corresponds to SEQ ID NO: 58
  • the EF loop corresponds to SEQ ID NO: 59
  • the FG loop corresponds to SEQ ID NO: 60.
  • alternative definitions for these regions are known in the art, see for example, Xu et al. Chemistry & Biology 9:933-942, 2002, which may be used as described herein.
  • molecules based on the fourteenth FnIII (“14FnIII”) domain derived from human fibronectin can be used as scaffolds.
  • the AB loop of 14FnIII corresponds to SEQ ID NO: 70
  • the BC loop corresponds to SEQ ID NO: 71
  • the CD loop corresponds to SEQ ID NO: 72
  • the DE loop corresponds to SEQ ID NO: 73
  • the EF loop corresponds to SEQ ID NO: 74
  • the FG loop corresponds to SEQ ID NO: 75.
  • molecules based on a consensus sequence derived from the sequence of FnIII domains of Tenascin can be used as scaffolds.
  • the loops of a Tenascin consensus FnIII are defined in Table 1, the AB loop corresponds to SEQ ID NO: 257, the BC loop corresponds to SEQ ID NO: 258, the CD loop corresponds to SEQ ID NO: 259, the DE loop corresponds to SEQ ID NO: 260, the EF loop corresponds to SEQ ID NO: 261, and the FG loop corresponds to SEQ ID NO: 262. It will be understood that alternative definitions for these regions are known in the art, see for example, Jacobs et al. (International Patent Publication No. WO 2010/093627) which may be used as described herein.
  • the loops in the FnIII domain may make contacts with targets equivalent to the contacts of the cognate CDR loops in antibodies.
  • the AB, CD, and EF loops alone or in combination, are randomized and selected for high affinity binding to one or more targets.
  • this randomization and selection process may be performed in parallel with the randomization of one or more of the BC, DE, and FG loops, whereas in other embodiments this randomization and selection process is performed in series.
  • the invention provides recombinant, non-naturally occurring FnIII scaffolds comprising, a plurality of beta strand domains linked to a plurality of loop regions, wherein one or more of said loop regions vary by deletion, substitution or addition of at least one amino acid from the cognate loops in a FnIII domain/scaffold of interest (referred to herein as an “FOI”), and wherein the beta strands of the FnIII scaffold have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or more homology (i.e., sequence similarity) to the cognate beta strands of the FOI.
  • FnIII domain/scaffold of interest referred to herein as an “FOI”
  • the FOI is a reference used for comparing sequence, physicochemical and/or phylogenetic characteristics. It will be understood that, when comparing the sequence of a scaffold of the invention to the sequence of an FOI, the same definition of the beta strands and loops is utilized.
  • the FOI can be a native FnIII domain, a scaffold comprising a native FnIII domain or a non-naturally occurring FnIII scaffold.
  • the FOI comprises at least one non-naturally occurring loop.
  • the FOI comprises at least one non-naturally occurring beta strand.
  • the FOI comprises at least one non-naturally occurring loop and at least one non-naturally occurring beta strand.
  • the FOI comprises at least one non-naturally occurring disulfide bond.
  • the FOI comprises a wild type Tn3 scaffold (SEQ ID NO:1), a scaffold derived from the third FnIII domain of human tenascin that contains an engineered intramolecular disulfide bond.
  • the monomer scaffolds of the invention comprise seven beta strands, designated A, B, C, D, E, F, G, linked to six loop regions, designated AB, BC, CD, DE, EF, FG, wherein at least one loop is a non-naturally occurring variant of the cognate loop in an FOI and the beta strands have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more homology (i.e., sequence similarity) to the cognate beta strands of the FOI.
  • homology i.e., sequence similarity
  • the monomer scaffolds of the invention comprise seven beta strands, designated A, B, C, D, E, F, G, linked to six loop regions, designated AB, BC, CD, DE, EF, FG, wherein at least one loop is a non-naturally occurring variant of the cognate loop in an FOI and the beta strands have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to the cognate domain of the FOI.
  • the FOI comprises a third FnIII domain of human tenascin C (SEQ ID NO: 4).
  • the scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more homology (i.e., sequence similarity) to the third FnIII domain of human tenascin C (SEQ ID NO:4).
  • the scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to the third FnIII domain of human tenascin C (SEQ ID NO:4).
  • the monomer scaffolds of the invention comprise the amino acid sequence:
  • the monomer scaffolds of the invention comprise the amino acid sequence:
  • IEV(X AB ) n ALITW(X BC ) n IELX 1 YGI(X CD ) n TTIDL(X DE ) n YSI(X EF ) n YEVSLIS(X FG ) n KETF TT, wherein X AB , X BC , X CD , X DE , X EF , and X FG represent the amino acid residues present in the AB, BC, CD, DE, EF, and FG loops, respectively, wherein X 1 represents amino acid residue A or T, and wherein n 2-26.
  • X AB consists of SEQ ID NO: 35.
  • X BC consists of SEQ ID NO: 36.
  • X CD consists of SEQ ID NO: 37.
  • X DE consists of SEQ ID NO: 38.
  • X EF consists of SEQ ID NO: 39.
  • X FG consists of SEQ ID NO: 40.
  • X AB comprises SEQ ID NO: 35.
  • X BC comprises SEQ ID NO: 36.
  • X CD comprises SEQ ID NO: 37.
  • X DE comprises SEQ ID NO: 38.
  • X EF comprises SEQ ID NO: 39.
  • X FG comprises SEQ ID NO: 40.
  • X AB consists of SEQ ID NO: 35
  • X CD consists of SEQ ID NO: 37
  • X EF consists of SEQ ID NO: 39
  • X BC consists of SEQ ID NO: 36
  • X DE consists of SEQ ID NO: 38
  • X FG consists of SEQ ID NO: 40.
  • X AB comprises SEQ ID NO: 35
  • X CD comprises SEQ ID NO: 37
  • X EF comprises SEQ ID NO: 39
  • X BC comprises SEQ ID NO: 36
  • X DE comprises SEQ ID NO: 38
  • X FG comprises SEQ ID NO: 40.
  • the FOI comprises a wild type tenth fibronectin type III domain (10FnIII) of human fibronectin scaffold (SEQ ID NO: 54).
  • the scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more similarity to wild type 10FnIII (SEQ ID NO: 54).
  • the monomer scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to wild type 10FnIII (SEQ ID NO: 54).
  • the monomer scaffolds of the invention comprise the amino acid sequence:
  • X AB is the amino acid sequence of loop AB of 10FnIII (SEQ ID NO: 55).
  • X BC is the amino acid sequence of loop BC of wild type 10FnIII (SEQ ID NO: 56).
  • X CD is the amino acid sequence of loop CD of wild type 10FnIII (SEQ ID NO: 57).
  • X DE is the amino acid sequence of loop DE of wild type 10FnIII (SEQ ID NO: 58).
  • X EF is the amino acid sequence of loop EF of wild type 10FnIII (SEQ ID NO: 59).
  • X FG is the amino acid sequence of loop FG of wild type 10FnIII (SEQ ID NO: 60).
  • X AB is the amino acid sequence of loop AB of wild type 10FnIII (SEQ ID NO: 55)
  • X C D is the amino acid sequence of loop CD of wild type 10FnIII (SEQ ID NO: 57)
  • X EF is the amino acid sequence of loop EF of wild type 10FnIII (SEQ ID NO: 59).
  • X BC is the amino acid sequence of loop BC of wild type 10FnIII (SEQ ID NO: 56)
  • X DE is the amino acid sequence of loop DE of wild type 10FnIII (SEQ ID NO: 58)
  • X FG is the amino acid sequence of loop FG of wild type 10FnIII (SEQ ID NO: 60).
  • the FOI comprises a wild type fourteenth type III fibronectin domain (14FnIII) of human fibronectin scaffold (SEQ ID NO: 69).
  • the scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more similarity to wild type 14FnIII (SEQ ID NO: 69).
  • the monomer scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to wild type 14FnIII (SEQ ID NO: 69).
  • the monomer scaffolds of the invention comprise the amino acid sequence:
  • ARV(X AB ) n ITISW(X BC ) n FQVDAVP(X CD ) n IQRTI(X DE ) n YTI(X EF ) n YKIYLYT (X FG ) n VIDAST, wherein X AB , X BC , X CD , X DE , X EF , and X FG represent the amino acid residues present in the AB, BC, CD, DE, EF, and FG loops, respectively, and wherein n 2-26.
  • X AB is the amino acid sequence of loop AB of wild type 14FnIII (SEQ ID NO: 70).
  • X BC is the amino acid sequence of loop BC of wild type 14FnIII (SEQ ID NO: 71).
  • X CD is the amino acid sequence of loop CD of wild type 14FnIII (SEQ ID NO: 72).
  • X DE is the amino acid sequence of loop DE of wild type 14FnIII (SEQ ID NO: 73).
  • X EF is the amino acid sequence of loop EF of wild type 14FnIII (SEQ ID NO: 74).
  • X FG is the amino acid sequence of loop FG of wild type 14FnIII (SEQ ID NO: 75).
  • X A B is the amino acid sequence of loop AB of wild type 14FnIII (SEQ ID NO: 70)
  • X CD is the amino acid sequence of loop CD of wild type 14FnIII (SEQ ID NO: 72)
  • X EF is the amino acid sequence of loop EF of wild type 14FnIII (SEQ ID NO: 74).
  • X BC is the amino acid sequence of loop BC of wild type 14FnIII (SEQ ID NO: 71)
  • X DE is the amino acid sequence of loop DE of wild type 14FnIII (SEQ ID NO: 73)
  • X FG is the amino acid sequence of loop FG of wild type 14FnIII (SEQ ID NO: 75).
  • the FOI comprises Tenascin consensus FnIII (SEQ ID NO: 256).
  • the scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more similarity to Tenascin consensus FnIII (SEQ ID NO: 256).
  • the monomer scaffolds of the invention comprise a sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to Tenascin consensus FnIII (SEQ ID NO: 256).
  • the monomer scaffolds of the invention comprise the amino acid sequence:
  • LVV(X AB ) n LRLSW(X BC ) n FLIQYQE(X CD ) n INLTV(X DE ) n YDL(X EF ) n YTVSIYG(X FG ) n SA EFTT, wherein X AB , X BC , X CD , X DE , X EF , and X FG represent the amino acid residues present in the AB, BC, CD, DE, EF, and FG loops, respectively, and wherein n 2-26.
  • X AB is the amino acid sequence of AB loop of Tenascin consensus FnIII (SEQ ID NO: 257).
  • X BC is the amino acid sequence of loop BC of Tenascin consensus FnIII (SEQ ID NO: 258).
  • X CD is the amino acid sequence of loop CD of Tenascin consensus FnIII (SEQ ID NO: 259).
  • X DE is the amino acid sequence of loop DE of Tenascin consensus FnIII (SEQ ID NO: 260).
  • X EF is the amino acid sequence of loop EF of Tenascin consensus FnIII (SEQ ID NO: 261).
  • X FG is the amino acid sequence of loop FG of Tenascin consensus FnIII (SEQ ID NO: 262).
  • X AB is the amino acid sequence of loop AB of Tenascin consensus FnIII (SEQ ID NO: 257)
  • X CD is the amino acid sequence of loop CD of Tenascin consensus FnIII (SEQ ID NO: 259)
  • X EF is the amino acid sequence of loop EF of Tenascin consensus FnIII (SEQ ID NO: 261).
  • X BC is the amino acid sequence of loop BC of Tenascin consensus FnIII (SEQ ID NO: 258)
  • X DE is the amino acid sequence of loop DE of Tenascin consensus FnIII (SEQ ID NO: 260)
  • X FG is the amino acid sequence of loop FG of Tenascin consensus FnIII (SEQ ID NO: 262).
  • the monomer scaffolds of the invention comprise the amino acid sequence selected from the group consisting of:
  • the monomer scaffolds of the invention comprise the amino acid sequence selected from the group consisting of:
  • the scaffolds of the invention comprise a Tn3 module.
  • scaffolds of the invention comprise a Tn3 module (SEQ ID NO: 1), wherein beta strand C of a third FnIII domain of human tenascin C (SEQ ID NO; 44) is replaced by a variant beta strand C (SEQ ID NO: 45, or 131) comprising an N-terminal cysteine and wherein beta strand F of a third FnIII domain of human tenascin C (SEQ ID NO: 48) is replaced by a variant beta strand F (SEQ ID NO: 49) comprising a C-terminal cysteine.
  • the scaffolds of the invention comprise a Tn3 module wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine residues in the C and F beta strands (SEQ ID NOs: 45, or 131 and 49, respectively) may not be substituted.
  • the scaffolds of the invention comprise a variant of a 10FnIII module, wherein one or more of the beta strands comprise at least one amino acid substitution.
  • the scaffolds of the invention comprise a variant of a 14FnIII module, wherein one or more of the beta strands comprise at least one amino acid substitution.
  • the scaffolds of the invention comprise a variant of Tenascin consensus FnIII module, wherein one or more of the beta strands comprise at least one amino acid substitution.
  • the naturally occurring sequence is a protein sequence corresponding to an additional FnIII domain from human tenascin C.
  • the naturally occurring sequence is a protein sequence corresponding to a FnIII domain from another tenascin protein including but not limited to the 29th FnIII domain from human tenascin XB (SEQ ID NO: 11), the 31st FnIII domain from human tenascin XB (SEQ ID NO:12), or the 32nd FnIII domain from human tenascin XB (SEQ ID NO: 13).
  • the naturally occurring sequence is a protein sequence corresponding to an FnIII domain from another organism (such as, but not limited to, murine, porcine, bovine, or equine tenascins).
  • FnIII domains used to generate scaffolds of the invention include, e.g., related FnIII domains from animals, plants, bacteria, archaea, or viruses. Different FnIII domains from different organisms and parent proteins can be most appropriate for different applications; for example, in designing a scaffold stable at a low pH, it can be most desirable to generate that protein from organism that optimally grows at a low pH (such as, but not limited to Sulfolobus tokodaii ).
  • related FnIII domains can be identified and utilized from thermophilic and hyperthermophilic organisms (e.g., hyperthermophilic bacteria or hyperthermophilic archaea).
  • FnIII domains used to generate scaffolds of the invention are FnIII domains from hyperthermophilic archaea such as, but not limited to, Archaeoglobus fulgidus and Staphylothermus marinus , each of which exhibit optimal growth at greater than 70° C.
  • the naturally occurring sequence corresponds to a predicted FnIII domain from a thermophilic organism, for example, but not limited to Archaeoglobus fulgidus, Staphylothermus marinus, Sulfolobus acidocaldarius, Sulfolobus solfataricus , and Sulfolobus tokodaii .
  • the scaffolds of the invention comprise a protein sequence having at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% homology (sequence similarity) to any of the sequences from a sequence corresponding to a FnIII domain or a predicted FnIII domain from a thermophilic organism as described above.
  • the FnIII domains from thermophilic organisms are selected from the amino acid sequences of SEQ ID NOs: 20-33.
  • the loops connecting the various beta strands of the scaffolds of the invention can be randomized for length and/or sequence diversity.
  • the scaffolds of the invention have at least one loop that is randomized for length and/or sequence diversity.
  • at least one, at least two, at least three, at least four, at least five or at least six loops of a scaffold are randomized for length and/or sequence diversity.
  • at least one loop of the scaffolds of the invention is kept constant while at least one additional loop is randomized for length and/or sequence diversity.
  • At least one, at least two, or all three of loops AB, CD, and EF are kept constant while at least one, at least two, or all three of loops BC, DE, and FG are randomized for length or sequence diversity.
  • at least one, at least two, or at least all three of loops AB, CD, and EF are randomized while at least one, at least two, or all three of loops BC, DE, and FG are randomized for length and/or sequence diversity.
  • at least one, at least two, at least three of loops, at least 4, at least five, or all six of loops AB, CD, EF, BC, DE, and FG are randomized for length or sequence diversity.
  • scaffolds of the invention can comprise one or more loops having a degenerate consensus sequence and/or one or more invariant amino acid residues.
  • the scaffolds of the invention comprise an AB loop which is randomized with the following consensus sequence: K-X-X-X-X-X-a, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, and wherein (a) represents serine, threonine, alanine, or glycine.
  • the scaffolds of the invention comprise an AB loop which is randomized with the following consensus sequence: K-X-X-X-X-X-X-a, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, and wherein (a) represents serine, threonine, alanine, or glycine.
  • the scaffolds of the invention comprise a BC loop which is randomized with the following consensus sequence: S-X-a-X-b-X-X-X-G, wherein X represents any amino acid, wherein (a) represents proline or alanine and wherein (b) represents alanine or glycine.
  • the scaffolds of the invention comprise a BC loop which is randomized with the following consensus sequence: S-P-c-X-X-X-X-X-X-X-T-G, wherein X represents any amino acid and wherein (c) represents proline, serine or glycine.
  • the scaffolds of the invention comprise a BC loop which is randomized with the following consensus sequence: A-d-P-X-X-X-e-f-X-I-X-G, wherein X represents any amino acid, wherein (d) represents proline, glutamate or lysine, wherein (e) represents asparagine or glycine, and wherein (f) represents serine or glycine.
  • the scaffolds of the invention comprise an DE loop which is randomized with the following consensus sequence: X-X-X-X-X-X, wherein X represents any amino acid.
  • the scaffolds of the invention comprise an EF loop which is randomized with the following consensus sequence: X-b-L-X-P-X-c-X, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, wherein (b) represents asparagine, lysine, arginine, aspartic acid, glutamic acid, or glycine, and wherein (c) represents isoleucine, threonine, serine, valine, alanine, or glycine
  • the scaffolds of the invention comprise an FG loop which is randomized with the following consensus sequence: X-a-X-X-G-X-X-X-b, wherein X represents any amino acid, wherein (a) represents asparagine, threonine or lysine, and wherein (b) represents serine or alanine.
  • the scaffolds of the invention comprise an FG loop which is randomized with the following consensus sequence: X-X-X-X-X-X-X-X-X (X 9 ), wherein X represents any amino acid.
  • the scaffolds of the invention comprise an FG loop which is randomized with the following consensus sequence: X-a-X-X-X-X-b-N-P-A, wherein X represents any amino acid, wherein (a) represents asparagine, threonine or lysine and wherein (b) represents serine or glycine.
  • the scaffolds of the invention comprise an FG loop which is randomized with the following consensus sequence: X-a-X-X-G-X-X-S-N-P-A, wherein X represents any amino acid, and wherein (a) represents asparagine, threonine or lysine.
  • the scaffolds of the invention comprise an FG loop which is held to be at least one amino acid residue shorter than the cognate FG loop of an FOI and is further randomized at one or more positions.
  • the native FG loop of the third FnIII domain of human tenascin C comprises 10 amino acid residues, accordingly, the FG loop would be held to 9 amino acid residues or less.
  • a scaffold of the invention is a chimeric scaffold comprising one or more beta strands comprising amino acid sequences selected from homologous beta strands selected from a plurality of FOIs.
  • a scaffold of the invention is a chimeric scaffold wherein at least one of the loops BC, DE, and FG are randomized.
  • a scaffold of the invention is a chimeric scaffold wherein at least one of loops AB, CD, and EF is randomized.
  • At least one of loops BC, DE, and FG is randomized, wherein the A beta strand comprises SEQ ID NO:41, 42, 61, 62, 76, 77, 248 or 249, the B beta strand comprises SEQ ID NO:43, 63, 78, or 250, the C beta strand comprises SEQ ID NO:44, 45, 64, 79, 131, or 251, the D beta strand comprises SEQ ID NO:46, 65, 80, or 252, the E beta strand comprises SEQ ID NO:47, 66, 81, or 253, the F beta strand comprises SEQ ID NO:48, 49, 50, 51, 67, 82, or 254, and the G beta strand comprises SEQ ID NO:52, 53, 68, 83, or 255, the AB loop comprises SEQ ID NO:35, 55, 70, or 242, the CD loop comprises SEQ ID NO:37, 57, 72, or 244, and the EF loop comprises SEQ ID NO:39, 59,
  • At least one of loops AB, CD, and EF are randomized, wherein the A beta strand comprises SEQ ID NO:41, 42, 61, 62, 76, 77, 248 or 249, the B beta strand comprises SEQ ID NO:43, 63, 78, or 250, the C beta strand comprises SEQ ID NO:44, 45, 64, 79, 131, or 251, the D beta strand comprises SEQ ID NO:46, 65, 80, or 252, the E beta strand comprises SEQ ID NO:47, 66, 81 or 253, the F beta strand comprises SEQ ID NO:48, 49, 50, 51, 67, 82, or 254, and the G beta strand comprises SEQ ID NO:52, 53, 68, 83, or 255, the BC loop comprises SEQ ID NO:36, 56, 71, or 243, the DE loop comprises SEQ ID NO:38, 58, 73, 245 and the FG loop comprises SEQ ID NO:40, 60
  • scaffolds of the invention may be increased by many different approaches.
  • scaffolds of the invention can be stabilized by elongating the N- and/or C-terminal regions.
  • the N- and/or C-terminal regions can be elongated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 amino acids.
  • the scaffolds of the invention can be stabilized by introducing an alteration that increases serum half-life, as described herein.
  • the scaffolds of the invention comprise an addition, deletion or substitution of at least one amino acid residue to stabilize the hydrophobic core of the scaffold.
  • Scaffolds of the invention also can be effectively stabilized by engineering non-natural disulfide bonds.
  • Such engineered scaffolds can be efficiently expressed as part of multimeric scaffolds.
  • the correct formation of the disulfide bonds and the correct folding of the engineered scaffold are evidenced by the preservation of the biological activity of the scaffold.
  • the fact that an engineered scaffold comprising non-natural disulfide bonds can bind simultaneously to at least two targets (see, e.g., Example 8) or three targets (see, e.g., Example 12) provides evidence that the three dimensional structure of the scaffold is not significantly altered by the engineered disulfide bonds and that the relative positions of the target-binding loops are preserved.
  • scaffolds of the invention comprise non-naturally occurring disulfide bonds, as described in PCT Publication No: WO 2009/058379.
  • a bioinformatics approach may be utilized to identify candidate positions suitable for engineering disulfide bonds.
  • a monomeric scaffold of the invention comprise at least one, at least two, at least three, at least four, or at least five non-naturally occurring intramolecular disulfide bonds.
  • the invention provides a method of obtaining a scaffold having increased stability as compared to an FOI comprising two, three, four, or more engineered intramolecular disulfide bonds.
  • the scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein said at least one non-naturally occurring disulfide bond stabilizes a monomer scaffold.
  • the scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond located between two beta strands within the same monomer scaffold.
  • at least one non-naturally occurring intramolecular disulfide bond can form a link between the A strand and B strand, or between the D strand and E strand, or between the F strand and G strand, or between the C strand and F strand.
  • non-naturally occurring disulfide bonds form a first bond between the F strand and the G strand, and a second link between the C strand and F strand within a single monomer scaffold.
  • the scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond located between two loops in the same monomer scaffold.
  • the scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond located between a loop and a beta strand of the same monomer scaffold.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond that is located within the same beta strand in a monomer scaffold.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond that is located within the same loop in a monomer scaffold.
  • scaffolds of the invention comprise at least one non-naturally occurring disulfide bond, wherein the bond is located between two distinct monomer scaffolds in a multimeric scaffold.
  • scaffolds of the invention comprise at least one non-naturally occurring disulfide bond, wherein the bond is located between two distinct multimeric scaffolds, i.e., the disulfide bond is an intermolecular disulfide bond.
  • a disulfide bond can link distinct scaffolds (for example, two isolated monomer scaffolds, an isolated monomer scaffold and a multimeric scaffold, or two multimeric scaffolds), a scaffold and a linker, a scaffold and an Fn domain, or a scaffold and an antibody or fragment thereof.
  • scaffolds of the invention comprise at least one non-naturally occurring intermolecular disulfide bond that links a scaffold and an isolated heterologous moiety, a scaffold and a heterologous moiety fused or conjugated to the same scaffold, or a scaffold and heterologous moiety fused or conjugated to a different scaffold.
  • scaffolds of the invention comprise a disulfide bond that forms a multimeric scaffold of at least 2, at least 3, at least 4 or more scaffolds.
  • scaffolds of the invention may comprise an elongation of the N and/or C terminal regions.
  • the scaffolds of the invention comprise an alteration to increase serum half-life, as described herein.
  • the scaffolds of the invention comprise an addition, deletion or substitution of at least one amino acid residue to stabilize the hydrophobic core of the scaffold.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the beta strands of the scaffold of the invention exhibit at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more identity to the cognate beta strands of any one of SEQ ID NOs: 1-34, 54, 69, or 256, to the beta strands of any of the FnIII domains shown in FIG.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:44, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:50, and the G beta strand comprises SEQ ID NO:53.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:51, and the G beta strand comprises SEQ ID NO:53.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52.
  • scaffolds of the invention consists at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:44, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:50, and the G beta strand consists of SEQ ID NO:53.
  • scaffolds of the invention consists at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:51, and the G beta strand consists of SEQ ID NO:53.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52.
  • scaffolds of the invention consists essentially at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:44, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:50, and the G beta strand consists essentially of SEQ ID NO:53.
  • scaffolds of the invention consists essentially of at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:51, and the G beta strand consists essentially of SEQ ID NO:53.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45, or 131 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, the AB loop comprises SEQ ID NO:35, the CD loop comprises SEQ ID NO:37 and the EF loop comprises SEQ ID NO:39.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, the AB loop consists of SEQ ID NO:35, the CD loop consists of SEQ ID NO:37 and the EF loop consists of SEQ ID NO:39.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, the AB loop consists essentially of SEQ ID NO:35, the CD loop consists essentially of SEQ ID NO:37 and the EF loop consists essentially of SEQ ID NO:39.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, the BC loop comprises SEQ ID NO:36, the DE loop comprises SEQ ID NO:38 and the FG loop comprises SEQ ID NO:40.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, the BC loop consists of SEQ ID NO:36, the DE loop consists of SEQ ID NO:38 and the FG loop consists of SEQ ID NO:40.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, the BC loop consists essentially of SEQ ID NO:36, the DE loop consists essentially of SEQ ID NO:38 and the FG loop consists essentially of SEQ ID NO:40.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, the G beta strand comprises SEQ ID NO:52, the AB loop comprises SEQ ID NO:35, the CD loop comprises SEQ ID NO:37, and the EF loop comprises SEQ ID NO:39 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, the G beta strand consists of SEQ ID NO:52, the AB loop consists of SEQ ID NO:35, the CD loop consists of SEQ ID NO:37, and the EF loop consists of SEQ ID NO:39 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, the G beta strand consists essentially of SEQ ID NO:52, the AB loop consists essentially of SEQ ID NO:35, the CD loop consists essentially of SEQ ID NO:37, and the EF loop consists essentially of SEQ ID NO:39 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, the G beta strand comprises SEQ ID NO:52, the BC loop comprises SEQ ID NO:36, the DE loop comprises SEQ ID NO:38, and the FG loop comprises SEQ ID NO:40 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • the A beta strand domain comprises SEQ ID NO:42
  • the B beta strand comprises SEQ ID NO:43
  • the C beta strand comprises
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, the G beta strand consists of SEQ ID NO:52, the BC loop consists of SEQ ID NO:36, the DE loop consists of SEQ ID NO:38, and the FG loop consists of SEQ ID NO:40 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the F beta strand (SEQ ID NOs: 45 and 49, respectively) may not be substituted.
  • scaffolds of the invention comprise at least one non-naturally occurring intramolecular disulfide bond, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, the G beta strand consists essentially of SEQ ID NO:52, the BC loop consists essentially of SEQ ID NO:36, the DE loop consists essentially of SEQ ID NO:38, and the FG loop consists essentially of SEQ ID NO:40 and, wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine residues in the C beta strand and the E beta strand (SEQ ID NOs: 45 and 49,
  • the present invention provides methods for obtaining a fibronectin type III (FnIII) scaffold variant having increased stability as compared to an FOI, comprising: engineering a variant of the FOI, wherein the FG loop of the variant comprises the deletion of at least 1 amino acid, and wherein the variant exhibits increased stability as compared to the FOI.
  • FnIII fibronectin type III
  • scaffolds of the invention comprise a non-naturally occurring variant FG loop which is at least one amino acid residue shorter than the FG loop of an FOI.
  • the native FG loop of the third FnIII domain of human tenascin C comprises 10 amino acid residues. Accordingly, to identify an FnIII scaffold having improved stability using the third FnIII domain of human tenascin C as the FOI the FG loop would be reduced to 9 or fewer amino acid residues.
  • the FG loops of FnIII domains from multiple FOIs may be determined (see for example FIG. 16 . These loops can then be subjected to mutation to yield an FG loop that is at least one amino acid shorter than the FG loop from the FOI.
  • the instant invention encompasses FnIII scaffolds that comprise a non-naturally occurring variant FG loop which is at least one amino acid shorter than the FG loop of FOI regardless of what specific definition of the FG loop is used.
  • the stability of an FOI is enhanced by deletion of at least one amino acid in the FG loop of the FOI.
  • the stability of an FOI is enhanced by deletion of at least 1, or at least 2, or at least 3, or at least 4, or at least 5, or at least 6, or at least 7, or at least 8, or at least 9, or at least 10 amino acids in the FG loop.
  • the stabilized FOI may comprise at least one non-naturally occurring disulfide bond.
  • the FOI comprised the non-naturally occurring intramolecular disulfide bond prior to being stabilized.
  • the stabilized FOI is further engineered to introduce at least one non-naturally occurring intramolecular disulfide bond.
  • the invention provides a method of obtaining an FnIII scaffold variant having increased stability as compared to an FOI comprising engineering a variant of the FOI, wherein the FG loop of the variant comprises the deletion of at least 1, or at least 2, or at least 3, or at least 4, or at least 5, or at least 6, or at least 7, or at least 8, or at least 9, or at least 10 amino acids in the FG loop, wherein the variant exhibits an increased stability as compared to the FOI.
  • the FnIII scaffold variant also comprises at least one loop, (i.e., AB, BC, CD, DE, EF, and/or FG) that has been randomized for length and/or sequence.
  • the FnIII scaffold variant may comprise at least one non-naturally occurring disulfide bond.
  • the FOI comprised the non-naturally occurring disulfide bond.
  • the FnIII variant is further engineered to introduce at least one non-naturally occurring disulfide bond.
  • the scaffold of the invention is an FnIII scaffold variant (i.e., a stabilized FOI) having increased stability as compared to an FOI, wherein the FnIII scaffold variant comprises an FG loop which is at least one, or at least two, or at least 3, or at least 4, or at least 5, or at least 6, or at least 7, or at least 8, or at least 9, or at least 10 amino acid residues shorter than the FG loop of the FOI, wherein the FnIII scaffold variant further comprises at least one amino acid substitution.
  • FnIII scaffold variant i.e., a stabilized FOI
  • the increase in stability of the stabilized FnIII scaffolds of the invention, isolated or as part of a multimeric scaffold, can be readily measured by techniques well known in the art, such as thermal (T m ) and chaotropic denaturation (such as treatment with urea, or guanidine salts), protease treatment (such as treatment with thermolysin) or another art accepted methodology to determine protein stability.
  • thermal (T m ) and chaotropic denaturation such as treatment with urea, or guanidine salts
  • protease treatment such as treatment with thermolysin
  • a comprehensive review of techniques used to measure protein stability can be found, for example in “Current Protocols in Molecular Biology” and “Current Protocols in Protein Science” by John Wiley and Sons. 2007.
  • the stabilized FnIII scaffolds of the invention exhibit an increase in stability of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% or more compared to the same FnIII scaffold prior to engineering (i.e., the FOI), as measured by thermal tolerance, resistance to chaotropic denaturation, protease treatment or another stability parameter well-known in the art.
  • the stability of a protein may be measured by the level of fluorescence exhibited by the protein under varying conditions. There is a positive correlation between the relative unfoldedness of a protein and a change in the internal fluorescence the protein exhibits under stress. Suitable protein stability assays to measure thermal unfolding characteristics include Differential Scanning calorimetry (DSC) and Circular Dichroism (CD). When the protein demonstrates a sizable shift in parameters measured by DSC or CD, it correlates to an unfolded structure. The temperature at which this shift is made is termed the melting temperature or (T m ).
  • T m melting temperature
  • the stabilized scaffolds of the invention exhibit an increased melting temperature (T m ) of at least 1° C., at least 2° C., at least 3° C., at least 4° C., at least 5° C., at least 10° C., at least 15° C., at least 20° C., at least 25° C., at least 30° C., at least 35° C., at least 45° C., at least 50° C., at least 55° C., at least 60° C., at least 65° C., at least 70° C., at least 71° C., at least 72° C., at least 73° C., at least 74° C., at least 75° C., at least 76° C., at least 77° C., at least 78° C., at least 79° C., at least 80° C., at least 81° C., at least 82° C., at least 83° C., at least 84° C., at least 85
  • the stabilized FnIII scaffolds of the invention exhibit an increased melting temperature (T m ) of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% or more as compared to the FOI under similar conditions.
  • T m melting temperature
  • Another assay for protein stability involves exposing a protein to a chaotropic agent, such as urea or guanidine (for example, guanidine-HCl or guanidine isothiocynate) which acts to destabilize interactions within the protein.
  • a chaotropic agent such as urea or guanidine (for example, guanidine-HCl or guanidine isothiocynate) which acts to destabilize interactions within the protein.
  • urea or guanidine for example, guanidine-HCl or guanidine isothiocynate
  • C m value represents a benchmark value for protein stability. The higher the C m value, the more stable the protein.
  • the stabilized FnIII scaffolds of the invention exhibit an increased C m at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% or more as compared to the FOI as measured in a urea denaturation experiment under similar conditions.
  • the stabilized FnIII scaffolds of the invention exhibit an increased C m at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% or more as compared to the FOI as measured in a guanidinium-HCl denaturation experiment under similar conditions.
  • the stabilized FnIII scaffolds of the invention exhibit increased stability by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% or more as compared to the FOI under similar conditions.
  • multimeric scaffolds comprising at least two FnIII monomer scaffolds of the invention joined in tandem.
  • Such multimeric scaffolds can be assembled in multiple formats.
  • the monomer scaffolds are assembled in linear formats whereas in other embodiments the scaffolds are assembled in branched formats (see, e.g., FIG. 1 ).
  • the invention provides multimeric scaffolds, wherein at least two FnIII scaffolds are connected in tandem via a peptide linker.
  • each FnIII scaffold in the multimeric scaffolds of the invention binds to a different target, thereby demonstrating multiple functions, and/or to the same target, thereby increasing the valency and/or avidity of target binding.
  • the increase in valency and/or avidity of target binding is accomplished when multiple scaffolds bind to the same target. In some embodiments, the increase in valency improves a specific action on the target, such as increasing the dimerization of a target protein.
  • the multimeric scaffold of the invention comprises at least two FnIII monomer scaffolds of the invention connected in tandem, wherein each scaffold binds at least one target, and wherein each FnIII scaffold comprises a plurality of beta strands linked to a plurality of loop regions, wherein at least one loop is a non-naturally occurring variant of the cognate loop in an FOI, and wherein the beta strands of the FnIII scaffolds have at least 50% homology (i.e., sequence similarity) to the cognate beta strands of the FOI.
  • each FnIII scaffold has at least 50% homology (i.e., sequence similarity) to the cognate beta strands of the same FOI.
  • each FnIII scaffold has at least 50% homology (i.e., sequence similarity) to the cognate beta strands of the wild type Tn3 scaffold (SEQ ID NO:1). It is specifically contemplated that each FnIII scaffold may have at least 50% homology (i.e., sequence similarity) to a different FOI.
  • a multimeric scaffold of the invention may comprise a first FnIII scaffold and a second FnIII scaffold, wherein the beta strands of the first FnIII scaffold have at least 50% homology (i.e., sequence similarity) to the cognate beta strands of the 14th FnIII domain of fibronectin (SEQ ID NOs:69), and wherein the beta strands of the second FnIII scaffold have at least 50% homology (i.e., sequence similarity) to the cognate beta strands of the wild type Tn3 scaffold (SEQ ID NO:1).
  • a multimeric scaffold of the invention comprises at least two FnIII monomer scaffolds, wherein the FOI is the protein sequence corresponding to the third FnIII domain of human tenascin C.
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein the FOI is a wild type Tn3 scaffold.
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein the FOI is a protein sequence corresponding to an additional FnIII domain from human tenascin C.
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein the FOI is a protein sequence corresponding to an FnIII domain from another tenascin protein, or alternatively, a tenascin protein from another organism (such as, but not limited to, murine, porcine, bovine, or equine tenascins).
  • FOI is a protein sequence corresponding to an FnIII domain from another tenascin protein, or alternatively, a tenascin protein from another organism (such as, but not limited to, murine, porcine, bovine, or equine tenascins).
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein the beta strands of the FnIII scaffolds have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% homology (i.e., sequence similarity) to the cognate beta strands in any of: the 29 th FnIII domain from human tenascin XB (SEQ ID NO: 11), the 31 st FnIII domain from human tenascin XB (SEQ ID NO: 12), the 32 nd FnIII from human tenascin XB (SEQ ID NO: 13), the 3 rd FnIII domain of human fibronectin (SEQ ID NO: 6), the 6 th FnIII domain of human fibronectin (SEQ ID NO: 7), the 10 th FnIII domain of human fibronectin (e.g., sequence similar
  • the multimeric scaffold of the invention comprises at least two FnIII monomer scaffolds, wherein the FOI is a protein sequence corresponding to an FnIII domain from any organism.
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein a naturally occurring sequence corresponds to a predicted FnIII domain from a thermophilic or hyperthermophilic organism, for example, but not limited to Archaeoglobus fulgidus, Staphylothermus marinus, Sulfolobus acidocaldarius, Sulfolobus solfataricus , and Sulfolobus tokodaii .
  • the multimeric scaffold of the invention comprises at least two FnIII scaffolds, wherein the beta strands of the FnIII scaffolds have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% homology (i.e., sequence similarity) to the cognate beta strands in any of SEQ ID NOs: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33.
  • the multimeric scaffold of the invention comprises at least two FnIII monomer scaffolds, wherein beta strands of the FnIII scaffolds have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% homology (sequence similarity) to the cognate beta strands in any one of the FnIII domains presented in FIG.
  • the multimeric scaffolds of the invention comprise two, three, four, five, six, eight or more FnIII monomer scaffolds of the invention. In some embodiments some of the FnIII monomer scaffolds are connected in tandem. In yet another embodiment, some of the FnIII monomer scaffolds are connected in tandem and some of the FnIII monomer scaffolds are not connected in tandem. In a specific embodiment, the multimeric scaffolds of the invention comprise two, or three, or four, or five, or six, or seven, or eight, or nine, or ten, or more scaffolds of the invention connected in tandem (see, e.g., FIG. 1 and FIG. 2 ).
  • the multimeric scaffolds are generated through covalent binding between FnIII monomer scaffolds, for example, by directly linking the FnIII scaffolds, or by the inclusion of a linker, e.g., a peptide linker.
  • covalently bonded scaffolds are generated by constructing fasion genes that encode the monomeric FnIII scaffolds or, alternatively, by engineering codons for cysteine residues into monomer FnIII scaffolds and allowing disulfide bond formation to occur between the expression products.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected directly to each other without any additional intervening amino acids.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected in tandem via a linker, e.g., a peptide linker.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected in tandem via a peptide linker, wherein the peptide linker comprises 1 to about 1000, or 1 to about 500, or 1 to about 250, or 1 to about 100, or 1 to about 50, or 1 to about 25, amino acids.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected in tandem via a peptide linker, wherein the peptide linker comprises 1 to about 20, or 1 to about 15, or 1 to about 10, or 1 to about 5, amino acids.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected in tandem via a linker, e.g., a peptide linker, wherein the linker is a functional moiety.
  • the functional moiety will be selected based on the desired function and/or characteristics of the multimeric scaffold.
  • a functional moiety useful for purification e.g., a histidine tag
  • Functional moieties useful as linkers include, but are not limited to, polyethylene glycol (PEG), a cytotoxic agent, a radionuclide, imaging agent, biotin, a dimerization domain (e.g.
  • HSA human serum albumin
  • FcRn binding portion thereof a domain or fragment of an antibody (e.g., antibody variable domain, a CH1 domain, a Ckappa domain, a Clambda domain, a CH2, or a CH3 domain), a single chain antibody, a domain antibody, an albumin binding domain, an IgG molecule, an enzyme, a ligand, a receptor, a binding peptide, a non-FnIII scaffold, an epitope tag, a recombinant polypeptide polymer, a cytokine, and the like.
  • Specific peptide linkers and functional moieties which may be used as linkers are disclosed infra.
  • the multimeric scaffolds of the invention comprise at least two FnIII scaffolds that are connected via one or more linkers, wherein the linkers interposed between each FnIII scaffold can be the same linkers or different linkers.
  • a linker can comprise multiple linkers, which can be the same linker or different linkers.
  • some or all the linkers can be functional moieties.
  • the multimeric scaffolds of the invention comprise scaffolds that are specific for the same epitope. In other embodiments, multimeric scaffolds of the invention comprise scaffolds that are specific for different epitopes, which can be different epitopes on the same or different targets.
  • the scaffolds of the multimeric scaffolds bind two or more different epitopes (e.g., non-overlapping epitopes) on the same target molecule. In another specific embodiment, the scaffolds of the multimeric scaffolds bind two or more different epitopes on the different target molecules. In yet another specific embodiment, the scaffolds of the multimeric scaffolds bind two or more different epitopes on the same target and additionally, bind at least one epitope on one or more different target molecules. In still another specific embodiment, the scaffolds of the multimeric scaffolds bind to the same epitope on a multimeric target molecule. In yet another embodiment, the scaffolds of the multimeric scaffolds bind to the same epitope on adjacent target molecules.
  • the scaffolds of the multimeric scaffolds bind to the same epitope on adjacent target molecules.
  • the scaffolds of the multimeric scaffolds bind the same epitope on two or more copies of a target molecule on an adjacent cell surface. In some embodiments, the scaffolds of the multimeric scaffolds can bind to the same epitope or different epitopes in the same target or different targets with the same or different binding affinities and/or avidities.
  • the monomer scaffolds in a multimeric scaffolds of the invention can bind to specific targets according to a specific binding pattern designed to achieve or enhance (e.g., synergistically) a desired effect.
  • the FnIII scaffolds in a linear multimeric scaffold can bind to a single target or to multiple targets according to a certain pattern, e.g., FnIII scaffolds in a 6 module linear multivalent scaffold can bind to two targets A and B according to an AAABBB pattern, an AABBAA pattern, an ABABAB pattern, an AAAABB pattern, etc.; to three targets according to an AABBCC pattern, an ABCABC pattern, and ABCCBA pattern, etc.; to four targets according to an ABCDDA patterns, ABCADA pattern, etc.; etc.
  • a multimeric scaffold of the invention comprises a plurality of engineered (e.g., disulfide engineered, loop engineered, or both disulfide and loop engineered) and non-engineered scaffolds
  • engineered e.g., disulfide engineered, loop engineered, or both disulfide and loop engineered
  • non-engineered scaffolds such monomeric scaffolds can be arranged according to a certain pattern to achieve or enhance a certain biological effect.
  • Such combinations of monomeric scaffolds can be combinatorially assembled and subsequently evaluated using methods known in the art.
  • multimeric scaffolds in branched constructs can also bind to a single target or to multiple targets according to a certain pattern.
  • a linear format scaffold fused to the IgG heavy chains in an antibody-like format scaffold can bind to a first target whereas a multivalent linear construct fused to the IgG light chains in an antibody-like format scaffold can bind to a second target.
  • linear format scaffolds fused to the IgG heavy chains of an antibody-like format scaffold can bind to a target with a certain affinity whereas the linear format scaffolds fused to the IgG light chains of an antibody-like format scaffold can bind to the same target with a different affinity.
  • the scaffolds fused to the chains in the left arm of the “Y” of an antibody can bind to a first target, whereas the scaffolds fused to the chains of the right of the “Y” of an antibody can bind to a second target.
  • the invention further provides multimeric scaffolds comprising at least two FnIII monomer scaffolds, wherein at least one monomer scaffold may be fused to a heterologous moiety.
  • the heterologous moiety is not used to link the scaffolds as a spacer but may provide additional functionality to the multimeric scaffold of the invention.
  • a multimeric scaffold that binds a target on the surface of a cell may be fused to a cytotoxic agent to facilitate target specific cell killing. Additional fusions are disclosed infra.
  • a heterologous moiety can function as a linker.
  • the present invention encompasses the use of scaffolds of the invention conjugated or fused to one or more heterologous moieties, including but not limited to, peptides, polypeptides, proteins, fusion proteins, nucleic acid molecules, small molecules, mimetic agents, synthetic drugs, inorganic molecules, and organic molecules.
  • the present invention encompasses the use of scaffolds recombinantly fused or chemically conjugated to a heterologous protein or polypeptide or fragment thereof. Conjugation includes both covalent and non-covalent conjugation.
  • a scaffold of the invention can be fused or chemically conjugated to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 500, or at least 1000 amino acids) to generate fusion proteins.
  • scaffolds can be used to target heterologous polypeptides to particular cell types, either in vitro or in vivo, by fusing or conjugating the scaffolds to antibodies specific for particular cell surface receptors in the target cells. Scaffolds fused or conjugated to heterologous polypeptides can also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., International Publication No. WO 93/21232; European Patent No.
  • the scaffolds can be integrated with the human immune response by fusing or conjugating a scaffold with an immunoglobulin or domain thereof including, but not limited to, the constant region of an IgG (Fc), e.g., through the N or C-terminus.
  • the Fc fusion molecule activates the complement component of the immune response and increases the therapeutic value of the protein scaffold.
  • a fusion between a scaffold and a complement protein, such as CIq can be used to target cells.
  • a fusion between scaffold and a toxin can be used to specifically destroy cells that carry a particular antigen as described herein.
  • the scaffolds of the invention can be fused to an Fc region from an IgG, wherein the Fc region comprises amino acid residue mutations M252Y/S254T/T256E or H433K/N434F/Y436H, wherein amino acid positions are designated according to the Kabat numbering schema.
  • the half life of a multimeric scaffold of the invention is increased by genetically fusing the multimeric scaffold with an intrinsically unstructured recombinant polypeptide (e.g., an XTENTM polypeptide) or by conjugation with polyethylene glycol (PEG).
  • an intrinsically unstructured recombinant polypeptide e.g., an XTENTM polypeptide
  • PEG polyethylene glycol
  • the scaffolds of the invention can be fused with molecules that increase or extend in vivo or serum half life.
  • the scaffolds of the invention are fused or conjugated with albumin, such as human serum albumin (HSA), a neonatal Fc receptor (FcRn) binding fragment thereof, polyethylene glycol (PEG), polysaccharides, immunoglobulin molecules (IgG) or fragments thereof, complement, hemoglobin, a binding peptide, lipoproteins and other factors to increase its half-life in the bloodstream and/or its tissue penetration.
  • albumin such as human serum albumin (HSA), a neonatal Fc receptor (FcRn) binding fragment thereof, polyethylene glycol (PEG), polysaccharides, immunoglobulin molecules (IgG) or fragments thereof, complement, hemoglobin, a binding peptide, lipoproteins and other factors to increase its half-life in the bloodstream and/or its tissue penetration.
  • HSA human serum albumin
  • FcRn neonatal Fc
  • the scaffolds of the invention can be fused to marker sequences, such as a peptide to facilitate purification.
  • the marker amino acid sequence is a poly-histidine peptide (His-tag), e.g., a octa-histidine-tag (His-8-tag) or hexa-histidine-tag (His-6-tag) such as the tag provided in a pQE expression vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among other vectors, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci.
  • poly-histidine provides for convenient purification of the fusion protein.
  • Other peptide tags useful for purification include, but are not limited to, a hemagglutinin (“HA”) tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (see, e.g., Wilson et al., Cell 37:767, 1984), a FLAG tag, a Strep-tag, a myc-tag, a V5 tag, a GFP-tag, an AU1-tag, an AU5-tag, an ECS-tag, a GST-tag, or an OLLAS tag.
  • HA hemagglutinin
  • Additional fusion proteins comprising scaffolds of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as “DNA shuffling”).
  • DNA shuffling may be employed to alter the activities of scaffolds of the invention (e.g., scaffolds with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol. 8:724-33, 1997; Harayama, Trends Biotechnol.
  • Scaffolds, or the encoded scaffolds thereof may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination.
  • One or more portions of a polynucleotide encoding a scaffold, which bind to a specific target may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
  • the multimeric scaffold of the invention comprise at least two FnIII, wherein at least one scaffold is fused to a domain or fragment of an antibody (e.g., an IgG), including but not limited to an intact antibody, an antibody variable domain, a CH1 domain, a Ckappa domain, a Clambda domain, an Fc domain, a CH2, or a CH3 domain.
  • an antibody e.g., an IgG
  • scaffolds of the invention can be fused to a domain or fragment of an antibody.
  • the domain or fragment of an antibody further enhances the avidity and/or affinity of the multimeric scaffold by providing, similarly to the Fc domain described below, a dimerization or multimerization domain which facilitates the formation of multimeric scaffolds of the invention.
  • only one multimeric tandem scaffold comprising two FnIII domains is conjugated or fused to a domain or fragment of an antibody.
  • a single multimeric tandem scaffold can be fused to the N-terminus of a polypeptide of a domain or fragment of an antibody (e.g., a heavy chain or a light chain of an antibody).
  • multivalent scaffolds are created by fusing or conjugating one or more FnIII scaffolds to the N-terminus and/or the C-terminus a polypeptide of a domain or fragment of an antibody (e.g., a heavy chain and/or a light chain of an antibody.
  • some or all the scaffolds fused to a domain or fragment of an antibody are identical. In some other embodiments, some or all the scaffolds fused to a domain or fragment of an antibody are different.
  • the scaffolds of the invention used to generate an antibody-like multivalent scaffold can contain the same number of FnIII modules. In other embodiments, the scaffolds of the invention used to generate an antibody-like multivalent scaffold can contain a different number of FnIII modules.
  • a tetravalent FnIII scaffold can be formed, e.g., by fusing a linear format tetravalent FnIII scaffold to a single position, or by fusing one FnIII monomer scaffold in one position and a trimeric linear format FnIII scaffold to another position, or by fusing two dimeric FnIII linear format scaffolds to two different positions, or by fusing 4 FnIII monomer scaffolds, each one to a single position.
  • multimeric FnIII scaffolds of the invention comprise four multimeric linear scaffolds fused to a domain or fragment of an antibody wherein each multimeric linear scaffold comprises two FnIII monomer scaffolds that are connected in tandem via a linker ( FIG. 1 ).
  • multimeric FnIII scaffolds of the invention comprise at least one, at least two, at least three, at least four, at least five, at least six, at least seven or at least eight monomeric or multimeric FnIII scaffolds of the invention fused to a domain or fragment of an antibody.
  • a tetravalent FnIII scaffold can be generated by fusing one scaffold to the N-terminus of each of the light chains and heavy chains of a domain or fragment of an antibody (see, e.g., A9 construct in FIG. 2 ).
  • An antibody-like format multivalent FnIII scaffold can be generated by fusing any combination of scaffolds of the invention to a domain or fragment of an antibody or modified antibody.
  • modified antibodies include domain deleted antibodies, minibodies (see, e.g., U.S. Pat. No. 5,837,821), tetravalent minibodies, tetravalent antibodies (see, e.g., Coloma & Morrison, Nature Biotechnol. 15:159-163, 1997; PCT Publication No. WO 95/09917), thermally stabilized antibodies, humanized antibodies, etc.
  • Each of the linear scaffolds of the invention used to generate an antibody-like multivalent scaffold according to FIG. 1 can contain the same linkers and linker distributions, or different linkers and different linker distributions.
  • a multimeric scaffold of the invention comprises a plurality of monomeric or multimeric scaffolds connected to an Fc domain.
  • the fusion of a multimeric scaffold of the invention to an antibody fragment comprising an Fc domain further enhances the avidity and/or activity of the multimeric FnIII scaffold by providing a dimerization domain which facilitates the formation of dimers of the multimeric FnIII scaffolds.
  • multimeric scaffolds of the invention comprise two multimeric FnIII scaffolds fused to an Fc domain wherein each multimeric FnIII scaffold comprises two or more FnIII scaffolds that are connected via one or more linkers ( FIG. 1 ).
  • the multimeric FnIII scaffolds fused to the Fc domain are linear format scaffolds.
  • two linear format FnIII scaffolds comprising two FnIII domains in tandem are fused to an Fc domain to yield a multimeric scaffold with a valency of 4 (see, e.g., A7 construct in FIG. 2 ).
  • two linear format scaffolds, each one of them comprising four FnIII monomer scaffolds are fused to an Fc domain to yield an FnIII multimeric scaffold with a valency of 8 (see, e.g., A8 construct in FIG. 2 ).
  • the FnIII scaffolds fused to the Fc domain comprise the same number of FnIII modules. In some embodiments, the FnIII scaffolds fused to the Fc domain comprise a different number of FnIII modules. In some embodiments, the FnIII scaffolds fused to the Fc domain comprise the same linkers. In other embodiments, the FnIII scaffolds fused to the Fc domain comprise different linkers.
  • different multimeric FnIII scaffolds of the invention can be dimerized by the use of Fc domain mutations which favor the formation of heterodimers.
  • Fc domain mutations which favor the formation of heterodimers.
  • WO96/27011 describes a method, in which one or more small amino acid side chains from the interface of a first Fc domain are replaced with larger side chains (e.g., tyrosine or tryptophan).
  • Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of a second Fc domain by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
  • variants of the Fc region enhance or diminish effector function of the antibody (see, e.g., U.S. Pat. Nos. 5,624,821; 5,885,573; 6,538,124; 7,317,091; 5,648,260; 6,538,124; International Publications Nos. WO 03/074679; WO 04/029207; WO 04/099249; WO 99/58572; US Publication No. 2006/0134105; 2004/0132101; 2006/0008883) and can alter the pharmacokinetic properties (e.g. half-life) of the antibody (see, U.S. Pat. Nos.
  • the multispecific FnIII scaffolds of the invention comprise Fc domain(s) that comprise an altered Fc region in which one or more alterations have been made in the Fc region in order to change functional and/or pharmacokinetic properties of the multimeric FnIII scaffolds.
  • glycosylation of the Fc region can be modified to increase or decrease effector function and/or anti-inflammatory activity (see, e.g., Umana et al., Nat. Biotechnol. 17:176-180, 1999; Davies et al. Biotechnol. Bioeng. 74:288-294, 2001; Shields et al., J. Biol. Chem. 277:26733-26740, 2002; Shinkawa et al., J. Biol. Chem. 278:3466-3473, 2003; U.S. Pat. Nos.
  • the Fc regions of the multimeric FnIII scaffolds of the invention comprise altered glycosylation of amino acid residues in order to change cytotoxic and/or anti-inflammatory properties of the multimeric scaffolds.
  • FIG. 1 and FIG. 2 are just illustrative examples.
  • the construct topologies or formats shown in FIG. 1 and FIG. 2 illustrate that in some embodiments the scaffolds of the invention are fused to the N-termini of the constituent polypeptides of Fc domains and antibodies.
  • the scaffolds of the invention can be fused to the C-terminus of the Fc domains, antibody light chains, and antibody heavy chains in any suitable spatial arrangement.
  • a tetravalent scaffold can be created by fusing an FnIII monomer scaffold to the N-terminus of each heavy chain and an FnIII monomer scaffold to the C-terminus domain of each light chain of an antibody, by fusing an FnIII monomer scaffold to the N-terminus of each light chain and an FnIII monomer scaffold to the C-terminus of each heavy chain of an antibody, or by fusing an FnIII monomer scaffold to the N-terminus of each heavy chain and an FnIII monomer scaffold to the N-terminus of each light chain of an antibody.
  • Monomeric and/or multimeric FnIII scaffolds can be fused to full length heavy and/or light chains comprising both variable regions and constant regions.
  • monomeric and/or multimeric FnIII scaffolds can be fused to truncated heavy and/or light chains comprising only constant regions (e.g., as in the A9 construct shown in FIG. 2 ).
  • Multimeric scaffolds can be created by using the formats shown in FIG. 1 as building blocks.
  • the antibody-like and Fc fusion formats are combinations comprising more simple linear format modules. Accordingly, in some embodiments more complex multimeric scaffolds formats can be created by combining the building blocks shown in FIG. 1 .
  • FIGS. 1 and 2 also illustrate that in some embodiments the multimeric scaffolds of the invention can be linear or branched and exhibit different levels of branching.
  • the Fc format provides an example of first order branched format
  • the antibody-like format provides an example of a second-order branched format.
  • Higher order branched constructs can be obtained by replacing the linear format building blocks in the antibody-like format or the Fc fusion format with Fc fusion format building blocks or antibody-like building blocks, and connect them to either the C-termini or N-termini of the constituent polypeptides of the Fc or antibody.
  • FIGS. 1 and 2 , and TABLE 1 illustrate the fact that in some embodiments the linkers in a multimeric scaffold can be structurally and functionally diverse and can provide a plurality of attachment points.
  • all the FnIII modules in the A4 and A5 constructs are connected by (Gly-4-Ser) 3 Ala linkers, except for the 4th and 5th FnIII modules, which are connected by a (Gly 4 -Ser)-2-Gly-Thr-Gly-Ser-Ala-Met-Ala-Ser-(Gly 4 -Ser) 1 -Ala linker.
  • the first and second FnIII domains and the third and fourth FnIII domain are connected by (Gly 4 -Ser) 3 Ala linkers, whereas the second and third FnIII domains are connected by an Fc domain as a functional moiety linker.
  • the Fc fusion shown in FIG. 1 exemplifies that in some embodiments monomeric or multimeric FnIII scaffolds can be fused to the N-termini of the polypeptides of the functional moiety linker. In some embodiments, monomeric or multimeric FnIII scaffolds of the invention can readily be fused to the C-terminus of the Fc domain in an Fc fusion format construct.
  • the antibody or modified antibody in an antibody-like format construct is also a functional moiety linker.
  • the antibody shown in the antibody-like example of FIG. 1 provides 6 possible attachment points.
  • the antibody-like format shown in FIG. 1 exemplifies that in some embodiments only the N-terminal attachment points in the functional moiety linker are occupied by FnIII domains of the invention.
  • scaffolds of the invention can readily be fused to the C-termini of the heavy chains and the light chains of an antibody or modified antibody domain.
  • Other fusion stoichiometries can be applied, i.e., one, two, three, four, five, six, seven, eight, or more scaffolds of the invention can be fused to an antibody or modified antibody.
  • FIGS. 1 and 2 also illustrate that in some embodiments multimeric FnIII scaffolds can be generated by combining other FnIII multimeric scaffolds.
  • the Fc format A6, A7, and A8 scaffolds of FIG. 2 are homodimeric FnIII scaffolds wherein the multimeric scaffold is formed by two polypeptide chains, each one comprising a linear format FnIII scaffold fused to an Fc domain, which in turn are connected via intermolecular disulfide bonds.
  • 1 and 2 exemplifies a heterotetrameric FnIII scaffold wherein 4 polypeptides corresponding to two different types of scaffolds (2 FnIII scaffolds formed by fusing an FnIII monomer scaffold to an IgG light chain constant region, and 2 FnIII scaffolds formed by fusing an FnIII monomer scaffold to an CH1-hinge-region-Fc region of an IgG) are connected via intermolecular disulfide bonds.
  • the FnIII scaffolds described herein may be used in any technique for evolving new or improved target binding proteins.
  • the target is immobilized on a solid support, such as a column resin or microtiter plate well, and the target contacted with a library of candidate scaffold-based binding proteins.
  • a library may consist of clones constructed from an FnIII domain, including without limitation the Tn3 module, through randomization of the sequence and/or the length of the CDR-like loops.
  • the library may be a phage, phagemid, virus, bacterial, yeast, or mammalian cell display or a ribosome display library.
  • this library may be an RNA-protein fusion library generated, for example, by the techniques described in Szostak et al., U.S. Pat. Nos. 6,258,558; 6,261,804; 5,643,768; and 5,658,754.
  • it may be a DNA-protein library (for example, as described in PCT Publ. No. WO 2000/032823).
  • bacteriophage (phage) display is one well known technique which allows one to screen large oligopeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a target.
  • Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J. K. and Smith, G. P. (1990) Science 249: 386).
  • the utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule with high affinity. Display of peptide (Cwirla, S. E. et al.
  • Sorting phage libraries of random mutants requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments (see for example, U.S. Pat. Nos. 5,223,409, 5,403,484, 5,571,689, and 5,663,143).
  • phage display libraries have been used to analyze and control bimolecular interactions (WO 98/20169; WO 98/20159) and properties of constrained helical peptides (WO 98/20036).
  • WO 97/35196 describes a method of isolating an affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands.
  • WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage.
  • Staphylococcus aureus protein A as an affinity tag has also been reported (Li et al. (1998) Mol. Biotech., 9:187).
  • WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library.
  • a method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Pat. Nos. 5,498,538, 5,432,018, and WO 98/15833.
  • a bioinformatics approach may be employed to determine the loop length and diversity preferences of naturally occurring FnIII domains.
  • the preferences for loop length and sequence diversity may be employed to develop a “restricted randomization” approach.
  • the relative loop length and sequence preferences are incorporated into the development of a library strategy. Integrating the loop length and sequence diversity analysis into library development results in a restricted randomization (i.e. certain positions within the randomized loop are limited in which amino acid could reside in that position).
  • the invention also provides recombinant libraries (hereinafter referred to as “libraries of the invention”) comprising diverse populations of non-naturally occurring FnIII scaffolds of the invention.
  • the libraries of the invention comprise non-naturally occurring FnIII scaffolds comprising, a plurality of beta strand domains linked to a plurality of loop regions, wherein one or more of said loops vary by deletion, substitution or addition by at least one amino acid from the cognate loops in an FOI, and wherein the beta strands of the FnIII scaffold have at least 50% homology (i.e., sequence similarity) to the cognate beta strand sequences of the FOI.
  • FOI sequences useful for the generation of recombinant libraries are provided in TABLE 1 and in FIG. 16 .
  • libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is the protein sequence corresponding to the third FnIII domain of human tenascin C. In some embodiments, libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is the protein sequence corresponding to the tenth FnIII domain of human fibronectin. In some embodiments, libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is the protein sequence corresponding to the fourteenth FnIII domain of human fibronectin.
  • the libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is a wild type Tn3 scaffold.
  • libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is a protein sequence corresponding to an additional FnIII domain from human tenascin C.
  • libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is a protein sequence corresponding to a FnIII domain from another tenascin protein, or alternatively, a tenascin protein from another organism (such as, but not limited to, murine, porcine, bovine, or equine tenascins).
  • libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the FOI is a protein sequence corresponding to a FnIII domain from any organism.
  • libraries of the invention comprise non-naturally occurring FnIII scaffolds, wherein the naturally occurring sequence corresponds to a predicted FnIII domain from a thermophilic or hyperthermophilic organism.
  • the hyperthermophilic organism can be a hyperthermophilic archaea such as Archaeoglobus fulgidus, Staphylothermus marinus, Sulfolobus acidocaldarius, Sulfolobus solfataricus , and Sulfolobus tokodaii.
  • the libraries of the invention comprise FnIII scaffolds, wherein the beta strands of the FnIII scaffold have at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% homology (sequence similarity) to the cognate beta strain domain in any of SEQ ID NOs: 1-34, 54, 69 or those presented in FIG.
  • the loops connecting the various beta strands of the scaffolds may be randomized for length and/or sequence diversity.
  • the libraries of the invention comprise FnIII scaffolds having at least one loop that is randomized for length and/or sequence diversity.
  • at least one, at least two, at least three, at least four, at least five or at least six loops of the FnIII scaffolds are randomized for length and/or sequence diversity.
  • at least one loop is kept constant while at least one additional loop is randomized for length and/or sequence diversity.
  • At least one, at least two, or all three of loops AB, CD, and EF are kept constant while at least one, at least two, or all three of loops BC, DE, and FG are randomized for length or sequence diversity. In another embodiment, at least one, at least two, or at least all three of loops AB, CD, and EF are randomized while at least one, at least two, or all three of loops BC, DE, and FG are randomized for length and/or sequence diversity.
  • FG loops which are at least one amino acid shorter than that found in the FG loop of an FOI are shown to have enhanced stability.
  • the present invention provides libraries of the invention comprising FnIII scaffolds, wherein at least one loop is randomized for length and/or sequence diversity, except that length of the FG loops are held to be at least one amino acid shorter than the cognate FG loop of an FOI. For example, as defined in FIG.
  • the native FG loop of the third FnIII domain of human tenascin C comprises 10 amino acid residues, accordingly, where the third FnIII domain of human tenascin C is the FOI the FG loop would be held to 9 amino acid residues or less although the sequence of the FG loop may be randomized.
  • the libraries of the invention comprise FnIII scaffolds, wherein each scaffold comprises seven beta strands designated A, B, C, D, E, F, and G linked to six loop regions, wherein a loop region connects each beta strand and is designated AB, BC, CD, DE, EF, and FG; and wherein at least one loop is a non-naturally occurring variant of a FOI loop, and wherein the FG loop is at least one amino acid shorter than the cognate FG loop in the FOI.
  • libraries of the invention comprise FnIII scaffold, wherein the amino acid sequence of one or more loops (i.e., AB, BC, CD, DE, EF, FG) has been randomized for length and/or sequence diversity, except that the length of the FG loops are held to be at least one, or at least two, or at least 3, or at least 4, or at least 5, or at least 6, or at least 7, or at least 8, or at least 9, or at least 10 amino acid residue shorter than the cognate FG loop of an FOI.
  • the amino acid sequence of one or more loops i.e., AB, BC, CD, DE, EF, FG
  • the length of the FG loops are held to be at least one, or at least two, or at least 3, or at least 4, or at least 5, or at least 6, or at least 7, or at least 8, or at least 9, or at least 10 amino acid residue shorter than the cognate FG loop of an FOI.
  • the libraries of the invention comprise FnIII scaffolds, wherein each beta strand has at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more homology (sequence similarity) to the cognate beta strands of any one of SEQ ID NOs: 1-34, 54, or 69, to the beta strands of any of the FnIII domains shown in FIG.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand comprises SEQ ID NO: 42, the B beta strand comprises SEQ ID NO: 43, the C beta strand comprises SEQ ID NO: 45, or 131, the D beta strand comprises SEQ ID NO: 46, the E beta strand comprises SEQ ID NO: 47, the F beta strand comprises SEQ ID NO: 49, and the G beta strand comprises SEQ ID NO: 52.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:44, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:50, and the G beta strand comprises SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:51, and the G beta strand comprises SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists of SEQ ID NO: 42, the B beta strand consists of SEQ ID NO: 43, the C beta strand consists of SEQ ID NO: 45, or 131, the D beta strand consists of SEQ ID NO: 46, the E beta strand consists of SEQ ID NO: 47, the F beta strand consists of SEQ ID NO: 49, and the G beta strand consists of SEQ ID NO: 52.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:44, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:50, and the G beta strand consists of SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:51, and the G beta strand consists of SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists essentially of SEQ ID NO: 42, the B beta strand consists essentially of SEQ ID NO: 43, the C beta strand consists essentially of SEQ ID NO: 45, or 131, the D beta strand consists essentially of SEQ ID NO: 46, the E beta strand consists essentially of SEQ ID NO: 47, the F beta strand consists essentially of SEQ ID NO: 49, and the G beta strand consists essentially of SEQ ID NO: 52.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:44, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:50, and the G beta strand consists essentially of SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:51, and the G beta strand consists essentially of SEQ ID NO:53.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, the AB loop comprises SEQ ID NO:35, the CD loop comprises SEQ ID NO:37 and the EF loop comprises SEQ ID NO:39.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, the AB loop consists of SEQ ID NO:35, the CD loop consists of SEQ ID NO:37 and the EF loop consists of SEQ ID NO:39.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, the AB loop consists essentially of SEQ ID NO:35, the CD loop consists essentially of SEQ ID NO:37 and the EF loop consists essentially of SEQ ID NO:39.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, and the G beta strand comprises SEQ ID NO:52, the BC loop comprises SEQ ID NO:36, the DE loop comprises SEQ ID NO:38 and the FG loop comprises SEQ ID NO:40.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, and the G beta strand consists of SEQ ID NO:52, the BC loop consists of SEQ ID NO:36, the DE loop consists of SEQ ID NO:38 and the FG loop consists of SEQ ID NO:40.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, and the G beta strand consists essentially of SEQ ID NO:52, the BC loop consists essentially of SEQ ID NO:36, the DE loop consists essentially of SEQ ID NO:38 and the FG loop consists essentially of SEQ ID NO:40.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand comprises SEQ ID NO: 42, the B beta strand comprises SEQ ID NO: 43, the C beta strand comprises SEQ ID NO: 45, or 131, the D beta strand comprises SEQ ID NO: 46, the E beta strand comprises SEQ ID NO: 47, the F beta strand comprises SEQ ID NO: 49, and beta strand G comprises SEQ ID NO: 52, and wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIll scaffolds, wherein the A beta strand consists of SEQ ID NO: 42, the B beta strand consists of SEQ ID NO: 43, the C beta strand consists of SEQ ID NO: 45, or 131, the D beta strand consists of SEQ ID NO: 46, the E beta strand consists of SEQ ID NO: 47, the F beta strand consists of SEQ ID NO: 49, and beta strand G consists of SEQ ID NO: 52, and wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand consists essentially of SEQ ID NO: 42, the B beta strand consists essentially of SEQ ID NO: 43, the C beta strand consists essentially of SEQ ID NO: 45, or 131, the D beta strand consists essentially of SEQ ID NO: 46, the E beta strand consists essentially of SEQ ID NO: 47, the F beta strand consists essentially of SEQ ID NO: 49, and beta strand G consists essentially of SEQ ID NO: 52, and wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, the G beta strand comprises SEQ ID NO:52, the AB loop comprises SEQ ID NO:35, the CD loop comprises SEQ ID NO:37, and the EF loop comprises SEQ ID NO:39 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, the G beta strand consists of SEQ ID NO:52, the AB loop consists of SEQ ID NO:35, the CD loop consists of SEQ ID NO:37, and the EF loop consists of SEQ ID NO:39 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, the G beta strand consists essentially of SEQ ID NO:52, the AB loop consists essentially of SEQ ID NO:35, the CD loop consists essentially of SEQ ID NO:37, and the EF loop consists essentially of SEQ ID NO:39 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain comprises SEQ ID NO:42, the B beta strand comprises SEQ ID NO:43, the C beta strand comprises SEQ ID NO:45, or 131, the D beta strand comprises SEQ ID NO:46, the E beta strand comprises SEQ ID NO:47, the F beta strand comprises SEQ ID NO:49, the G beta strand comprises SEQ ID NO:52, the BC loop comprises SEQ ID NO:36, the DE loop comprises SEQ ID NO:38, and the FG loop comprises SEQ ID NO:40 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists of SEQ ID NO:42, the B beta strand consists of SEQ ID NO:43, the C beta strand consists of SEQ ID NO:45, or 131, the D beta strand consists of SEQ ID NO:46, the E beta strand consists of SEQ ID NO:47, the F beta strand consists of SEQ ID NO:49, the G beta strand consists of SEQ ID NO:52, the BC loop consists of SEQ ID NO:36, the DE loop consists of SEQ ID NO:38, and the FG loop consists of SEQ ID NO:40 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the libraries of the invention comprise FnIII scaffolds, wherein the A beta strand domain consists essentially of SEQ ID NO:42, the B beta strand consists essentially of SEQ ID NO:43, the C beta strand consists essentially of SEQ ID NO:45, or 131, the D beta strand consists essentially of SEQ ID NO:46, the E beta strand consists essentially of SEQ ID NO:47, the F beta strand consists essentially of SEQ ID NO:49, the G beta strand consists essentially of SEQ ID NO:52, the BC loop consists essentially of SEQ ID NO:36, the DE loop consists essentially of SEQ ID NO:38, and the FG loop consists essentially of SEQ ID NO:40 and, wherein one or more of the beta strands comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substitute
  • libraries of the invention comprise FnIII scaffolds that may comprise one or more loops having a degenerate consensus sequence and/or one or more invariant amino acid residues.
  • the libraries of the invention comprise FnIII scaffolds having AB loops which are randomized with the following consensus sequence: K-X-X-X-X-X-a, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, and wherein (a) represents serine, threonine, alanine, or glycine.
  • the libraries of the invention comprise FnIII scaffolds having AB loops which are randomized with the following consensus sequence: K-X-X-X-X-X-X-a, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, and wherein (a) represents serine, threonine, alanine, or glycine.
  • the libraries of the invention comprise FnIII scaffolds having BC loops which are randomized with the following consensus sequence: S-X-a-X-b-X-X-X-G, wherein X represents any amino acid, wherein (a) represents proline or alanine and wherein (b) represents alanine or glycine.
  • the libraries of the invention comprise FnIII scaffolds having BC loops which are randomized with the following consensus sequence: S-P-c-X-X-X-X-X-X-T-G, wherein X represents any amino acid and wherein (c) represents proline, serine or glycine.
  • the libraries of the invention comprise FnIII scaffolds having BC loops which are randomized with the following consensus sequence: A-d-P-X-X-X-e-f-X-I-X-G, wherein X represents any amino acid, wherein (d) represents proline, glutamate or lysine, wherein (e) represents asparagine or glycine, and wherein (f) represents serine or glycine.
  • the libraries of the invention comprise FnIII scaffolds having DE loops which are randomized with the following consensus sequence: X-X-X-X-X-X, wherein X represents any amino acid.
  • the libraries of the invention comprise FnIII scaffolds having EF loops which are randomized with the following consensus sequence: X-b-L-X-P-X-c-X, wherein X represents asparagine, aspartic acid, histidine, tyrosine, isoleucine, valine, leucine, phenylalanine, threonine, alanine, proline, or serine, wherein (b) represents asparagine, lysine, arginine, aspartic acid, glutamic acid, or glycine, and wherein (c) represents isoleucine, threonine, serine, valine, alanine, or glycine.
  • the libraries of the invention comprise FnIII scaffolds having FG loops which are randomized with the following consensus sequence: X-a-X-X-G-X-X-X-b, wherein X represents any amino acid, wherein (a) represents asparagine, threonine or lysine, and wherein (b) represents serine or alanine.
  • the libraries of the invention comprise FnIII scaffolds having FG loops which are randomized with the following consensus sequence: X-X-X-X-X-X-X-X (X 9 ), wherein X represents any amino acid.
  • the libraries of the invention comprise FnIII scaffolds, wherein the FnIII scaffolds comprise a Tn3 module.
  • the libraries of the invention comprise FnIII scaffolds, wherein the FnIII scaffolds comprise a Tn3 module and wherein one or more of the beta strands of the Tn3 module comprise at least one amino acid substitution except that the cysteine in the C beta strand and the cysteine in the F beta strand (SEQ ID NOs: 45, or 131, and 49, respectively) may not be substituted.
  • the invention further provides methods for identifying a recombinant FnIII scaffold that binds a target and has increased stability as compared to an FOI by screening the libraries of the invention, in particular the libraries comprising FnIII scaffolds wherein the FG loops are held to be at least one amino acid shorter than the cognate FG loop of the FOI.
  • the method for identifying a recombinant FnIII scaffold having increased protein stability as compared to an FOI, and which specifically binds a target comprising:
  • step (a) the scaffold library of the invention is incubated with immobilized target.
  • step (b) the scaffold:target ligand complex is washed to remove non-specific binders, and the tightest binders are eluted under very stringent conditions and subjected to PCR to recover the sequence information. Methods useful for the determination of stability in step (c) have been described supra. It is specifically contemplated that the binders and/or sequence information obtained in step (b) can be used to create a new library using the methods disclosed herein or known to one of skill in the art, which may be used to repeat the selection process, with or without further mutagenesis of the sequence. In some embodiments, a number of rounds of selection may be performed until binders of sufficient affinity for the antigen are obtained.
  • a further embodiment of the invention is a collection of isolated nucleic acid molecules encoding a library comprising the scaffolds of the invention and as described above.
  • Scaffolds of the invention may comprise codons encoded by the NHT codon scheme described in PCT Publication No: WO 2009/058379 or, alternatively, may comprise codons encoded by the NNK mixed codon scheme.
  • the scaffolds of the invention may be subjected to affinity maturation.
  • a specific binding protein is subject to a scheme that selects for increased affinity for a specific target (see Wu et al., Proc Natl Acad Sci USA. 95(11):6037-42).
  • the resultant scaffolds of the invention may exhibit binding characteristics at least as high as compared to the scaffolds prior to affinity maturation.
  • the invention also provides methods of identifying the amino acid sequence of a protein scaffold capable of binding to target so as to form a scaffold:target complex.
  • the method comprises: a) contacting a library of the invention with an immobilized or separable target; b) separating the scaffold:target complexes from the free scaffolds; c) causing the replication of the separated scaffolds of (b) so as to result in a new polypeptide display library distinguished from that in (a) by having a lowered diversity and by being enriched in displayed scaffolds capable of binding the target; d) optionally repeating steps (a), and (b) with the new library of (c); and e) determining the nucleic acid sequence of the region encoding the displayed scaffold of a species from (d) and hence deducing the peptide sequence capable of binding to the target.
  • the scaffolds of the invention may be further randomized after identification from a library screen.
  • methods of the invention comprise further randomizing at least one, at least two, at least three, at least four, at least five or at least six loops of a scaffold identified from a library using a method described herein.
  • the further randomized scaffold is subjected to a subsequent method of identifying a scaffold capable of binding a target.
  • This method comprises (a) contacting said further randomized scaffold with an immobilized or separable target, (b) separating the further randomized scaffold:target complexes from the free scaffolds, (c) causing the replication of the separated scaffolds of (b), optionally repeating steps (a)-(c), and (d) determining the nucleic acid sequence of the region encoding said further randomized scaffold and hence, deducing the peptide sequence capable of binding to the target.
  • the further randomized scaffolds comprise at least one, at least two, at least three, at least four, at least five, or at least six randomized loops which were previously randomized in the first library. In an alternate further embodiment, the further randomized scaffolds comprise at least one, at least two, at least three, at least four, at least five, or at least six randomized loops which were not previously randomized in the first library.
  • the invention also provides a method for obtaining at least two FnIII scaffolds that bind to at least one or more targets.
  • This method allows for the screening of agents that act cooperatively to elicit a particular response. It may be advantageous to use such a screen when an agonistic activity requiring the cooperation of more than one scaffold is required (for example, but not limited to, agonism of a receptor belonging to the TNF receptor family).
  • This method allows for the screening of cooperative agents without the reformatting of the library to form multimeric complexes.
  • the method of the invention comprises contacting a target ligand with a library of the invention under conditions that allow a scaffold:target ligand complex to form, engaging said scaffolds with a crosslinking agent (defined as an agent that brings together, in close proximity, at least two identical or distinct scaffolds) wherein the crosslinking of the scaffolds elicits a detectable response and obtaining from the complex, said scaffolds that bind the target.
  • a crosslinking agent defined as an agent that brings together, in close proximity, at least two identical or distinct scaffolds
  • the crosslinking agent is a scaffold specific antibody, or fragment thereof, an epitope tag specific antibody of a fragment thereof, a dimerization domain, such as Fc region, a coiled coil motif (for example, but not limited to, a leucine zipper), a chemical crosslinker, or another dimerization domain known in the art.
  • a dimerization domain such as Fc region, a coiled coil motif (for example, but not limited to, a leucine zipper), a chemical crosslinker, or another dimerization domain known in the art.
  • the invention also provides methods of detecting a compound utilizing the scaffolds of the invention. Based on the binding specificities of the scaffolds obtained by library screening, it is possible to use such scaffolds in assays to detect the specific target in a sample, such as for diagnostic methods.
  • the method of detecting a compound comprises contacting said compound in a sample with a scaffold of the invention, under conditions that allow a compound: scaffold complex to form and detecting said scaffold, thereby detecting said compound in a sample.
  • the scaffold is labeled (i.e., radiolabel, fluorescent, enzyme-linked or colorimetric label) to facilitate the detection of the compound.
  • the invention also provides methods of capturing a compound utilizing the scaffolds of the invention. Based on the binding specificities of the scaffolds obtained by library screening, it is possible to use such scaffolds in assays to capture the specific target in a sample, such as for purification methods.
  • the method of capturing a compound in a sample comprises contacting said compound in a sample with a scaffold of the invention under conditions that allow the formation of a compound:scaffold complex and removing said complex from the sample, thereby capturing said compound in said sample.
  • the scaffold is immobilized to facilitate the removing of the compound:scaffold complex.
  • scaffolds isolated from libraries of the invention comprise at least one, at least two, at least four, at least five, at least six, or more randomized loops.
  • isolated scaffold loop sequences may be swapped from a donor scaffold to any loop in a receiver scaffold (for example, an FG loop sequence from a donor scaffold may be transferred to any loop in a receiver scaffold).
  • an isolated loop sequences may be transferred to the cognate loop in the receiving scaffold (for example, an FG loop sequence from a donor scaffold may be transferred to a receiver scaffold in the FG loop position).
  • isolated loop sequences may be “mix and matched” randomly with various receiver scaffolds.
  • isolated scaffolds sequences may be identified by the loop sequence.
  • a library is used to pan against a particular target and an collection of specific binders are isolated.
  • the randomized loop sequences may be characterized as specific sequences independently of the scaffold background (i.e., the scaffold that binds target X wherein said scaffold comprises an FG loop sequence of SEQ ID NO:X).
  • the loop sequences may be characterized as binding target X in the absence of the scaffold sequence.
  • scaffolds isolated from a library that bind a particular target may be expressed as the variable loop sequences that bind that target independent of the scaffold backbone. This process would be analogous to the concept of CDRs in variable regions of antibodies.
  • Linking of tandem constructs may be generated by ligation of oligonucleotides at restriction sites using restriction enzymes known in the art, including but not limited to type II and type IIS restriction enzymes.
  • Type II restriction enzymes cut within their recognition sequence while type IIS restriction enzymes cut outside their recognition sequence to one side.
  • type IIS enzymes are oriented so that cutting with them cleaves off their recognition site and leaves ends that can be joined together without generating recognition sites at the junction of two subunits. After ligation, both type II and type IIS sites remain at the ends. Additional subunits may be added by cutting with a type IIS restriction enzyme again and ligating.
  • the clone may be cut with a type II restriction enzyme and ligated into a vector.
  • the multimeric scaffolds of the invention may comprise a linker at the C-terminus and/or the N-terminus and/or between domains as described herein. Further, scaffolds of the invention comprising at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 or polypeptide scaffolds may be fused or conjugated to a dimerization domain, including but not limited to an antibody moiety selected from:
  • Recombinant expression of a scaffold of the invention requires construction of an expression vector containing a polynucleotide that encodes the scaffold.
  • the vector for the production of scaffold may be produced by recombinant DNA technology using techniques well known in the art.
  • methods for preparing a protein by expressing a polynucleotide containing a scaffold encoding nucleotide sequence are described herein. Methods that are well known to those skilled in the art can be used to construct expression vectors containing scaffold polypeptide coding sequences and appropriate transcriptional and translational control signals.
  • the invention provides replicable vectors comprising a nucleotide sequence encoding a scaffold of the invention, operably linked to a promoter.
  • the expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce a scaffold of the invention.
  • the invention includes host cells containing a polynucleotide encoding a scaffold of the invention, operably linked to a heterologous promoter.
  • Suitable host cells include, but are not limited to, microorganisms such as bacteria (e.g., E. coli t and B. subtilis ).
  • host-expression vector systems may be utilized to express the scaffolds of the invention.
  • Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express a scaffold of the invention in situ.
  • These include but are not limited to microorganisms such as bacteria (e.g., E. coli and B.
  • subtilis transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing scaffold coding sequences; yeast (e.g., Saccharomyces, Pichia ) transformed with recombinant yeast expression vectors containing scaffold coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing scaffold coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing scaffold coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, NSO, and 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter
  • Expression vectors containing inserts of a gene encoding a scaffold of the invention can be identified by three general approaches: (a) nucleic acid hybridization, (b) presence or absence of “marker” gene functions, and (c) expression of inserted sequences.
  • the presence of a gene encoding a peptide, polypeptide, protein or a fusion protein in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to an inserted gene encoding the peptide, polypeptide, protein or the fusion protein, respectively.
  • the recombinant vector/host system can be identified and selected based upon the presence or absence of certain “marker” gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of a nucleotide sequence encoding an antibody or fusion protein in the vector.
  • certain “marker” gene functions e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.
  • recombinant expression vectors can be identified by assaying the gene product (e.g., scaffold or multimer thereof) expressed by the recombinant.
  • assays can be based, for example, on the physical or functional properties of the protein in in vitro assay systems, e.g., binding, agonistic or antagonistic properties of the scaffold.
  • a scaffold of the invention may be purified by any method known in the art for purification of a protein, for example, by chromatography (e.g., metal-chelate chromatography, ion exchange, affinity, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • chromatography e.g., metal-chelate chromatography, ion exchange, affinity, and sizing column chromatography
  • centrifugation e.g., centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • the highly stable nature of the scaffolds of the invention allow for variations on purification schemes.
  • the thermal stability exhibited by the scaffolds of the invention allow for the heating of the crude lysate comprising the scaffolds to remove the bulk of the host cell proteins by denaturation.
  • the high protease resistance exhibited by the scaffolds of the invention allows for the rapid degradation of host cell proteins in crude lysates prior to any purification steps.
  • the pH tolerance exhibited by some scaffolds of the invention allows for the selective precipitation of host cell proteins in the crude lysate by lowering or raising the pH prior to any purification steps. A combination of any of the above may be used in an effort to remove bulk host cell proteins from the crude lysate.
  • Production of the scaffolds of the invention in the research laboratory can be scaled up to produce scaffolds in analytical scale reactors or production scale reactors, as described in U.S. Patent Application Publ. No. US 2010/0298541 A1.
  • the scaffolds of the invention may be produced intracellularly or as a secreted form.
  • the secreted scaffolds are properly folded and fully functional.
  • the production of secreted scaffolds comprises the use of a Ptac promoter and an oppA signal.
  • the scaffold expressed in a prokaryotic host cell is secreted into the periplasmic space of the prokaryotic host cell into the media.
  • Scaffolds of the invention may act as carrier molecules for the secretion of peptides and/or proteins into the cell culture media or periplasmic space of a prokaryotic cell.
  • scaffolds of the invention may be produced by a scalable process (hereinafter referred to as “scalable process of the invention”).
  • scaffolds may be produced by a scalable process of the invention in the research laboratory that may be scaled up to produce the scaffolds of the invention in analytical scale bioreactors (for example, but not limited to 5 L, 10 L, 15 L, 30 L, or 50 L bioreactors).
  • the scaffolds may be produced by a scalable process of the invention in the research laboratory that may be scaled up to produce the scaffolds of the invention in production scale bioreactors (for example, but not limited to 75 L, 100 L, 150 L, 300 L, or 500 L).
  • the scalable process of the invention results in little or no reduction in production efficiency as compared to the production process performed in the research laboratory.
  • the scalable process of the invention produces multimeric scaffolds at production efficiency of about 10 mg/L, about 20 m/L, about 30 mg/L, about 50 mg/L, about 75 mg/L, about 100 mg/L, about 125 mg/L, about 150 mg/L, about 175 mg/L, about 200 mg/L, about 250 mg/L, about 300 mg/L or higher.
  • the scalable process of the invention produces multimeric scaffolds at a production efficiency of at least about 10 mg/L, at least about 20 m/L, at least about 30 mg/L, at least about 50 mg/L, at least about 75 mg/L, at least about 100 mg/L, at least about 125 mg/L, at least about 150 mg/L, at least about 175 mg/L, at least about 200 mg/L, at least about 250 mg/L, at least about 300 mg/L or higher.
  • the scalable process of the invention produces multimeric scaffolds at a production efficiency from about 10 mg/L to about 300 mg/L, from about 10 mg/L to about 250 mg/L, from about 10 mg/L to about 200 mg/L, from about 10 mg/L to about 175 mg/L, from about 10 mg/L to about 150 mg/L, from about 10 mg/L to about 100 mg/L, from about 20 mg/L to about 300 mg/L, from about 20 mg/L to about 250 mg/L, from about 20 mg/L to about 200 mg/L, from 20 mg/L to about 175 mg/L, from about 20 mg/L to about 150 mg/L, from about 20 mg/L to about 125 mg/L, from about 20 mg/L to about 100 mg/L, from about 30 mg/L to about 300 mg/L, from about 30 mg/L to about 250 mg/L, from about 30 mg/L to about 200 mg/L, from about 30 mg/L to about 175 mg/L, from about 30 mg/L to about 150
  • the scalable process of the invention produces scaffolds at production efficiency of about 1 g/L, about 2 g/L, about 3 g/L, about 5 g/L, about 7.5 g/L, about 10 g/L, about 12.5 g/L, about 15.0 g/L, about 17.5 g/L, about 20 g/L, about 25 g/L, about 30 g/L, or higher.
  • the scalable process of the invention produces scaffolds at a production efficiency of at least about 1 g/L, at least about 2 g/L, at least about 3 g/L, at least about 5 g/L, at least about 7.5 g/L, at least about 10 g/L, at least about 12.5 g/L, at least about 15 g/L, at least about 17.5 g/L, at least about 20 g/L, at least about 25 g/L, at least about 30 g/L, or higher.
  • the scaffolds of the invention are linked by protein and/or nonprotein linkers, wherein each linker is fused to at least two scaffolds of the invention.
  • Choosing a suitable linker for a specific case where two or more scaffolds of the invention are to be connected depends on a variety of parameters including, e.g., the nature of the FnIII monomer domains, the stability of the peptide linker towards proteolysis and oxidation, conformational constrains to guide multimer folding, and/or conformational constraints related to the desired biological activity of the scaffold.
  • a suitable linker can consist of a protein linker, a nonprotein linker, and combinations thereof. Combinations of linkers can be homomeric or heteromeric.
  • a multimeric FnIII scaffold of the invention comprises a plurality of FnIII scaffolds of the invention wherein are all the linkers are identical.
  • a multimeric FnIII scaffold of the invention comprises a plurality of FnIII scaffolds of the invention wherein at least one of the linkers is functionally or structurally different from the rest of the linkers.
  • linkers can themselves contribute to the activity of a multimeric FnIII scaffold by participating directly in the binding to a target.
  • the protein linker is a polypeptide.
  • a linker polypeptide predominantly includes amino acid residues selected from the group consisting of Gly, Ser, Ala and Thr.
  • the peptide linker contains at least 75% (calculated on the basis of the total number of amino acid residues present in the peptide linker), at least 80%, at least 85% or at least 90% of amino acid residues selected from the group consisting of Gly, Ser, Ala and Thr.
  • the peptide linker consists of Gly, Ser, Ala and/or Thr residues only.
  • the linker polypeptide should have a length, which is adequate to link two or more monomer scaffolds of the invention or two or more multimeric scaffolds of the invention in such a way that they assume the correct conformation relative to one another so that they retain the desired activity.
  • the polypeptide linker comprises 1 to about 1000 amino acids residues, 1 to about 50 amino acid residues, 1-25 amino acid residues, 1-20 amino acid residues, 1-15 amino acid residues, 1-10 amino acid residues, 1-5 amino acid residues, 1-3 amino acid residues.
  • the invention further provides nucleic acids, such as DNA, RNA, or combinations of both, encoding the polypeptide linker sequence.
  • the amino acid residues selected for inclusion in the polypeptide linker should exhibit properties that do not interfere significantly with the activity or function of the multimeric scaffold of the invention.
  • a polypeptide linker should on the whole not exhibit a charge which would be inconsistent with the activity or function of the multimeric scaffold of the invention, or interfere with internal folding, or form bonds or other interactions with amino acid residues in one or more of the FnIII monomer domains which would seriously impede the binding of the multimeric scaffold of the invention to specific targets.
  • randomization is used to obtain linkers that afford maximum stability and/or activity of a multimeric scaffold.
  • conformationally flexible linkers are first used to find suitable combination of scaffolds of the invention, and the resulting multimeric scaffold is subsequently optimized by randomizing the amino acids residues in the polypeptide linkers.
  • the linkers fusing two or more scaffolds of the invention are natural linkers (see, e.g., George & Hering a, Protein Eng. 11:871-879, 2002), artificial linkers, or combinations thereof.
  • the amino acid sequences of all peptide linkers present in a multimeric scaffold of the invention are identical.
  • the amino acid sequences of at least two of the peptide linkers present in a multimeric scaffold of the invention are different.
  • a polypeptide linker possesses conformational flexibility. In some embodiments, a polypeptide linker contains 1-25 glycine residues, 5-20 glycine residues, 5-15 glycine residues or 8-12 glycine residues. In some embodiments, a polypeptide linker comprises at least 50% glycine residues, at least 75% glycine residues, at least 80% glycine residues, or at least 85% glycine residues. In some embodiments, a polypeptide linker sequence comprises glycine residues only. In a specific embodiment, a polypeptide linker sequence comprises a (G-G-G-G-S) x amino acid sequence where x is a positive integer.
  • a polypeptide linker sequence comprises a (G-A) x sequence where x is a positive integer. In another specific embodiment, a polypeptide linker sequence comprises a (G-G-G-T-P-T) x sequence where x is a positive integer. In still another specific embodiment, a polypeptide linker sequence comprises a (G-G-G-G-S-G-T-G-S-A-M-A-S) x sequence where x is a positive integer.
  • a polypeptide linker is an inherently unstructured natural or artificial polypeptide (see, e.g., Schellenberger et al., Nature Biotechnol. 27:1186-1190, 2009; see also, Sickmeier et al., Nucleic Acids Res. 35:D786-93, 2007).
  • the conformational flexibility of a polypeptide linker is restricted by including one or more proline amino acid residues in the amino acid sequence of the polypeptide linker.
  • the polypeptide linker may comprise at least one proline residue in the amino acid sequence of the polypeptide linker.
  • the polypeptide linker has an amino acid sequence, wherein at least 25%, at least 50%, at least 75%, of the amino acid residues are proline residues.
  • the polypeptide linker comprises proline residues only.
  • Ser-rich linkers can be used, e.g., (Ser-4-Gly) n (n>1) or (X4-Gly) n (wherein up to two X's are Thr, the remaining X's are Ser, and n>1) (see U.S. Pat. No. 5,525,491).
  • (Gly-Ser) n , (Gly-Gly-Ser-Gly) n , or Gly-Ser-Ala-Thr linkers are used.
  • the peptide linker can be modified in such a way that an amino acid residue comprising an attachment group for a non-polypeptide moiety is introduced.
  • amino acid residues may be a cysteine residue (to which the non-polypeptide moiety is then subsequently attached) or the amino acid sequence may include an in vivo N-glycosylation site (thereby attaching a sugar moiety (in vivo) to the peptide linker).
  • An additional option is to genetically incorporate non-natural amino acids using evolved tRNAs and tRNA synthetases (see, e.g., U.S. Patent Appl. Publ. No. 2003/0082575) into the monomer domains or linkers. For example, insertion of keto-tyrosine allows for site-specific coupling to expressed monomer domains or multimers.
  • amino acid sequences of all peptide linkers present in the polypeptide multimer are identical.
  • amino acid sequences of all peptide linkers present in the polypeptide multimer may be different.
  • the scaffolds of the invention can be used in non-conjugated form or conjugated to at least one of a variety of heterologous moieties to facilitate target detection or for imaging or therapy.
  • the scaffolds of the can be labeled or conjugated either before or after purification, when purification is performed.
  • heterologous moieties lack suitable functional groups to which scaffolds of the invention can be linked.
  • the effector molecule is attached to the scaffold through a linker, wherein the linker contains reactive groups for conjugation.
  • the heterologous moiety conjugated to a scaffold of the invention can function as a linker.
  • the moiety is conjugated to the scaffold via a linker that can be cleavable or non-cleavable.
  • the cleavable linking molecule is a redox cleavable linking molecule, such that the linking molecule is cleavable in environments with a lower redox potential, such as the cytoplasm and other regions with higher concentrations of molecules with free sulfhydryl groups.
  • Examples of linking molecules that may be cleaved due to a change in redox potential include those containing disulfides.
  • scaffolds of the invention are engineered to provide reactive groups for conjugation.
  • the N-terminus and/or C-terminus can also serve to provide reactive groups for conjugation.
  • the N-terminus can be conjugated to one moiety (such as, but not limited to PEG) while the C-terminus is conjugated to another moiety (such as, but not limited to biotin), or vice versa.
  • polyethylene glycol or “PEG” means a polyethylene glycol compound or a derivative thereof, with or without coupling agents, coupling or activating moieties (e.g., with thiol, triflate, tresylate, aziridine, oxirane, N-hydroxysuccinimide or a maleimide moiety).
  • PEG is intended to indicate polyethylene glycol of a molecular weight between 500 and 150,000 Da, including analogues thereof, wherein for instance the terminal OH-group has been replaced by a methoxy group (referred to as mPEG).
  • the scaffolds of the invention can be derivatized with polyethylene glycol (PEG).
  • PEG is a linear, water-soluble polymer of ethylene oxide repeating units with two terminal hydroxyl groups. PEGs are classified by their molecular weights which typically range from about 500 daltons to about 40,000 daltons. In a specific embodiment, the PEGs employed have molecular weights ranging from 5,000 daltons to about 20,000 daltons. PEGs coupled to the scaffolds of the invention can be either branched or unbranched. (See, for example, Monfardini, C. et al. 1995 Bioconjugate Chem 6:62-69). PEGs are commercially available from Nektar Inc., Sigma Chemical Co. and other companies.
  • Such PEGs include, but are not limited to, monomethoxypolyethylene glycol (MePEG-OH), monomethoxypolyethylene glycol-succinate (MePEG-S), monomethoxypolyethylene glycol-succinimidyl succinate (MePEG-S-NHS), monomethoxypolyethylene glycol-amine (MePEG-NH2), monomethoxypolyethylene glycol-tresylate (MePEG-TRES), and monomethoxypolyethylene glycol-imidazolyl-carbonyl (MePEG-IM).
  • MePEG-OH monomethoxypolyethylene glycol
  • MePEG-S monomethoxypolyethylene glycol-succinate
  • MePEG-NHS monomethoxypolyethylene glycol-succinimidyl succinate
  • MePEG-NH2 monomethoxypolyethylene glycol-amine
  • MePEG-TRES monomethoxypolyethylene glycol-tre
  • the hydrophilic polymer which is employed, for example, PEG is capped at one end by an unreactive group such as a methoxy or ethoxy group. Thereafter, the polymer is activated at the other end by reaction with a suitable activating agent, such as cyanuric halides (for example, cyanuric chloride, bromide or fluoride), carbonyldiimidazole, an anhydride reagent (for example, a dihalo succinic anhydride, such as dibromosuccinic anhydride), acyl azide, p-diazoniumbenzyl ether, 3-(p-diazoniumphenoxy)-2-hydroxypropylether) and the like.
  • cyanuric halides for example, cyanuric chloride, bromide or fluoride
  • carbonyldiimidazole for example, a dihalo succinic anhydride, such as dibromosuccinic anhydride
  • anhydride reagent for example
  • the activated polymer is then reacted with a polypeptide as described herein to produce a polypeptide derivatized with a polymer.
  • a functional group in the scaffolds of the invention can be activated for reaction with the polymer, or the two groups can be joined in a concerted coupling reaction using known coupling methods.
  • the polypeptides of the invention can be derivatized with PEG using a myriad of other reaction schemes known to and used by those of skill in the art.
  • scaffolds of the invention may be conjugated to a diagnostic or detectable agent.
  • Such scaffolds can be useful for monitoring or prognosing the development or progression of a disease as part of a clinical testing procedure, such as determining the efficacy of a particular therapy.
  • Such diagnosis and detection can be accomplished by coupling the scaffold to detectable substances including, but not limited to various enzymes, such as but not limited to horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such as but not limited to streptavidin/biotin and avidin/biotin; fluorescent materials, such as but not limited to, umbelliferone, fluorescein, fluorescein isothiocynate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as, but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as but not limited to iodine ( 131 I, 125 I, 123 I, 121 I), carbon ( 14 C),
  • a scaffold may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Therapeutic moieties include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustihe (BCNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisdichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), Auristatin molecules (e
  • hormones e.g., glucocorticoids, progestins, androgens, and estrogens
  • DNA-repair enzyme inhibitors e.g., etoposide or topotecan
  • kinase inhibitors e.g., compound ST1571, imatinib mesylate (Kantarjian et al., Clin Cancer Res.
  • cytotoxic agents e.g., paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracindione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof) and those compounds disclosed in U.S. Pat. Nos.
  • a scaffold may be conjugated to a therapeutic moiety or drug moiety that modifies a given biological response.
  • Therapeutic moieties or drug moieties are not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • Such proteins may include, for example, an enzyme, an antibody, a toxin (e.g., abrin, ricin A, Pseudomonas exotoxin, cholera toxin, or diphtheria toxin; a protein such as a tumor necrosis factor (e.g., TNF-alpha, TNF-beta), an interferon (e.g., ⁇ -interferon, ⁇ -interferon), a nerve growth factor, a platelet derived growth factor, a tissue plasminogen activator, an apoptotic agent (e.g., TNF-alpha, TNF-beta, AIM I (see, International publication No.
  • a toxin e.g., abrin, ricin A, Pseudomonas exotoxin, cholera toxin, or diphtheria toxin
  • a protein such as a tumor necrosis factor (e.g., TNF-
  • a thrombotic agent or an anti-angiogenic agent e.g., angiostatin, endostatin or a component of the coagulation pathway (e.g., tissue factor)
  • a biological response modifier such as, for example, a lymphokine (e.g., interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), and granulocyte colony stimulating factor (“G-CSF”)
  • a growth factor e.g., growth hormone (“GH”)
  • a coagulation agent e.g., calcium, vitamin K, tissue factors, such as but not limited to, Hageman factor (factor XII), high-molecular-weight kininogen (HMWK), prekallikrein (PK), coagulation proteins-factors II (prothrombin), factor V, XIIa, VIII, XIIIa,
  • a scaffold can be conjugated to therapeutic moieties such as a radioactive metal ion, such as alpha-emitters such as 213 Bi or macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, 131 In, 131 Lu, 131 Y, 131 Ho, 131 Sm, to polypeptides.
  • the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′′-tetraacetic acid (DOTA) which can be attached to the scaffold via a linker molecule.
  • linker molecules are commonly known in the art and described in Denardo et al., 1998, Clin Cancer Res.
  • the therapeutic moiety or drug conjugated to a scaffold of the invention should be chosen to achieve the desired prophylactic or therapeutic effect(s) for a particular disorder in a subject.
  • a clinician or other medical personnel should consider the following when deciding on which therapeutic moiety or drug to conjugate to a scaffold: the nature of the disease, the severity of the disease, and the condition of the subject.
  • the scaffolds of the invention may be assayed for specific binding to a target by any method known in the art.
  • Representative assays which can be used include but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitation reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, to name but a few.
  • Such assays are routine and known in the art (see, e.g., Ausubel et al., eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York).
  • the binding affinity and other binding properties of a scaffold to an antigen may be determined by a variety of in vitro assay methods known in the art including for example, equilibrium methods (e.g., enzyme-linked immunoabsorbent assay (ELISA; or radioimmunoassay (RIA)), or kinetics (e.g., BIACORE® analysis), and other methods such as indirect binding assays, competitive binding assays, gel electrophoresis and chromatography (e.g., gel filtration). These and other methods may utilize a label on one or more of the components being examined and/or employ a variety of detection methods including but not limited to chromogenic, fluorescent, luminescent, or isotopic labels.
  • a detailed description of binding affinities and kinetics can be found in Paul, W. E., ed., Fundamental Immunology, 4th Ed., Lippincott-Raven, Philadelphia (1999).
  • scaffolds of the invention specifically bind a target with specific kinetics.
  • scaffolds of the invention may have a dissociation constant or K d (k off /k on ) of less than 1 ⁇ 10 ⁇ 2 M, 1 ⁇ 10 ⁇ M , 1 ⁇ 10 ⁇ 4 M, 1 ⁇ 10 ⁇ 5 M, 1 ⁇ 10 ⁇ 6 M, 1 ⁇ 10 ⁇ 7 M, 1 ⁇ 10 ⁇ 8 M, 1 ⁇ 10 ⁇ 9 M, 1 ⁇ 10 ⁇ 10 M, 1 ⁇ 10 ⁇ 11 M, 1 ⁇ 10 ⁇ 12 M, 1 ⁇ 10 ⁇ 13 M, 1 ⁇ 10 ⁇ 14 M or less than 1 ⁇ 10 ⁇ 15 M.
  • scaffolds of the invention have a K d of 500 ⁇ M, 100 ⁇ M, 100 ⁇ M, 500 nM, 100 nM, 1 nM, 500 pM, 100 pM or less as determined by a BIAcore Assay® or by other assays known in the art.
  • the affinity of the scaffolds of the invention is described in terms of the association constant (K a ), which is calculated as the ratio k on /k off , of at least 1 ⁇ 10 2 M ⁇ 1 , 1 ⁇ 10 3 M ⁇ 1 , 1 ⁇ 10 4 M ⁇ 1 , 1 ⁇ 10 5 M ⁇ 1 , 1 ⁇ 10 6 M ⁇ 1 , 1 ⁇ 10 7 M ⁇ 1 , 1 ⁇ 10 8 M ⁇ 1 , 1 ⁇ 10 9 M ⁇ 1 , 1 ⁇ 10 10 M ⁇ 1 1 ⁇ 10 11 M ⁇ 1 1 ⁇ 10 12 M ⁇ 1 , 1 ⁇ 10 13 M ⁇ 1 , 1 ⁇ 10 14 M ⁇ 1 , 1 ⁇ 10 15 M ⁇ 1 , or at least 5 ⁇ 10 15 M ⁇ 1 .
  • K a association constant
  • the rate at which the scaffolds of the invention dissociate from a target epitope may be more relevant than the value of the K d or the K a .
  • the scaffolds of the invention have a k off of less than 10 ⁇ 3 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 3 s ⁇ 1 , less than 10 ⁇ 4 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 4 s ⁇ 1 , less than 10 ⁇ 5 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 5 s ⁇ 1 , less than 10 ⁇ 6 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 6 s ⁇ 1 , less than 10 ⁇ 7 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 7 s ⁇ 1 , less than 10 ⁇ 8 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 8 s ⁇ 1 , less than 10 ⁇ 9 s ⁇ 1 , less than 5 ⁇ 10 ⁇ 9 s ⁇ 1 , less than 5 ⁇
  • the rate at which the scaffolds of the invention associate with a target epitope may be more relevant than the value of the K d or the K a .
  • the scaffolds of the invention bind to a target with a k on rate of at least 10 5 M ⁇ 1 s ⁇ 1 , at least 5 ⁇ 10 5 M ⁇ 1 s ⁇ 1 , at least 10 6 M ⁇ 1 s ⁇ 1 , at least 5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 , at least 10 7 M ⁇ 1 s ⁇ 1 , at least 5 ⁇ 10 7 M ⁇ 1 s ⁇ 1 , or at least 10 8 M ⁇ 1 s ⁇ 1 , or at least 10 9 M ⁇ 1 s ⁇ 1 .
  • Scaffolds of the invention may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen.
  • solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
  • the invention provides an improved ELISA method for detecting soluble recombinant polypeptides secreted in culture media.
  • the recombinant polypeptide is a recombinant Fn type III variant.
  • the method for detecting a soluble recombinant fibronectin type III variant comprises:
  • the method comprises:
  • the method comprises detecting a secreted polypeptide or secreted variant in crude culture media.
  • the signal intensity varies by less than 40%, less than 30%, less than 20%, or less than 19%.
  • the ELISA method is performed in a high throughput or ultrahigh throughput format using assay plates of at least 96 wells.
  • assay plates of at least 96 wells.
  • a 384 well assay plate or a 1536 well assay plate is used.
  • the method detects a variant comprising a heterologous amino acid sequence, including but not limited to: a poly(his) tag, a hemagglutinin (HA) tag, a FLAG tag, a Strep-tag, a myc tag, or a V5 tag.
  • a heterologous amino acid sequence including but not limited to: a poly(his) tag, a hemagglutinin (HA) tag, a FLAG tag, a Strep-tag, a myc tag, or a V5 tag.
  • the first member of the binding pair is biotin and the second member of the binding pair is streptavidin or avidin.
  • the present invention provides a composition, for example, but not limited to, a pharmaceutical composition, containing one or a combination of scaffolds or multimeric scaffolds of the present invention, formulated together with a pharmaceutically acceptable carrier.
  • a pharmaceutical composition may include one or a combination of, for example, but not limited to two or more different scaffolds of the invention.
  • a pharmaceutical composition of the invention may comprise a combination of scaffolds that bind to different epitopes on the target antigen or that have complementary activities.
  • a pharmaceutical composition comprises a multimeric scaffold of the invention.
  • compositions of the invention also can be administered in combination therapy, such as, combined with other agents.
  • the combination therapy can include a scaffold of the present invention combined with at least one other therapy wherein the therapy may be immunotherapy, chemotherapy, radiation treatment, or drug therapy.
  • the pharmaceutical compounds of the invention may include one or more pharmaceutically acceptable salts.
  • Such salts include acid addition salts and base addition salts.
  • Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N′-dibenzylethylenediamine, N-methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
  • a pharmaceutical composition of the invention also may include a pharmaceutically acceptable antioxidant.
  • pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole
  • aqueous and non-aqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents,
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration.
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • compositions (e.g., liquid formulations) of the invention are pyrogen-free formulations which are substantially free of endotoxins and/or related pyrogenic substances.
  • Endotoxins include toxins that are confined inside a microorganism and are released when the microorganisms are broken down or die.
  • Pyrogenic substances also include fever-inducing, thermostable substances (glycoproteins) from the outer membrane of bacteria and other microorganisms. Both of these substances can cause fever, hypotension and shock if administered to humans. Due to the potential harmful effects, it is advantageous to remove even low amounts of endotoxins from intravenously administered pharmaceutical drug solutions.
  • endotoxin units EU
  • pyrogen levels in the composition are less than 10 EU/mg, or less than 5 EU/mg, or less than 1 EU/mg, or less than 0.1 EU/mg, or less than 0.01 EU/mg, or less than 0.001 EU/mg.
  • endotoxin and pyrogen levels in the composition are less than about 10 EU/mg, or less than about 5 EU/mg, or less than about 1 EU/mg, or less than about 0.1 EU/mg, or less than about 0.01 EU/mg, or less than about 0.001 EU/mg.
  • a scaffold is mixed with a pharmaceutically acceptable carrier or excipient.
  • Formulations of therapeutic and diagnostic agents can be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions, lotions, or suspensions (see, e.g., Hardman, et al. (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y.; Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y.; Avis, et al.
  • an administration regimen for a therapeutic depends on several factors, including the serum or tissue turnover rate of the entity, the level of symptoms, the immunogenicity of the entity, and the accessibility of the target cells in the biological matrix.
  • an administration regimen maximizes the amount of therapeutic delivered to the patient consistent with an acceptable level of side effects.
  • the amount of biologic delivered depends in part on the particular entity and the severity of the condition being treated. Guidance in selecting appropriate doses of antibodies, cytokines, and small molecules are available (see, e.g., Wawrzynczak (1996) Antibody Therapy, Bios Scientific Pub.
  • Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
  • Important diagnostic measures include those of symptoms of, e.g., the inflammation or level of inflammatory cytokines produced.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • Scaffolds of the invention can be provided by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week.
  • Doses may be provided intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscular, intracerebrally, or by inhalation.
  • a specific dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.
  • a total weekly dose may be at least 0.05 ⁇ g/kg body weight, at least 0.2 ⁇ g/kg, at least 0.5 ⁇ g/kg, at least 1 ⁇ g/kg, at least 10 ⁇ g/kg, at least 100 ⁇ g/kg, at least 0.2 mg/kg, at least 1.0 mg/kg, at least 2.0 mg/kg, at least 10 mg/kg, at least 25 mg/kg, or at least 50 mg/kg (see, e.g., Yang, et al. (2003) New Engl. J. Med. 349:427-434; Herold, et al. (2002) New Engl J. Med. 346:1692-1698; Liu, et al. (1999) J. Neurol. Neurosurg. Psych.
  • a small molecule therapeutic e.g., a peptide mimetic, protein scaffold, natural product, or organic chemical
  • the desired dose of a small molecule therapeutic is about the same as for an antibody or polypeptide, on a moles/kg body weight basis.
  • the desired plasma concentration of a small molecule or scaffold therapeutic is about the same as for an antibody, on a moles/kg body weight basis.
  • the dose may be at least 15 ⁇ g, at least 20 ⁇ g, at least 25 ⁇ g, at least 30 ⁇ g, at least 35 ⁇ g, at least 40 ⁇ g, at least 45 ⁇ g, at least 50 ⁇ g, at least 55 ⁇ g, at least 60 ⁇ g, at least 65 ⁇ g, at least 70 ⁇ g, at least 75 ⁇ g, at least 80 ⁇ g, at least 85 ⁇ g, at least 90 ⁇ g, at least 95 ⁇ g, or at least 100 ⁇ g.
  • the doses administered to a subject may number at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, or more.
  • the dosage administered to a patient may be 0.0001 mg/kg to 100 mg/kg of the patient's body weight.
  • the dosage may be between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the patient's body weight.
  • the dosage of the scaffolds of the invention may be calculated using the patient's weight in kilograms (kg) multiplied by the dose to be administered in mg/kg.
  • the dosage of the scaffolds of the invention may be 150 ⁇ g/kg or less, 125 ⁇ g/kg or less, 100 ⁇ g/kg or less, 95 ⁇ g/kg or less, 90 ⁇ g/kg or less, 85 ⁇ g/kg or less, 80 ⁇ g/kg or less, 75 ⁇ g/kg or less, 70 ⁇ g/kg or less, 65 ⁇ g/kg or less, 60 ⁇ g/kg or less, 55 ⁇ g/kg or less, 50 ⁇ g/kg or less, 45 ⁇ g/kg or less, 40 ⁇ g/kg or less, 35 ⁇ g/kg or less, 30 ⁇ g/kg or less, 25 ⁇ g/kg or less, 20 ⁇ g/kg or less, 15 ⁇ g/kg or less, 10 ⁇ g/kg or less, 5 ⁇ g/kg or less, 2.5 ⁇ g
  • Unit dose of the scaffolds of the invention may be 0.1 mg to 20 mg, 0.1 mg to 15 mg, 0.1 mg to 12 mg, 0.1 mg to 10 mg, 0.1 mg to 8 mg, 0.1 mg to 7 mg, 0.1 mg to 5 mg, 0.1 to 2.5 mg, 0.25 mg to 20 mg, 0.25 to 15 mg, 0.25 to 12 mg, 0.25 to 10 mg, 0.25 to 8 mg, 0.25 mg to 7 mg, 0.25 mg to 5 mg, 0.5 mg to 2.5 mg, 1 mg to 20 mg, 1 mg to 15 mg, 1 mg to 12 mg, 1 mg to 10 mg, 1 mg to 8 mg, 1 mg to 7 mg, 1 mg to 5 mg, or 1 mg to 2.5 mg.
  • the dosage of the scaffolds of the invention may achieve a serum titer of at least 0.1 ⁇ g/ml, at least 0.5 ⁇ g/ml, at least 1 ⁇ g/ml, at least 2 ⁇ g/ml, at least 5 ⁇ g/ml, at least 6 ⁇ g/ml, at least 10 ⁇ g/ml, at least 15 ⁇ g/ml, at least 20 ⁇ g/ml, at least 25 ⁇ g/ml, at least 50 ⁇ g/ml, at least 100 ⁇ g/ml, at least 125 ⁇ g/ml, at least 150 ⁇ g/ml, at least 175 ⁇ g/ml, at least 200 ⁇ g/ml, at least 225 ⁇ g/ml, at least 250 ⁇ g/ml, at least 275 ⁇ g/ml, at least 300 ⁇ g/ml, at least 325 ⁇ g/ml, at least 350 ⁇ g/ml, at least 375 ⁇ g/
  • the dosage of the scaffolds of the invention may achieve a serum titer of at least 0.1 ⁇ g/ml, at least 0.5 ⁇ g/ml, at least 1 ⁇ g/ml, at least, 2 ⁇ g/ml, at least 5 ⁇ g/ml, at least 6 ⁇ g/ml, at least 10 ⁇ g/ml, at least 15 ⁇ g/ml, at least 20 ⁇ g/ml, at least 25 ⁇ g/ml, at least 50 ⁇ g/ml, at least 100 ⁇ g/ml, at least 125 ⁇ g/ml, at least 150 ⁇ g/ml, at least 175 ⁇ g/ml, at least 200 ⁇ g/ml, at least 225 ⁇ g/ml, at least 250 ⁇ g/ml, at least 275 ⁇ g/ml, at least 300 ⁇ g/ml, at least 325 ⁇ g/ml, at least 350 ⁇ g/ml, at least 375
  • Doses of scaffolds of the invention may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
  • An effective amount for a particular patient may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects (see, e.g., Maynard, et al. (1996) A Handbook of SOPs for Good Clinical Practice, Interpharm Press, Boca Raton, Fla.; Dent (2001) Good Laboratory and Good Clinical Practice, Urch Publ., London, UK).
  • a composition of the present invention may also be administered via one or more routes of administration using one or more of a variety of methods known in the art.
  • routes and/or mode of administration will vary depending upon the desired results.
  • Selected routes of administration for scaffolds of the invention include without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracerebral, intraocular, intraocular, intraarterial, intracerebrospinal, intralesional intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, or by sustained release systems or an implant (see, e.g., Sidman et al.
  • a composition of the invention can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
  • the composition may also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection.
  • pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. See, e.g., U.S. Pat. Nos.
  • an antibody, combination therapy, or a composition of the invention is administered using Alkermes AIRTM pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.).
  • a pump may be used to achieve controlled or sustained release (see Langer, Chem. Tech. 12:98-105, 1982; Seflon, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al, 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:51 A).
  • Polymeric materials can be used to achieve controlled or sustained release of the therapies of the invention (see e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, FIa.
  • polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(N-vinyl pyrrolidone), poly(vinyl alcohol), polyacrylamide, poly(ethylene glycol), polylactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters.
  • the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable.
  • a controlled or sustained release system can be placed in proximity of the prophylactic or therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
  • Controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more scaffolds of the invention. See, e.g., U.S. Pat. No.
  • the scaffolds of the invention can be formulated for topical administration in the form of an ointment, cream, transdermal patch, lotion, gel, shampoo, spray, aerosol, solution, emulsion, or other form well-known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences and Introduction to Pharmaceutical Dosage Forms, 19th ed., Mack Pub. Co., Easton, Pa. (1995).
  • viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity, in some instances, greater than water are typically employed.
  • Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g., preservatives, stabilizers, wetting agents, buffers, or salts) for influencing various properties, such as, for example, osmotic pressure.
  • auxiliary agents e.g., preservatives, stabilizers, wetting agents, buffers, or salts
  • Other suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, in some instances, in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g., a gaseous propellant, such as freon) or in a squeeze bottle.
  • a pressurized volatile e.g., a gaseous propellant, such as freon
  • humectants can also be added to
  • the scaffolds of the invention are administered intranasally, it can be formulated in an aerosol form, spray, mist or in the form of drops.
  • prophylactic or therapeutic agents for use according to the present invention can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant (e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas).
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • a second therapeutic agent e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation
  • a second therapeutic agent e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation
  • An effective amount of therapeutic may decrease the symptoms by at least 10%; by at least 20%; at least about 30%; at least 40%, or at least 50%.
  • Additional therapies e.g., prophylactic or therapeutic agents
  • therapies e.g., prophylactic or therapeutic agents
  • the term “concurrently” is not limited to the administration of therapies (e.g., prophylactic or therapeutic agents) at exactly the same time, but rather it is meant that a pharmaceutical composition comprising scaffolds of the invention are administered to a subject in a sequence and within a time interval such that the scaffolds of the invention can act together with the other therapy or therapies to provide an increased benefit than if they were administered otherwise.
  • each therapy may be administered to a subject at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect.
  • Each therapy can be administered to a subject separately, in any appropriate form and by any suitable route.
  • the therapies are administered to a subject less than 15 minutes, less than 30 minutes, less than 1 hour apart, at about 1 hour apart, at about 1 hour to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, 24 hours apart, 48 hours apart, 72 hours apart, or 1 week apart.
  • the two or more therapies may be administered within one same patient visit.
  • the scaffolds of the invention and the other therapies may be cyclically administered. Cycling therapy involves the administration of a first therapy (e.g., a first prophylactic or therapeutic agent) for a period of time, followed by the administration of a second therapy (e.g., a second prophylactic or therapeutic agent) for a period of time, optionally, followed by the administration of a third therapy (e.g., prophylactic or therapeutic agent) for a period of time and so forth, and repeating this sequential administration, i.e., the cycle in order to reduce the development of resistance to one of the therapies, to avoid or reduce the side effects of one of the therapies, and/or to improve the efficacy of the therapies.
  • a first therapy e.g., a first prophylactic or therapeutic agent
  • a second therapy e.g., a second prophylactic or therapeutic agent
  • a third therapy e.g., prophylactic or therapeutic agent
  • the scaffolds of the invention can be formulated to ensure proper distribution in vivo.
  • the blood-brain barrier (BBB) excludes many highly hydrophilic compounds.
  • BBB blood-brain barrier
  • the therapeutic compounds of the invention cross the BBB (if desired)
  • they can be formulated, for example, in liposomes.
  • liposomes For methods of manufacturing liposomes, see, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; and 5,399,331.
  • the liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V.V. Ranade (1989) J. Clin. Pharmacol. 29:685).
  • Exemplary targeting moieties include folate or biotin (see, e.g., U.S. Pat. No. 5,416,016 to Low et al); mannosides (Umezawa et al, (1988) Biochem. Biophys. Res. Commun. 153:1038); antibodies (P. G. Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39:180); surfactant protein A receptor (Briscoe et al. (1995) Am. J. Physiol. 1233:134); pI20 (Schreier et al. (1994) J. Biol. Chem. 269:9090); see also K. Keinanen; M. L. Laukkanen (1994) FEBS Lett. 346:123; J J. Killion; I J. Fidler (1994; Immunomethods 4:273.
  • biotin see
  • the prophylactic or therapeutic agents of the combination therapies can be administered to a subject in the same pharmaceutical composition.
  • the prophylactic or therapeutic agents of the combination therapies can be administered concurrently to a subject in separate pharmaceutical compositions.
  • the prophylactic or therapeutic agents may be administered to a subject by the same or different routes of administration.
  • the scaffolds of the present invention have in vitro and in vivo diagnostic and therapeutic utilities.
  • these molecules can be administered to cells in culture, e.g. in vitro or ex vivo, or in a subject, e.g., in vivo, to treat, prevent or diagnose a variety of disorders.
  • the invention also provides methods of using the scaffolds of the invention.
  • the present invention also encompasses the use of the scaffolds of the invention for the prevention, diagnosis, management, treatment or amelioration of one or more symptoms associated with diseases, disorders of diseases or disorders, including but not limited to cancer, inflammatory and autoimmune diseases, infectious diseases either alone or in combination with other therapies.
  • the invention also encompasses the use of the scaffolds of the invention conjugated or fused to a moiety (e.g., therapeutic agent or drug) for prevention, management, treatment or amelioration of one or more symptoms associated with diseases, disorders or infections, including but not limited to cancer, inflammatory and autoimmune diseases, infectious diseases either alone or in combination with other therapies.
  • a moiety e.g., therapeutic agent or drug
  • the proteins of the invention may be used to stimulate or inhibit a response in a target cell by cross-linking of cell surface receptors.
  • the scaffolds of the invention of the invention may be used to block the interaction of multiple cell surface receptors with antigens.
  • the scaffolds of the invention may be used to strengthen the interaction of multiple cell surface receptors with antigens.
  • the proteins of the invention could be used to deliver a ligand, or ligand analogue to a specific cell surface receptor.
  • the invention also provides methods of targeting epitopes not easily accomplished with traditional antibodies.
  • the scaffolds and of the invention may be used to first target an adjacent antigen and while binding, another binding domain may engage the cryptic antigen.
  • the invention also provides methods of using the scaffolds to bring together distinct cell types.
  • the proteins of the invention may bind a target cell with one binding domain and recruit another cell via another binding domain.
  • the first cell may be a cancer cell and the second cell is an immune effector cell such as an NK cell.
  • the scaffolds of the invention may be used to strengthen the interaction between two distinct cells, such as an antigen presenting cell and a T cell to possibly boost the immune response.
  • the invention also provides methods of using the scaffolds to ameliorate, treat, or prevent cancer or symptoms thereof.
  • methods of the invention are useful in the treatment of cancers of the head, neck, eye, mouth, throat, esophagus, chest, skin, bone, lung, colon, rectum, colorectal, stomach, spleen, kidney, skeletal muscle, subcutaneous tissue, metastatic melanoma, endometrial, prostate, breast, ovaries, testicles, thyroid, blood, lymph nodes, kidney, liver, pancreas, brain, or central nervous system.
  • the invention also provides methods of using the scaffolds to deplete a cell population.
  • methods of the invention are useful in the depletion of the following cell types: eosinophil, basophil, neutrophil, T cell, B cell, mast cell, monocytes and tumor cell.
  • the invention also provides methods of using scaffolds to inactivate, inhibit, or deplete cytokines.
  • methods of the invention are useful in the inactivation, inhibition, or depletion of at least one of the following cytokines: TNF- ⁇ , TGF- ⁇ , C5a, fMLP, Interferon alpha (including subtypes 1, 2a, 2b, 4, 4b, 5, 6, 7, 8, 10, 14, 16, 17 and 21), Interferon beta, Interferon omega, Interferon gamma, interleukins IL-1-33, CCL1-28, CXCL 1-17, and CX3CL1.
  • the invention also provides methods of using the scaffolds to inactivate various infections agents such as viruses, fungi, eukaryotic microbes, and bacteria.
  • the scaffolds of the invention may be used to inactivate RSV, hMPV, PIV, or influenza viruses.
  • the scaffolds of the invention may be used to inactivate fungal pathogens, such as, but not limited to members of Naegleria, Aspergillus, Blastomyces, Histoplasma, Candida or Tinea genera.
  • the scaffolds of the invention may be used to inactivate eukaryotic microbes, such as, but not limited to members of Giardia, Toxoplasma, Plasmodium, Trypanosoma , and Entamoeba genera.
  • the scaffolds of the invention may be used to inactivate bacterial pathogens, such as but not limited to members of Staphylococcus, Streptococcus, Pseudomonas, Clostridium, Borrelia, Vibrio and Neisseria genera.
  • the invention also provides methods of using scaffolds proteins as diagnostic reagents.
  • the proteins of the invention may be useful in kits or reagents where different antigens need to be efficiently captured concurrently.
  • the proteins of the invention and compositions comprising the same are useful for many purposes, for example, as therapeutics against a wide range of chronic and acute diseases and disorders including, but not limited to, cancer.
  • cancers that can be prevented, managed, treated or ameliorated in accordance with the methods of the invention include, but are not limited to, cancer of the head, neck, eye, mouth, throat, esophagus, chest, bone, lung, colon, rectum, stomach, prostate, breast, ovaries, kidney, liver, pancreas, and brain.
  • Additional cancers include, but are not limited to, the following: leukemias such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias such as myeloblasts, promyelocytic, myelomonocytic, monocytic, erythroleukemic leukemias and myclodysplastic syndrome, chronic leukemias such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Wald
  • cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J. B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., inc., United States of America).
  • cancers caused by aberrations in apoptosis can also be treated by the methods and compositions of the invention.
  • Such cancers may include, but not be limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes.
  • the proteins of the invention and compositions comprising the same are useful for many purposes, for example, as therapeutics against a wide range of chronic and acute diseases and disorders including, but not limited to, autoimmune and/or inflammatory diseases.
  • the compositions and methods of the invention described herein are useful for the prevention or treatment of autoimmune disorders and/or inflammatory disorders.
  • autoimmune and/or inflammatory disorders include, but are not limited to, antiphospholipid syndrome, arthritis, atherosclerosis, anaphylactic shock, autoimmune Addison's disease, alopecia greata, autoimmune diseases of the adrenal gland, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune oophoritis, autoimmune orchitis, autoimmune thrombocytopenia, Behcet's disease, bullous pemphigoid, cardiomyopathy, celiac sprue dermatitis, chronic fatigue immune dysfunction syndrome, chronic inflammatory demyelinating polyneuropathy, chronic inflammation, Churg-Strauss syndrome, cicatrical pemphigoid, cold agglutinin disease, corneal and other tissue transplantation, CREST syndrome, Crohn's disease, cystic fibrosis, diabetic retinopathies, discoid lupus, endocarditis, endotoxic shock, essential mixed cryoglobulinemia, fibromyalgia
  • inflammatory disorders include, but are not limited to, asthma, encephalitis, inflammatory bowel disease, chronic obstructive pulmonary disease (COPD), allergic disorders, septic shock, pulmonary fibrosis, undifferentiated spondyloarthropathy, undifferentiated arthropathy, arthritis, inflammatory osteolysis, and chronic inflammation resulting from chronic viral or bacteria infections.
  • COPD chronic obstructive pulmonary disease
  • the compositions and methods of the invention can be used with one or more conventional therapies that are used to prevent, manage or treat the above diseases.
  • proteins of the invention and compositions comprising the same are useful for many purposes, for example, as therapeutics against a wide range of chronic and acute diseases and disorders including, but not limited to, infectious disease, including viral, bacterial and fungal diseases.
  • viral pathogens include but are not limited to: adenovirdiae (e.g., mastadenovirus and aviadeno virus), herpesviridae (e.g., herpes simplex virus 1, herpes simplex virus 2, herpes simplex virus 5, and herpes simplex virus 6), leviviridae (e.g., levivirus, enterobacteria phase MS2, allolevirus), poxyiridae (e.g., chordopoxyirinae, parapoxvirus, avipoxvirus, capripoxvirus, leporiipoxvirus, suipoxvirus, molluscipoxvirus, and entomopoxyirinae), papovaviridae (e.g., polyomavirus and papillomavirus), paramyxoviridae (e.g., paramyxovirus, parainfluenza virus 1, mobillivirus (e.g., mea
  • human immunodeficiency virus 1 and human immunodeficiency virus 2), spumavirus flaviviridae (e.g., hepatitis C virus), hepadnaviridae (e.g., hepatitis B virus), togaviridae (e.g., alphavirus (e.g., Sindbis virus) and rubivirus (e.g., rubella virus)), rhabdoviridae (e.g., vesiculovirus, lyssavirus, ephemerovirus, cytorhabdo virus, and necleorhabdo virus), arenaviridae (e.g., arenavirus, lymphocytic choriomeningitis virus, Ippy virus, and lassa virus), and coronaviridae (e.g., coronavirus and torovirus).
  • flaviviridae e.g., hepatitis C virus
  • hepadnaviridae e.g
  • bacterial pathogens include but are not limited to: but not limited to, the Aquaspirillum family, Azospirillum family, Azotobacteraceae family, Bacteroidaceae family, Bartonella species, Bdellovibrio family, Campylobacter species, Chlamydia species (e.g., Chlamydia pneumoniae ), Clostridium , Enterobacteriaceae family (e.g., Citrobacter species, Edwardsiella, Enterobacter aerogenes, Erwinia species, Escherichia coli, Hafnia species, Klebsiella species, Morganella species, Proteus vulgaris, Providencia, Salmonella species, Serratia marcescens , and Shigella flexneri ), Gardinella family, Haemophilus influenzae , Halobacteriaceae family, Helicobacter family, Legionallaceae family, Listeria species, Methylococcaceae family, mycobacteri
  • fungal pathogens include, but are not limited to: Absidia species (e.g., Absidia corymbifera and Absidia ramosa ), Aspergillus species, (e.g., Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger , and Aspergillus terreus ), Basidiobolus ranarum, Blastomyces dermatitidis, Candida species (e.g., Candida albicans, Candida glabrata, Candida kerr, Candida krusei, Candida parapsilosis, Candida pseudotropicalis, Candida quillermondii, Candida rugosa, Candida stellatoidea , and Candida tropicalis ), Coccidioides immitis, Conidiobolus species, Cryptococcus neoforms, Cunninghamella species, Dermatophytes, Histoplasma capsulatum, Microsporum gypseum,
  • the invention provides methods for preventing, managing, treating or ameliorating cancer, autoimmune, inflammatory or infectious diseases or one or more symptoms thereof, said methods comprising administering to a subject in need thereof a dose of a prophylactically or therapeutically effective amount of one or more scaffolds of the invention in combination with surgery, alone or in further combination with the administration of a standard or experimental chemotherapy, a hormonal therapy, a biological therapy/immunotherapy and/or a radiation therapy.
  • the scaffolds of the invention utilized to prevent, manage, treat or ameliorate cancer, autoimmune, inflammatory or infectious diseases or one or more symptoms or one or more symptoms thereof may or may not be conjugated or fused to a moiety (e.g., therapeutic agent or drug).
  • the invention provides methods for preventing, managing, treating or ameliorating cancer, autoimmune, inflammatory or infectious diseases or one or more symptoms or one or more symptoms thereof, said methods comprising administering to a subject in need thereof one or more scaffolds of the invention in combination with one or more of therapeutic agents that are not cancer therapeutics (a.k.a., non-cancer therapies).
  • therapeutic agents include, but are not limited to, anti-emetic agents, anti-fungal agents, anti-bacterial agents, such as antibiotics, anti-inflammatory agents, and anti-viral agents.
  • anti-emetic agents include metopimazin and metoclopramide.
  • Non-limiting examples of antifungal agents include azole drugs, imidazole, triazoles, polyene, amphotericin and yrimidine.
  • Non-limiting examples of anti-bacterial agents include dactinomycin, bleomycin, erythromycin, penicillin, mithramycin, cephalosporin, imipenem, axtreonam, vancomycin, cycloserine, bacitracin, chloramphenicol, clindamycin, tetracycline, streptomycin, tobramycin, gentamicin, amikacin, kanamycin, neomycin, spectinomycin, trimethoprim, norfloxacin, refampin, polymyxin, amphotericin B, nystatin, ketocanazole, isoniazid, metronidazole and pentamidine.
  • Non-limiting examples of antiviral agents include nucleoside analogs (e.g., zidovudine, acyclivir, gangcyclivir, vidarbine, idoxuridine, trifluridine and ribavirin), foscaret, amantadine, rimantadine, saquinavir, indinavir, ritonavir, interferon (“IFN”)- ⁇ , ⁇ or ⁇ and AZT.
  • Non-limiting examples of anti-inflammatory agents include non-steroidal anti-inflammatory drugs (“NSAIDs”), steroidal anti-inflammatory drugs, beta-agonists, anti-cholingenic agents and methylxanthines.
  • the invention comprises compositions capable of inhibiting a cancer cell phenotype.
  • the cancer cell phenotype is cell growth, cell attachment, loss of cell attachment, decreased receptor expression (such as, for example, but not limited to Eph receptors), increased receptor expression (such as, for example, but not limited to Eph receptors), metastatic potential, cell cycle inhibition, receptor tyrosine kinase activation/inhibition or others.
  • the invention comprises compositions capable of treating chronic inflammation.
  • the compositions can be used in the targeting of immune cells for destruction or deactivation.
  • the compositions are useful in targeting activated T cells, dormant T cells, B cells, neutrophils, eosiniphils, basophils, mast cells, or dendritic cells.
  • the compositions may be capable of decreasing or ablating immune cell function.
  • the invention comprises compositions capable of inhibiting or reducing angiogenesis.
  • the angiogenesis is related to tumor growth, rheumatoid arthritis, SLE, Sjogren's syndrome or others.
  • the invention comprises compositions useful for treatment of diseases of the gastrointestinal tract.
  • the scaffolds of the invention exhibit a high level of stability under low pH conditions.
  • the stability at low pH suggests that the composition will be suitable for oral administration for a variety of gastrointestinal disorders, such as irritable bowel syndrome, gastroesophageal reflux, intestinal pseudo-obstructions, dumping syndrome, intractable nausea, peptic ulcer, appendicitis, ischemic colitis, ulcerative colitis, gastritis, Helicobacter pylori disease, Crohn's disease, Whipple's disease, celiac sprue, diverticulitis, diverticulosis, dysphagia, hiatus hernia, infections esophageal disorders, hiccups, rumination and others.
  • gastrointestinal disorders such as irritable bowel syndrome, gastroesophageal reflux, intestinal pseudo-obstructions, dumping syndrome, intractable nausea, peptic ulcer, appendicitis,
  • the invention further provides combinatorial compositions and methods of using such compositions in the prevention, treatment, reduction, or amelioration of disease or symptoms thereof.
  • the scaffolds of the invention may be combined with conventional therapies suitable for the prevention, treatment, reduction or amelioration of disease or symptoms thereof. Exemplary conventional therapies can be found in the Physician's Desk Reference (56th ed., 2002 and 57th ed., 2003).
  • scaffolds of the invention may be combined with chemotherapy, radiation therapy, surgery, immunotherapy with a biologic (antibody or peptide), small molecules, or another therapy known in the art.
  • the combinatorial therapy is administered together. In other embodiments, the combinatorial therapy is administered separately.
  • the invention also provides methods of diagnosing diseases.
  • the scaffolds of the invention which bind a specific target associated with a disease may be implemented in a method used to diagnose said disease.
  • the scaffolds of the invention are used in a method to diagnose a disease in a subject, said method comprising obtaining a sample from the subject, contacting the target with the scaffold in said sample under conditions that allow the target:scaffold interaction to form, identifying the target: scaffold complex and thereby detecting the target in the sample.
  • the target is an antigen associated with disease.
  • the target is a cytokine, inflammatory mediator, and intracellular antigen, a self-antigen, a non-self antigen, an intranuclear antigen, a cell-surface antigen, a bacterial antigen, a viral antigen or a fungal antigen.
  • the disease to be diagnosed is described herein.
  • the invention also provides methods of imaging specific targets.
  • scaffolds of the invention conjugated to imaging agents such as green-fluorescent proteins, other fluorescent tags (Cy3, Cy5, Rhodamine and others), biotin, or radionuclides may be used in methods to image the presence, location, or progression of a specific target.
  • the method of imaging a target comprising a scaffold of the invention is performed in vitro.
  • the method of imaging a target comprising a scaffold of the invention is performed in vivo.
  • the method of imaging a target comprising a scaffold of the invention is performed by MRI, PET scanning, X-ray, fluorescence detection or by other detection methods known in the art.
  • the invention also provides methods of monitoring disease progression, relapse, treatment, or amelioration using the scaffolds of the invention.
  • methods of monitoring disease progression, relapse, treatment, or amelioration is accomplished by the methods of imaging, diagnosing, or contacting a compound/target with a scaffold of the invention as presented herein.
  • kits comprising the compositions of the invention (e.g. scaffolds,) and instructions for use.
  • the kit can further contain at least one additional reagent, or one or more additional scaffolds of the invention.
  • Kits typically include a label indicating the intended use of the contents of the kit.
  • the term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
  • Multivalent formats of the Tn3 scaffold have been designed.
  • the multivalent formats contain one or more Tn3 modules fused to themselves, fused to other protein motifs that can oligomerize, or fused to themselves and to other protein motifs that can oligomerize are shown in FIG. 1 .
  • the resulting molecular entity contains at least 2 Tn3 modules.
  • the polypeptide linkers connecting the Tn3 modules to each other or to other protein motifs can be structured or unstructured and with or without a function.
  • multivalent Tn3 scaffold proteins Three exemplary classes of multivalent Tn3 scaffold proteins are specifically provided: (i) linear (L) multivalent proteins containing Tn3 modules fused to each other via a polypeptide linker; (ii) antibody-like (Ig) multivalent proteins containing one or more linearly fused Tn3 modules fused to the light and heavy chains of an antibody or antibody fragment and (iii) Fc-containing multivalent proteins containing one or more linearly fused Tn3 modules fused to an antibody Fc region ( FIG. 1 ).
  • linear (L) multivalent proteins containing Tn3 modules fused to each other via a polypeptide linker (ii) antibody-like (Ig) multivalent proteins containing one or more linearly fused Tn3 modules fused to the light and heavy chains of an antibody or antibody fragment and (iii) Fc-containing multivalent proteins containing one or more linearly fused Tn3 modules fused to an antibody Fc region ( FIG. 1 ).
  • Tn3 proteins also referred to as “Tn3 proteins” or “Tn3 scaffolds” with binding specificity for human TRAIL R2 were prepared. Examples were prepared from each of the three multivalent formats described in Example 1, and all of these proteins presented 2 or more of the TRAIL R2-binding Tn3 module A1 (clone 1E11, G6 or 1C12). For several TRAIL R2-specific multivalent Tn3 protein, a corresponding control Tn3 protein (clone DE a Tn3 domain specific for the Synagis® antibody) that did not bind TRAIL R2 was also generated, differing only in the sequence and binding specificity of the component Tn3 modules.
  • Tn3 clone D1 is a Tn3 protein wherein the BC, DE, and FG loops of a 1E11 clone are replaced with alternative loops with sequences corresponding to SEQ ID NO: 99, 38, and 107, respectively (see TABLE 4). Sequence identity numbers of the multivalent Tn3 protein constructs that were expressed are shown in TABLE 2, and all the possible constructs are represented schematically in TABLE 3 and FIG. 2 . The loop sequences for the clones are provided in TABLE 4.
  • An optional component of the constructs detailed below-useful for purification Name Construct Overview A1 or B1 A( Tn3 )GGGTLG A2 or B2 S(G 4 S) 1 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 2 GTL A3 or B3 S(G 4 S) 1 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 2 GTLG A4 or B4 S(G 4 S) 1 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 3 A( Tn3 )(G 4 S) 2 GTGSAMAS(
  • Enzymes used were from New England Biolabs (Ipswich, Mass.), DNA purification kits were from Qiagen (Germantown, Md.), and DNA primers were from IDT (Coralville, Iowa).
  • Preparation of expression constructs encoding 2 or more linearly fused Tn3 modules was as follows.
  • the DNA encoding a TRAIL R2-specific Tn3 module e.g., 1E11, SEQ ID NO: 134; G6, SEQ ID NO: 138; etc.
  • the amplified DNA was divided in two, with one half digested with BpmI, and the other half digested with AcuI.
  • the digested samples were purified using a PCR cleanup kit and ligated with T4 DNA ligase to make a DNA product encoding two Tn3 modules (A2).
  • This material was purified by agarose gel electrophoresis and again split into two. Digestion with NcoI and KpnI followed by ligation into NcoI/KpnI digested pSec-oppA(L25M) (described in WO 2009/058379 A2, Example 18) yielded the bacterial expression construct for protein A2.
  • an adapter module was introduced at the 3′ end of the multi-Tn3 coding sequence within the A3 expression construct.
  • the A3 expression vector was first digested with KpnI and EcoRI, and the excised fragment was replaced with a duplex cassette containing the oligonucleotides “insert BamHI in pSec forward” (SEQ ID NO: 116) and “insert BamHI in pSec reverse” (SEQ ID NO: 117) (TABLE 5).
  • PCR amplification of A2 and A3 sequences from the corresponding pCR 2.1 TOPO constructs was performed with the primers “module insert BamHI forward” (SEQ ID NO: 118) and “module amp reverse” (SEQ ID NO: 115) (TABLE 5). Amplified products were double digested with BamHI/KpnI, and cloned into similarly digested A3 expression construct.
  • Proteins A6-A9 were expressed by transient transfection of 293F cells, as described in Example 16 of WO 2009/058379 A2. Briefly, expression vectors were generated by PCR amplifying the Tn3 module (or modules) from the bacterial expression constructs, and cloning these into in house vectors encoding the Fc region, the kappa light chain constant region and/or the CHI-hinge-CH2-CH3 heavy chain constant regions for expression of Fc fusion or antibody proteins. For protein A9, a Tn3 module replaces the antibody variable regions in the human IgG1 heavy chain and kappa light chain. The primers that add compatible NheI and KasI sites for making Fc fusions of the tandem constructs are shown in TABLE 5.
  • Tn3 proteins Monovalent or linear Tn3 proteins were expressed in BL21(DE3) E. coli (EMD/Novagen, Gibbstown, N.J.) and the His-tagged proteins were purified from the culture media using Ni NTA Superflow resin (Qiagen). Surprisingly, despite large differences in the molecular weights, all of these constructs expressed at medium to high levels in E. coli and were efficiently secreted into the media (TABLE 6 and FIG. 3 ).
  • Fc fusion and antibody-like proteins (A6-A9)
  • 293F cells were transiently transfected with the appropriate expression constructs. Harvests of supernatant were performed on days 6 and 10 and the protein was purified by protein A affinity chromatography.
  • a competition ELISA experiment was performed.
  • a 96-well NUNC MaxiSorp plate (Thermo Fisher, Rochester, N.Y.), was coated with A9(1C12) (SEQ ID NO: 154+SEQ ID NO: 145) a TRAIL R2 specific scaffold in an antibody-like format, in PBS at 2 ⁇ g/ml overnight at 4° C. Plates were blocked with PBS 0.1% Tween 20+10 mg/ml BSA.
  • the IC 50 values for A2 and A3 were at least 30-fold lower than those of the monomer A1 and are at the limit of this assay (i.e., approx. equal to the concentration of biotinylated TRAIL R2-Fc) Binding of biotinylated TRAIL R2-Fc to immobilized TRAIL R2-specific Tn3 was displaced by the TRAIL R2 binding constructs.
  • the bi- and tetravalent A2 and A3 proteins bound TRAIL R2-Fc with 30-40-fold higher affinity, which is an indication that the multiple Tn3 modules retain their binding activity and contribute to higher affinity through an avidity effect.
  • the true difference in affinity between mono- and bi- or tetravalent Tn3 proteins may be greater than 30-40-fold given the IC 50 values for A2 and A3 were approximately equal to the concentration of biotinylated TRAIL R2-Fc used in the assay (0.75 nM).
  • H2122 cells a non-small cell lung cancer adenocarcinoma cell line
  • Adherent H2122 cells were detached from tissue culture flasks using Accutase (Innovative Cell Technologies, San Diego, Calif.). Cells were rinsed with complete medium (RPMI 1640 medium supplemented with 10% FBS) and resuspended in PBS/2% FBS at approximately 2 ⁇ 10 6 cells/mL.
  • Tn3 protein A9(1E11) (SEQ ID NO: 158+SEQ ID NO: 159), a tetravalent antibody-like format multimeric scaffold, or the format-matched control Tn3 protein B9 (clone D1), were prepared at 40 nM concentrations in PBS/2% FBS.
  • Cells were plated on 96 well U-bottom plates at 75 ⁇ l per well, and protein samples were added at 25 ⁇ l per well (to a final concentration of 10 nM). The plate was incubated at 4° C. for approximately 1 hour, then washed 3 times with PBS/2% FBS. Anti-human IgG Alexa Fluor 488 conjugated secondary antibody added was added (100 ⁇ l/well), and the plate was incubated at 4° C. for approximately 30 minutes and washed as described above. Cells were resuspended in 100 ⁇ l of PBS/2% FBS, and flow cytometry analysis was performed using a BD LSR II cytometer (BD Biosciences, San Jose, Calif.).
  • Apoptotic cell death can be induced in cancer cells lines by crosslinking of cell surface TRAIL R2. This effect can be determined in cell assays that measure the number of viable cells.
  • lung carcinoma cell lines H2122 cells were plated in 96 well plates at a density of 10,000 cells/well in 75 ⁇ l of complete medium (RPMI 1640 medium supplemented with 10% FBS). Following overnight incubation at 37° C., media was supplemented with 25 ⁇ l of additional media containing a serial dilution of TRAIL R2-specific (clone 1E11) or negative control (clone D1) Tn3 proteins. All treatments were performed in duplicate wells.
  • TRAIL ligand Commercially available TRAIL ligand (Chemicon/Millipore, Billerica, Mass.) was used as a positive control for TRAIL receptor-induced cell death. After 72 hrs, the CellTiter-Glo kit from Promega (Madison, Wis.) was used according to the manufacturer's instructions to assay ATP levels, which is a measure of the number of viable cells in the culture. Assay luminescence was measured on an Envision Plate reader (PerkinElmer, Waltham, Mass.). Inhibition of cell viability was determined by dividing the luminescence values for treated cells by the average luminescence for untreated viable cells. Dose response plots of inhibition vs compound concentration were generated, and cell killing potency (EC 50 ) was determined as the concentration of protein required to inhibit 50% of the cell viability.
  • EC 50 cell killing potency
  • H2122 cells were treated with the monovalent Tn3 protein A1 (clone 1E11), and the series of linearly fused Tn3 proteins A2-A5 (each clone 1E11) which contain 2, 4, 6 or 8 Tn3 modules. While the mono- and bivalent Tn3 proteins showed no or negligible killing activity, proteins containing 4, 6 and 8 Tn3 modules potently inhibited H2122 cell viability, with potency increasing as a function of valency ( FIG. 6A ; TABLE 8).
  • Protein A3 (tetravalent) had a similar potency to TRAIL, the natural TRAIL R2 ligand, while proteins A4 (hexavalent) and A5 (octavalent) were 1-2 logs more potent. It is clear from this assay that for a given molecular format, cell killing improves with higher valency, up to a point where the assay can no longer discriminate.
  • the activity of multivalent Tn3 proteins may also be affected by the molecular format used to present the individual binding units.
  • H2122 cells were treated with different TRAIL R2-specific Tn3 proteins presenting the same number of Tn3 binding modules.
  • the ability of the tetravalent proteins A3, A7 and A9 (each clone 1E11) to induce killing of H2122 cells was tested in the cell viability assay, as was the pair of octavalent Tn3 proteins A5 and A8 (each clone 1E11).
  • Inactive mono- and bivalent proteins were included as negative controls, and TRAIL as a positive control ( FIG. 7 ; TABLE 9 and TABLE 10).
  • FIG. 7A for the three constructs tested with a valency of four, it is apparent that A3 (linear format) and A7 (Fc-fusion format) are similar in their cell killing activity and are more potent in killing H2122 cells than A9 (antibody-like fusion format). This clearly shows that the spatial orientation of Tn3 modules can have a considerable effect on bioactivity, wherein A3 is approximately 150-fold more potent than A9 protein in inhibiting 112122 cell viability (TABLE 9).
  • FIG. 7B shows that both formats of octavalent TRAIL R2-binding Tn3 proteins, A5 (linear) and A8 (Fc-fusion), have similar efficacy in inhibiting the viability of H2122 cells.
  • the EC 50 data for these constructs is shown in TABLE 9. The ability to fine tune affinity, valency, and spatial orientation affords great flexibility in terms of the ability to precisely engineer a desired therapeutic outcome.
  • TRAIL R2-specific Tn3 proteins could kill cancer cell lines other than H2122, other TRAIL R2 expressing cell lines were also tested.
  • the colorectal adenocarcinoma cell line Colo205 ( FIG. 8A ) and Jurkat T cell leukemia line ( FIG. 8B ) were tested for their ability to be killed by proteins A3 (tetravalent, linear format) (SEQ ID NO: 143) and A5 (octavalent, linear format) (SEQ ID NO: 145) (each clone G6).
  • Each cell line was incubated with A3, A5, the positive control TRAIL, or a negative control protein B5 (SEQ ID NO: 148) which does not bind TRAIL R2, and the cell viability assay was performed as described for 142122.
  • A5 shows extremely potent inhibition of cell viability.
  • the lower valency A3 protein also induces cell killing, albeit with lower potency than A5.
  • the higher valency construct shows greater activity.
  • TRAIL could also inhibit cell viability, but not octavalent negative control protein B5, which does not bind TRAIL R2.
  • M13 is a Tn3 protein that specifically binds Murine CD40L.
  • the M13 sequence corresponds to the sequence of Tn3 wherein the sequences of the BC, DE, and FG loops are replaced with alternative loops with sequences corresponding to SEQ ID NOs: 100, 104, and 110, respectively (see TABLE 4).
  • Tn3 modules length Specificity M13 (M13) 1 N/A Murine CD40L C1 (M13) 2 13 Murine CD40L C2 (M13) 2 23 Murine CD40L C3 (M13) 2 33 Murine CD40L C4 (M13) 2 43 Murine CD40L
  • Fragment A was generated by PCR amplification of Murine CD40L binder pSec-M13 cloned in the pSec-oppA(L25M) vector described in Example 1 with a primer specific for the pSec vector upstream of the Tn3 gene and primer “1-3 GS linker reverse” (SEQ ID NO: 123) (see TABLE 14 for sequences of Tn3 specific primers used).
  • Fragments B1 GS and B3GS were generated by PCR amplification of the same template with primers “1 GS linker” (SEQ ID NO: 121) or “3 Glinker” (SEQ ID NO: 122), respectively, and a primer specific for the pSec vector downstream of the Tn3 gene.
  • a primer specific for the pSec vector downstream of the Tn3 gene Upon gel-purification of the fragments, Fragment A and B1GS or Fragment A and B3GS were mixed, and the tandem constructs were generated by overlap PCR in a PCR reaction with the two pSec vector specific primers.
  • linker inserts generated by PCR amplification of the oligonucleotides “5 GSLinker” (SEQ ID NO: 124) and “7 GSLinker” (SEQ ID NO: 125), respectively, with primers “GS L Amp forward” (SEQ ID NO: 126) and “GS L Amp reverse” (SEQ ID NO: 127) were digested with PstI and XmaI and cloned into a vector fragment generated by cutting pSecM13-1GS-M13 with PstI and XmaI yielding the constructs C3(M13) and C4(M13).
  • FIG. 9B depicts an SDS-PAGE analysis of the purified protein preps under reducing and non-reducing conditions.
  • a fragment of the Murine CD40 receptor in the form of a chimeric fusion with the Fc region of IgG1 was immobilized onto a GLC chip (Bio-Rad) at a density of about 3000 response units.
  • GLC chip Bio-Rad
  • 3-fold serial dilutions of monovalent M13 or the M13 tandem bivalent constructs with different linker length were incubated for 20 min with a fixed concentration of E. coli produced recombinant Murine CD40L (0.5 ⁇ g/ml) in PBS containing 0.1% (v/v) Tween-20 and 0.5 mg/mL BSA.
  • the half maximal inhibitory concentration (IC 50 ) for the M13 monomer was 71 nM while the IC 50 for the bivalent tandem construct C1 (M13) was 29 nM. Similar IC 50 values of 5 or 6 nM were obtained for the bivalent constructs containing longer linkers (constructs C2(M13), C3(M13) and C4(M13), respectively). Due to the concentration of CD40L used in the assay, this is at the lower limit of IC 50 s that can be observed in this assay.
  • the bivalent constructs all had a lower IC 50 value compared to the monovalent construct, indicating enhanced binding activity of the bivalent tandem constructs compared to a single M13 Tn3 module.
  • the linker length in these bivalent constructs exhibits some effect on assay potency, with the shortest linker length construct having intermediate potency, while those constructs with linkers of 23 or more amino acids are equivalent in this assay.
  • the assay utilizes PBMC prepared from blood from healthy volunteers. Briefly, freshly drawn blood was collected in BD Vacutainer® CPTTM Cell Preparation Tube with heparin. After centrifugation, the cell layer containing PBMCs was collected and washed twice with PBS and once with RPMI 1640 medium. The cells were resuspended in complete RPMI 1640 medium (supplemented with 10% heat-inactivated fetal bovine serum, 1% P/S) at a concentration of 5 ⁇ 10 6 cells/ml.
  • the murine CD40L-expressing Th2 cell line D10.G4.1 was washed and resuspended in complete RPMI 160 medium at a concentration of 1 ⁇ 10 6 cells/ml.
  • M13, M13-M13 tandem bivalent constructs C 1 -C 4 , or MR1 antibody were serially diluted (1:3) in complete RPMI 1640 medium.
  • a 50 ⁇ l sample of each dilution was added to wells in a 96 well U bottom tissue culture plate.
  • Each well then received 50 ⁇ l of D10.G4.1 cells (5 ⁇ 10 4 ), and after mixing, plates were incubated at 37° C. for 1 hr. 100 ⁇ l of resuspended PBMC (5 ⁇ 10 5 cells) were then added to each well and incubated at 37° C. for 20-24 hrs.
  • PBMC peripheral blood mononuclear cells
  • APC-anti-human CD86 BD bioscience, Cat #555660
  • FITC-anti-human CD19 BD bioscience, Cat #555412
  • FACS buffer PBS pH 7.4, 1% BSA, 0.1% sodium azide
  • the bivalent M13-M13 tandem constructs all inhibited CD86 expression with an IC 50 of 100 to 200 pM, comparable to the IC 50 of the MR1 antibody (100 pM) and about 3 logs more potent than the M13 monovalent scaffold itself.
  • IC 50 100 to 200 pM
  • MR1 antibody 100 pM
  • linker length no effect of linker length was observed in this cell based assay, and bivalent constructs with linkers ranging from 13 to 43 amino acids in length all show equivalent enhanced potency relative to the monovalent protein.
  • Tn3 constructs with specificity for TRAIL R2 and Human CD40L (HuCD40L)
  • two Tn3 modules one with specificity for TRAIL R2 (clone 1E11) and one with specificity for human CD40L (clone 79) were fused together with variable length linkers separating the two modules (TABLE3 and TABLE 15).
  • the sequence of the clone 79 protein corresponds to the sequence of a Tn3 module wherein the BC, DE, and EF loops have been replaced with alternative loops corresponding to SEQ ID NOs: 101, 105, and 111, respectively.
  • constructs for the tandem bispecific scaffolds containing linkers with 1 and 3 Gly 4 Ser (GS) repeats were generated as described in Example 7 except that plasmids carrying the Tn3 variants A1 and 79 were used initially as PCR templates.
  • Construct C5 (containing a short linker derived from the natural sequence linking the second and third FnIII domains in human tenascin C, which may be considered part of the A beta strand of the third FnIII domain although it is not required for scaffold binding) and construct C7 were generated in a similar way to C6 and C8, using the additional primers listed in TABLE 17, except that “0 GSlinker reverse” was used in place of “1-3 GSLinker reverse” for C5.
  • Tn3 Linker Name modules Number of Tn3 Linker Name modules length Specificity A1 (1E11) 1 N/A TRAIL R2 79 (79) 1 N/A HuCD40L C5 (1E11 & 79) 2 8 TRAIL R2 + HuCD40L C6 (1E11 & 79) 2 13 TRAIL R2 + HuCD40L C7 (1E11 & 79) 2 18 TRAIL R2 + HuCD40L C8 (1E11 & 79) 2 23 TRAIL R2 + HuCD40L
  • Monovalent as well as tandem bispecific Tn3 scaffolds were recombinantly expressed in E. coli media as described in Example 2. Expression levels of the soluble constructs were analyzed using SDS-PAGE. FIG. 10 demonstrates acceptable expression levels for the constructs tested.
  • a capture ELISA assay was employed. Briefly, 8 ⁇ His-tagged protein constructs: A1, 79, C5, C6, C7 or C8 (see TABLE 15 for details) were captured from E. coli media onto anti-His antibody coated wells as follows. A 96-well MaxiSorb plate was coated with Qiagen anti-His antibody at 2 ⁇ g/ml overnight. The coated plate was blocked with PBS containing 0.1% v/v Tween-20 and 4% w/v skim milk powder (PBST 4% milk) for 1.5 hours.
  • PBST 4% milk 4% w/v skim milk
  • the coated plate was washed with PBST and diluted bacterial media (diluted 30-fold) containing soluble expressed proteins was added and plates were incubated at room temperature for 2 hours. After washing with PBST, wells containing the captured constructs were incubated for 1.5 hours with varying concentrations of either biotinylated TRAIL R2 ( FIG. 11A ) or a complex generated by preincubation of E. coli produced His-tagged HuCD40L with biotinylated anti-His antibody ( FIG. 11B ).
  • TRAIL R2 or HuCD40L/anti-H is antibody complex was detected with streptavidin-horseradish peroxidase (RPN1231V; GE Healthcare; 1000 ⁇ working dilution) for 20 min., washing with PBST, and detecting colorimetrically by addition of TMB substrate (Pierce). The absorbance was read at 450 nm.
  • Bispecific tandem scaffolds designated C5 to C8, comprising a TRAIL R2 specific Tn3 domain fused to a HuCD40L specific Tn3 domain bound TRAIL R2 and HuCD40L; however, the monomeric/monospecific Tn3 constructs A1 and 79 bound either TRAIL R2 or HuCD40L according to their known specificities but not both targets.
  • the donor bead population was excited with a laser at 680 nm causing the release of singlet oxygen.
  • Singlet oxygen has a limited lifetime allowing it to travel up to 200 nm by diffusion before falling back to ground state.
  • Singlet oxygen excites the acceptor beads causing light emission between 520-620 nm which is measured by the Envision reader. Only when donor and acceptor beads are in proximity is a signal generated. Thus, an increase in signal is observed when the two bead types are brought together by molecules interacting with the two targets simultaneously. In the absence of binding to either target no signal should be detected.
  • tandem bispecific constructs simultaneously bound TRAIL R2 and HuCD40L generating a strong AlphaScreen signal; however, the monovalent Tn3 scaffolds, A1 and 79, did not generate a signal indicating they could not bring donor and acceptor beads in proximity by simultaneously binding both targets.
  • HuCD40L-specific Tn3 scaffolds by guanidine hydrochloride (GuHCl) at pH 7.0 was assessed by intrinsic tryptophan fluorescence.
  • These Tn3 monomeric scaffolds contained FG loop lengths of 9, 10 or 11 amino acids.
  • Samples of 0.05 mg/mL Tn3 scaffold containing different concentrations of guanidine hydrochloride were prepared in 50 mM sodium phosphate pH 7.0. Fluorescence emission spectra were acquired on a Horiba Fluoromax-4 spectrofluorometer at an excitation wavelength of 280 nm. Relative fluorescence emission intensity at 360 nm was plotted as a function of GuHCl concentration for each protein.
  • Each scaffold contained unique BC, DE, and FG loop sequences.
  • Clones A3 (SEQ ID NO:185; note that the A3 monomeric scaffold in this example is distinct from the construct designated A3 as provided in Table 3), 71 (SEQ ID NO: 186), 79 (SEQ ID NO: 184), 127 (SEQ ID NO: 187), 252 (SEQ ID NO: 188), and 230 (SEQ ID NO: 189) were more than 50% unfolded in 3.0M GuHCl at pH 7.0, which is the GuHCl concentration required to effect 50% unfolding (C m ) of parental Tn3.
  • C m values for clones A3, 79, 127, 252, and 230 were 2.2M, 2.7M, 2.4M, 2.7M, 2.4M, respectively.
  • FG loop lengths for these clones is 11, 11, 11, 10 and 11 amino acids respectively, while the FG loop length for parental Tn3 is 10 amino acids.
  • clone 71 the only variant having an FG loop length of 9 amino acids, exhibited a Cm of 4.2M, a significantly higher stability than parental Tn3 scaffold or the other five variants tested. Results are shown in FIG. 13 .
  • this clone and two additional monomeric Tn3 scaffold proteins (A6 (SEQ ID NO: 190; note that the A6 monomeric scaffold in this example is distinct from the construct designated A6 as provided in Table 3) and P1C01 (SEQ ID NO: 191)), with an FG loop length of 9 amino acids (but different BC, DE and FG loop sequences) were analyzed by differential scanning calorimetry (DSC) and compared to the parental Tn3 scaffold which contains an FG loop that is 10 amino acids long.
  • DSC differential scanning calorimetry
  • a Tn3 library was subcloned into the pSEC expression vector.
  • This library codes for Tn3s with BC, DE, and FG loops of varying sequence as well as varying but defined length.
  • the FG loop which is the focus of these studies, can be 9, 10, or 11 residues long.
  • the BC loop may be 9, 11, or 12 residues long.
  • the DE loop in this library has a fixed length of 6 residues.
  • the subcloned library was used to transform DH5 ⁇ competent cells, from which a plasmid pool was purified and used to transform BL21(DE3) cells. BL21 colonies were sequenced to identify 96 clones which coded for full-length Tn3s.
  • the final 96 clones were grown in a 96 deep-well plate at a 500 ⁇ l scale using standard Magic Media expression (37° C. shaking for 24 hours post-innoculation) and analyzed on SDS-PAGE. 29 random clones having moderate-to-high expression levels were scaled up to 50 mL scale expression and purified using standard immobilized metal affinity chromatography. Identities of all proteins were confirmed by mass spectrometry.
  • the random clones were analyzed for stability by DSC. Briefly, DSC measurements were conducted on a VP-Capillary DSC (MicroCal). Proteins were exchanged into PBS (pH 7.2) through extensive dialysis, and adjusted to a concentration of 0.25-0.5 mg/ml for DSC analysis. Samples were scanned from 20-95° C. at a scan rate of 90° C./hour, with no repeat scan. The results are shown in TABLE 18.
  • Tn3 molecule having binding specificity for three different targets was generated and characterized.
  • D1 the Tn3 domain specific for the Synagis® antibody, was linked to 1E11, a Tn3 domain specific for TRAIL receptor 2, and 79, a Tn3 domain specific for CD40L, respectively ( FIG. 17A ).
  • the construct was expressed in BL21(DE3) E. coli cells and purified using standard methods (see FIG. 17B ).
  • the first step in developing an agonist Tn3 is to isolate a Tn3 monomer that can bind to TRAIL R2 and when linked into a multivalent format can bind two or more TRAIL R2 extracellular domains in a way that engages the apoptotic pathway. Since not all binders may act as agonists, we decided to first isolate a panel of binders and then screen for agonism in a secondary in vitro cell killing assay. We first panned a large phage displayed library of Tn3's with variation in the BC, DE, and FG loops on recombinant TRAIL R2-Fc to isolate an initial panel of binders.
  • the Tn3 scaffold chosen as the basis for this library was not a native 3 rd FnIII domain from tenascin C but a version that had an engineered disulfide to improve stability.
  • An in house Tn3/gene 3 fused phage display library was constructed containing randomization in the BC, DE, and FG loops. Multiple binders were found by a phage ELISA in which TRAIL R2 was directly coated on a plate and binding of 1:3 diluted phage in PBS+0.1% Tween 20 (PBST) 1% milk was detected by anti-M13-peroxidase conjugated antibody (GE Healthcare Biosciences, Piscataway, N.J.).
  • binders had an undesirable free cysteine in one of the loops and were not chosen for further study.
  • a subset of the clones lacking an unpaired cysteine were cloned into expression vectors generating either an Fc fusion or antibody-like construct ( FIG. 1 ) and tested in the tumor cell line H2122 for cell killing (data not shown).
  • the Fc fusion format failed to kill cells regardless of its fused Tn3
  • the antibody-like format did elicit a response for more than one binder.
  • Clone 1C12 (SEQ ID NO: 132) (see FIG. 20 ) showed the best cell killing in the initial screening assays and was therefore chosen for affinity maturation.
  • Affinity maturation was performed by saturation mutagenesis of portions of the loops using either Kunkel mutagenesis or PCR with oligonucleotides containing randomization, assembly, and ligation into the phage display vector. Round one and three consisted of saturation mutagenesis in parts of the BC and FG loops respectively and round 2 combined saturation mutagenesis of parts of all three loops separately, panning, gene shuffling, and then panning of the shuffled mutants to obtain the highest affinity output clone.
  • Improved clones were identified by a competition ELISA in which plates were coated with tetravalent, antibody-like 1C12 (SEQ ID NOs: 154 and 155), and the inhibition in binding of 0.75 nM TRAIL R2 biotin in the presence of dilutions of Tn3 in MagicMedia was measured using streptavidin-horseradish peroxidase (GE Healthcare Biosciences, Piscataway, N.J.). TMB (KPL, Gaithersburg, Md.) was added and neutralized with acid. Absorbance was read at 450 nm.
  • TRAIL R2 was immobilized on the chip and a two-fold, 12 point serial dilution of the Tn3 binders (1C12 (SEQ ID NO: 132), 1E11 (SEQ ID NO: 134), G3 (SEQ ID NO: 133), C4 (SEQ ID NO: 135), and G6 (SEQ ID NO: 138)) were prepared in PBS/Tween/0.5 mg/ml BSA, pH 7.4 at starting concentrations ranging from 36 ⁇ M to 700 nM. Samples of each concentration were injected into the six analyte channels at a flow rate of 30 ⁇ l/min. for 300 seconds. The K d was determined by using the equilibrium analysis setting within the ProteOn software. The sequences of the best clones from each round are shown in FIG. 20 . The total improvement in affinity after three rounds of affinity maturation was almost two orders of magnitude with the best clones having affinities in the 40-50 nM range (TABLE 19).
  • Size exclusion chromatography was also used to analyze purified proteins, and where necessary, aggregated material was removed on either a Superdex 75 10/300GL or Superdex 200 10/300GL column (GE Healthcare, Piscataway, N.J.), to a final level below 10% of total protein.
  • An Acrodisc unit with a Mustang E membrane was used as indicated by the manufacturer to remove endotoxin from bacterially expressed protein preparations.
  • H2122 cells were then tested for sensitivity to the agonistic antibody-like constructs using a CellTiter-Glo cell viability assay.
  • luminescence is directly proportional to the levels of ATP within a given well of a 96 well plate, which in turn is directly proportional to the amount of metabolically active viable cells.
  • cells were plated in 96 well plates at a density of 10,000 cells/well in 75 ⁇ l of complete medium (RPMI 1640 medium supplemented with 10% FBS). Following overnight incubation at 37° C., media was supplemented with 25 ⁇ l of additional media containing a serial dilution of TRAIL R2-specific or negative control proteins. All treatments were performed in duplicate wells.
  • TRAIL ligand (Chemicon/Millipore, Billerica, Mass.) was used as a positive control for TRAIL receptor-induced cell death.
  • FIG. 21 shows that as a general trend, greater affinity of the Tn3 monomer leads to a lower EC 50 of the antibody-like constructs as G6 has a lower EC 50 than 1E11 and 1E11 has a lower EC 50 than 1C12.
  • the G6 monomer SEQ ID NO: 138
  • G6 tandem 4 SEQ ID NO: 143
  • G6 tandem 6 SEQ ID NO: 192
  • G6 tandem 8 SEQ ID NO: 1405
  • IP intraperitoneal
  • C max maximum plasma concentration
  • T max refers to the time to maximum plasma concentration C max .
  • AUC area under the curve
  • T 1/2 biological half-life
  • CL/F refers to the apparent total body clearance calculated as Dose/AUC inf .
  • Tn3 biological half-life increases with increasing number of tandem Tn3's per linear molecule. Adding seven Tn3's to make a tandem 8 from a monomer increased the half life by almost 50%. Increases in valency did not affect the T. However, increases in valency from 1 to 8 resulted in approximately ten-fold and 7-fold increases in C max and AUC inf , respectively. Furthermore, when valency increase from 1 to 8, an approximately 7-fold decrease in clearance (CL/F) was observed.
  • Two libraries were made by saturation mutagenesis: one with diversity in the FG loop alone and one with diversity in the BC and FG loops.
  • a low error rate mutagenic PCR was also used to allow for mutations outside the loops that may be beneficial for enhanced cyno TRAIL R2 binding.
  • Four rounds of phage panning were done on in house produced cyno TRAIL R2, and outputs were cloned into the pSEC expression vector.
  • Tn3's were secreted into MagicMedia (Invitrogen, Carlsbad, Calif.) and were captured from supernatant using an anti-his tag antibody (R and D Systems, Minneapolis, Minn.).
  • Binding of either human or cyno TRAIL R2-Fc in solution to captured Tn3 was detected by anti-human-Fc-HRP.
  • Clones that had significant binding to cyno TRAIL R2-Fc and did not appear to lose binding to human TRAIL R2-Fc were selected for a subsequent screening ELISA in which either human or cyno TRAIL R2-Fc was coated on a plate and Tn3 supernatants were titrated and then detected with anti-his tag HRP. Because the level of variation in expression levels from clone to clone was low, and also because avidity from having divalent TRAIL R2-Fc in solution could not mask differences in Tn3 affinity, this ELISA allowed for affinity discrimination.
  • FIG. 23A It was found that one mutation, a mutation from D to G two amino acids before the DE loop, was present in all engineered cyno cross reactive clones ( FIG. 23A ).
  • This D to G mutation was engineered into the original F4 to make a clone named F4 mod 1 (SEQ ID NO: 193) and the cross reactivity for cyno was greatly improved without sacrificing binding to human TRAIL R2 ( FIG. 23B ).
  • F4 mod 1 SEQ ID NO: 193
  • FIG. 23B In this ELISA, inhibition of binding of 0.75 nM of human or cyno TRAIL R2-Fc to F4 mod 1 coated plates by purified F4 or F4 mod 1 was measured.
  • the binding of a cyno cross reactive enhanced clone to cyno TRAIL-R2-Fc be within tenfold of its binding to human TRAIL R2-Fc. Also, it is desired that the binding of a cyno cross reactive enhanced clone to cyno TRAIL-R2-Fc be within tenfold of the binding of F4 to human TRAIL R2-Fc.
  • the IC 50 for F4 mod 1 binding to cyno TRAIL R2 differs by less than three fold from the IC 50 for F4 mod 1 binding to human TRAIL R2.
  • the IC 50 for F4 mod 1 binding to human TRAIL R2 is six-fold stronger than the IC 50 for F4 binding to human TRAIL R2. Accordingly, F4 mod 1 meets the intended cross reactivity requirements.
  • Clone F4 mod 1 was further engineered to eliminate non essential mutations from germline in order to reduce possible immunogenicity risk. A panel of twelve different modifications was made to determine if there was an effect from a given mutation on the binding to both human and cyno TRAIL R2.
  • FIG. 24A shows a comparison of the final clone F4 mod 12 (SEQ ID NO: 194), which incorporates all tested germline mutations that do not affect binding, to other constructs, namely the Tn3 germline, the original F4 parent, and clone F4 mod 1 (initial enhanced cyno cross reactive engineered).
  • the amino acid sequence of F4 mod 12 starts with the native Tn3 sequence SQ, ends with L, has a reversion of the framework 2 mutation from A to T, and has a reversion of the final two amino acids of the DE loop from TA to NQ.
  • FIG. 24B shows that F4, F4 mod 1, and F4 mod 12 all are within six-fold of each other in their binding to human TRAIL R2. It also shows that F4 mod 1 and F4 mod 12 are within twofold of each other in their binding to cyno TRAIL R2.
  • FIG. 24C and FIG. 24D show no loss in potency for the germline engineered, enhanced cyno cross reactive F4 mod 12 tandems in comparison to the G6 tandems in the Colo205 cell line.
  • Immunogenicity is a potential issue for any therapeutic protein even if it is human in origin. Immunogenic responses can limit efficacy through neutralizing antibodies that can lead to inflammation.
  • One of the most important factors in the development of an immune response is the presence of epitopes that can stimulate CD4+ T cell proliferation.
  • CD8+ T cell depleted Peripheral Blood Mononuclear Cells (PBMCs) are incubated with test proteins and CD4+ T cell proliferation and IL-2 secretion are monitored (see, Baker & Jones, Curr. Opin. Drug Discovery Dev. 10:219-227, 2007; Jaber & Baker, J. Pharma. Biomed. Anal.
  • the PBMCs are isolated from a pool of donors which represent the HLA-DR allotypes expressed in the world's population.
  • the Tn3 monomers shown in FIG. 26 were expressed (with a GGGGHHHHHHHH linker-His tag), purified, and verified to be monomeric by SEC, and filtered for endotoxin removal as described above. All non-wild type clones tested were from the engineering round to enhance cyno cross reactivity ( FIG. 23A ). However, these clones had mutations to germline that have been shown not to affect binding in the F4 mod 1 background. These clones were tested in an ELISA to verify that the germlining mutations did not affect binding.
  • a stimulation index (SI) of greater than two had been previously established as a positive response for a given donor. The mean SI, or average of the SI of the positive responding population, is indicative of the strength of the response.
  • SI stimulation index
  • TABLE 23 shows the mean SI for all test proteins, which was significantly lower than for KLH and was not much higher than the cutoff of 2 for a positive mean SI.
  • the frequency of response for the test proteins was very low (ten percent or less for all tested proteins except for the control which had a response in excess of 90%).
  • Previous studies by Antitope have revealed that an EpiScreen response of less than 10% is indicative of low clinical immunogenicity risk.
  • all Tn3s tested have 10% or less frequency of response indicates a low risk of clinical immunogenicity.
  • proteins containing multiple cysteines e.g., a protein made up of tandem repeats that contains an internal disulfide bond
  • Scrambling of disulfides can reduce or eliminate expression into media. If the protein does express into media, it may be a mixture of improperly folded protein with intermolecular as well as mismatched intramolecular disulfide pairs leading to aggregation.
  • Our SEC data revealed that the majority of the tandem proteins in the bacterial expression media were in a monomeric, properly folded state. After Ni-NTA purification of the Hi-tagged G6 tandem 8 protein, approximately 15% of the protein was aggregated. The observed aggregation was reduced to 4% ( FIG. 27A ) by reduction with 2 mM DTT, indicating that most of the aggregation was disulfide mediated. Most of the aggregates were removed by SEC purification ( FIG. 27B ), as described above.
  • Colo205 a human colorectal carcinoma xenograft model.
  • Colo205 cells were maintained as a semiadhesive monolayer culture at 37° C. under 5% CO 2 in Roswell Park Memorial Institute (RPMI) 1640 medium that contained 10% fetal bovine serum (FBS). Cells harvested by trypsinization were resuspended to a final concentration of 3 ⁇ 10 7 cells/mL in Hank's balanced salt solution (HBSS).
  • RPMI Roswell Park Memorial Institute
  • TRAIL was diluted from stock solution with 20 mM Tris-HCl 300 mM Arginine-HCl pH 7 and administered intravenously (IV) at dose indicated in TABLE 24, daily for a total of 5 doses according to body weight (10 mL/kg).
  • G6 tandem 6 G6TN6
  • G6TN8 G6 tandem 8
  • IV intravenously
  • FnIII scaffolds that bind to particular targets may be generated by the methods described herein and/or known in the art (see for Example WO 2009/058379).
  • the scaffolds described herein are subjected to “loop grafting” in which the loop sequences of a scaffold of known binding specificity are grafted to the beta strand sequences of the desired scaffold (e.g., the beta strand sequences of a Tn3 scaffold or the sequences presented in FIG. 16 ).
  • loop grafting in which the loop sequences of a scaffold of known binding specificity are grafted to the beta strand sequences of the desired scaffold (e.g., the beta strand sequences of a Tn3 scaffold or the sequences presented in FIG. 16 ).
  • TABLE 27 provides a non-limiting example of loop sequences for grafting to desired beta strands, for example those provided in TABLE 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Pain & Pain Management (AREA)
  • Oncology (AREA)
  • Dispersion Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US13/640,057 2010-04-13 2011-04-12 Fibronectin type iii domain-based multimeric scaffolds Abandoned US20130079280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/640,057 US20130079280A1 (en) 2010-04-13 2011-04-12 Fibronectin type iii domain-based multimeric scaffolds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32370810P 2010-04-13 2010-04-13
US13/640,057 US20130079280A1 (en) 2010-04-13 2011-04-12 Fibronectin type iii domain-based multimeric scaffolds
PCT/US2011/032184 WO2011130324A1 (en) 2010-04-13 2011-04-12 Fibronectin type iii domain-based multimeric scaffolds

Publications (1)

Publication Number Publication Date
US20130079280A1 true US20130079280A1 (en) 2013-03-28

Family

ID=44799000

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/640,057 Abandoned US20130079280A1 (en) 2010-04-13 2011-04-12 Fibronectin type iii domain-based multimeric scaffolds
US13/639,381 Active 2031-05-08 US9212231B2 (en) 2010-04-13 2011-04-12 TRAIL R2-specific multimeric scaffolds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/639,381 Active 2031-05-08 US9212231B2 (en) 2010-04-13 2011-04-12 TRAIL R2-specific multimeric scaffolds

Country Status (13)

Country Link
US (2) US20130079280A1 (es)
EP (2) EP2560684A4 (es)
JP (2) JP2013523179A (es)
KR (2) KR101747991B1 (es)
CN (2) CN102906112B (es)
AU (2) AU2011240620A1 (es)
BR (1) BR112012026003B1 (es)
CA (2) CA2795325A1 (es)
ES (1) ES2755398T3 (es)
MX (1) MX341119B (es)
RU (1) RU2628699C2 (es)
SG (2) SG10201505470QA (es)
WO (2) WO2011130328A1 (es)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728483B2 (en) 2008-05-22 2014-05-20 Bristol-Myers Squibb Company Multivalent fibronectin based scaffold domain proteins
US8853154B2 (en) 2012-09-13 2014-10-07 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US9017655B2 (en) 2008-11-24 2015-04-28 Bristol-Myers Squibb Company Bispecific EGFR/IGFIR binding molecules
WO2015164588A1 (en) 2014-04-23 2015-10-29 Abbvie, Inc. Single-chain trail-receptor agonist proteins
WO2015148269A3 (en) * 2014-03-24 2015-12-23 Medimmune, Llc Stabilized tnfn3 scaffold proteins
US9234028B2 (en) 2008-02-14 2016-01-12 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind EGFR
US9328157B2 (en) 2003-12-05 2016-05-03 Bristol-Myers Squibb Company Inhibitors of type 2 vascular endothelial growth factor receptors
US9416170B2 (en) 2011-10-31 2016-08-16 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
WO2016154530A1 (en) * 2015-03-26 2016-09-29 Duke University Targeted therapeutic agents comprising multivalent protein-biopolymer fusions
US9469676B2 (en) 2011-04-13 2016-10-18 Bristol-Myers Squibb Company Fc fusion proteins comprising novel linkers or arrangements
WO2016179518A2 (en) 2015-05-06 2016-11-10 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
US9562089B2 (en) 2010-05-26 2017-02-07 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability
US10065987B2 (en) 2013-02-12 2018-09-04 Bristol-Myers Squibb Company High pH protein refolding methods
US20180251524A1 (en) * 2017-02-13 2018-09-06 Regents Of The University Of Minnesota EpCAM TARGETED POLYPEPTIDES, CONJUGATES THEREOF, AND METHODS OF USE THEREOF
US10221232B2 (en) 2006-11-22 2019-03-05 Bristol-Myers Squibb Company Methods of treating cancer by administering IGF-IR binding molecules
US10364451B2 (en) 2013-05-30 2019-07-30 Duke University Polymer conjugates having reduced antigenicity and methods of using the same
US10392611B2 (en) 2013-05-30 2019-08-27 Duke University Polymer conjugates having reduced antigenicity and methods of using the same
US10787498B2 (en) 2013-02-06 2020-09-29 Bristol-Myers Squibb Company Fibronectin type III domain proteins with enhanced solubility
CN111944204A (zh) * 2020-07-24 2020-11-17 南京理工大学 一种Fe3O4磁性细菌纤维素及其制备方法
US10898538B2 (en) 2011-05-17 2021-01-26 Bristol-Myers Squibb Company Methods for maintaining pegylation of polypeptides
US11007251B2 (en) 2015-12-17 2021-05-18 The Johns Hopkins University Ameliorating systemic sclerosis with death receptor agonists
US11084879B2 (en) 2016-04-07 2021-08-10 The Johns Hopkins University Compositions and methods for treating pancreatitis and pain with death receptor agonists
US11135301B2 (en) 2016-09-14 2021-10-05 Duke University Triblock polypeptide-based nanoparticles for the delivery of hydrophilic drugs
US11155584B2 (en) 2016-09-23 2021-10-26 Duke University Unstructured non-repetitive polypeptides having LCST behavior
US11299528B2 (en) 2014-03-11 2022-04-12 D&D Pharmatech Inc. Long acting TRAIL receptor agonists for treatment of autoimmune diseases
US11447538B2 (en) 2013-02-01 2022-09-20 Bristol-Myers Squibb Company Fibronectin based scaffold proteins
US11458205B2 (en) 2015-08-04 2022-10-04 Duke University Genetically encoded intrinsically disordered stealth polymers for delivery and methods of using same
KR20220136463A (ko) * 2013-10-14 2022-10-07 얀센 바이오테크 인코포레이티드 시스테인 조작된 피브로넥틴 iii형 도메인 결합 분자
US11467156B2 (en) 2016-06-01 2022-10-11 Duke University Nonfouling biosensors
US11491206B1 (en) 2018-02-13 2022-11-08 Duke University Compositions and methods for the treatment of trail-resistant cancer
US11512314B2 (en) 2019-07-12 2022-11-29 Duke University Amphiphilic polynucleotides
US11554097B2 (en) 2017-05-15 2023-01-17 Duke University Recombinant production of hybrid lipid-biopolymer materials that self-assemble and encapsulate agents
US11649275B2 (en) 2018-08-02 2023-05-16 Duke University Dual agonist fusion proteins
US11648200B2 (en) 2017-01-12 2023-05-16 Duke University Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature triggered hierarchical self-assembly
US11680083B2 (en) 2017-06-30 2023-06-20 Duke University Order and disorder as a design principle for stimuli-responsive biopolymer networks
US11752213B2 (en) 2015-12-21 2023-09-12 Duke University Surfaces having reduced non-specific binding and antigenicity
US11767353B2 (en) 2020-06-05 2023-09-26 Theraly Fibrosis, Inc. Trail compositions with reduced immunogenicity

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2795325A1 (en) * 2010-04-13 2011-10-20 Medimmune, Llc Fibronectin type iii domain-based multimeric scaffolds
TW201138808A (en) 2010-05-03 2011-11-16 Bristol Myers Squibb Co Serum albumin binding molecules
EP2710382B1 (en) 2011-05-17 2017-10-18 Bristol-Myers Squibb Company Improved methods for the selection of binding proteins
CA2851667A1 (en) * 2011-10-11 2013-04-18 Medimmune, Llc Cd40l-specific tn3-derived scaffolds and methods of use thereof
ES2749349T3 (es) 2011-11-07 2020-03-19 Medimmune Llc Proteínas de unión multiespecíficas y multivalentes y usos de las mismas
DK2776460T3 (en) 2011-11-08 2018-08-06 Umc Utrecht Holding Bv Fusion protein comprising interleukin 4 and interleukin 10
US9695228B2 (en) 2012-11-21 2017-07-04 Janssen Biotech, Inc. EGFR and c-Met fibronectin type III domain binding molecules
EP2956468B1 (en) 2013-02-12 2020-06-10 Bristol-Myers Squibb Company Tangential flow filtration based protein refolding methods
WO2014165093A2 (en) 2013-03-13 2014-10-09 Bristol-Myers Squibb Company Fibronectin based scaffold domains linked to serum albumin or a moiety binding thereto
DK2970473T3 (da) 2013-03-14 2017-11-27 Bristol Myers Squibb Co Kombination af dr5-agonist og anti-pd-1-antagonist og fremgangsmåder til anvendelse heraf
CN113150117A (zh) 2014-03-20 2021-07-23 百时美施贵宝公司 新的结合血清白蛋白的纤连蛋白iii型结构域
EP3647322B1 (en) 2014-03-20 2021-10-20 Bristol-Myers Squibb Company Stabilized fibronectin based scaffold molecules
CN114057857A (zh) * 2014-06-20 2022-02-18 豪夫迈·罗氏有限公司 基于chagasin的支架组合物、方法和应用
CN106922129B (zh) 2014-10-01 2024-02-20 免疫医疗有限责任公司 轭合多肽的方法
CN107207379B (zh) 2014-11-25 2021-08-10 百时美施贵宝公司 用于生物制品的18f-放射性标记的方法和组合物
EP3268389B1 (en) 2015-03-12 2020-09-30 Medimmune, LLC Method of purifying albumin-fusion proteins
US11124791B2 (en) 2015-09-14 2021-09-21 Arizona Board Of Regents On Behalf Of Arizona State University Generating recombinant affinity reagents with arrayed targets
ES2809125T3 (es) * 2015-09-23 2021-03-03 Bristol Myers Squibb Co Moléculas de armazón a base de fibronectina de unión a glipicano-3
EP3708580B1 (en) 2015-09-23 2023-11-01 Bristol-Myers Squibb Company Fast-off rate serum albumin binding fibronectin type iii domains
WO2017069627A1 (en) * 2015-10-23 2017-04-27 Universiteit Twente Integrin binding peptides and uses thereof
CN105802970A (zh) * 2016-05-30 2016-07-27 东北师范大学 靶向沉默Gβ1的shRNA
US10994033B2 (en) 2016-06-01 2021-05-04 Bristol-Myers Squibb Company Imaging methods using 18F-radiolabeled biologics
CN109689080A (zh) 2016-06-21 2019-04-26 詹森生物科技公司 半胱氨酸工程化iii型纤连蛋白结构域结合分子
CN110225770B (zh) 2016-12-14 2022-04-26 杨森生物科技公司 结合cd8a的纤连蛋白iii型结构域
WO2018111978A1 (en) 2016-12-14 2018-06-21 Janssen Biotech, Inc. Cd137 binding fibronectin type iii domains
US10597438B2 (en) 2016-12-14 2020-03-24 Janssen Biotech, Inc. PD-L1 binding fibronectin type III domains
AR111963A1 (es) 2017-05-26 2019-09-04 Univ California Método y moléculas
WO2019165017A1 (en) * 2018-02-23 2019-08-29 The University Of Chicago Methods and composition involving thermophilic fibronectin type iii (fn3) monobodies
PE20210320A1 (es) 2018-06-01 2021-02-16 Novartis Ag Moleculas de union contra bcma y usos de las mismas
CN110724198B (zh) * 2018-07-17 2023-05-26 上海一宸医药科技有限公司 长效纤连蛋白iii型结构域融合蛋白
EP3715374A1 (en) 2019-03-23 2020-09-30 Ablevia biotech GmbH Compound for the sequestration of undesirable antibodies in a patient
EP3715376A1 (en) 2019-03-23 2020-09-30 Ablevia biotech GmbH Compound for the prevention or treatment of myasthenia gravis
US11986536B2 (en) 2019-03-23 2024-05-21 Ablevia Biotech Gmbh Compound for the sequestration of undesirable antibodies in a patient
AU2020258026A1 (en) 2019-04-19 2021-11-11 Synerkine Pharma B.V. A fusion protein comprising IL13
US20210139585A1 (en) 2019-05-21 2021-05-13 Novartis Ag Cd19 binding molecules and uses thereof
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
CA3140142A1 (en) 2019-05-21 2020-11-26 Novartis Ag Trispecific binding molecules against bcma and uses thereof
JP2022541761A (ja) 2019-07-15 2022-09-27 メドイミューン・リミテッド タンパク質二量体化の三分子システム及び使用方法
US11781138B2 (en) 2019-10-14 2023-10-10 Aro Biotherapeutics Company FN3 domain-siRNA conjugates and uses thereof
CN114786682A (zh) 2019-10-14 2022-07-22 Aro生物疗法公司 结合cd71的纤维粘连蛋白iii型结构域
CN111217903B (zh) * 2020-02-25 2022-11-15 芜湖天明生物技术有限公司 一种重组人纤连蛋白ⅲ1-c及其制备方法和应用
EP4110407A1 (en) 2020-02-28 2023-01-04 Bristol-Myers Squibb Company Radiolabeled fibronectin based scaffolds and antibodies and theranostic uses thereof
US20230128499A1 (en) 2020-03-27 2023-04-27 Novartis Ag Bispecific combination therapy for treating proliferative diseases and autoimmune diseases
TW202228784A (zh) 2020-09-23 2022-08-01 奧地利商艾柏力維亞生技有限公司 用以於一患者中螯合非預期的抗peg抗體的化合物
WO2022063879A1 (en) 2020-09-23 2022-03-31 Ablevia Biotech Gmbh Compound for the sequestration of undesirable antibodies in a patient
CA3192748A1 (en) 2020-09-23 2022-03-31 Oskar SMRZKA Compound for increasing efficacy of viral vectors
EP4217402A1 (en) 2020-09-23 2023-08-02 Ablevia biotech GmbH Compound for the prevention or treatment of autoantibody-mediated conditions
WO2022063887A1 (en) 2020-09-23 2022-03-31 Ablevia Biotech Gmbh Compound for increasing the efficacy of factor viii replacement therapy
AU2021348225A1 (en) 2020-09-24 2023-05-18 Ablevia Biotech Gmbh Compound for the prevention or treatment of myasthenia gravis
EP4240494A1 (en) 2020-11-06 2023-09-13 Novartis AG Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
JP2023548529A (ja) 2020-11-06 2023-11-17 ノバルティス アーゲー Cd19結合分子及びその使用
WO2023180502A1 (en) 2022-03-24 2023-09-28 Ablevia Biotech Gmbh Compound for increasing efficacy of oncolytic viruses
KR102459313B1 (ko) * 2022-04-11 2022-10-26 주식회사 대영방재산업 내구성이 개선된 소방용 수격 흡수기

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270604A1 (en) * 1998-12-10 2006-11-30 Compound Therapeutics, Inc. Pharmaceutical preparations of Fn3 polypeptides for human treatments

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482410B1 (en) 1994-09-16 2002-11-19 The Scripps Research Institute Cytotactin derivatives that stimulate attachment and neurite outgrowth, and methods of making same
ES2301198T3 (es) 1997-06-12 2008-06-16 Novartis International Pharmaceutical Ltd. Polipeptidos artificiales de anticuerpos.
AU731758B2 (en) 1998-07-08 2001-04-05 Mitsui Chemicals, Inc. Method for secretory production of human growth hormone
DE69901569T2 (de) * 1998-08-28 2002-12-19 Genentech Inc Humane antikörper gegen faktor ix/ixa
JP4562286B2 (ja) 1998-12-10 2010-10-13 ブリストル−マイヤーズ スクウィブ カンパニー 抗体模倣物および他の結合タンパク質のタンパク質骨格
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
ES2564161T3 (es) 2000-07-11 2016-03-18 Research Corporation Technologies, Inc Polipéptidos de anticuerpos artificiales
CA2418835A1 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
CA2915148C (en) 2002-03-29 2018-03-13 Eugenio Ferrari Enhanced protein expression in bacillus
WO2003104418A2 (en) 2002-06-06 2003-12-18 Research Corporation Technologies, Inc. Reconstituted polypeptides
AU2003247609A1 (en) 2002-06-24 2004-01-06 Genentech, Inc. Apo-2 ligand/trail variants and uses thereof
EP1711196A4 (en) 2003-12-05 2011-09-14 Bristol Myers Squibb Co INHIBITORS OF TYPE-2 VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTORS
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
GB0416651D0 (en) 2004-07-26 2004-08-25 Proteo Target Aps Polypeptide
CN101300273B (zh) * 2005-08-31 2013-05-22 安姆根有限公司 Trail受体2多肽和抗体
US10183986B2 (en) 2005-12-15 2019-01-22 Industrial Technology Research Institute Trimeric collagen scaffold antibodies
EP1989529A4 (en) * 2006-02-13 2010-09-01 Agency Science Tech & Res PROCESS FOR PROCESSING A BIOLOGICAL AND / OR CHEMICAL SAMPLE
CN101074261A (zh) * 2006-04-30 2007-11-21 北京同为时代生物技术有限公司 Trail受体1和/或trail受体2特异性抗体及其应用
WO2008031098A1 (en) 2006-09-09 2008-03-13 The University Of Chicago Binary amino acid libraries for fibronectin type iii polypeptide monobodies
EP2727936B1 (en) 2006-11-22 2016-09-07 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins for tyrosine kinases receptors, including IGF-IR
US20090176654A1 (en) 2007-08-10 2009-07-09 Protelix, Inc. Universal fibronectin type III binding-domain libraries
US8470966B2 (en) 2007-08-10 2013-06-25 Protelica, Inc. Universal fibronectin type III binding-domain libraries
WO2009058379A2 (en) * 2007-10-31 2009-05-07 Medimmune, Llc Protein scaffolds
EA201000979A1 (ru) 2007-12-27 2011-02-28 Новартис Аг Улучшенные связывающие молекулы на основе фибронектина и их применение
US9296810B2 (en) 2008-05-02 2016-03-29 Novartis Ag Fibronectin-based binding molecules and uses thereof
AR071874A1 (es) * 2008-05-22 2010-07-21 Bristol Myers Squibb Co Proteinas de dominio de armazon basadas en fibronectina multivalentes
AU2009303304A1 (en) * 2008-10-10 2010-04-15 Anaphore, Inc. Polypeptides that bind TRAIL-RI and TRAIL-R2
KR101781907B1 (ko) * 2008-10-31 2017-09-26 얀센 바이오테크 인코포레이티드 파이브로넥틴 타입 ⅲ 도메인 기반 스캐폴드 조성물, 방법 및 용도
TWI496582B (zh) 2008-11-24 2015-08-21 必治妥美雅史谷比公司 雙重專一性之egfr/igfir結合分子
EP2396011B1 (en) 2009-02-12 2016-04-13 Janssen Biotech, Inc. Fibronectin type iii domain based scaffold compositions, methods and uses
WO2011020033A2 (en) 2009-08-13 2011-02-17 Massachusetts Institute Of Technology Engineered proteins including mutant fibronectin domains
CA2795325A1 (en) * 2010-04-13 2011-10-20 Medimmune, Llc Fibronectin type iii domain-based multimeric scaffolds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270604A1 (en) * 1998-12-10 2006-11-30 Compound Therapeutics, Inc. Pharmaceutical preparations of Fn3 polypeptides for human treatments

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995131B2 (en) 2003-12-05 2021-05-04 Bristol-Myers Squibb Company Libraries of modified fibronectin type III tenth domain-containing polypeptides
US9862758B2 (en) 2003-12-05 2018-01-09 Bristol-Myers Quibb Company Inhibitors of type 2 vascular endothelial growth factor receptors
US9328157B2 (en) 2003-12-05 2016-05-03 Bristol-Myers Squibb Company Inhibitors of type 2 vascular endothelial growth factor receptors
US10221232B2 (en) 2006-11-22 2019-03-05 Bristol-Myers Squibb Company Methods of treating cancer by administering IGF-IR binding molecules
US11149077B2 (en) 2006-11-22 2021-10-19 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins for tyrosine kinases receptors, including IGF-IR
US10781247B2 (en) 2008-02-14 2020-09-22 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind EGFR
US9920108B2 (en) 2008-02-14 2018-03-20 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind EGFR
US9234028B2 (en) 2008-02-14 2016-01-12 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind EGFR
US8728483B2 (en) 2008-05-22 2014-05-20 Bristol-Myers Squibb Company Multivalent fibronectin based scaffold domain proteins
US9902762B2 (en) 2008-05-22 2018-02-27 Bristol-Myers Squibb Company Multivalent fibronectin based scaffold domain proteins
US10774130B2 (en) 2008-05-22 2020-09-15 Bristol-Myers Squibb Company Method of treating cancer by administering multivalent fibronectin based scaffold domain proteins
US9017655B2 (en) 2008-11-24 2015-04-28 Bristol-Myers Squibb Company Bispecific EGFR/IGFIR binding molecules
US9771411B2 (en) 2008-11-24 2017-09-26 Bristol-Myers Squibb Company Method of treating cancer by administering EGFR and EGFR/IGFIR binding molecules
US10954286B2 (en) 2008-11-24 2021-03-23 Bristol-Myers Squibb Company Bispecific EGFR/IGFIR binding molecules
US10183987B2 (en) 2008-11-24 2019-01-22 Bristol-Myers Squibb Company Polynucleotides encoding bispecific EGFR/IGF-IR binding molecules
US10273286B2 (en) 2010-05-26 2019-04-30 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability
US11161893B2 (en) 2010-05-26 2021-11-02 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability
US9562089B2 (en) 2010-05-26 2017-02-07 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability
US10214579B2 (en) 2011-04-13 2019-02-26 Bristol-Myers Squibb Company Fc fusion proteins comprising novel linkers or arrangements
US9469676B2 (en) 2011-04-13 2016-10-18 Bristol-Myers Squibb Company Fc fusion proteins comprising novel linkers or arrangements
US10898538B2 (en) 2011-05-17 2021-01-26 Bristol-Myers Squibb Company Methods for maintaining pegylation of polypeptides
US11279751B2 (en) 2011-10-31 2022-03-22 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US9522951B2 (en) 2011-10-31 2016-12-20 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US9765132B2 (en) 2011-10-31 2017-09-19 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US10604556B2 (en) 2011-10-31 2020-03-31 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US9416170B2 (en) 2011-10-31 2016-08-16 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US10464995B2 (en) 2011-10-31 2019-11-05 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US11408093B2 (en) 2011-10-31 2022-08-09 Bristol-Myers Squibb Company Fibronectin binding domains with reduced immunogenicity
US8933199B2 (en) 2012-09-13 2015-01-13 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US9662373B2 (en) 2012-09-13 2017-05-30 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US8993265B2 (en) 2012-09-13 2015-03-31 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US10245302B2 (en) 2012-09-13 2019-04-02 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US9493546B2 (en) 2012-09-13 2016-11-15 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US8853154B2 (en) 2012-09-13 2014-10-07 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US10406212B2 (en) 2012-09-13 2019-09-10 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US11813315B2 (en) 2012-09-13 2023-11-14 Bristol-Myers Squibb Company Fibronectin based scaffold domain proteins that bind to myostatin
US11447538B2 (en) 2013-02-01 2022-09-20 Bristol-Myers Squibb Company Fibronectin based scaffold proteins
US10787498B2 (en) 2013-02-06 2020-09-29 Bristol-Myers Squibb Company Fibronectin type III domain proteins with enhanced solubility
US11512124B2 (en) 2013-02-06 2022-11-29 Bristol-Myers Squibb Company Fibronectin type III domain proteins with enhanced solubility
US10065987B2 (en) 2013-02-12 2018-09-04 Bristol-Myers Squibb Company High pH protein refolding methods
US11345722B2 (en) 2013-02-12 2022-05-31 Bristol-Myers Squibb Company High pH protein refolding methods
US10364451B2 (en) 2013-05-30 2019-07-30 Duke University Polymer conjugates having reduced antigenicity and methods of using the same
US10392611B2 (en) 2013-05-30 2019-08-27 Duke University Polymer conjugates having reduced antigenicity and methods of using the same
KR20220136463A (ko) * 2013-10-14 2022-10-07 얀센 바이오테크 인코포레이티드 시스테인 조작된 피브로넥틴 iii형 도메인 결합 분자
KR102478402B1 (ko) 2013-10-14 2022-12-15 얀센 바이오테크 인코포레이티드 시스테인 조작된 피브로넥틴 iii형 도메인 결합 분자
US11299528B2 (en) 2014-03-11 2022-04-12 D&D Pharmatech Inc. Long acting TRAIL receptor agonists for treatment of autoimmune diseases
WO2015148269A3 (en) * 2014-03-24 2015-12-23 Medimmune, Llc Stabilized tnfn3 scaffold proteins
WO2015164588A1 (en) 2014-04-23 2015-10-29 Abbvie, Inc. Single-chain trail-receptor agonist proteins
EP3134430B1 (en) * 2014-04-23 2018-03-21 Abbvie Inc. Single-chain trail-receptor agonist proteins
US9908927B2 (en) 2014-04-23 2018-03-06 Abbvie Inc. Single-chain trail-receptor agonist proteins
US10385115B2 (en) 2015-03-26 2019-08-20 Duke University Fibronectin type III domain-based fusion proteins
WO2016154530A1 (en) * 2015-03-26 2016-09-29 Duke University Targeted therapeutic agents comprising multivalent protein-biopolymer fusions
WO2016179518A2 (en) 2015-05-06 2016-11-10 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
CN107847594A (zh) * 2015-05-06 2018-03-27 詹森生物科技公司 前列腺特异性膜抗原(psma)双特异性结合剂及其用途
EP3291836A4 (en) * 2015-05-06 2018-11-14 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
US10844122B2 (en) 2015-05-06 2020-11-24 Janssen Biotech, Inc. Prostate specific membrane antigen (PSMA) bispecific binding agents and uses thereof
WO2016179518A3 (en) * 2015-05-06 2016-12-15 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
US11458205B2 (en) 2015-08-04 2022-10-04 Duke University Genetically encoded intrinsically disordered stealth polymers for delivery and methods of using same
US11007251B2 (en) 2015-12-17 2021-05-18 The Johns Hopkins University Ameliorating systemic sclerosis with death receptor agonists
US11752213B2 (en) 2015-12-21 2023-09-12 Duke University Surfaces having reduced non-specific binding and antigenicity
US11084879B2 (en) 2016-04-07 2021-08-10 The Johns Hopkins University Compositions and methods for treating pancreatitis and pain with death receptor agonists
US11467156B2 (en) 2016-06-01 2022-10-11 Duke University Nonfouling biosensors
US11135301B2 (en) 2016-09-14 2021-10-05 Duke University Triblock polypeptide-based nanoparticles for the delivery of hydrophilic drugs
US11155584B2 (en) 2016-09-23 2021-10-26 Duke University Unstructured non-repetitive polypeptides having LCST behavior
US11648200B2 (en) 2017-01-12 2023-05-16 Duke University Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature triggered hierarchical self-assembly
US20180251524A1 (en) * 2017-02-13 2018-09-06 Regents Of The University Of Minnesota EpCAM TARGETED POLYPEPTIDES, CONJUGATES THEREOF, AND METHODS OF USE THEREOF
US10787499B2 (en) * 2017-02-13 2020-09-29 Regents Of The University Of Minnesota EpCAM targeted polypeptides, conjugates thereof, and methods of use thereof
US11554097B2 (en) 2017-05-15 2023-01-17 Duke University Recombinant production of hybrid lipid-biopolymer materials that self-assemble and encapsulate agents
US11680083B2 (en) 2017-06-30 2023-06-20 Duke University Order and disorder as a design principle for stimuli-responsive biopolymer networks
US11491206B1 (en) 2018-02-13 2022-11-08 Duke University Compositions and methods for the treatment of trail-resistant cancer
US11649275B2 (en) 2018-08-02 2023-05-16 Duke University Dual agonist fusion proteins
US11512314B2 (en) 2019-07-12 2022-11-29 Duke University Amphiphilic polynucleotides
US11965164B2 (en) 2019-07-12 2024-04-23 Duke University Amphiphilic polynucleotides
US11767353B2 (en) 2020-06-05 2023-09-26 Theraly Fibrosis, Inc. Trail compositions with reduced immunogenicity
CN111944204A (zh) * 2020-07-24 2020-11-17 南京理工大学 一种Fe3O4磁性细菌纤维素及其制备方法

Also Published As

Publication number Publication date
EP2560684A1 (en) 2013-02-27
KR20130062280A (ko) 2013-06-12
CN102906112B (zh) 2016-12-07
RU2628699C2 (ru) 2017-08-21
CN102834114A (zh) 2012-12-19
KR101747991B1 (ko) 2017-06-19
CN102906112A (zh) 2013-01-30
WO2011130328A1 (en) 2011-10-20
US20130096058A1 (en) 2013-04-18
CA2796010C (en) 2020-05-12
RU2012147960A (ru) 2014-05-20
MX341119B (es) 2016-08-09
EP2558495A1 (en) 2013-02-20
EP2558495B1 (en) 2019-07-17
MX2012011840A (es) 2012-12-17
ES2755398T3 (es) 2020-04-22
BR112012026003B1 (pt) 2022-03-15
SG184185A1 (en) 2012-10-30
CA2796010A1 (en) 2011-10-20
AU2011240620A1 (en) 2012-10-18
JP2013523179A (ja) 2013-06-17
BR112012026003A2 (pt) 2020-09-01
KR20130056870A (ko) 2013-05-30
CA2795325A1 (en) 2011-10-20
EP2558495A4 (en) 2015-08-05
AU2011240624B2 (en) 2017-02-23
EP2560684A4 (en) 2013-11-20
US9212231B2 (en) 2015-12-15
JP2013529070A (ja) 2013-07-18
SG10201505470QA (en) 2015-08-28
AU2011240624A1 (en) 2012-10-18
WO2011130324A1 (en) 2011-10-20
JP6041799B2 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
US20130079280A1 (en) Fibronectin type iii domain-based multimeric scaffolds
AU2008319298B2 (en) Protein scaffolds
US20200377603A1 (en) Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
AU2015202477C1 (en) Antibodies that bind csf1r
US9290573B2 (en) Therapeutic low density lipoprotein-related protein 6 (LRP6) multivalent antibodies

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDIMMUNE, LLC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BACA, MANUEL;THISTED, THOMAS;SWERS, JEFFREY;SIGNING DATES FROM 20121113 TO 20121127;REEL/FRAME:029357/0338

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION