TW202228784A - 用以於一患者中螯合非預期的抗peg抗體的化合物 - Google Patents

用以於一患者中螯合非預期的抗peg抗體的化合物 Download PDF

Info

Publication number
TW202228784A
TW202228784A TW110134895A TW110134895A TW202228784A TW 202228784 A TW202228784 A TW 202228784A TW 110134895 A TW110134895 A TW 110134895A TW 110134895 A TW110134895 A TW 110134895A TW 202228784 A TW202228784 A TW 202228784A
Authority
TW
Taiwan
Prior art keywords
peg
sadc
antibody
compound
active agent
Prior art date
Application number
TW110134895A
Other languages
English (en)
Inventor
奧斯卡 司馬斯加
貝提納 萬可
Original Assignee
奧地利商艾柏力維亞生技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商艾柏力維亞生技有限公司 filed Critical 奧地利商艾柏力維亞生技有限公司
Publication of TW202228784A publication Critical patent/TW202228784A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/644Transferrin, e.g. a lactoferrin or ovotransferrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen

Abstract

本發明提供一種用以於一患者中螯合非預期的抗聚乙二醇(PEG)抗體的化合物,該非預期的抗PEG抗體干擾經PEG修飾的活性劑﹝例如,經PEG修飾的酵素或抗體﹞的治療。該化合物包含一惰性的生物聚合物框架及一或多個PEG鏈。另提供的為包含該化合物的醫藥組合物,以及用以螯合存在於一個體中一或多個抗PEG抗體的方法,與用以抑制使用一經PEG修飾的活性劑進行治療所產生的免疫反應的方法。

Description

用以於一患者中螯合非預期的抗PEG抗體的化合物
本發明的領域係關於一種用以於一個體中螯合非預期的抗PEG抗體的化合物。
PEG為一種多功能、高度靈活、親水性的聚合物,由重複的乙二醇聚醚(ethylene glycol polyether)次單元所組成,可以用於許多不同的產品及應用。PEG廣泛地用於化妝品產業、用於基於微脂體(liposome)及基於奈米粒子的產品,以及用於廣泛的生物應用,其亦廣泛地用於醫學﹝例如作為瀉藥(laxative)使用、用於大腸鏡(colonoscopy)或作為用於醫藥產品的賦形劑及增溶劑(solubilizer)。
最近,PEG亦被證明自身為非常有用的化學實體可以對現代生物藥學產品進行功能性修飾:PEG可以共價地連接一藥物﹝〝PEG修飾(PEGylation)〞﹞,進而修飾其藥理及製劑特性。PEG修飾改變包含穩定性、代謝、溶解度、吸附性、藥物動力學及藥物分佈等數個生物學上、藥理學上及生物物理學上的參數。PEG修飾亦被用以遮蔽藥物對抗體液性及細胞性免疫原性,其對於包含非人類胺基酸序列的大蛋白藥物為尤其重要的。PEG還被用以控制釋放及用以降低藥物的注射量。
儘管PEG自身(per se)為非免疫原性的、耐受性良好的化學實體,但眾所周知地,工業化世界中有相當一部分的族群攜帶有短暫或持久的抗PEG抗體﹝Garay等人,2012年;Yang等人,2016年;Lubich等人,2016年﹞,抗PEG抗體不僅存在於接受經PEG修飾的藥物的治療的患者中,亦存在於高達25%的健康捐血者中,相較於20年前的0.2%﹝如Armstrong所評論,2009年﹞。前述觀察到的於族群中的抗PEG抗體的增加,可能部分歸因於分析方法的改進,進而扭曲我們的觀點﹝Yang等人,2016年﹞,但是廣泛暴露於PEG及包含PEG的治療性化合物及疫苗、化妝品、加工食品或尚未確定的來源的貢獻,仍有待確認。
抗PEG抗體可以為不同的同型(isotype)﹝主要是IgM及IgG;參照Yang等人,2016年,Lubich等人,2016﹞,且可以優先靶向PEG、甲氧基─PEG或羥基─PEG的不同部分﹝Sherman等人,2012年;Saifer等人,2014年﹞。
抗PEG抗體的存在會導致藥物中和(drug neutralization)及更重要地,導致稱為加速血液清除(accelerated blood clearance,ABC)的現象。用以發展ABC的眾所周知的實例為使用用以治療急性淋巴性白血病的經PEG修飾的天冬醯胺酸酶﹝PEG-ASNase;Oncaspar®﹞、經PEG修飾的尿酸酶﹝Pegloticase;Krystexxa TM,用於具有慢性痛風的患者﹞、用以治療C型肝炎的經PEG修飾的IFN-a2b﹝PegIntron®﹞及經PEG修飾的IFN-a2a﹝Pegasys®﹞,以及經PEG修飾的G-CSF﹝Neulasta®;用以治療嗜中性白血球減少症﹞的治療法。聚合體微胞載體系統(polymeric-micelle carrier system)的免疫原性及交互作用已如Shiraishi所廣泛評論﹝Shiraishi等人,2019年﹞。
大多數的經PEG修飾的藥物為基於蛋白質的生物製劑﹝包含抗體、Fab片段、生長因子及細胞激素等﹞。然而,ABC或抗PEG抗體的中和亦可能在經PEG修飾的胜肽、經PEG修飾的適配體(aptamer)、經PEG修飾的小分子有機物或經PEG修飾的基於微脂體及基於微胞及基於奈米粒子的藥物及疫苗的連續性注射之後發生﹝Park等人,2019年;Garay等人,2012年﹞。此外,針對脂蛋白載體(lipoprotein carrier)﹝Sekiya等人,2017年﹞或多醣結合疫苗﹝Zhang等人,2015等人﹞,亦有人建議將PEG導入疫苗載體系統中。於另一實例中,使用PEG可以有效地屏蔽病毒基因治療載體(viral gene therapy vector),使其免於受到被誘導的或天然的抗體或其他血漿蛋白的影響﹝Krutzke等人,2016年﹞。總之,這指出了PEG在許多治療原則及適應症領域的廣泛適用性及重要性。
更多的經PEG修飾的蛋白質例如已為Akbarzadehlaleh等人,2016年;Yoshimoto等人,2013年;Gaspar等人,2012年;Kim等人,2012年;Siekmann等人,2020年;及Chapman等人,2002年所揭示。PCT公開第2019/226538 A1號專利案揭示選擇性的T reg刺激物組合物具有經PEG修飾的介白素2(interleukin-2)。Sharp等人,1986年則是關於用以於水性聚合物二相系統中分離細胞的PEG抗體親和性配體的合成及應用。PCT公開第03/040211 A2號專利案係關於分支化的PEG聚合物及具有該些分支化聚合體的偶聯物,實例6揭示經二個PEG修飾的溶菌酶(lysozyme)及經三PEG修飾的溶菌酶。美國公開第2004/062748 A1號專利案揭示聲稱具有降低的抗原性(antigenicity)的PEG偶聯物,特別是藉由具有羥基封端的PEG鏈(hydroxyl-terminated PEG chain)。已揭示的經PEG修飾的蛋白質中的一個為豬的尿酸酶(porcine uricase)。
迄今為止,經PEG修飾的藥物主要應用於癌症治療市場﹝>60%﹞,其次為包含痛風、A型血友病及肝炎等多種適應症。下列第1表提供例示性的應用及目前核准的藥物產品的概述,並反映了應用的多樣性。
第1表、近期核准之經PEG修飾的活性劑
產品 國際非專利藥品名稱(INN) 適應症
Adagen Pegademase 嚴重複合型免疫缺乏症(SCID)
Adynovate/Adynovi, Jivi Rurioctocog alfa pegol A型血友病
Asclera lauromacrogol 靜脈曲張
Cimzia Certolizumab pegol 乾癬性關節炎(PsA)、克隆氏症、類風濕性關節炎(RA)及僵直性脊椎炎
Empaveli pegcetacoplan 陣發性夜間血紅蛋白尿
Esperoct turoctocog alfa pegol A型血友病
Krystexxa Pegloticase 慢性痛風
Lipodox, Doxil doxorubicin hydrochloride 卵巢癌、與AIDS相關之卡波西氏肉瘤及多發性骨髓瘤
Macugen pegaptanib sodium 濕性老化型黃斑部病變(AMD)
Mircera methoxy polyethylene glycol-epoetin beta 腎性貧血、與慢性腎臟疾病相關之貧血
Movantik naloxegol 非癌症鴨片誘導的便祕
Neulasta, UDENYCA, Fulphila pegfilgrastim 化療導致之嗜中性白血球低下症、預防及非骨髓性惡性腫瘤
Omontys peginesatide 貧血
Oncaspar, Asparlas pegaspargase 急性淋巴性白血病
Palynziq pegvaliase 苯丙酮尿症(PKU)
Pegasys peginterferon alfa-2a B型肝炎、C型肝炎
Peglntron Peginterferon alfa-2b 黑色素瘤、C型肝炎
Plegridy peginterferon beta-1a 多發性硬化症
Rebinyn nonacog beta pegol B型血友病
Revcovi, ADA-SCID Elapegademase 腺苷脫氨酶嚴重複合型免疫缺乏症(ADA─SCID)
Somavert pegvisomant 脂端肥大症
抗PEG抗體的出現對基於PEG的活性劑﹝即,醫藥產品、疫苗或載體,包含經PEG修飾的蛋白質、胜肽、寡核苷酸、小分子有機物、奈米粒子、包含脂質或多糖的藥物等﹞提出了仍待解決的嚴重的問題。迄今為止,尚無可行的草案或治療方法能夠在投予經PEG修飾或包含PEG的醫藥產品之前,以避免、以移除或以中和抗PEG抗體,抗PEG抗體會導致加速藥物清除及藥物中和,這也適用於經PEG修飾的疫苗或基因治療載體,這已成為例如治療性酵素經PEG修飾的天冬醯胺酸酶﹝用以治療ALL﹞或經PEG修飾的尿酸酶﹝用於嚴重的難治性痛風﹞等特定蛋白質藥物的問題。此外,經PEG修飾的適配體、微脂體或奈米粒子已在臨床前模型及臨床上進行廣泛的研究,近期的評論係由Hoang Thi等人及Abu Lila 等人﹝Hoang Thi TT等人,2020年;Abu Lila,2018年,書本章節(doi.org/10.1016/B978-0-08-101750-0.00003-9)﹞所提供。抗PEG抗體的後果包含經PEG修飾的藥物的改變的藥物動力學及生物分佈曲線,抗PEG抗體存在於接受治療及素樸的(naïve)個體﹝或曾經以其他方式暴露於PEG的個體﹞。
迫切的需要一種方法或治療劑,其可以移除或去活化於血液循環中此一特殊類型的藥物中和性抗體,因為抗PEG抗體會對經PEG修飾或包含PEG的藥物、疫苗或基因治療載體的整個市場產生負面影響,因此,抗PEG所介導的經PEG修飾的或包含PEG的活性劑的清除,已成為該領域的主要挑戰。
建議在投予一經PEG修飾的藥物之前,藉由投予2.2 mg/公斤的10 kDa的PEG或550 mg/公斤的20 kDa或40 kDa的PEG,以阻斷或移除抗PEG抗藥物抗體﹝McSweeney等人,2019等人﹞。發現較低分子量的PEG無法於幾個小時內回復經PEG修飾的活性劑的循環,而較高分子量的PEG則被斷言在回復該活性劑的活性是有效的。然而,所使用的劑量非常的高,甚至結果顯示550 mg/公斤體重的劑量會誘導抗PEG抗體的不良誘導。PCT公開第2019/046185 A1號專利案﹝及McSweeney等人﹞揭示基於高分子量游離PEG的類似手段。
因此,本發明的目的為提供用以降低、消耗或螯合抗PEG抗體的化合物及方法,其不具有上述的一或多個缺點,及/或具有提升的效力或安全性。
本發明提供﹝用以於一個體中,體內螯合﹝或體內消耗﹞至少一抗PEG抗體的﹞化合物,包含:一生物聚合物框架;及一或多個PEG鏈。
此外,本發明提供一醫藥組合物,包含該化合物及至少一醫藥學上可接受的賦形劑。較佳地,該醫藥組合物係用以治療。
於另一面向中,本發明提供一種螯合﹝或消耗﹞存在於一個體中的一或多個抗體,包含:獲得如前述的醫藥組合物,該組合物於該個體中為非免疫原性的,其中,該一或多個抗體為抗PEG抗體;及將該醫藥組合物投予該個體。
於再一面向中,本發明關於一種醫藥組合物,包含如前述的化合物,且另包含一活性劑及可選的至少一醫藥學上可接受的賦形劑。該活性劑較佳為一載體、一基於病毒的疫苗載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組,或一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸。
於又一面向中,本發明提供一種於以一活性劑進行治療的一所需個體中,用以抑制以該活性劑進行治療所造成的免疫反應的方法,包含:獲得該醫藥組合物,包含該化合物及該活性劑;其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及將該醫藥組合物投予該個體。
於另一面向中,本發明提供一種化合物,包含:一生物聚合物框架及一或多個修飾,選自由PEG修飾、XTEN修飾(XTENylation)、PAS修飾(PASylation)、甲基修飾(methylation)、醣基修飾(glycosylation)及聚唾液酸修飾(polysialylation)所組成的群組。此外,本發明提供一種醫藥組合物,包含該化合物及至少一醫藥學上可接受的賦形劑。較佳地,該醫藥組合物係用以治療。本發明亦提供一種螯合﹝或消耗﹞存在於一個體中的一或多個抗體的方法,包含:獲得該醫藥組合物,該組合物於該個體中為非免疫原性的,其中,該一或多個抗體針對該一或多個修飾具有特異性;及將該醫藥組合物投予該個體。本發明也關於一種醫藥組合物,包含該化合物,且另包含一活性劑及可選的至少一醫藥學上可接受的賦形劑。本發明另提供一種於以一活性劑進行治療的一所需個體中,用以抑制以該活性劑進行治療所造成的免疫反應的方法,包含:獲得該醫藥組合物,包含該化合物及該活性劑;其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及將該醫藥組合物投予該個體。
在本發明的過程中,另人驚訝地發現,此處所使用的生物聚合物框架尤其是於一個體中有效地降低非預期的抗體的力價(titre)。再者,與帶有相當大的免疫原風險的高分子量及高劑量游離PEG﹝這與抗PEG抗體降低劑(anti-PEG antibody-reducing agent)的預期正好相反﹞相比,本發明的化合物具有更有利安全性的,尤其是其被證明為非免疫原性的。此外,意外地發現10 kDa或更小的PEG部分(PEG moiety)比更高分子量的PEG更有效﹝參照實例段落﹞。
以下之詳細說明係關於本發明的所有面向,除非有明確地排除。
一般而言,抗體為體液免疫系統(humoral immune system)的必要組成分,可以防止包含細菌、病毒、真菌或寄生蟲等外來生物的感染。然而,在某些情況下﹝包含自體免疫性疾病、器官移植、輸血(blood transfusion)或投予生物分子藥物或基因傳遞載體﹞,抗體可以靶向患者自身的身體﹝或剛被投予的外來組織或細胞或生物分子藥物或載體﹞,因此轉變為有害或致病的實體。某些抗體也會干擾用以診斷成像(diagnostic imaging)的探針(probe)。於下文中,這樣的抗體通常被稱為〝非預期的抗體(undesired antibody或undesirable antibody)〞。
除了少數例外,選擇性去除非預期的抗體尚未達到臨床實踐(clinical practice)。目前僅限於很少的適應症:一種已知的選擇性的抗體去除的技術為免疫去除(immunoapheresis)﹝儘管尚未被廣泛建立﹞。與移除免疫球蛋白(immunoglobulin)的免疫去除相反,選擇性免疫去除涉及經由一體外選擇性抗體吸附盒(extracorporeal, selective antibody-adsorber cartridge)過濾血漿,並基於選擇性結合該非預期的抗體的抗原結合位(antigen binding site),來消耗該非預期的抗體。舉例而言,選擇性免疫去除曾被用以於血液不相容移植(AB0-incompatible transplantation)前,自血液中移除抗A或抗B抗體,或者被應用於輸血醫學中的適應症﹝Teschner等人﹞。選擇性血球分離術(selective apheresis)亦被實驗性地應用於其他適應症,例如,神經免疫性適應症(neuroimmunological indication)﹝Tetala等人﹞或重症肌無力症(myasthenia gravis)﹝Lazaridis等人﹞,但是仍尚未在臨床常規(clinical routine)中確立。猶豫地去進行選擇性免疫去除的理由在於其為成本密集且繁瑣的干預過程,需要專門的醫療護理。此外,於先前技術中,尚不知道該如何快速地、有效地消耗非預期的抗體。
與血球分離術(apheresis)無關,Morimoto等人揭示葡萄糖(dextran)為一種普遍適用的多價框架(multivalent scaffold),用以提升胜肽及FLAG胜肽等擬肽配體(peptidomimetic ligand)的免疫球蛋白結合親合力。PCT公開第2011/130324號專利案關於用以預防細胞損傷的化合物,歐洲公開第3 059 244 A1號專利案關於一C-met蛋白質拮抗劑。
如前所述,血球分離術為體外(extracorporeally)應用的。相比之下,先前技術中另假設了幾種於體內(intracorporeally)消耗非預期的抗體的方法,主要是與涉及自體抗體或抗藥物抗體的某些自體免疫性疾病相關:
Lorentz等人揭示一種技術,其中,將具有致耐受力的有效載荷(tolerogenic payload)原位地( in situ)充入紅血球,以驅動抗原特異性T細胞的刪除(deletion)。依據推測,最終將導致針對一模型抗原(model antigen)的非預期的體液反應下降。Pishesha等人提出類似的方法,於此一方法中,於活體外( ex vivo),將會共價地結合該表面的一胜肽─抗原構築體(peptide-antigen construct)加載到紅血球中,並重新注入動物模型,以誘導一般的免疫耐受性(immunotolerance)。
PCT公開第92/13558 A1號專利案係關於穩定的非免疫原性聚合物及免疫原的類似物(analog of immunogen)的接合物,其對該免疫原具有特異性B細胞結合能力,且當導入個體中時,可以誘導對該免疫原的體液失能(humoral anergy)。據此,揭示了該些接合物可以用以治療由外來免疫原或自身免疫原所引起的抗體介導的病理機制。在這方面,另參照歐洲公開第0 498 658 A2號專利案。
Taddeo等人揭示使用與一卵白蛋白模型抗原融合的抗CD138抗體衍生物,以選擇性地消耗產生抗體的血漿細胞,進而在表達針對該模型抗原的抗體的細胞中,於體外選擇性地誘導受體交聯(receptor crosslinking)及細胞自殺(cell suicide)。
Apitope International NV﹝比利時﹞目前正在開發可溶性致耐受性的T細胞抗原決定胜肽,可以導致來自抗原呈現細胞(antigen presenting cell,APC)誘導耐受性的低量的共刺激分子(co-stimulatory molecule),的表現,進而抑制抗體反應﹝參考例如Jansson等人﹞。該些產品目前正在例如多發性硬化症(multiple sclerosis)、葛瑞夫茲病(Grave’s disease)、中間葡萄膜炎(intermediate uveitis)及其他自體免疫病症,以及因子VIII不耐受症(Factor VIII intolerance)等的臨床前期及早期臨床評估(preclinical and early clinical evaluation)中。
類似地,Selecta Biosciences, Inc.﹝美國﹞目前正在尋求藉由所謂的合成疫苗顆粒(synthetic vaccine particle,SVP)來誘導耐受性的策略。SVP─rapamycin被認為可以經由選擇性誘導調節性T細胞,來預防非預期的抗體的產生,進而誘導耐受性﹝參考Mazor等人﹞。
Mingozzi等人揭示誘餌腺相關病毒(adeno-associated virus,AAV)的衣殼(capsid),其可以吸收抗體,但無法進入一標靶細胞。
PCT公開第2015/136027 Al號專利案揭示表現最小人類自然殺手1(Human Natural Killer-1,HNK-1)表位的碳水化合物配位體(ligand),其可以結合抗髓燐脂相關醣蛋白(myelin-associated glycoprotein,MAG)IgM抗體,且其應用於診斷與治療抗MAG神經病變的用途。PCT公開第2017/046172 Al號專利案揭示另外的碳水化合物配位體及部分(moiety),其模仿由神經系統的醣神經鞘脂質(glycosphingolipid)所組成的醣表位(glycoepitope),其可以被與神經疾病相關的抗多糖抗體所結合;此一文獻另關於該些碳水化合物配位體/部分應用於診斷與治療與抗多糖抗體相關的神經疾病的用途。
美國公開第2004/0258683 Al號專利案揭示治療包含腎臟紅斑性狼瘡(renal SLE)之紅斑性狼瘡(systemic lupus erythematosus,SLE)的方法,及減少具有紅斑性狼瘡之個體的腎臟復發(renal flare)之風險的方法,以及監控該些治療的方法。一種揭示的治療包含腎臟紅斑性狼瘡之紅斑性狼瘡的方法,及減少具有紅斑性狼瘡之個體的腎臟復發之風險的方法關於將一有效量的用以降低抗雙股DNA(double-stranded DNA,dsDNA)抗體含量的一藥劑,例如,一表位呈現載體(epitope-presenting carrier)或一表位呈現價平台分子(epitope-presenting valency platform molecule)形式的一dsDNA表位,投予該個體。
美國公告第5,637,454號專利案係關於自體免疫性疾病的測定及治療。用以治療的試劑可能包含與所識別之抗原的分子擬態序列同源的胜肽,並揭示了將該些胜肽遞送至一患者,以降低具有特定特異性的循環抗體(circulating antibody)的含量。
美國公開第2007/0026396 A1號專利案係關於直接針對引起冷不耐(cold-intolerance)的抗體的胜肽及其用途,並教示藉由使用所揭示之胜肽,可以於活體內( in vivo)或於活體外( ex vivo)中和非預期的自體抗體。PCT公開第1992/014150 A1專利案或PCT公開第1998/030586 A2專利案中揭示類似的方法。
PCT公開第2018/102668 A1揭示用以選擇性降解導致疾病或其他的非預期的抗體的一融合蛋白,該融合蛋白﹝稱為〝Seldeg〞﹞包含於近中性pH值下特異性結合一細胞表面受體或其他細胞表面分子的一標靶組分,及直接地或間接地融合該標靶組分的一抗原組分。另揭示一種自一患者中消耗對一標靶抗原具有特異性的抗體的方法,藉由將具有被配置為特異性結合該對一標靶抗原具有特異性的抗體的一抗原組分的Seldeg 投予該患者。
PCT公開第2015/181393 A1號專利案係關於嫁接至基於向日葵─胰蛋白酶─抑制劑(sunflower-trypsin-inhibitor,SFTI)及基於環肽(cyclotide)的框架,該些胜肽已被揭示對於自體免疫性疾病有效,例如移植至SFTI框架的瓜胺酸化纖維素原序列(citrullinated fibrinogen sequence)已被證明可以阻斷類風濕性關節炎(rheumatoid arthritis,RA)的自體抗體,並抑制發炎及疼痛。該些框架已知為非免疫原性的。
Erlandsson等人揭示於活體內( in vivo),以抗特應抗體(idiotypic antibody)及其衍生物清除特應抗體。
Berlin Cures Holding AG﹝德國]提出用以治療擴張型心肌病變(dilated cardiomyopathy)及其他GPCR自體抗體相關疾病的靜脈內廣譜中和劑DNA適配體(broad spectrum neutralizer DNA aptamer)﹝參考例如PCT公開第2016/020377 A1號及PCT公開第2012/000889 A1號專利案﹞,並認為於高劑量時,可以藉由競爭性結合自體抗體的抗原結合區,以阻斷自體抗體。一般而言,適配體尚未獲得突破,而仍處於臨床開發的初期階段,主要的問題仍然為生物穩定性(biostability)及生體可利用度(bioavailability),限制因素例如為核酸酶的敏感性、毒性、小尺寸及腎臟清除率(renal clearance)。針對它們作為選擇性抗體拮抗劑之用途的特殊問題是,它們刺激先天免疫反應(innate immune response)的傾向。
PCT公開第00/33887 A2號專利案揭示用以減少抗體的循環含量的方法,特別是與疾病相關的抗體,該方法需要將有效量的表位呈現載體(epitope-presenting carrier)投予一個體。此外,另揭示了使用表位呈現載體,以於活體外( ex vivo)減少抗體的循環含量的方法。
美國公告第6,022,544 A號專利案關於一種用以於一哺乳動物個體中,減少一非預期的抗體反應的方法,藉由將一非免疫原性的構築(construct)其不含高分子的免疫刺激性分子,投予該哺乳動物個體。該構築包含至少二套(copy)的B細胞膜免疫球蛋白受體表位(receptor epitope),其結合一醫藥學上可接受的非免疫原性的載體。
然而,先前技術所揭示之於體內消耗非預期的抗體的方法具有許多缺點,特別是它們都沒有被允許用於常規臨床用途,遑論用以螯合抗PEG抗體的臨床用途。
本發明所使用的生物聚合物框架可以為一哺乳動物的生物聚合物,例如一人類的生物聚合物、一非人之靈長類的生物聚合物、一綿羊的生物聚合物、一豬的生物聚合物、一狗的生物聚合物或一囓齒動物的生物聚合物。該生物聚合物框架尤其是一蛋白質,特別是一﹝非經修飾的或針對其胺基酸序列為非經修飾的﹞血漿蛋白。較佳地,該生物聚合物框架為一哺乳動物的蛋白質,例如一人類的蛋白質、一非人之靈長類的蛋白質、一綿羊的蛋白質、一豬的蛋白質、一狗的蛋白質或一囓齒動物的蛋白質。一般而言,該生物聚合物框架為一非免疫原性的蛋白質及/或無毒的蛋白質,其較佳於健康﹝人類﹞個體的血漿中循環,且可以例如被清除受體﹝如存在於骨髓細胞(myeloid cell)上或肝竇內皮細胞(liver sinusoidal endothelial cell)上﹞有效地清除或回收﹝如Sorensen等人所評論,2015年﹞。
依據特別的偏好,該生物聚合物框架為一﹝較佳為人類的﹞球蛋白,較佳係選自由免疫球蛋白、α1球蛋白、α2球蛋白及β球蛋白所組成的群組,尤其是免疫球蛋白G、結合球蛋白及轉鐵蛋白(transferrin)。
該生物聚合物框架也可以為﹝較佳為人類的﹞白蛋白、凝血酶(hemopexin)、α1抗胰蛋白酶(α1-antitrypsin)、C1酯酶抑制劑(C1 esterase inhibitor)、乳鐵蛋白(lactoferrin),或如上述之蛋白質的非免疫原性的﹝即,於被進行治療之個體中為非免疫原性的﹞片段,包含該球蛋白。
於另一偏好中,該生物聚合物框架為一抗CD163抗體﹝即,針對CD163蛋白具有特異性的抗體﹞或其CD163結合片段。
人類CD163﹝分化叢集163(Cluster of Differentiation 163)﹞為一130 kDa的膜醣蛋白﹝以前稱為M130﹞及原型的第一型清道夫受體(prototypic class I scavenger receptor),其由負責配體結合的9個清道夫受體富含半胱胺酸(scavenger receptor cysteine-rich,SRCR)域所組成,CD163為存在於巨嗜細胞及單核球上的胞吞受體(endocytic receptor),其自血液中移除血紅蛋白/結合球蛋白複合物,但亦於抗發炎過程及傷口癒合中扮演角色。CD163的高度表現量出現於組織巨嗜細胞﹝例如肝臟中的庫弗氏細胞(Kupffer cell)﹞中及脾臟及骨髓中的部分巨嗜細胞中,由於其組織及細胞的特異性表現,且與非預期的抗體的消耗完全無關,CD163被認為是例如免疫毒素(immunotoxin)、微脂體或其他治療性化合物類別的藥物遞送的巨嗜細胞標靶﹝Skytthe等人,2020年﹞。
單株的抗CD163抗體及其所結合的該SRCR域已為例如Madsen等人,2004年所揭示,尤其是第7圖,另外的抗CD163抗體及其片段已為例如PCT公開第2002/032941 A2號專利案或PCT公開第2011/039510 A2號專利案所揭示。藉由使用對域具有特異性的抗體﹝例如單株抗體EDhu1﹞,對至少二個結構上不同的配體結合位(binding site for ligand)進行作圖(mapping)﹝參照Madsen等人,2004年﹞,該抗體結合CD163的第三個SRCR,並與結合CD163的血紅蛋白/結合球蛋白競爭。文獻中已描述針對CD163的不同的域的為數眾多的其他抗體,包含Mac2-158、KiM8、GHI/61及RM3/1,分別針對SRCR域1、3、7及9。此外,另針對保守的細菌結合位(conserved bacterial binding site)作圖,且證明某些抗體能夠抑制細菌結合但無法抑制血紅蛋白/結合球蛋白複合物的結合,反之亦然;這指向CD163的不同結合模式及配體交互作用﹝Fabriek等人,2009年;另參照本文的引文﹞。
與非預期的抗體的消耗完全無關地,CD163因其生理性質被提議作為細胞特異性藥物遞送的標靶,與腫瘤相關的巨嗜細胞是目前正在探索CD163靶向的潛在益處的主要標靶之一。值得注意的是,許多腫瘤及惡性腫瘤顯示與CD163的表現量有關,進而支持使用此一標靶來進行腫瘤治療。其他可能的應用包含於慢性發炎及神經炎中,藉由抗體藥物複合體(anti-drug conjugate,ADC)靶向CD163﹝如Skytthe等人,2020年所評論﹞。因此,藉由ADC靶向,特別是使用地塞米松(dexamethasone)或隱形微脂體偶聯物(stealth liposome conjugate)代表了目前正在研究的治療原理﹝Graversen等人,2012年;Etzerodt等人,2012年﹞。
在這樣的情況下,有文獻指出抗CD163抗體當應用於活體內時可以藉由胞吞作用(endocytosis)被快速地內部化(internalized),例如單株抗體Ed-2﹝Dijkstra等人,1985年;Graversen等人,2012年﹞及單株抗體Mac2-158/KN2/NRY﹝Granfeldt等人,2013年﹞均顯示此點。基於前述觀察結合在本發明的過程中的觀察﹝參照尤其是實例段落﹞,抗CD163抗體及CD163結合被證明是高度合適於用以消耗/螯合非預期的抗體的生物聚合物框架。
無數的抗CD163抗體及其CD163結合片段為本領域已知的﹝參照例如上述﹞,其適用於用作為本發明的生物聚合物框架。舉例而言,如此處或PCT公開第2011/039510 A2號專利案所述的任何抗CD163抗體或其片段﹝前述專利案係藉由引用而包含於此﹞可以用作為本發明的生物聚合物框架。較佳地,本發明的化合物的生物聚合物框架為PCT公開第2011/039510號專利案揭示的抗體Mac2-48、Mac2-158、5C6-FAT、BerMac3或E10B10,尤其是PCT公開第2011/039510 A2號專利案揭示的人類化的Mac2-48或Mac2-158。
於較佳實施例中,該抗CD163抗體或其CD163結合片段包含一重鏈可變(VH)區,包含選自PCT公開第2011/039510 A2號專利案之SEQ ID NOS:11~13的一或多個互補決定區(CDR)序列。
此外,或替代於此,於較佳實施例中,該抗CD163抗體或其CD163結合片段包含一輕鏈可變(VL)區,包含選自PCT公開第2011/039510 A2號專利案之SEQ ID NOS:14~16或選自PCT公開第2011/039510 A2號專利案之SEQ ID NOS:17~19的一或多個CDR序列。
於更佳實施例中,該抗CD163抗體或其CD163結合片段包含一重鏈可變(VH)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:20的胺基酸序列,或由該胺基酸序列所組成。
此外,或替代於此,於較佳實施例中,該抗CD163抗體或其CD163結合片段包含一輕鏈可變(VL)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:21的胺基酸序列,或由該胺基酸序列所組成。
於更佳實施例中,該抗CD163抗體或其CD163結合片段包含一重鏈可變(VH)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:22的胺基酸序列,或由該胺基酸序列所組成。
此外,或替代於此,於較佳實施例中,該抗CD163抗體或其CD163結合片段包含一輕鏈可變(VL)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:23的胺基酸序列,或由該胺基酸序列所組成。
於更佳實施例中,該抗CD163抗體或其CD163結合片段包含一重鏈可變(VH)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:24的胺基酸序列,或由該胺基酸序列所組成。
此外,或替代於此,於較佳實施例中,該抗CD163抗體或其CD163結合片段包含一輕鏈可變(VL)區,包含PCT公開第2011/039510 A2號專利案之SEQ ID NO:25的胺基酸序列,或由該胺基酸序列所組成。
於本發明的上下文中,該抗CD163抗體可以為一哺乳動物的抗體,例如一人類化的或人類的抗體、一非人之靈長類的抗體、一綿羊的抗體、一豬的抗體、一狗的抗體或一囓齒動物的抗體。於實施例中,該抗CD163抗體可以為單株抗體。
依據偏好,該抗CD163抗體係選自IgG、IgA、IgD、IgE及IgM。
依據進一步的偏好,該CD163結合片段選自一Fab、一Fab’、一F(ab)2、一Fv、一單鏈抗體、一奈米抗體(nanobody)及一抗原結合域。
CD163的胺基酸序列為例如PCT公開第2011/039510 A2號專利案號專利案所揭示者﹝前述專利案係藉由引用而包含於此﹞。於本發明的上下文中,該抗CD163抗體或其CD163結合片段較為針對一人類的CD163具有特異性,特別是具有PCT公開第2011/039510 A2號專利案之SEQ ID NOS:28~31中任一個的胺基酸序列。
於更佳實施例中,該抗CD163抗體或其CD163結合片段係針對CD163的胞外區域﹝例如,針對人類的CD163:UniProt Q86VB7序列版本2的第42~1050個胺基酸﹞具有特異性,較佳為針對CD163的SRCR域,更佳為針對CD163的SRCR域1~9中的任一個﹝例如,針對人類的CD163:UniProt Q86VB7序列版本2的第51~152、159~259、266~366、373~473、478~578、583~683、719~819、824~926及929~1029個胺基酸﹞,又更佳為針對CD163的SRCR域1~3中的任一個﹝例如,針對人類的CD163:UniProt Q86VB7序列版本2的第51~152、159~259、266~366及373~473個胺基酸﹞,特別是針對CD163的SRCR域1﹝尤其是具有PCT公開第2011/039510 A2號專利案之SEQ ID NOS:1~8中任一個胺基酸序列,特別是PCT公開第2011/039510 A2號專利案之SEQ ID NO:1﹞。
於一特定偏好中,該抗CD163抗體或其CD163結合片段能夠與﹝較佳為人類的﹞血紅蛋白─結合球蛋白複合物競爭與﹝較佳為人類的﹞CD163的結合﹝例如於ELISA中﹞。
於另一特定偏好中,該抗CD163抗體或其CD163結合片段能夠與此處所揭示的任何抗人類CD163單株抗體﹝尤其是PCT公開第2011/039510 A2號專利案所揭示的Mac2-48或Mac2-158﹞競爭與人類的CD163的結合。
於又一特定偏好中,該抗CD163抗體或其CD163結合片段能夠與具有由胺基酸序列DVQLQESGPGLVKPSQSLSLTCTVTGYSITSDYAWNWIRQFPGNKLEWMGYITYSGITNYNPSLKSQISITRDTSKNQFFLQLNSVTTEDTATYYCVSGTYYFDYWGQGTTLTVSS﹝SEQ ID NO:1﹞所組成的一重鏈可變(VH)區,及具有由胺基酸序列SVVMTQTPKSLLISIGDRVTITCKASQSVSSDVAWFQQKPGQSPKPLIYYASNRYTGVPDRFTGSGYGTDFTFTISSVQAEDLAVYFCGQDYTSPRTFGGGTKLEIKRA﹝SED ID NO:2﹞所組成的一輕鏈可變(VL)區的一抗體競爭與人類的CD163的結合﹝例如,於ELISA中﹞。競爭性結合實驗的細節為本領域技術人員已知的﹝例如基於ELISA﹞,且例如已揭示於PCT公開第2011/039510 A2號專利案中﹝前述專利案係藉由引用而包含於此﹞。
將PCT公開第2011/039510號專利案所揭示的抗體E10B10及Mac2-158的表位作圖﹝參照實例段落﹞,該些表位尤其是適用以結合本發明的化合物的抗CD163抗體﹝或其CD163結合片段﹞。
據此,於尤其較佳的實施例中,該抗CD163抗體或其CD163結合片段係對一胜肽具有特異性,該胜肽係由介於7~25個胺基酸,較佳為介於8~20個胺基酸,又更佳為介於9~15個胺基酸,特別是介於10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列CSGRVEVKVQEEWGTVCNNGWSMEA﹝SEQ ID NO:3﹞或其7~24個胺基酸的片段。較佳地,該胜肽包含該胺基酸序列GRVEVKVQEEW﹝SED ID NO:4﹞、WGTVCNNGWS﹝SED ID NO:5﹞或WGTVCNNGW﹝SED ID NO:6﹞。更佳地,該胜肽包含選自EWGTVCNNGWSME﹝SED ID NO:7﹞、QEEWGTVCNNGWS﹝SED ID NO:8﹞、WGTVCNNGWSMEA﹝SED ID NO:9﹞、EEWGTVCNNGWSM﹝SED ID NO:10﹞、VQEEWGTVCNNGW﹝SED ID NO:11﹞、EWGTVCNNGW﹝SED ID NO:12﹞及WGTVCNNGWS﹝SED ID NO:5﹞的一胺基酸序列。又更佳地,該胜肽係由選自EWGTVCNNGWSME﹝SED ID NO:7﹞、QEEWGTVCNNGWS﹝SED ID NO:8﹞、WGTVCNNGWSMEA﹝SED ID NO:9﹞、EEWGTVCNNGWSM﹝SED ID NO:10﹞、VQEEWGTVCNNGW﹝SED ID NO:11﹞、EWGTVCNNGW﹝SED ID NO:12﹞及WGTVCNNGWS﹝SED ID NO:5﹞的一胺基酸序列所組成,可選地具有一N端及/或C端半胱胺酸殘基。
據此,於另一尤其較佳的實施例中,該抗CD163抗體或其CD163結合片段係對一胜肽具有特異性,該胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列DHVSCRGNESALWDCKHDGWG﹝SEQ ID NO:13﹞或其7~20個胺基酸的片段。較佳地,該胜肽包含該胺基酸序列ESALW﹝SED ID NO:14﹞或ALW。更佳地,該胜肽包含選自ESALWDC﹝SED ID NO:15﹞、RGNESALWDC﹝SED ID NO:16﹞、SCRGNESALW﹝SED ID NO:17﹞、VSCRGNESALWDC﹝SED ID NO:18﹞、ALWDCKHDGW﹝SED ID NO:19﹞、DHVSCRGNESALW﹝SED ID NO:20﹞、CRGNESALWD﹝SED ID NO:21﹞、NESALWDCKHDGW﹝SED ID NO:22﹞及ESALWDCKHDGWG﹝SED ID NO:23﹞的一胺基酸序列。又更佳地,該胜肽係由選自ESALWDC﹝SED ID NO:15﹞、RGNESALWDC﹝SED ID NO:16﹞、SCRGNESALW﹝SED ID NO:17﹞、VSCRGNESALWDC﹝SED ID NO:18﹞、ALWDCKHDGW﹝SED ID NO:19﹞、DHVSCRGNESALW﹝SED ID NO:20﹞、CRGNESALWD﹝SED ID NO:21﹞、NESALWDCKHDGW﹝SED ID NO:22﹞及ESALWDCKHDGWG﹝SED ID NO:23﹞的一胺基酸序列所組成,可選地具有一N端及/或C端半胱胺酸殘基。
據此,於另一尤其較佳的實施例中,該抗CD163抗體或其CD163結合片段係對一胜肽具有特異性,該胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列SSLGGTDKELRLVDGENKCS﹝SEQ ID NO:24﹞或其7~19個胺基酸的片段。較佳地,該胜肽包含該胺基酸序列SSLGGTDKELR﹝SED ID NO:25﹞或SSLGG﹝SED ID NO:26﹞。更佳地,該胜肽包含選自SSLGGTDKELR﹝SED ID NO:25﹞、SSLGGTDKEL﹝SED ID NO:28﹞、SSLGGTDKE﹝SED ID NO:29﹞、SSLGGTDK﹝SED ID NO:30﹞、SSLGGTD﹝SED ID NO:31﹞、SSLGGT﹝SED ID NO:32﹞及SSLGG﹝SED ID NO:26﹞的一胺基酸序列。又更佳地,該胜肽係由選自SSLGGTDKELR﹝SED ID NO:25﹞、SSLGGTDKEL﹝SED ID NO:28﹞、SSLGGTDKE﹝SED ID NO:29﹞、SSLGGTDK﹝SED ID NO:30﹞、SSLGGTD﹝SED ID NO:31﹞、SSLGGT﹝SED ID NO:32﹞及SSLGG﹝SED ID NO:26﹞的一胺基酸序列所組成,可選地具有一N端及/或C端半胱胺酸殘基。
該一或多個PEG鏈﹝或PEG部分﹞較佳為共價地結合(或共價地鍵結)該生物聚合物框架,藉由已知的﹝非免疫原性的﹞連接片段,例如,藉由一N-羥基琥珀醯亞胺(N-Hydroxysuccinimide,NHS)酯。舉例而言,經NHS功能化的PEG(PEG─NHS)在商業上為廣泛應用的。或者,除此之外,例如一雙功能的連接片段﹝例如,GMBS(N-γ-maleimidobutyryl-oxysulfosuccinimide ester)可以經由形成一醯胺鍵而可以直接接上該生物聚合物框架,隨後,例如,包含半胱胺酸及一或多個胺基的一胜肽,或一半胱胺酸自己可以經由形成一硫醚鍵(thioether bond),以結合該雙功能的連接片段。舉例而言,NHS─PEG可以最終與該胜肽連接片段﹝或該半胱胺酸連接片段﹞上的胺基反映,以將該PEG鏈連接至該生物聚合物框架。
依據特別的偏好,該一或多個PEG鏈﹝或PEG部分(PEG moiety)﹞的至少一部分經由至少一連接片段共價地結合﹝或共價地鍵結﹞該生物聚合物框架。較佳地,該至少一連接片段包含一胜肽或一單一個胺基酸,尤其是一半胱胺酸,其理由在於,在本發明的過程中,另人驚訝地發現,當使用胜肽/胺基酸連接片段時,該修飾﹝如PEG﹞的密度會有所增加﹝參照尤其是第15實例﹞。
較佳地,該生物聚合物框架及/或該一或多個PEG鏈﹝或其他修飾﹞直接共價地結合﹝或共價地鍵結﹞該胜肽﹝亦如第15實例所示﹞或單一個胺基酸﹝如半胱胺酸﹞。具有通常知識者可以使用許多不同的偶聯方法。舉例而言,該生物聚合物框架及/或該一或多個PEG鏈可以偶聯該胜肽的一離胺酸殘基、一酪胺酸殘基、一半胱胺酸殘基、該N端或該C端﹝例如,於一實施例中,該生物聚合物框架可以結合該N端,且該一或多個PEG鏈結合該C端;反之亦然﹞。在單一個胺基酸的情況下,該N端及該C端以及該側鏈可以用以偶聯﹝例如,硫醇基於半胱胺酸的案例中﹞。合適的對胺基酸及胜肽的選擇性偶聯﹝生物結合﹞已被例如Koniev及Wagner,2015年﹝PMID:26000775﹞所評論,與天然胺基酸的偶聯﹝也﹞可以透過離胺酸、N端末端胺(N-terminal amine)、半胱胺酸、色胺酸、酪胺酸、甲硫胺酸、組胺酸、主鏈─醯胺(backbone-amide)或羧酸進行。此外,藉由遺傳密碼的擴產來引入非天然胺基酸及生物證交化學(bioorthogonal chemistry)亦可以用於該連接片段的胜肽,如例如Elia,2020年﹝PMID:32640070﹞所評論。
許多不同的胺基酸序列及序列長度均適用於該連接片段的胜肽﹝如果存在﹞,該胜肽亦可以例如包含非天然的胺基酸或具有經修飾的側鏈﹝例如,帶有生物素﹞。然而,於任何狀況下,該胜肽較佳不結合﹝換言之,被進行治療的個體的,例如人類個體的﹞任何的第一類人類白血球抗原(HLA Class I)或第二類人類白血球抗原分子(HLA Class II molecule),以預防於活體內( in vivo)經由T細胞受體的出現及刺激,進而誘發一免疫反應。因此,為了盡可能地避免T細胞表位活性,該胜肽較佳滿足下列特徵的一或多個:
為了減少該胜肽結合一人類白血球抗原第二型或第一型分子的可能性,該胜肽具有一較佳的長度係介於4~8個胺基酸之間,儘管稍短或較長的長度仍然可以接受﹝尤其是介於2~13個胺基酸之間,較佳為介於3~11個胺基酸之間,更佳為介於4~9個胺基酸之間﹞。
為了進一步減少一胜肽結合一人類白血球抗原(human leukocyte antigen,HLA)第二型或第一型分子的可能性,較佳係以HLA結合預測演算法(HLA binding prediction algorithm)測試該候選胜肽序列,例如,NetMHCII-2.3﹝由Jensen等人於2018年所評論﹞。較佳地,該胜肽的HLA結合力﹝IC 50﹞至少﹝被預測﹞為500 nM;更佳地,HLA結合力﹝IC 50﹞係大於1000 nM,特別是大於2000 nM﹝與例如,Peters等人於2006年相比﹞。為了要降低與人類白血球抗原第一型分子的結合的可能性,也可以使用NetMHCpan 4.0來進行預測﹝Jurtz等人於2017年﹞。
為了進一步減少一胜肽結合一人類白血球抗原第一型分子的可能性,可以依據Koşaloğlu-Yalçın等人於2018年﹝PMID:30377561﹞,將NetMHCpan的等級百分位閾值(Rank percentile threshhold)設定為背景值的10%。較佳地,因此依據NetMHCpan 演算法,該胜肽的%Rank值係大於3,較佳係大於5,更佳係大於10。
為了進一步減少一胜肽結合一人類白血球抗原第二型分子的可能性,進行本領域常用的體外HLA結合試驗是有益的;例如,再摺疊試驗(refolding assay)、iTopia、胜肽拯救試驗(peptide rescuing assay)或基於陣列的胜肽結合試驗(array-based peptide binding assay)。此外,也可以使用基於液相層析─質譜法的分析法(LC-MS based analytics),例如,由Gfeller等人於2016年所評論。
該連接片段的胜肽可以為線型胜肽或環狀/拘束胜肽(circularized/constrained peptide),已知有數個常用技術來形成環狀/拘束胜肽,參照例如Ong等人,2017年;或Bozovičar等人,2021年。
如上所述,高度較佳地,當該連接片段的胜肽﹝如果存在的話﹞於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的及/或生物學地惰性的(biologically inert)。較佳地,如此的非免疫原性的胜肽藉由NetMHCII-2.3演算法所預測之針對HLA-DRB1_0101的IC 50係高於100 nM,較佳為高於500 nM,又更佳為高於1,000 nM,特別是高於2,000 nM。該NetMHCII-2.3演算法係如Jensen等人所詳述,其已被作為參考資料,並合併入本文。該演算法在http://www.cbs.dtu.dk/services/NetMHCII-2.3/網站公開可用。又更佳地,該胜肽於活體內( in vivo)未結合任何HLA及/或MHC分子﹝例如,於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中;或被進行治療的個體中﹞。或者,除此之外,亦可以使用如Ramana等人,2020年﹝PMID:32162252﹞所例示的計算對接分析(computational docking analysis),以避免該胜肽於MHC-I分子裂縫(MHC-I molecule cleft)中的結合。
或者,除此之外,該胜肽較佳不包含B細胞表位(B-cell epitope)。例如基於支持向量機(support vector machine)或基於決策樹(decision tree)等適用以預測B細胞表位的電腦模擬方法(in-silico method)近期已被評論,例如,Sun等人,2019年﹝PMID:30499399﹞,或Galanis等人,2021年﹝PMID:33809918﹞。
因為,尤其是離胺酸、酪胺酸及半胱胺酸殘基可以用以分枝連接PEG鏈﹝或其他修飾﹞─即,單一個胜肽可能能夠將數個PEG鏈﹝或其他修飾﹞至該生物聚合物框架。較佳地,該胜肽包含至少一個離胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個離胺酸殘基;及/或該胜肽包含至少一個酪胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個酪胺酸殘基;及/或該胜肽包含至少一個半胱胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個半胱胺酸殘基。針對上述每一個殘基,可以結合一PEG鏈﹝或其他修飾﹞。
因此,於一更佳實施例中,至少二個,較佳為至少三個,更佳為至少四個,特別是至少五個PEG鏈結合該至少一個連接片段的一個,較佳結合該連接片段的該胜肽。
為了於該連接片段的該胜肽實現較高的靈活性,該胜肽可以包含至少一個甘胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個甘胺酸殘基。
依據進一步的偏好,該連接片段的該胜肽具有一末端﹝即, N端及/或C端﹞的半胱胺酸殘基,用以更方便的耦合。舉例而言,該生物聚合物框架可以連接該胜肽的一末端半胱胺酸﹝例如,藉由活化具有sulfo-GMBS的生物聚合物框架的離胺酸殘基﹞,且PEG可以藉由與NHS─PEG共培養(incubation)而接續地連接該胜肽的游離的N端﹝參照第15實例﹞。
於一特定偏好中,該胜肽包含該胺基酸序列(X 1-(X 2) m) n,其中,m為一整數介於1~5之間,較佳為介於2~4之間,其中,n為一整數介於1~5之間,較佳為介於2~5之間。較佳地,對於每個事件獨立地,X 1為離胺酸、酪胺酸、色胺酸、甲硫胺酸、組胺酸或半胱胺酸;且對於每個事件獨立地,X 2為不為X1的任何其他胺基酸,較佳為甘胺酸。
本發明的該化合物可以包含例如至少二個,較佳為介於3~40之間的PEG鏈﹝具有相同或不同的分子量﹞。
較佳地,各該PEG鏈共價地結合該生物聚合物框架。
在本發明的過程中,PEG鏈的部分分子量範圍被證明是尤其有利的﹝參照實例段落﹞。因此,較佳地,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於100~10,000 Da之間,較佳為介於200~8,000 Da之間,更佳為介於300~6,000 Da之間,再更佳為介於400~5,000 Da之間,又更佳為介於500~4,000 Da之間,再又更佳為介於600~3,000 Da之間,特別是介於700~2,500 Da之間,或甚至是介於1,500~2,500 Da之間。
為了進一步提升該螯合效率,較佳該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的甲氧基端基或一游離的羥基端基。於本文中,〝游離的(free)〞意指該PEG端基未共價地結合另一分子﹝例如,另一胜肽或另一官能基或一保護基﹞。
高度較佳地,本發明的化合物於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的。
在本發明的上下文中,一非免疫原性的化合物較佳為一化合物,其中,依據該NetMHCII-2.3演算法,該生物聚合物框架﹝如果是一蛋白質﹞對HLA-DRB1_0101的IC 50高於100 nM,較佳為高於500 nM,又更佳為高於1000 nM,特別是高於2000 nM。該NetMHCII-2.3演算法係如Jensen等人所詳述,其已被作為參考資料,並合併入本文。該演算法在http://www.cbs.dtu.dk/services/NetMHCII-2.3/網站公開可用。又更佳地,一非免疫原性的化合物﹝或醫藥組合物﹞於活體內( in vivo)未結合任何HLA及/或MHC分子﹝例如,於一哺乳動物中,較佳為於一人體、一非人之靈長類、一綿羊、一豬、一狗或一囓齒動物中;或被進行治療的個體中﹞。
依據進一步的偏好,該化合物係於一個體中,較佳於該個體的血流中,用以體內螯合﹝或體內消耗﹞至少一個抗PEG抗體;及/或於該個體中,較佳於該個體的血流中,用以降低該至少一抗PEG抗體的力價。
在一方面,本發明關於一種醫藥組合物,包含:本發明的化合物;及至少一醫藥學上可接受的賦形劑。
於實施例中,該組合物係製備以供腹膜內(intraperitoneal)、皮下(subcutaneous)、肌內(intramuscular)及/或靜脈(intravenous)投予,尤其是,該組合物系用以重覆性投予﹝由於其通常為非免疫原性的﹞。
較佳地,該組合物中,PEG鏈與生物聚合物框架的莫耳數比係介於2:1~100:1之間,較佳為介於3:1~90:1之間,更佳為介於4:1~80:1之間,又更佳為介於5:1~70:1之間,再又更佳為介於6:1~60:1之間,特別是介於7:1~50:1之間,或甚至是介於8:10~40:1之間。
於另一面向中,本發明的該化合物係用以治療。
在本發明的過程中,事實證明本發明的化合物在降低非預期的抗體的活體內動力學(in vivo kinetics)通常非常快速,有時會尾隨該非預期的抗體的溫和反彈。因此,尤其較佳當該化合物﹝或包含該化合物的該醫藥組合物﹞於96小時的時間窗內,較佳於72小時的時間窗內,更佳於48小時的時間窗內,又更佳於36小時的時間窗內,再又更佳於24小時的時間窗內,特別是於18小時的時間窗內,或甚至於12小時的時間窗內,投予至少二次;尤其是其中,該時間窗係接續於投予該活性劑的24小時以內,較佳為12小時以內﹝通常在至少6小時之後﹞。舉例而言,該醫藥組合物可以在第0小時時投予該活性劑的前24小時及12小時投予。
尤其是,該化合物係用以抑制一個體對活性劑治療的一免疫反應,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的。較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予。
依據進一步的偏好,該化合物係用以於一個體中抑制一活性劑的中和化,尤其是加速的血液清除,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的。較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予。
一般而言,於本發明的上下文中,該活性劑為一蛋白質或胜肽,其中較佳地,該活性劑選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;或該活性劑可以為一病毒載體,例如用以基因治療或一基於病毒的載體疫苗接種。經PEG修飾之病毒載體已於例如Balakrishnan等人,2019年或Barry等人,2020年所揭示。
最一般而言,於本發明的全文中,該活性劑具有一﹝生物性的﹞活性﹝例如一酵素活性及/或一治療效果﹞,其為本發明的化合物或生物聚合物框架所缺乏的。
作為另一實例,為使其具有較低的免疫原性或較不易被預先存在或誘導產生的抗體所清除,以PEG屏蔽腺病毒載體﹝O'Riordan等人,1999年(PMID:10365665);Kim等人,2012年(PMID:22142769)﹞。相同的概念已應用於AAV﹝Lee等人,2005年(PMID:15937953);Weaver等人,2008年(PMID:18778197)﹞。據此,特別是當該活性劑為包含PEG的腺病毒載體或包含PEG的AAV載體的時候為較佳的。
該活性劑尤其是選自上述第1表所列的活性劑﹝由INN所確定﹞、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶﹝例如BCT-100﹞、經PEG修飾之精胺酸脫胺酶﹝例如ADI PEG-20﹞及經PEG修飾之甲硫胺酸酶。
PEG另用於針對治療代謝性疾病及抗體的酵素的修飾及製劑及用於酵素替代療法(enzyme replacement therapy)﹝通常用於罕見的遺傳性疾病﹞的酵素的修飾及製劑,酵素替代療法通常應用於遺傳性代謝疾病由於代謝路徑中所需要的酵素的結構缺陷、表現量低或缺乏該酵素,而缺乏內生性的酵素活性,該些情況通常與受影響的路徑的受質或中間產物的堆積有關,進而導致疾病的發生。作為替代方案,酵素療法亦可以用以增強內生性的路徑的完整的酵素的酵素活性,如下列第2表所列﹝一些經PEG修飾的酵素亦如上述第1表所述﹞。酵素的其他應用包含癌症、神經肌肉功能障礙(neuromuscular dysfunction)、止血,或甚至美容干預。
已建立之經PEG修飾的酵素的實例包含苯丙氨酸氨裂合酶(phenylalanine ammonia lyase)﹝Sarkissian等人,2008年﹞、L-天冬醯胺酸酶(L-asparaginase)﹝Pastore Meneguetti,2019年,PMID:30753228﹞或腺苷脫氨酶﹝Booth等人,2009,PMID:19707420﹞、用於法布瑞氏症的Pegunigalsidase﹝Kant,2020年,PMID:33152937﹞或經PEG修飾的天冬醯胺酸酶Crisantaspase﹝Torres-Obreque,2019年,PMID:30597637﹞。
因此,更佳地,活性劑為一酵素的一PEG修飾形式,其中較佳地,該酵素係選自下列第2表。
第2表、其他的治療性酵素
酵素 治療應用及/或作用模式
Acid α-glucosidase 龐培氏病
Acid Ceramidase 法伯病、囊腫性纖維化
Acid sphingomyelinase B型尼曼匹克症
α-galactosidase 法布瑞氏症:醣神經胺醇酯的降解
α-L-iduronidase 第一型黏多醣症(MPS I)的賀勒氏及賀勒─施艾氏型
α-N-acetylglucosaminidase 聖菲利柏氏症(MPS III B)
Alteplase 血栓溶解
Anistreplase 血栓溶解藥物
Arylsulfatase 馬洛托─拉米氏症(MPS VI)
Arylsulfatase A 異染性腦白質退化症:腦苷3硫酸
β-galactosidase GM1神經節甘脂儲積症、涎酸酵素缺乏症
β-glucuronidase 史萊氏症(MPS VII)
β-hexosaminidase A (HexA) GM2神經節甘脂儲積症、桑德霍夫、戴薩克斯症
Botulinum neurotoxin type A complex 嚴重肌肉痙攣
Botulism toxin type A 肌張力障礙、痙攣
Botulism toxin type B 肌張力障礙、痙攣
Carboxypeptidase 癌症
Drotrecognin-a 抗血栓、抗炎作用
Glucocerebrosidase 高雪氏症:葡糖腦苷脂的降解
Hyaluronidase 玻尿酸的水解
Iduronate-2-sulfatase 韓特氏症(MPS II)
L-Asparaginase ALL、NHL
Lipase, amylase, protease 胰功能不全
Lysosomal acid lipase 溶酶體痠性脂肪酶缺乏症
N-acetylgalactosamine 6-sulfatase A型莫奎歐氏症(MPS IV A)
N-acetylgalactosamine-4-sulfatase 黏多醣症VI(MPS VI)
Porphobilinogen deaminase 急性間歇性紫質症(AIP)
Rasburicase 尿酸經酵素性氧化為尿囊素
Reteplase 血栓溶解
Streptokinase 血栓溶解
Tenecteplase 血栓溶解
Tissue-nonspecific alkaline phosphatase fusion protein 低磷酸酶症
Urate oxidase 難治性痛風
Urokinase 血栓溶解
此外,Park等人[2019年,PMID:30957581]、Swierczewska等人﹝2015年,PMID:26583759﹞或Kang及Stevens,2009年﹝PMID:19790257﹞已提供臨床階段及臨床前階段的﹝候選的﹞經PEG修飾的藥物的全面性評論。Solomon及Muro,2017年﹝PMID:28502768﹞已評論溶酶體酵素替代療法。於此段落所引用的出版物中提及的所有酵素﹝或其經PEG修飾的形式,若尚未被揭示經PEG修飾﹞亦可以作為本發明的活性劑使用。
酵素可以與如PEG微脂體等製劑結合使用﹝參照Solomon及Muro,2017年,PMID:28502768﹞。然而,PEG微脂體在誘導抗PEG抗體的時候會發生問題﹝Ishida,2006年,PMID:17045355﹞,因此,本發明尤其是合適於這樣的應用。據此,包含PEG的脂質─酵素粒子亦可以作為本發明的活性劑使用。
一般而言,基因轉移至細胞及組織的主要問題為藉由核酸酶的降解及快速清除與有限的組織分布,DNA及RNA通常會被核酸酶快速地降解、快速通過腎臟及肝臟的清除,且由於親水性及高分子量的組合,DNA及RNA通常無法進入細胞。病毒載體在作為遺傳物質的生物載體為有吸引力的替代方案,惟主要限制在於貨物的尺寸、載體的製造及放大。更重要的是,最大的障礙是他們的免疫原性。
因此,由脂質、聚合物及/或胜肽與核酸組合所組成的非病毒基因轉移載體目前正在以不同的組合進行深入研究。舉例而言,複合物(polyplex)或奈米複合物(nanocomplex)為研究最多的及最通用的核苷酸載體,他們保護其核苷酸貨物免受於核酸內切酶(endonuclease)的消化作用,進而提升穩定性和活體內的循環時間,且他們亦可以作為疫苗佐劑使用。
尤其是,陽離子型奈米載體通常包含PEG,以降低不需要的細胞攝取或黏膜佐劑效應(mucosal adjuvant effect),例如用於聚乙烯亞胺(polyethyleneimine,PEI),當與醣蛋白抗原結合使用時﹝Wegmann,2012年,PMID:22922673﹞,PEG結構的修飾,例如刷狀、星狀或膠束狀的PEG被開發用以改善生物分佈(biodistribution)、細胞攝取及基因表現,並用以減少非預期的副作用。關於經PEG修飾的遞送聚合物的廣泛評論已為Suk等人,2016年﹝PMID:26456916﹞、Yang等人,2015年﹝PMID:25707913﹞及Sun等人,2019年﹝PMID:31386928﹞所發表。
儘管PEG在藥物及疫苗的遞送﹝尤其是DNA及RNA的遞送﹞、生物偶聯(bioconjugation)或包含PEG的製劑的開發﹝例如包含PEG或被PEG披覆的微脂體及奈米粒子製劑﹝如Inglut所評論,2020年,PMID:31978968﹞等方面具有許多普遍優勢,由此類複合物與核苷酸﹝及經PEG修飾的核苷酸本身﹞的PEG免疫原性引起的問題,在先前技術中尚未被解決。本發明亦適用於解決該些問題。
因此,尤其是本發明的較佳實施例中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子﹝其中,該聚合物可以為例如一蛋白質或胜肽﹞、一核苷酸─脂質─聚合物粒子﹝其中,該聚合物可以為例如一蛋白質或胜肽﹞或一核苷酸。﹝該粒子的﹞該核苷酸可以為DNA或RNA。據此,該活性劑可以為例如一RNA─脂質粒子、一RNA─聚合物粒子、一RNA─脂質─聚合物粒子或一RNA。於其他實施例中,該活性劑可以為例如一DNA─脂質粒子、一DNA─聚合物粒子、一DNA─脂質─聚合物粒子或一DNA。對於技術人員顯而易見的是,如本文所使用的作為活性劑使用的粒子可以例如為其組分﹝即,核苷酸、脂質及/或聚合物﹞的非共價複合物。
重要的是,針對SARS-CoV-2的傳訊核醣核酸(messenger ribonucleic acid,mRNA)疫苗﹝例如mRNA-1273(Moderna Inc.)及BNT162b2(Biontech SE/Pfizer Inc)﹞,其將在未來幾年被投予至數億的個體,為基於包含PEG的脂質奈米粒子(PEG-containing lipid nanoparticle,LNP),其為核苷酸─脂質粒子的形式,且帶有mRNA﹝如Aldosari等人所評論,2021年,PMID:33540942﹞。SARS-Cov-2疫苗的開發,包含基於LNP的mRNA疫苗,已為例如Dong等人﹝PMID:33051445﹞及Kaur等人,2020年﹝PMID:32800805﹞所評論。舉例而言,LNP亦已為美國公告第7,404,969號專利案、美國公告第8,058,069號專利案、美國公告第9,364,435號專利案及美國公告第9,404,127號專利案所揭示。此外,其他的mRNA疫苗亦為基於包含PEG的LNP。
該些針對SARS-CoV-2的包含PEG的基於LNP的mRNA疫苗的臨床應用於某些個體中導致嚴重的過敏反應﹝例如參照Worm等人,2021年,其亦揭示該些疫苗的成分﹞。Turk,2021年亦論述與該些疫苗相關的過敏反應(anaphylaxis),存在於該些疫苗中的PEG被認為是過敏反應最可能的罪魁禍首。
因此,於較佳實施例中,該核苷酸為mRNA。據此,該活性劑可以例如為一mRNA─脂質粒子、一mRNA─聚合物粒子、一mRNA─脂質─聚合物粒子或一mRNA。
PEG亦用於DNA及RNA寡核苷酸﹝包含反股寡核苷酸(antisense oligonucleotide)、剪接校正寡核苷酸(splice-correcting oligonucleotide)、短小干擾RNA(small interfering RNA,siRNA)及微小RNA(microRNA,miRNA)﹞的遞送﹝如Lu等人所評論,2019年,PMID:30740197﹞。因此,於較佳實施例中,﹝該粒子的﹞該核苷酸係選自反股寡核苷酸、剪接校正寡核苷酸、短小干擾RNA及微小RNA。
此外,PEG係用於適配體(aptamer)的遞送,包含DNA、RNA及spiegelmer﹝如Jain等人所評論,2020年,PMID:32990095﹞。因此,於更佳實施例中,﹝該粒子的﹞該核苷酸為一適配體。
於又一較佳實施例中,該核苷酸─聚合物粒子為一核苷酸─PEG─PEI共聚物粒子,例如Lutz等人,2008年﹝PMID:18679622﹞所揭示,或一核苷酸─胜肽粒子﹝例如其中,該核苷酸與經PEG修飾的陽離子胜肽複合﹞﹞,例如Qiu,2019年﹝PMID:31629037﹞所揭示。
於更佳實施例中,該核苷酸─脂質粒子為陽離子─脂質輔助粒子﹝陽離子脂質輔助奈米粒子(cationic lipid-assisted nanoparticle,CLAN)﹞;其中較佳地,該核苷酸為一CRISPR/Cas9的DNA質體,例如Luo等人,2018年﹝PMID:29314827﹞所揭示。
於本發明的上下文中,該活性劑亦可以選自由Park等人﹝2019年,PMID:30957581﹞所揭示之第1~4表及Swierczewska等人﹝2015等人,PMID:26583759﹞所揭示之第1、2表中的任一個。
於實施例中,一或多個抗PEG抗體係存在於該個體中。
高度較佳地,該組合物於個體中為非免疫原性的﹝例如,其不包含一佐劑(adjuvant)或一免疫刺激性物質,其刺激先天性免疫性統或適應性免疫系統,例如一佐劑或一T細胞表位﹞。
本發明的組合物可以被以該個體每公斤的體重投予1~900 mg,較佳為2~500 mg,更佳為3~250 mg,又更佳為4~100 mg,特別是5~50 mg之化合物的劑量進行投予,其中較佳地,該組合物係被重覆性投予。前述投予可以為腹膜內地、皮下地、肌內地或靜脈地。
在一方面,本發明關於一種螯合﹝或消耗﹞存在於一個體的一或多個抗體的方法,包含:獲得此處所定義的醫藥組合物,其中,該組合物於個體中為非免疫原性的,且其中,該一或多個抗體為抗PEG抗體;及將該醫藥組合物投予該個體﹝尤其是重覆性投予,例如至少二次,較佳為至少三次,更佳為至少五次﹞。
於本發明的上下文中,﹝被進行治療的﹞該個體可以為一非人的動物,較佳為一非人之靈長類個體、一綿羊個體、一豬個體、一狗個體或一囓齒動物個體,尤其是一小鼠個體。
較佳地,對該個體而言,該生物聚合物框架為自體的,其中較佳地,該生物聚合物框架為一自體蛋白質﹝即,當該個體為一小鼠,使用鼠類白蛋白﹞。
於另一面向中,本發明關於一種醫藥組合物,包含本發明的化合物,且另包含如此處揭示的一活性劑及可選地至少一醫藥學上可接受的賦形劑。
此一組合物較佳用以抑制針對該活性劑的一免疫反應,較佳為一抗PEG抗體所介導的免疫反應。
此一組合物更佳於該個體中為非免疫原性的。
於再一面向中,本發明關於一種在需要以一活性劑治療的一個體中,抑制以該活性劑進行治療的﹝體液性的﹞免疫反應的方法,包含:獲得如上述定義之一醫藥組合物;其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及將該醫藥組合物投予﹝較佳為重覆性投予﹞該個體。
在本發明的上下文中,為了提高生體可利用度,本發明的化合物於25℃之溫度下,在水中的溶解度為至少0.1 µg/mL,較佳為至少1 µg/mL,更佳為至少10 µg/mL,又更佳為至少100 µg/mL,特別是至少1000 µg/mL。
於此處所使用的術語〝預防〞,係指完全地或幾乎完全地或至少達一﹝較佳為顯著的﹞程度,停止一疾病狀態或病症於一患者或個體的發生,特別是當該患者或受試者或個體傾向於罹患一疾病狀態或病症的風險的情況下。
本發明的醫藥組合物較佳係以一溶液﹝一般而言為水溶液﹞、一懸浮液﹝一般而言為水性懸浮液﹞或一乳狀液﹝一般而言為水性乳狀液﹞的狀態提供,在閱讀本說明書後,適用於本發明的醫藥組合物的賦形劑為本發明技術人員所習知的,例如,水﹝特別是注射用水﹞、食鹽水、林格氏溶液(Ringer’s solution)、右旋糖溶液、緩衝液、Hank溶液、囊胞形成化合物(vesicle forming compound)﹝例如,脂質﹞、不揮發油(fixed oil)、油酸乙酯(ethyl oleate)、5%葡萄糖﹝溶於食鹽水﹞、增強等滲性(isotonicity)及化學穩定度的物質、緩衝液及防腐劑。其他合適的賦形劑包含本身不會在該患者﹝或個體﹞中誘導對該患者﹝或個體﹞有害的抗體產生的任何化合物,實例為耐受性良好的蛋白質、多醣、聚乳酸(polylactic acid)、聚乙醇酸(polyglycolic acid)、聚合胺基酸(polymeric amino acid)及胺基酸共聚物(amino acid copolymer)。此一醫藥組合物可以﹝作為一藥物﹞,經由技術人員﹝在閱讀本說明書之後﹞,以已知的適當方法投予一所需患者或一所需個體﹝即,具有於此處所述之疾病或病症,或具有發展為於此處所述之疾病或病症的一患者或或個體﹞。該醫藥組合物的較佳投予路徑為腸胃外投予(parenteral administration),尤其是腹膜內、皮下、肌內及/或靜脈投予。為了進行腸胃外投予,本發明的醫藥組合物較佳係以注射劑量單位的形式提供,例如為一溶液﹝一般為一水溶液﹞、懸浮液或乳狀液,並與上述所定義之醫藥學上可接受的賦形劑一同配製。然而,投予的劑量及方法取決於要被進行治療的個體患者或個體。該醫藥組合物能夠以其他生物學劑量方案已知的任何適合的劑量投予,或者針對所給定的個體進行專門評估及優化;舉例而言,該活性劑能夠以1 mg~10 g,較佳為50 mg~2 g,尤其是100 mg~1 g的劑量存在於該醫藥組合物中。通常的劑量也可以基於該患者的公斤體重來確定,例如較佳的劑量為0.1~100 mg/kg體重,特別是1~10 mg/kg體重﹝每次給藥(per administratnio session)﹞,該投予可以例如為每天一次、每隔一天一次、每周一次或每兩周一次。由於本發明的醫藥組合物的較佳投予模式為腸胃外投予,本發明的醫藥組合物較佳為液態(liquid),或易於溶解於無菌、去離子或蒸餾水或無菌等張的磷酸鹽緩衝生理食鹽水(phosphate-buffered saline,PBS)。較佳地,1000 µg﹝乾重﹞的一組合物包含或由0.1~990 µg,較佳為1~900 µg,更佳為10~200 µg的化合物所組成,及可選地1~500 µg,較佳為1~100 µg,更佳為5~15 µg的﹝緩衝液﹞鹽﹝較佳係於最終體積中形成等張的緩衝液﹞;且可選地0.1~999.9 µg,較佳為100~999.9 µg,更佳為200~999 µg的其他賦形劑。較佳地,將100 mg之乾燥的組合物溶於無菌、去離子/蒸餾水,或無菌等張的磷酸鹽緩衝生理食鹽水,以形成0.1~100 mL,較佳為0.5~20 mL,更佳為1~10 mL的最終體積。
對於技術人員顯而易見的是,於此處所描述的活性劑及藥物也能夠以鹽的形式(salf-form)﹝即,作為該活性劑的醫藥學上可接受的鹽﹞進行投予。因此,於此處提及的任何活性劑也應該包含其任何醫藥學上可接受的鹽的形式。
用以將PEG鏈連接該生物聚合物框架的偶合/接合化學法﹝例如,經由例如,Greg T. Hermanson〝Bioconjugate Techniques〞描述之技術﹞係可以選自本領域技術人員已知的反應。該生物聚合物本身可以為重組製造或獲得自天然來源。
於此處,如於〝分子A對分子B具有特異性〞的術語〝對…具有特異性(specific for)〞係指於一個體體內的其他分子相比,分子A對分子B具有結合偏好。一般而言,這要求分子A﹝例如,一抗體﹞對分子B﹝例如,該抗原,特別是其結合表位﹞的解離常數(dissociation constant)﹝亦稱為〝親和力〞﹞係低於﹝即,〝強過於(stronger than)〞﹞1000 nM,較佳為低於100 nM,更佳為低於50 nM,又更佳為低於10 nM,特別是低於5 nM。
本發明另關於以下的實施例:
第1實施例:一種化合物,包含:一生物聚合物框架;及一或多個PEG鏈。
第2實施例:如第1實施例之化合物,其中,該一或多個PEG鏈包含至少二個,較佳為至少三個,更佳為至少五個,又更佳為至少十個,或甚至是至少二十個PEG鏈。
第3實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於100~10,000 Da之間。
第4實施例:如第1或2實施例之化合物,其中,該一或多個PEG的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於200~8,000 Da之間。
第5實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於300~6,000 Da之間。
第6實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於400~5,000 Da之間。
第7實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於500~4,000 Da之間。
第8實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於600~3,000 Da之間。
第9實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於700~2,500 Da之間。
第10實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於10,000 Da。
第11實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於9,000 Da。
第12實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於8,000 Da。
第13實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於7,000 Da。
第14實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於6,000 Da。
第15實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於5,000 Da。
第16實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於4,000 Da。
第17實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於3,000 Da。
第18實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於2,500 Da。
第19實施例:如第1或2實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於1,500~2,500 Da之間。
第20實施例:如第1~19實施例中任一實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的甲氧基端基(free methoxy end group)或一游離的羥基端基(free hydroxyl end group)。
第21實施例:如第1~19實施例中任一實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的甲氧基端基。
第22實施例:如第1~19實施例中任一實施例之化合物,其中,該一或多個PEG鏈的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的羥基端基。
第23實施例:如第1~22實施例中任一實施例之化合物,其中,該生物聚合物框架為一蛋白質,較佳為一哺乳動物的蛋白質,例如一人類的蛋白質、一非人之靈長類的蛋白質、一綿羊的蛋白質、一豬的蛋白質、一狗的蛋白質或一囓齒動物的蛋白質。
第24實施例:如第23實施例之化合物,其中,該生物聚合物框架為一球蛋白(globulin)。
第25實施例:如第24實施例之化合物,其中,該生物聚合物框架選自由免疫球蛋白(immunoglobulin)、α1球蛋白(α1-globulin)、α2球蛋白(α2-globulin)及β球蛋白(β-globulin)所組成的群組。
第26實施例:如第25實施例之化合物,其中,該生物聚合物框架選自由免疫球蛋白G(immunoglobulin G)、結合球蛋白(haptoglobin)及轉鐵蛋白(transferrin)所組成的群組。
第27實施例:如第26實施例之化合物,其中,該生物聚合物框架為轉鐵蛋白。
第28實施例:如第23實施例之化合物,其中,該生物聚合物框架為白蛋白(albumin)。
第29實施例:如第23實施例之化合物,其中,該生物聚合物框架為一抗CD163抗體﹝即,針對CD163蛋白具有特異性的抗體﹞或其CD163結合片段。
第30實施例:如第29實施例之化合物,其中,該抗CD163抗體或其CD163結合片段針對人類的CD163具有特異性,及/或針對CD163的胞外區域(extracellular region)具有特異性,較佳是針對CD163的SRCR域(SRCR domain),更佳是針對CD163的SRCR域1~9中的任一個,又更佳是針對CD163的SRCR域1~3中的任一個,特別是針對CD163的SRCR域1。
第31實施例:如第29實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對下列胜肽中的一個具有特異性:
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列CSGRVEVKVQEEWGTVCNNGWSMEA﹝SEQ ID NO:3﹞或其7~24個胺基酸的一片段;
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列DHVSCRGNESALWDCKHDGWG﹝SEQ ID NO:13﹞或其7~20個胺基酸的一片段;或
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列SSLGGTDKELRLVDGENKCS﹝SEQ ID NO:24﹞或其7~19個胺基酸的一片段。
第32實施例:如第31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列ESALW﹝SEQ ID NO:14﹞或ALW的一胜肽具有特異性。
第33實施例:如第31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列GRVEVKVQEEW﹝SEQ ID NO:4﹞、WGTVCNNGWS﹝SEQ ID NO:5﹞或WGTVCNNGW﹝SEQ ID NO:6﹞的一胜肽具有特異性。
第34實施例:如第31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列SSLGGTDKELR﹝SEQ ID NO:25﹞或SSLGG﹝SEQ ID NO:26﹞的一胜肽具有特異性。
第35實施例:如第1~34實施例中任一實施例之化合物,其中,該化合物於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的。
第36實施例:如第1~35實施例中任一實施例之化合物,其中,該化合物於一個體中,較佳於該個體的血流中,用以體內螯合﹝或體內消耗或體內阻斷﹞至少一抗PEG抗體;及/或於該個體中,較佳於該個體的血流中,用以降低至少一抗PEG抗體的力價(titre)。
第37實施例:如第1~36實施例中任一實施例之化合物,其中,各該一或多個PEG鏈共價地結合該生物聚合物框架,較佳分別經由一連接片段。
第38實施例:如第1~36實施例中任一實施例之化合物,其中,該一或多個PEG鏈的至少一部分經由至少一連接片段共價地結合該生物聚合物框架。
第39實施例:如第37或38實施例之化合物,其中,該連接片段包含一胜肽或一單一個胺基酸,例如一半胱胺酸(cysteine)。
第40實施例:如第39實施例之化合物,其中,該連接片段包含該胜肽。
第41實施例:如第40實施例之化合物,其中,該胜肽具有一序列長度介於2~13個胺基酸之間,較佳介於3~11個胺基酸之間,更佳介於4~9個胺基酸之間,特別是介於5~8個胺基酸之間。
第42實施例:如第40或41實施例之化合物,其中,該胜肽為直鏈的或環形的。
第43實施例:如第40~42實施例中任一實施例之化合物,其中,該胜肽於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的。
第44實施例:如第40~43實施例中任一實施例之化合物,其中,該胜肽包含至少一個離胺酸殘基(lysine residue),較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個離胺酸殘基;或其中,該胜肽包含至少一個酪胺酸殘基(tyrosine residue),較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個酪胺酸殘基;或其中,該胜肽包含至少一個半胱胺酸殘基(cysteine residue),較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個半胱胺酸殘基。
第45實施例:如第40~44實施例中任一實施例之化合物,其中,該胜肽包含至少一個甘胺酸殘基(glycine residue),較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個甘胺酸殘基。
第46實施例:如第40~45實施例中任一實施例之化合物,其中,該胜肽具有一末端半胱胺酸殘基(terminal cysteine residue)。
第47實施例:如第40~46實施例中任一實施例之化合物,其中,該胜肽包含該胺基酸序列(X 1-(X 2) m) n,其中,m為一整數介於1~5之間,較佳介於2~4之間,其中,n為一整數介於1~5之間,較佳介於2~5之間。
第48實施例:如第47實施例之化合物,其中,對於每個事件獨立地,X 1為離胺酸、酪胺酸、色胺酸(tryptophan)、甲硫胺酸(methionine)、組胺酸(histidine)或半胱胺酸,且對於每個事件獨立地,X 2為不為X 1的任何其他胺基酸,較佳為甘胺酸。
第49實施例:如第38~48實施例中任一實施例之化合物,其中,該部分包含至少10%,較佳為至少20%,更佳為至少30%,又更佳為至少40%,再又更佳為至少50%,或甚至是75%,特別是所有的該一或多個PEG鏈。
第50實施例:如第38~49實施例中任一實施例之化合物,其中,至少二個,較佳為至少三個,更佳為至少四個,特別是至少五個PEG鏈結合該至少一連接片段的單一個,較佳為結合該連接片段的該胜肽。
第51實施例:如第1~50實施例中任一實施例之化合物,其中,該生物聚合物框架為人類的轉鐵蛋白。
第52實施例:如第1~51實施例中任一實施例之化合物,其中,該化合物於人類個體中為非免疫原性的。
第53實施例:一種醫藥組合物,包含如第1~52實施例中任一實施例之化合物;及至少一醫藥學上可接受的賦形劑。
第54實施例:如第53實施例之醫藥組合物,其中,該組合物係供腹膜內、皮下、肌肉內及/或靜脈內投予,及/或其中,該組合物係供重覆性投予。
第55實施例:如第53或54實施例之醫藥組合物,其中,該組合物中,PEG鏈與生物聚合物框架的莫耳數比介於2:1~100:1之間,較佳為介於3:1~90:1之間,更佳為介於4:1~80:1之間,又更佳為介於5:1~70:1之間,再又更佳為介於6:1~60:1之間,特別是介於7:1~50:1之間,或甚至是介於8:10~40:1之間。
第56實施例:用以進行治療的如第53~55實施例中任一實施例之醫藥組合物。
第57實施例:用以使用的如第56實施例之醫藥組合物,用以抑制一個體對活性劑治療的一免疫反應,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的;其中較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予,其中更佳地,該醫藥組合物在96小時的時間窗(window)內,較佳為在72小時的時間窗內,更佳為在48小時的時間窗內,又更佳為在36小時的時間窗內,再又更佳為在24小時的時間窗內,特別是在18小時的時間窗內,或甚至是在12小時的時間窗內,投予至少二次,特別是其中,該時間窗係接續於投予該活性劑的24小時之內,較佳為12小時之內。
第58實施例:用以使用的如第56實施例之醫藥組合物,用以於一個體中抑制一活性劑的中和化(neutralization),尤其是加速的血液清除(accelerated blood clearance),其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的;其中較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予,其中更佳地,該醫藥組合物在96小時的時間窗內,較佳為在72小時的時間窗內,更佳為在48小時的時間窗內,又更佳為在36小時的時間窗內,再又更佳為在24小時的時間窗內,特別是在18小時的時間窗內,或甚至是在12小時的時間窗內,投予至少二次,特別是其中,該時間窗係接續於投予該活性劑的24小時之內,較佳為12小時之內。
第59實施例:用以使用的如第57或58實施例之醫藥組合物,其中,該活性劑為一蛋白質或胜肽,其中較佳地,該活性劑選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物(enzyme mimetics)、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;或者其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸;或者其中,該活性劑為一病毒載體,例如用以基因治療或疫苗接種的一病毒載體;尤其是其中,該活性劑係選自如第1表所列之活性劑﹝由INN所確定﹞、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶﹝例如BCT-100﹞、經PEG修飾之精胺酸脫胺酶﹝例如ADI PEG-20﹞、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之經PEG修飾的形式。
第60實施例:用以使用的如第57~59實施例中任一實施例之醫藥組合物,其中,該個體中存在有一或多個抗PEG抗體。
第61實施例:用以使用的如第57~60實施例中任一實施例之醫藥組合物,其中,該組合物於個體中為非免疫原性的。
第62實施例:用以使用的如第57~61實施例中任一實施例之醫藥組合物,其中,該組合物係以每公斤之該個體的體重投予1~900 mg,較佳為2~500 mg,更佳為3~250 mg,又更佳為4~100 mg,特別是5~50 mg,的化合物的劑量進行投予。
第63實施例:用以使用的如第57~62實施例中任一實施例之醫藥組合物,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
第64實施例:一種螯合﹝或消耗﹞存在於一個體中的一或多個抗體的方法,包含:獲得如第53~63實施例中任一實施例的醫藥組合物,其中,該組合物於該個體中為非免疫原性的,且該一或多個抗體為抗PEG抗體;及將該醫藥組合物投予該個體;其中較佳地,該投予係早於一活性劑或與該活性劑同時,該活性劑例如為一病毒載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組﹝尤其是其中,該活性劑係選自如第1表所列之活性劑(由INN所確定)、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶(例如BCT-100)、經PEG修飾之精胺酸脫胺酶(例如ADI PEG-20)、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之經PEG修飾的形式﹞,或如一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸,且其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的。
第65實施例:如第64實施例之方法,其中,該個體為一非人類的動物個體,較佳為一非人之靈長類個體、一綿羊個體、一豬個體、一狗個體或一囓齒動物個體,尤其是一小鼠個體。
第66實施例:如第64或65實施例之方法,其中,對該個體而言,該生物聚合物框架為自體的(autologous),其中較佳地,該生物聚合物框架為一自體蛋白質。
第67實施例:如第64~66實施例中任一實施例之方法,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
第68實施例:一種醫藥組合物,包含如第1~52實施例中任一實施例之化合物,且另包含一活性劑,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的。
第69實施例:如第68實施例之醫藥組合物,其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸,或一病毒載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;尤其是其中,該活性劑係選自如第1表所列之活性劑﹝由INN所確定﹞、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶﹝例如BCT-100﹞、經PEG修飾之精胺酸脫胺酶﹝例如ADI PEG-20﹞、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之經PEG修飾的形式。
第70實施例:如第68~69實施例中任一實施例之醫藥組合物,其中,該組合物係製備以供靜脈投予。
第71實施例:如第68~71實施例中任一實施例之醫藥組合物,其中,該組合物為一水溶液。
第72實施例:如第68~71實施例中任一實施例之醫藥組合物用以抑制對該活性劑的一免疫反應,較佳為一抗PEG抗體所介導之免疫反應。
第73實施例:用以使用的如第72實施例之醫藥組合物,其中,該組合物於個體中為非免疫原性的。
第74實施例:一種於以一活性劑進行治療的一所需個體中,用以抑制以該活性劑進行治療所造成的免疫反應的方法,包含:獲得如第68~74實施例中任一實施例之醫藥組合物;其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及將該醫藥組合物投予該個體。
第75實施例:如第74實施例之方法,其中,該個體為人類個體。
第76實施例:如第74或75實施例之方法,其中,對該個體而言,該生物聚合物框架為自體的,其中較佳地,該生物聚合物框架為一自體蛋白質。
第77實施例:如第74~76實施例中任一實施例之方法,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
由於相當一部分的患者體內的預先存在及誘導的抗PEG抗體本領域提出了替代的蛋白質修飾,以降低生物藥物的免疫原性(immunogenicity)及增加生物藥物的穩定性,並避免加速的血液清除。尤其是,建議以無序的及親水性的多肽﹝即,藉由XTEN修飾或PAS修飾﹞、藉由聚唾液酸修飾或藉由甲基修飾﹝尤其是離胺酸的還原性甲基修飾,其可以提升蛋白質藥物的細胞溶質穩定性(cytosolic stability)﹞,來修飾活性劑。此外,還提出了將碳水化合物結合蛋白質﹝醣基修飾﹞。儘管一般認為將蛋白質藥物與該免疫系統隔離為有益的,許多該些修飾仍然被免疫系統辨識為外來物,且可能會結合預先存在的抗體或誘發特異性抗體﹝如Zinsli所評論,2020年;PMID:33425259﹞。
XTEN修飾例如已於Podust等人﹝PMID:24133142﹞及PCT公開第2013/130683 A2號專利案中詳細描述。如本文所使用的,XTEN修飾被理解為使用一多肽的修飾,該多肽具有以下的特徵:(a)該多肽包含36~3,000個胺基酸殘基;且(b)甘胺酸(G)、丙胺酸(A)、絲胺酸(S)、蘇胺酸(T)麩胺酸(E)及脯胺酸(P)殘基的總和佔該多肽的總胺基酸殘基的約90%以上。
此外,該多肽具有較佳為至少一個,更佳為至少二個,又更佳為至少三個,特別是所有的特徵(c)~(f)﹝亦參照PCT公開第2013/130683 A2號專利案﹞:(c)該多肽序列本質上為非重複性的,使(i)該多肽序列不包含三個連續的相同的胺基酸,除非該胺基酸為絲胺酸;及(ii)該多肽序列的至少80%由非重疊序列模體(non-overlapping sequence motif)所組成,各序列模體包含至少9~14個胺基酸殘基,且其中,各該模體(motif)係由選自由甘胺酸(G)、丙胺酸(A)、絲胺酸(S)、蘇胺酸(T)、麩胺酸(E)及脯胺酸(P)的4~6種胺基酸所組成,其中,於各該序列模體中任二個連續的胺基酸殘基不出現超過2次;(d)藉由GOR演算法所確定的該多肽序列具有大於90%的無規則螺旋形成(random coil formation);(e)藉由Chou-Fasman 演算法所確定的該多肽序列具有少於2%的α螺旋(alpha helix)及2%的β褶板(beta sheet);及(f)在藉由T表位演算法分析時,該多肽序列缺乏預測的T細胞表位;其中,用以預測該XTEN序列中的表位的該T表位演算法係基於-6的得分。
該GOR演算法、該Chou-Fasman演算法及該T表位演算法較佳以PCT公開第2013/130683 A2號專利案所揭示者應用。
PAS修飾例如已於Binder及Skerra,2017年,以及PCT公開第2008/155134 A1號專利案及PCT公開第2011/144756 A1號專利案中詳細描述。如本文所使用的,PAS修飾被理解為以一多肽來修飾,該多肽包含由至少50個,較佳為至少100個的胺基酸殘基的一胺基酸序列所形成的無規則螺旋形成。尤其是,該胺基酸序列係由丙胺酸、脯胺酸及可選的絲胺酸殘基所組成。於本文中,〝無規則螺旋(random coil)〞用語應理解為如PCT公開第2008/155134 A1號專利案所定義者。
結果表明,最初所開發的包含PEG的活性劑亦可以應用該些其他修飾,帶有上述部分(moiety)的本發明的化合物高度適合用以移除抗體,其導致經修飾的活性劑的加速的血液清除,尤其是由該些部分所屏蔽的生物製品,藉由結合上述經屏蔽的部分。
本發明另關於以下的實施例:
第A1實施例:一種化合物,包含:一生物聚合物框架;及一或多個修飾,選自由PEG修飾、XTEN修飾、PAS修飾、甲基修飾、醣基修飾及聚唾液酸修飾所組成的群組。
第A2實施例:如第A1實施例之化合物,其中,該一或多個修飾包含至少二個,較佳為至少三個,更佳為至少五個,又更佳為至少十個,或甚至是至少二十個修飾。
第A3實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於100~10,000 Da之間。
第A4實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於200~8,000 Da之間。
第A5實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於300~6,000 Da之間。
第A6實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於400~5,000 Da之間。
第A7實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於500~4,000 Da之間。
第A8實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於600~3,000 Da之間。
第A9實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於700~2,500 Da之間。
第A10實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於10,000 Da。
第A11實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於9,000 Da。
第A12實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於8,000 Da。
第A13實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於7,000 Da。
第A14實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於6,000 Da。
第A15實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於5,000 Da。
第A16實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於4,000 Da。
第A17實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於3,000 Da。
第A18實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量小於2,500 Da。
第A19實施例:如第A1或A2實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一分子量介於1,500~2,500 Da之間。
第A20實施例:如第A1~A19實施例中任一實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的端基,例如一游離的甲氧基端基或一游離的羥基端基。
第A21實施例:如第A1~A19實施例中任一實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的胺基端基(free amino end group)或一游離的羧基端基(free carboxyl end group)。
第A22實施例:如第A1~A19實施例中任一實施例之化合物,其中,該一或多個修飾的至少一個,較佳為至少10%,更佳為至少20%,又更佳為至少40%,再更佳為至少60%,再又更佳為至少80%,或甚至是至少90%,特別是每一個,具有一游離的醣端基(free carbohydrate end group)或一游離的唾液酸端基(free sialic acid end group)。
第A23實施例:如第A1~A22實施例中任一實施例之化合物,其中,該生物聚合物框架為一蛋白質,較佳為一哺乳動物的蛋白質,例如一人類的蛋白質、一非人之靈長類的蛋白質、一綿羊的蛋白質、一豬的蛋白質、一狗的蛋白質或一囓齒動物的蛋白質。
第A24實施例:如第A23實施例之化合物,其中,該生物聚合物框架為一球蛋白。
第A25實施例:如第A24實施例之化合物,其中,該生物聚合物框架選自由免疫球蛋白、α1球蛋白、α2球蛋白及β球蛋白所組成的群組。
第A26實施例:如第A25實施例之化合物,其中,該生物聚合物框架選自由免疫球蛋白G、結合球蛋白及轉鐵蛋白所組成的群組。
第A27實施例:如第A26實施例之化合物,其中,該生物聚合物框架為轉鐵蛋白。
第A28實施例:如第A23實施例之化合物,其中,該生物聚合物框架為白蛋白。
第A29實施例:如第A23實施例之化合物,其中,該生物聚合物框架為一抗CD163抗體﹝即,針對CD163蛋白具有特異性的抗體﹞或其CD163結合片段。
第A30實施例:如第A29實施例之化合物,其中,該抗CD163抗體或其CD163結合片段針對人類的CD163具有特異性,及/或針對CD163的胞外區域具有特異性,較佳是針對CD163的SRCR域,更佳是針對CD163的SRCR域1~9中的任一個,又更佳是針對CD163的SRCR域1~3中的任一個,特別是針對CD163的SRCR域1。
第A31實施例:如第A29實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對下列胜肽中的一個具有特異性:
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列CSGRVEVKVQEEWGTVCNNGWSMEA﹝SEQ ID NO:3﹞或其7~24個胺基酸的一片段;
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列DHVSCRGNESALWDCKHDGWG﹝SEQ ID NO:13﹞或其7~20個胺基酸的一片段;或
一胜肽由7~25個胺基酸,較佳由8~20個胺基酸,又更佳由9~15個胺基酸,特別是由10~13個胺基酸所組成,其中,該胜肽包含該胺基酸序列SSLGGTDKELRLVDGENKCS﹝SEQ ID NO:24﹞或其7~19個胺基酸的一片段。
第A32實施例:如第A31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列ESALW﹝SEQ ID NO:14﹞或ALW的一胜肽具有特異性。
第A33實施例:如第A31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列GRVEVKVQEEW﹝SEQ ID NO:4﹞、WGTVCNNGWS﹝SEQ ID NO:5﹞或WGTVCNNGW﹝SEQ ID NO:6﹞的一胜肽具有特異性。
第A34實施例:如第A31實施例之化合物,其中,該抗CD163抗體或其CD163結合片段係針對包含該胺基酸序列SSLGGTDKELR﹝SEQ ID NO:25﹞或SSLGG﹝SEQ ID NO:26﹞的一胜肽具有特異性。
第A35實施例:如第A1~A34實施例中任一實施例之化合物,其中,該化合物於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的。
第A36實施例:如第A1~A35實施例中任一實施例之化合物,其中,該化合物於一個體中,較佳於該個體的血流中,用以體內螯合﹝或體內消耗或體內阻斷﹞針對一或多個修飾具有特異性的至少一抗體;及/或於該個體中,較佳於該個體的血流中,用以降低針對一或多個修飾具有特異性的至少一抗體的力價。
第A37實施例:如第A1~A36實施例中任一實施例之化合物,其中,各該一或多個修飾共價地結合該生物聚合物框架,較佳分別經由一連接片段。
第A38實施例:如第A1~A36實施例中任一實施例之化合物,其中,該一或多個修飾的至少一部分經由至少一連接片段共價地結合該生物聚合物框架。
第A39實施例:如第A37或A38實施例之化合物,其中,該連接片段包含一胜肽或一單一個胺基酸,例如一半胱胺酸。
第A40實施例:如第A39實施例之化合物,其中,該連接片段包含該胜肽。
第A41實施例:如第A40實施例之化合物,其中,該胜肽具有一序列長度介於2~13個胺基酸之間,較佳介於3~11個胺基酸之間,更佳介於4~9個胺基酸之間,特別是介於5~8個胺基酸之間。
第A42實施例:如第A40或A41實施例之化合物,其中,該胜肽為直鏈的或環形的。
第A43實施例:如第A40~A42實施例中任一實施例之化合物,其中,該胜肽於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中或於一囓齒動物個體中,為非免疫原性的。
第A44實施例:如第A40~A43實施例中任一實施例之化合物,其中,該胜肽包含至少一個離胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個離胺酸殘基;或其中,該胜肽包含至少一個酪胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個酪胺酸殘基;或其中,該胜肽包含至少一個半胱胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個半胱胺酸殘基。
第A45實施例:如第A40~A44實施例中任一實施例之化合物,其中,該胜肽包含至少一個甘胺酸殘基,較佳為至少二個,更佳為至少三個,又更佳為至少四個,特別是至少五個甘胺酸殘基。
第A46實施例:如第A40~A45實施例中任一實施例之化合物,其中,該胜肽具有一末端半胱胺酸殘基。
第A47實施例:如第A40~A46實施例中任一實施例之化合物,其中,該胜肽包含該胺基酸序列(X 1-(X 2) m) n,其中,m為一整數介於1~5之間,較佳介於2~4之間,其中,n為一整數介於1~5之間,較佳介於2~5之間。
第A48實施例:如第A47實施例之化合物,其中,對於每個事件獨立地,X 1為離胺酸、酪胺酸、色胺酸、甲硫胺酸、組胺酸或半胱胺酸,且對於每個事件獨立地,X 2為不為X 1的任何其他胺基酸,較佳為甘胺酸。
第A49實施例:如第A38~A48實施例中任一實施例之化合物,其中,該部分包含至少10%,較佳為至少20%,更佳為至少30%,又更佳為至少40%,再又更佳為至少50%,或甚至是75%,特別是所有的該一或多個修飾。
第A50實施例:如第A38~A49實施例中任一實施例之化合物,其中,至少二個,較佳為至少三個,更佳為至少四個,特別是至少五個修飾結合該至少一連接片段的單一個,較佳為結合該連接片段的該胜肽。
第A51實施例:如第A1~A50實施例中任一實施例之化合物,其中,該生物聚合物框架為人類的轉鐵蛋白。
第A52實施例:如第A1~A51實施例中任一實施例之化合物,其中,該化合物於人類個體中為非免疫原性的。
第A53實施例:一種醫藥組合物,包含:如第A1~A52實施例中任一實施例之化合物;及至少一醫藥學上可接受的賦形劑。
第A54實施例:如第A53實施例之醫藥組合物,其中,該組合物係供腹膜內、皮下、肌肉內及/或靜脈內投予,及/或其中,該組合物係供重覆性投予。
第A55實施例:如第A53或A54實施例之醫藥組合物,其中,該組合物中,修飾與生物聚合物框架的莫耳數比介於2:1~100:1之間,較佳為介於3:1~90:1之間,更佳為介於4:1~80:1之間,又更佳為介於5:1~70:1之間,再又更佳為介於6:1~60:1之間,特別是介於7:1~50:1之間,或甚至是介於8:10~40:1之間。
第A56實施例:如第A53~A55實施例中任一實施例之醫藥組合物用以進行治療的用途。
第A57實施例:用以使用的如第A56實施例之醫藥組合物,用以抑制一個體對活性劑治療的一免疫反應,其中,該活性劑包含該一或多個修飾的至少一個;其中較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予,其中更佳地,該醫藥組合物在96小時的時間窗內,較佳為在72小時的時間窗內,更佳為在48小時的時間窗內,又更佳為在36小時的時間窗內,再又更佳為在24小時的時間窗內,特別是在18小時的時間窗內,或甚至是在12小時的時間窗內,投予至少二次,特別是其中,該時間窗係接續於投予該活性劑的24小時之內,較佳為12小時之內。
第A58實施例:用以使用的如第A56實施例之醫藥組合物,用以於一個體中抑制一活性劑的中和化,尤其是加速的血液清除,其中,該活性劑包含該一或多個修飾的至少一個;其中較佳地,該醫藥組合物係早於該活性劑投予或與該活性劑同時投予,其中更佳地,該醫藥組合物在96小時的時間窗內,較佳為在72小時的時間窗內,更佳為在48小時的時間窗內,又更佳為在36小時的時間窗內,再又更佳為在24小時的時間窗內,特別是在18小時的時間窗內,或甚至是在12小時的時間窗內,投予至少二次,特別是其中,該時間窗係接續於投予該活性劑的24小時之內,較佳為12小時之內。
第A59實施例:用以使用的如第A57或A58實施例之醫藥組合物,其中,該活性劑為一蛋白質或胜肽,其中較佳地,該活性劑選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;或者其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸,或者其中,該活性劑為一病毒載體,例如用以基因治療或疫苗接種的一病毒載體;尤其是其中,該活性劑係選自如第1表所列之活性劑﹝由INN所確定﹞、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶﹝例如BCT-100﹞、經PEG修飾之精胺酸脫胺酶﹝例如ADI PEG-20﹞、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之具有該一或多個修飾的形式。
第A60實施例:用以使用的如第A57~A59實施例中任一實施例之醫藥組合物,其中,該個體中存在有針對該一或多個修飾具有特異性的一或多個抗體。
第A61實施例:用以使用的如第A57~A60實施例中任一實施例之醫藥組合物,其中,該組合物於個體中為非免疫原性的。
第A62實施例:用以使用的如第A57~A61實施例中任一實施例之醫藥組合物,其中,該組合物係以每公斤之該個體的體重投予1~900 mg,較佳為2~500 mg,更佳為3~250 mg,又更佳為4~100 mg,特別是5~50 mg,的化合物的劑量進行投予。
第A63實施例:用以使用的如第A57~A62實施例中任一實施例之醫藥組合物,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
第A64實施例:一種螯合﹝或消耗﹞存在於一個體中的一或多個抗體的方法,包含:獲得如第A53~A63實施例中任一實施例之醫藥組合物,其中,該組合物於個體中為非免疫原性的,且該一或多個抗體係針對該一或多個修飾具有特異性;及將該醫藥組合物投予該個體;其中較佳地,該投予係早於一活性劑或與該活性劑同時,該活性劑例如為一病毒載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組﹝尤其是其中,該活性劑係選自如第1表所列之活性劑(由INN所確定)、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶(例如BCT-100)、經PEG修飾之精胺酸脫胺酶(例如ADI PEG-20)、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之具有該一或多個修飾的形式﹞或如一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸,且其中,該活性劑包含該一或多個修飾的至少一個。
第A65實施例:如第A64實施例之方法,其中,該個體為一非人類的動物個體,較佳為一非人之靈長類個體、一綿羊個體、一豬個體、一狗個體或一囓齒動物個體,尤其是一小鼠個體。
第A66實施例:如第A64或A65實施例之方法,其中,對該個體而言,該生物聚合物框架為自體的,其中較佳地,該生物聚合物框架為一自體蛋白質。
第A67實施例:如第A64~A66實施例中任一實施例之方法,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
第A68實施例:一種醫藥組合物,包含:如第A1~A52實施例中任一實施例之化合物,且另包含一活性劑,其中,該活性劑包含該一或多個修飾中的至少一個。
第A69實施例:如第A68實施例之醫藥組合物,其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸,或一病毒載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;尤其是其中,該活性劑係選自如第1表所列之活性劑﹝由INN所確定﹞、pegvorhyaluronidase alfa、pegunigalsidase alfa、經PEG修飾之精胺酸酶﹝例如BCT-100﹞、經PEG修飾之精胺酸脫胺酶﹝例如ADI PEG-20﹞、經PEG修飾之甲硫胺酸酶及如第2表所列之酵素之具有該一或多個修飾的形式。
第A70實施例:如第A68~A69實施例中任一實施例之醫藥組合物,其中,該組合物係製備以供靜脈投予。
第A71實施例:如第A68~A71實施例中任一實施例之醫藥組合物,其中,該組合物為一水溶液。
第A72實施例:如第A68~A71實施例中任一實施例之醫藥組合物用以抑制對該活性劑的一免疫反應,較佳為針對該一或多個修飾具有特異性的一抗體所介導之免疫反應。
第A73實施例:用以使用的如第A72實施例之醫藥組合物,其中,該組合物於個體中為非免疫原性的。
第A74實施例:一種於以一活性劑進行治療的一所需個體中,用以抑制以該活性劑進行治療所造成的免疫反應的方法,包含:獲得如第A68~A74實施例中任一實施例之醫藥組合物;其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及將該醫藥組合物投予該個體。
第A75實施例:如第A74實施例之方法,其中,該個體為人類個體。
第A76實施例:如第A74或A75實施例之方法,其中,對該個體而言,該生物聚合物框架為自體的,其中較佳地,該生物聚合物框架為一自體蛋白質。
第A77實施例:如第A74~A76實施例中任一實施例之方法,其中,該組合物係腹膜內、皮下、肌肉內、靜脈內投予。
實例:
第1~8實例證明SADC非常適合用於非預期的抗體的選擇性移除﹝如結合於胜肽表位的抗體所示,即,基於基於胜肽的SADC﹞。第9~11實例包含有關於抗CD163抗體框架的更多詳細訊息。最後,SADC概念已成功地擴展道非預期的抗PEG抗體,如第12~16實例所示。
第1實例:SADC有效地降低非預期的抗體的力價。
動物模型:為了提供於人類適應症中,可以測量效價的原型的(prototypic)非預期的抗體的活體內模型,使用衍生自已經建立的人類自體抗原或抗藥物抗體的鎖孔帽貝血藍素接合胜肽疫苗,進行標準實驗疫苗接種,在以標準胜肽酵素結合免疫吸附分析法進行效價評估之後,被免疫的動物以相對應的測試SADC進行治療,以證實藉由SADC治療可以降低所選的抗體。所有的實驗均根據相對應的動物倫理當局的指導方針所進行。
以模型抗原免疫小鼠:雌性BALB/c小鼠﹝周齡為8~10周﹞係由Janvier﹝法國﹞所提供,維持在12小時光照、12小時黑暗周期下,且可以自由獲取食物及水。免疫投予係以皮下注射(s.c. application)鎖孔帽貝血藍素載體接合之胜肽疫苗,每隔兩周進行一次,共進行3次,鎖孔帽貝血藍素接合物係以胜肽T3─2﹝SEQ ID NO. 33:CGRPQKRPSCIGCKG﹞所生成,其代表一病毒的抗原﹝EBNA-1﹞及一內源性人類受體抗原﹝即,胎盤GPR50蛋白質﹞之間的分子擬態的實例,顯示與子癇前症有關﹝Elliott等人﹞。為了證實此一方法的普遍性,使用衍生自該自體免疫性疾病重症肌無力症的一較大的抗原胜肽來免疫具有人類自體表位的小鼠。類似於胜肽T3─2,使用在該疾病的發病機制中扮演主要的角色﹝Luo等人﹞的衍生自人類AchR蛋白質的主要免疫原區的胜肽T1─1﹝SEQ ID NO. 34:LKWNPDDYGGVKKIHIPSEKGC﹞來免疫動物,該T1─1胜肽係用以免疫具有人類AChR自體抗原的替代部分模型表位(surrogate partial model epitope)的小鼠,該胜肽T8─1﹝SEQ ID NO. 35:DHTLYTPYHTHPG﹞係用以免疫控制組小鼠,以提供一控制組效價,以證明該系統的選擇性。針對疫苗接合物的製備,依據製造商的說明,以磺酸基─GMBS(sulfo-N-γ-maleimidobutyryl-oxysuccinimide ester)﹝Cat. Nr. 22324 Thermo﹞活化鎖孔帽貝血藍素載體﹝Sigma﹞,續添加於N端或C端半胱胺酸化的胜肽T3─2及胜肽T1─1,且最後在注射到動物的側面(flank)之前,加入氫氧化鋁佐劑(Alhydrogel®)。疫苗T3─2及T1─1的劑量為15 µg的接合物,每次注射的體積為100 uL,其中包含氫氧化鋁佐劑﹝InvivoGen VAC-Alu-250﹞的最終濃度為每劑量1%。
原型SADC的生成:為了藉由被T3─2或T1─1 SADC免疫之小鼠測試選擇性降低抗體的活性,使用小鼠血清白蛋白(mouse serum albumin,MSA)或小鼠免疫球蛋白﹝小鼠─Ig﹞作為生物聚合物框架製作SADC,以提供一自體的生物聚合物框架,其不會於小鼠或中誘發任何免疫反應;或使用非自體的人類結合球蛋白作為生物聚合物框架﹝其在單一次注射之後的72小時內,不會誘發一異體反應(allogenic reaction)﹞。依據製造商的說明,使用被磺酸基─GMBS(sulfo-N-γ-maleimidobutyryl-oxysuccinimide ester)﹝Cat. Nr. 22324 Thermo﹞所活化的小鼠血清白蛋白﹝Sigma; Cat. Nr. A3559﹞或小鼠免疫球蛋白﹝Sigma, I5381﹞或人類結合球蛋白﹝Sigma H0138﹞,使N端半胱胺酸醯基化的SADC胜肽E049﹝SEQ ID NO. 13:GRPQKRPSCIG﹞及/或C端半胱胺酸醯基化的SADC胜肽E006﹝SEQ ID NO. 36:VKKIHIPSEKG﹞連接該框架,進而提供具有對應的半胱胺酸醯基化的胜肽的基於小鼠血清白蛋白、免疫球蛋白及結合球蛋白的SADC,其可以經由一共價地附著於該對應的生物聚合物框架的離胺酸(lysine)。除了將該半胱胺酸醯基化的胜肽,經由一雙功能的胺基巰基交聯劑(amine-to-sulfhydryl crosslinker)接合至該離胺酸之外,該添加的半胱胺酸醯基化的SADC胜肽的一部分,會直接與該白蛋白框架蛋白質的半胱胺酸的巰基進行反應,其可以藉由以二硫蘇糖醇(dithiothreitol,DTT)處理該接合物,續以質譜分析法(mass spectrometry)或任何其他可以偵測游離胜肽的分析法來偵測游離胜肽。最後,使用Pur-A-Lyzer™﹝Sigma﹞,將該些SADC接合物以水進行透析,續進行冷凍乾燥,在注射至動物之前,將冷凍乾燥的物質重新懸浮於磷酸鹽緩衝生理食鹽水中。
SADC的活體內功能性測試:將原型SADC、SADC─E049及SADC─E006以腹膜內注射的方式﹝i.p.;作為於人類及較大動物的預期的靜脈內投予的替代方案﹞注射至該小鼠,其先前已經被以胜肽疫苗T3─2﹝攜帶該EBNA-1模型表位﹞及胜肽疫苗T1─1﹝攜帶該AChR主要免疫原區模型表位﹞進行免疫。投予的劑量為30 µg的SADC接合物,於體積為50 µL的磷酸鹽緩衝生理食鹽水中。分別在腹膜內注射SADC之前﹝─48小時(─48 h)、─24小時(─24 h)及之後﹝+24小時(+24 h)、+48小時(+48 h)、+72小時(+72 h)等﹞,以頷下靜脈穿刺(submandibular vein puncture),使用毛細管微血容比管(capillary micro-hematocrit tube)進行採血。使用酵素結合免疫吸附分析法分析法﹝參考下述﹞,發現在本動物模型中,兩個原型SADC都可以在至少72小時的期間內清楚地降低該效價,因此可以得出SADC可以應用於活體內,以有效降低效價的結論。
效價分析:依照標準流程,使用於室溫下塗覆牛血清白蛋白偶合之胜肽﹝30nM,溶於磷酸鹽緩衝生理食鹽水﹞1小時的96孔盤﹝Nunc Medisorp plates; Thermofisher, Cat Nr 467320﹞,並將96孔盤以適當的緩衝液進行孵育(incubation)同時震盪﹝阻斷緩衝液(blocking buffer):1%牛血清白蛋白、1倍磷酸鹽緩衝生理食鹽水;清洗緩衝液(washing buffer):1倍磷酸鹽緩衝生理食鹽水 / 0.1% Tween;稀釋緩衝液(dilution buffer):1倍磷酸鹽緩衝生理食鹽水 / 0.1%牛血清白蛋白 / 0.1% Tween﹞,以進行胜肽酵素結合免疫吸附分析法。在血清孵育之後﹝稀釋始於稀釋度1:50於磷酸鹽緩衝生理食鹽水中;一般而言,於1:3或1:2滴定步驟中﹞,以取自Jackson immunoresearch﹝115-035-008﹞的接合有山葵過氧化酶(horseradish peroxidase,HRP)的山羊抗小鼠IgG﹝可結晶片段﹞偵測結合的抗體。在停止反應之後,使用3,3’,5,5’─四甲基聯苯胺(3,3’,5,5’-tetramethylbenzidine,TMB),於450 nm下測量96孔盤20分鐘。依照製造商推薦的程序,使用四參數邏輯式回歸模型(4-parameter logistic regression model)﹝GraphPad Prism﹞的曲線擬合(curve fitting),自所讀取的數值計算EC50,相應地設置上限值(ceiling value)及下限值(floor value)的約束參數(constraining parameter),以提供R 2>0.98的曲線擬合品質水準。
第1a圖顯示了於小鼠模型中一活體內的概念證明,可以與針對EBNA1的抗體結合的一基於原型白蛋白的SADC候選物,於活體內的選擇性血漿降低活性,作為於子癇前症中,自體抗體及擬態的一模型﹝Elliott等人﹞。對於該些小鼠實驗,係使用小鼠白蛋白,以避免與來自外來物種的一蛋白質發生任何反應。藉由標準胜肽疫苗接種,以於6個月大的Balb/c小鼠誘發抗體效價。下方小圖顯示,在SADC注射之前的效價LogIC50﹝Y軸﹞﹝即,於─48 h及─24 h的效價﹞高於在SADC投予之後的效價LogIC50﹝即,於注射後之+24 h、+48 h及+72 h;如X軸所示﹞。
第1b圖顯示了類似的實例,使用用於一不同疾病適應症的胜肽抗體結合部分(peptidic antibody binding moiety)的替代實例。在以衍生自人類AChR蛋白質主要免疫原區的不同胜肽進行預先疫苗接種的小鼠模型﹝Luo等人﹞中,基於白蛋白的SADC可以降低抗體活性,以模擬重症肌無力症中的狀況。誘導之針對AChR主要免疫原區的抗體效價係用以作為已知於重症肌無力症中扮演病因角色的抗AChR主要免疫原區自體抗體的替代物﹝由Vincent等人所評論﹞。在投予SADC之後,效價明顯降低。
第1c、1d圖展示了包含替代性生物聚合物框架的SADC變異體的功能。詳而言之,第1c圖顯示一免疫球蛋白框架可以被成功地使用,而第1d圖展示一結合球蛋白框架用以構築一SADC的用途。兩個實例均顯示以帶有共價結合實例胜肽E049的一SADC選擇性降低抗體的一活體內的概念證明。
儘管較佳使用自體的框架蛋白質,使用人類結合球蛋白作為替代物,以生成基於結合球蛋白的SADC。為了避免抗人類結合球蛋白抗體的形成,於本實驗條件中,每隻小鼠僅注射單一次的非自體的框架結合球蛋白的SADC。如所預期的,於本實驗條件﹝即,單一次的投予﹞下,無法觀察到針對本替代的結合球蛋白同系物的抗體反應性。
第1e圖展示了該SADC系統的選擇性。帶有該胜肽E049的基於免疫球蛋白的SADC﹝即,與第1c圖中相同﹞無法降低由具有一無相關的、無關聯的胺基酸序列﹝稱為胜肽T8─1;SEQ ID NO. 35:DHTLYTPYHTHPG﹞的一胜肽疫苗所誘導的Ig效價。該實例顯示該系統的選擇性的一活體內的概念證明。上方小圖顯示依據一標準酵素結合免疫吸附分析法,抗胜肽T8─1的效價﹝0.5倍稀釋步驟,始於1:50直到1:102400;X軸顯示log(X)稀釋﹞對OD值﹝Y軸﹞。在投予之後投予SADC─Ig─E049不影響T8─1效價。下方小圖顯示當與在SADC投予之後的效價LogIC50﹝即,於+24 h、+48 h及+72 h的效價;如於X軸所示﹞相比,投予SADC─Ig─E049﹝箭頭﹞不影響在SADC注射之前的初始效價LogIC50﹝Y軸﹞﹝即,於─48 h及─24 h的效價﹞,進而顯示該系統的選擇性。
第2實例:SADC的免疫原性。
為了排除SADC的免疫原性,測試原型的候選SADC在重複注射之後,它們誘導抗體的傾向。胜肽T3─1及T9─1係用於此一測試,T3─1為衍生自血管收縮素受體的一參考表位(reference epitope)的10個胺基酸的胜肽,一子癇前症動物模型中對它形成致效型自體抗體(agonistic autoantibody)﹝Zhou等人﹞;T9─1為衍生自人類IFNγ的參考抗藥物之抗體表位的12個胺基酸的胜肽﹝Lin等人﹞。以腹膜內注射的方式,將該些控制組SADC接合物注射至素樸(naïve)、未經免疫的雌性BALB/c小鼠﹝始於8~10周齡﹞,每隔兩周注射一次,共注射8次。
[如於第1實例中所描述的﹞以腹膜內注射的方式,以SADC T3─1治療動物C1~C4,同樣以腹膜內注射的方式,使用帶有該胜肽T9─1的一SADC治療動物C5~C8。使用來自被以鎖孔帽貝血藍素─胜肽T1─1﹝衍生自AchR主要免疫原區,如於第1實例中所說明﹞疫苗接種3次的一控制組動物的血漿作為酵素結合免疫吸附分析法的一參考訊號。分別使用牛血清白蛋白接合的胜肽探針T3─1、T9─1及E005﹝SEQ ID NO. 37:GGVKKIHIPSEK﹞,藉由標準酵素結合免疫吸附分析法,以1:100的稀釋度進行抗體效價的偵測,可以證明相較於被疫苗進行治療的控制組動物C,抗體的誘導不存在於以SADC進行治療的動物﹝參考第2圖﹞。在第3次的疫苗注射之後的一周﹝控制組動物C﹞,以及每隔2周連續8次的SADC注射的最後一次之後的一周﹝動物C1~C8﹞,透過頷下採血獲得血漿。因此可以證明,SADC為非免疫原性的,且在重複注射至小鼠後,不會誘導抗體的形成。
第3實例:使用帶有多套單價或雙價胜肽的SADC,成功地於試管內消耗抗體。
被E006─鎖孔帽貝血藍素﹝VKKIHIPSEKG(SEQ ID NO:36),具有C端半胱胺酸,與鎖孔帽貝血藍素結合﹞疫苗接種的小鼠的血漿,以稀釋緩衝液﹝磷酸鹽緩衝生理食鹽水+0.1% w/v牛血清白蛋白+0.1% Tween 20﹞,以1:3,200的稀釋度進行稀釋,並連續四次地孵育﹝100 µL,室溫下﹞在一微量效價盤(microtiter plate)的單一孔(well)中,該孔塗覆有2.5 µg/mL﹝250 ng/孔﹞的SADC或5 µg/mL﹝500 ng/孔﹞的白蛋白作為負控制組。
為了測定在孵育於SADC塗覆孔之前、之後,所存在的游離、未結合的抗體的量,取在進行消耗之前及之後的50 µL的稀釋血清,並使用E006─牛血清白蛋白塗覆盤﹝10 nM胜肽﹞,透過標準酵素結合免疫吸附分析法進行定量,且以山羊抗小鼠IgG bio﹝Southern Biotech,稀釋度1:2000﹞進行偵測。接著,以卵白素(streptavidin)─山葵過氧化酶﹝Thermo Scientific,稀釋度1:5000﹞偵測生物素化之抗體(biotinylated antibody),使用3,3’,5,5’─四甲基聯苯胺作為受質。以0.5 M的硫酸終止信號的產生。
於OD 450 nm處﹝Y軸﹞進行酵素結合免疫吸附分析法的測量。結果顯示,該抗體可以成功地被包含具有C端半胱胺酸的胜肽E006﹝序列為VKKIHIPSEKGC,SEQ ID NO:36﹞的單價或雙價SADC有效地吸附﹝之前,未被消耗的起始物;單雙價對應顯示於該SADC表面上的胜肽;負控制組為白蛋白;指示於X軸﹞。參考第3圖。〝單價〞係指胜肽單體結合該生物聚合物框架﹝即,n=1﹞,而〝雙價〞則指胜肽二聚體結合該生物聚合物框架﹝即,n=2﹞。於當前情況下,該雙價胜肽為〝同雙價(homodivalent)〞,即,該SADC的n個單體單元的胜肽為E006─S─E006。
這表示具有單價或雙價胜肽的SADC非常適合吸收抗體,進而消耗抗體。
第4實例:使用各種SADC生物聚合物框架,於小鼠中快速且選擇性的抗體消耗。
以腹膜內注射的方式,將10 µg的模型非預期的抗體mAB抗V5﹝Thermo Scientific﹞注射至雌性Balb/c小鼠﹝每個治療組別5隻動物;周齡為9~11周﹞,於最初的抗體投予之後的48小時,以靜脈注射的方式投予50 µg的SADC﹝不同的生物聚合物框架,結合有被標記之V5胜肽,如下文﹞。每隔24小時,自頷下靜脈收集血液,在SADC投予之前,收集時間點0小時的血液樣品。
每隔24小時收集血液,直到在投予該SADC之後的時間點120小時﹝X軸﹞。使用標準酵素結合免疫吸附分析法的程序,結合塗覆的V5─胜肽─牛血清白蛋白﹝胜肽序列IPNPLLGLDC─SEQ ID NO:57﹞,並以山羊抗小鼠IgG bio﹝Southern Biotech,稀釋度為1:2,000﹞進行偵測,以測定在SADC投予之後的血漿抗V5 IgG含量的衰減及降低,如第4圖所示。此外,另分析SADC含量﹝參考第6實例﹞及免疫複合物的形成﹝參考第7實例﹞。
使用四參數邏輯式曲線擬合測定EC50﹝OD450﹞值,並計算該初始含量﹝在時間點0設定為1﹞及後續時間點﹝X軸﹞之間的相對訊號衰減,以作為EC50值的比例﹝Y軸,EC50訊號減少倍數﹞。所有的SADC包含用以直接偵測SADC及來自血漿樣品的免疫複合物的標記;用於SADC的胜肽序列為:IPNPLLGLDGGSGDYKDDDDKGK﹝SEQ ID NO:38﹞─(BiotinAca)GC﹝帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:SADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF﹞,且無關胜肽VKKIHIPSEKGGSGDYKDDDDKGK﹝SEQ ID NO:39﹞─(BiotinAca)GC作為負控制組SADC﹝SADC─CTR﹞。
不同的5隻動物的治療組別的SADC框架以黑/灰色陰影顯示﹝參考第4圖插圖﹞。
當與該模擬治療控制組SADC─CTL相比,治療組別於24小時的時間點已經顯示快速且明顯的抗體減少﹝特別是SADC─TF﹞,SADC─CTR用於作為一正常抗體衰減的參考,因為其胜肽序列不會被所投予的抗V5抗體所辨識,而不具有降低抗體之活性,SADC─CTR的衰減因此以一趨勢線(trend line)標記,強調了治療及模擬治療動物之間的抗體含量的差異。
為了測定在該些實驗條件下,選擇性抗體降低的有效性,使用鄧奈特多重比較測試(Dunnett’s multiple comparison test),進行二因子變異數分析(two-way ANOVA test)。與該SADC─CTR參考組相比,在SADC投予之後48小時,所有的SADC組別的抗體EC50均顯著地降低﹝p<0.0001﹞,在SADC投予之後120小時,在該SADC─ALB及SADC─TF組的抗體降低也非常顯著﹝均p<0.0001﹞,在該SADC─HP組也很顯著﹝p=0.0292﹞,而在SADC投予之後120小時,該SADC─IG組顯示EC50降低的趨勢﹝p=0.0722﹞。值得注意的是,在SADC投予之後的所有測試之時間點,在該SADC─ALB及SADC─TF組中,選擇性抗體降低都非常地顯著﹝p<0.0001﹞。
結論是,所有的SADC生物聚合物框架都可以選擇性地降低抗體含量。在SADC─ALB及SADC─TF中,效價降低為最明顯的,且在最後的時間點無法偵測到抗體含量的反彈(rebound)或再循環(recycling),顯示非預期的抗體已如預期的被降解。
第5實例:在SADC注射之後24小時,偵測血漿中的SADC。
在靜脈注射至Balb/c小鼠之後24小時,不同的SADC變異體的血漿含量。於已經於第5實例中描述之動物的血漿中,測定血漿中的SADC─ALB、SADC─IG、SADC─HP、SADC─TF及該負控制組SADC─CTR﹝X軸﹞的含量﹝Y軸﹞,藉由標準酵素結合免疫吸附分析法,偵測注射之血漿SADC含量,其中,SADC係經由塗覆有鏈霉親和素的盤﹝Thermo Scientific﹞,藉由其胜肽的生物素部分(biotin moiety)而被捕獲,以小鼠抗Flag─HRP抗體﹝Thermo Scientific,稀釋度為1:2000﹞偵測該Flag標籤之胜肽來偵測所捕獲的SADC﹝另參考第7實例﹞:
假設在靜脈注射50 μg的SADC之後,血液中的理論含量為25 µg/mL,則在SADC注射之後24小時,針對SADC─ALB或SADC─IG而言,可偵測的SADC含量係介於799 ng/mL及623 ng/mL之間,且針對SADC─TF而言,可以高達約5,000 ng/mL。然而,令人驚訝且相反地,SADC─HP及控制組SADC─CTR﹝其亦為一SADC─HP變異體,但是於此一情況下,帶有無關的負控制組胜肽E006,參考先前之實例﹞,在注射之後24小時,已經完全自循環中消失,且無法再被偵測到,參考第5圖。
這表示本實例中所測試之兩種基於結合球蛋白框架的SADC﹝即,SADC─HP及SADC─CTR﹞均表現出相對較短的血漿半衰期,就其由於活體內免疫複合物形成的風險所造成的補體依賴性血管及腎臟損傷的潛在作用而言,相對於SADC─ALB、SADC─IG或SADC─TF等SADC,具有優勢。SADC─HP的另一個優勢在於在需要加速的治療效果的情況下,能夠加速自血液中清除不需要的標靶抗體。本結果表示,基於結合球蛋白的SADC框架﹝以SADC─HP及SADC─CTR表示﹞易於自血液中清除﹝無論血液中是否存在SADC結合抗體﹞,進而減少非預期的免疫複合物的形成,並顯示出快速、有效的清除。如於本實例中的SADC─HP等基於結合球蛋白的SADC,因此可以提供相對於其他SADC生物聚合物框架的治療優勢,例如SADC─TF或SADC─ALB所證實的,在上述情況下,在注射之後24小時二者仍然為可以偵測的,相對於SADC─HP或SADC─CTR,在注射之後24小時,二者完全被清除。
第6實例:在SADC注射之後24小時,偵測血漿中的SADC─IgG複合物。
為了測定於活體內,結合SADC的IgG的含量,在靜脈注射10 μg的抗V5 igG﹝Thermo Scientific﹞之後,續於抗體注射之後的48小時,以靜脈注射法投予SADC─ALB、SADC─HP、SADC─TF及SADC─CTR﹝50 µg﹞,並在SADC注射之後24小時,自頷下靜脈收集血漿,並與用以自血漿中捕獲SADC的鏈霉親和素盤共同孵育,經由其生物素化的SADC─V5─胜肽﹝IPNPLLGLDGGSGDYKDDDDKGK(SEQ ID NO:38)(BiotinAca)GC,或於SADC─CTR的情況下,該負控制組胜肽VKKIHIPSEKGGSGDYKDDDDKGK(SEQ ID NO:39)(BiotinAca)GC﹞。在SADC注射之後24小時,使用用以偵測存在於血漿中的SADC─抗體複合物的山羊抗小鼠IgG HRP抗體﹝Jackson Immuno Research,稀釋度為1:2000﹞,以酵素結合免疫吸附分析法偵測結合該鏈霉親和素捕獲的SADC的IgG。測試組﹝X軸﹞的OD450 nm值減去來自未進行治療的動物的一負控制組血清所獲得的OD450 nm值﹝Y軸﹞,以進行背景校正。
如第6圖所示,在SADC─ALB及SADC─TF注射之小鼠﹝黑色柱代表以1:25的稀釋度,經背景校正的OD值;5隻小鼠的平均值、標準差(standard deviation)誤差棒(error bar)﹞的情況下,可以觀察到明顯的抗V5抗體訊號,而來自SADC─HP或控制組SADC─CTR注射之動物﹝SADC─CTR為帶有不會被任何抗V5抗體辨識之無關胜肽bio─FLG─E006﹝VKKIHIPSEKGGSGDYKDDDDKGK(SEQ ID NO:39)(BiotinAca)GC﹞的一負控制組﹞的血漿中,則無法偵測到抗體的訊號,這顯示在以靜脈注射投予SADC之後24小時,血漿中不存在SADC─HP/IgG複合物的可偵測含量。
因此,當與SADC─ALB或SADC─TF相比,在抗V5預注射小鼠中,SADC─HP的清除速度加快。
第7實例:於試管內分析SADC─IgG複合物的形成。
SADC─抗體複合物的形成係利用以下方式進行分析,使1 μg/mL之人類抗V5抗體﹝抗V5表位標記﹝SV5-P-K﹞,人類IgG3,Absolube Antibody﹞與增加濃度之SADC─ALB、SADC─IG、SADC─HP、SADC─TF及SADC─CTR﹝如於X軸所示﹞﹝溶於磷酸鹽緩衝生理食鹽水、0.1% w/v牛血清白蛋白、0.1% v/v Tween 20﹞,於室溫下進行預孵育2小時,使免疫複合物於試管內形成。在複合物形成之後,將樣品置於已預先塗覆有10 µg/mL之人類C1q﹝CompTech﹞的酵素結合免疫吸附分析法盤上,於室溫下孵育1小時,使試管內形成的免疫複合物得以被捕獲,接著使用抗人類IgG﹝對Fab具有特異性﹞─過氧化酶﹝Sigma,稀釋度為1:1,000﹞,以酵素結合免疫吸附分析法進行偵測,於OD450 nm下測得的訊號﹝Y軸﹞反映了抗體─SADC複合物於試管內形成。
如第7圖所示,SADC─TF及SADC─ALB表現出明顯的免疫複合物的形成,且與C1q的結合,如在100 ng/mL之SADC─TF的情況下,該強訊號及急遽訊號降低所反映的,是由於抗原─抗體平衡(antigen-antibody equilibrium)轉變到抗原過剩所導致的。相反地,於本測定中測量時,SADC─HP或SADC─IG於試管內的免疫複合物之形成的效率較低。
連同活體內的數據﹝先前之實例﹞,該些發現證實了結合球蛋白框架比其他SADC生物聚合物框架更有利的發現,因為其活化該補體系統的傾向降低。相反地,SADC─TF或SADC─ALB顯示出高度錯合作用(complexation),進而伴隨典型的補體路徑的啟動,而帶有活化該C1複合物的一定風險﹝不過,在某些情況下,這些風險是可以忍受的﹞。
第8實例:於試管內SADC捕獲之IgG的測定。
與先前之實例類似,使用1 μg/mL之小鼠抗V5抗體﹝Thermo Scientific﹞結合增量之SADC﹝如於X軸所示﹞,使於試管內形成免疫複合物,經由生物素化的SADC─胜肽﹝參考先前之實例﹞,在塗覆有鏈霉親和素的酵素結合免疫吸附分析法盤上捕獲SADC─抗體複合物,續使用抗小鼠IgG─HRP﹝Jackson Immuno Research,稀釋度為1:2000﹞來偵測結合的抗V5。
於該些測定條件下,當與SADC─TF或SADC─ALB相比,於試管內,SADC─HP顯示明顯較少的抗體結合能力﹝參考第8a圖﹞,對於SADC─TF、SADC─ALB及SADC─HP,針對SADC的IgG偵測的計算EC50值分別為7.0 ng/mL、27.9 ng/mL及55.5 ng/mL﹝參考第8b圖﹞。
此一試管內發現與相較於SADC─TF或SADC─ALB相比,SADC─HP具有較低的免疫複合物形成能力的發現﹝參考先前之實例﹞相符,這被認為對於其用以消耗不需要的抗體的治療用途,為一安全性優勢。
第9實例:基於抗CD163抗體的SADC生物聚合物框架的活體內功能。
抗小鼠CD163單株抗體E10B10的快速於活體內的血液清除﹝如PCT公開第2011/039510 A2號專利案所揭示﹞。單株抗體E10B10係以小鼠的IgG2a骨架重新合成,將50 µg的單株抗體E10B10及Mac2-158﹝人類特異性抗CD163單株抗體係如PCT公開第2011/039510 A2號專利案所揭示,用作為本實施例的負控制組,由於其不會結合小鼠CD163﹞靜脈注射至小鼠體內,並於12、24、36、48、72、96小時之後以ELISA進行偵測,以確定該血液清除。
相較於控制組單株抗體Mac2-158,單株抗體E10B10自循環中較快速地清除,如第9圖所示,由於E10B10結合該小鼠CD163,而Mac2-158為人類特異性的,儘管兩者都表達為小鼠IgG2a同型,用於直接比較。
綜上所述,抗CD163抗體由於其清除曲線(clearance profile)而高度適用於SADC框架,具有此類框架的SADC將會快速地自循環中清除非預期的抗體。
詳細方法:將50 ug的經生物素修飾的單株抗體E10B10及經生物素修飾的Mac2-158靜脈注射至小鼠,並於12、24、36、48、72、96小時之後以ELISA測量該清除:卵白素盤係與稀釋於PBS+0.1%BSA+0.1% Tween 20中的血清樣品,於室溫下進行共培養1小時﹝50 µl/well﹞,在清洗﹝以PBS+0.1% Tween 20進行三次﹞之後,以抗小鼠IgG+IgM─HRP抗體於1:1,000的稀釋率下偵測結合的經生物素修飾的抗體。在清洗之後,加入TMB受質,且該受質的呈色係以TMB終止溶液(TMB Stop Solution)進行終止。讀取於OD450 nm下的訊號。使用四參數曲線擬合法(4 parametric curve fitting)搭配拘束曲線(constrained curve)及最小平方回歸(least squares regression),以非線性回歸(non-linear regression)計算該EC50值,於時間點T12﹝其為於注射抗體之後最初測定的時間點﹞下的EC50值設定為100%,所有其他的EC50值係與於T12時間點下的程度進行比較。
第10實例:抗CD163單株抗體的表位作圖。
單株抗體E10B10於小鼠中,提供CD163所介導的、加速的於活體內的血液清除[參照第11實例﹞。該抗體的表位係使用環狀胜肽陣列(circular peptide array)進行精密作圖,其中,胜肽係衍生自小鼠的CD163。結果鑑定出由單株抗體E10B10所辨識的胜肽叢集﹝參照第13實例﹞。
以單株抗體Mac2-158﹝如PCT公開第2011/039510 A2號專利案所揭示﹞,使用環形胜肽,進行相同的表位作圖流程。單株抗體Mac2-158的表位作圖結果產生兩個胜肽叢集﹝參照第13實例﹞,其允許進一步區分CD163表位區域,其特別是與結合該受體的配體及抗體的內化(internalization)有關。
該些新描繪出的Mac2-158及E10B10的表位因此揭示針對抗CD163抗體的三個較佳的結合區域,基於精密的表位作圖作業,可以合成線型或較佳為環型胜肽,並用於誘導、製造及選擇多株或單株抗體或其他結合CD163的SADC框架,其靶向CD163。
第11實例:抗CD163單株抗體的表位作圖。
與人類CD163的SRCR域1比對的胜肽係選自單株抗體Mac2-158環狀表位作圖的胜肽中的前20的胜肽命中(top 20 peptide hit),且最佳的序列係選自位於人類CD163的SRCR-1的N端及C端的二胜肽比對叢集(peptide alignment cluster)。結果顯示,下列序列﹝及其所衍生出的部分﹞為高度適合用作為SADC生物聚合物框架的抗CD163抗體及其片段的表位: 胜肽叢集1:
Figure 02_image001
Figure 02_image003
胜肽叢集2:
如Mac2-158一樣地進行單株抗體E10B10的精密表位作圖。1068個環狀胜肽﹝尺寸為7、10及13個胺基酸﹞及衍生自小鼠CD163序列﹝UniProKB Q2VLH6.2﹞的SRCR-1~SRCR-3係以單株抗體E10B10進行篩選,並獲得如下的最佳的結合胜肽[以相對訊號強度進行排列﹞,該人類CD163序列係與該叢集進行比對,揭示另一高度合適的表位: 胜肽叢集3:
Figure 02_image005
來自叢集3的小鼠胜肽01~13的人類個體同系物具有成熟的人類CD163蛋白質﹝UniProtKB:Q86VB7﹞N段的以下序列:
Figure 02_image007
該些同系胜肽代表用於該抗CD163抗體框架的高度適用表位。
第12實例:本發明的化合物的生產及品質分析。
人類原轉鐵蛋白﹝即,該生物聚合物框架﹞與PEG的偶聯:9 nmol的人類原轉鐵蛋白﹝Sigma Aldrich﹞係於室溫下,與567 nmol的PEG,於50 mM的HEPES緩衝液﹝pH 8﹞中震盪培養4小時,使用四種PEG尺寸來進行該偶聯反應:甲氧基─PEG─NHS 10 kDa﹝RAPP聚合物(RAPP Polymere)﹞、甲氧基─PEG─NHS 5 kDa﹝RAPP聚合物﹞、甲氧基─PEG─NHS 2 kDa﹝RAPP聚合物﹞及甲氧基─PEG─NHS 750 Da﹝RAPP聚合物﹞。在培養之後,緩衝液係更換為1×PBS,使用Amicon® Ultra-4 Centrifugal Filter Units─50 kDa cut off﹝Sigma Aldrich﹞,且蛋白質濃度係使用Qubit 4 Fluorometer﹝Thermo Scientific﹞進行偵測。
偶聯的人類原轉鐵蛋白的品質控制:以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分析該偶聯的蛋白質偶聯物。將還原狀態(reducing condition)下的2.5 µg的蛋白質加載到4~15%梯度的TGX凝膠上,並進行十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分析(250 V,約20分鐘),藉由PageBlue TM蛋白質染劑﹝Thermo Scientific﹞觀察蛋白質。
第10圖揭示以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)所分析的2.5 µg的與PEG﹝10 kDa、5 kDa、2 kDa、750 Da﹞偶聯的蛋白質,與未偶聯的原轉鐵蛋白﹝電泳泳道2,其描繪未偶聯的框架蛋白質的遷移﹞相比,所有的偶聯物都顯示出根據其偶聯的PEG分子的完全變化﹝電泳泳道3~6﹞。原始的人類原轉鐵蛋白條帶﹝電泳泳道2﹞在與PEG偶聯之後完全消失﹝電泳泳道3~6所指為不同的尺寸﹞,原始的人類原轉鐵蛋白條帶﹝電泳泳道2﹞,進而對使用PEG─SADC的功能性動物試驗提供品質證明及一致性檢查。
綜上所述,PEG與人類原轉鐵蛋白有效地偶聯,以製造本發明的化合物。
第13實例:本發明的化合物於活體內的選擇性抗PEG抗體的消耗。
各組有四隻雌性Balb/c小鼠,通常為9~11周齡,以10 µg的兔子抗PEG抗體﹝abcam,ab190652﹞注射各組小鼠,續於24小時的時間點﹝T﹞,以100 µl體積、50µg的PEG─SADC﹝參照第12實例,用於製造方法﹞注射各組小鼠。在本試驗之前,確認兔子IgG的半衰期在5天的範圍內。於不同的時間點採血,並以ELISA偵測抗PEG抗體。
出乎意料的是,2 kDa、5 kDa及750 Da的PEG─SADC提供有效且快速的抗PEG抗體訊號的降低,該2 kDa的PEG─SADC製劑是最有效的,並導致長效的抗PEG抗體的降低,直到該試驗結束的時間點﹝T﹞120小時﹝T120﹞,相比之下,該10kDa的PEG─SADC製劑的效果較差。重要的是,先前所建議的游離的PEG 10 kDa製劑﹝參見PCT公開第2019/046185 A1號專利案及McSweeney等人﹞於可比較劑量下,並未顯示任何抗體訊號的降低。作為參考值,將在投予SADC之前的相對抗PEG抗體的程度設定為100%,並自ELISA的各盤上推導一參考抗體濃度﹝抗體的2倍滴定,起始於200 ng/ml﹞。柱形代表幾何平均值,且誤差槓對應幾何標準差。第11圖顯示以750 Da的PEG─SADC、2 kDa的PEG─SADC及5 kDa的PEG─SADC可以有效降低抗體,而10kDa的PEG─SADC製劑的效率較差,僅有PEG的製劑﹝PEG 10kDa﹞於所使用的可比較劑量下,未顯示任何的抗體降低﹝以人類原轉鐵蛋白作為負控制組,且於約5天時於小鼠體內區分兔子IgG的自然衰減(natural decay)﹞。
詳細方法:將PEG─SADC製劑懸浮於PBS中,並進行靜脈注射,通常在初次投予抗PEG抗體﹝abcam,ab190652﹞的24小時之後,所投予的抗體劑量為10 ug﹝於100 ul的PBS中,除非另有說明﹞。採血係以頜下靜脈採血法(submandibular vein puncture)進行,在SADC注射之前﹝標示為負的hr數字﹞或之後﹝標示為正的hr數字﹞。選擇性抗體降低的有效性係以標準ELISA,使用經生物素修飾的PEG﹝20 kDa的 PEG─生物素,Creative PEGWorks﹞於卵白素盤﹝Pierce TMStreptavidin Coated High Capacity Plate,透明,96孔,Thermo Scientific﹞來進行測量。在盤上與血清﹝稀釋於PBS+0.1% BSA+0.01% Tween 20中﹞培養之後,以PBS+0.01% Tween 20清洗盤,再以抗兔子IgG─HRP﹝Peroxidase AffiniPure山羊抗兔子IgG,對Fc片段具有特異性,Jackson Immuno Research﹞偵測結合的抗體。在清洗之後,以TMB作為受質,且以TMB終止溶液(TMB Stop solution)終止呈色反應。於450 nm的波長下讀取訊號。
第14實例:本發明的化合物為非免疫原性的。
目的係確定PEG─SADC的靜脈注射是否會導致體內的抗PEG抗體的增加,帶有不同的PEG鏈長度的PEG─SADC係注射至三隻雌性Balb/c小鼠[周齡為9~11周﹞,PEG─SADC的免疫注射的方案為每周一次靜脈注射50 µg的PEG─SADC,對於各PEG─SADC,總共進行四次的注射。在第一次注射之前採血,及在每次注射的一周後進行採血。
抗PEG的IgG及IgM係藉由針對20 kDa的PEG─生物素﹝Creative PEGWorks﹞的ELISA進行。2 µg/ml的20 kDa的PEG─生物素係結合於卵白素盤﹝Pierce TMStreptavidin Coated High Capacity Plates,透明,96孔,Thermo Scientific﹞1小時。作為正控制組,2 µg/ml的經生物素修飾的小鼠IgM係固定於該卵白素盤﹝Sigma﹞上,該小鼠IgM抗體的生物素修飾係使用生物素修飾套組﹝EZ─Link TMNHS─PEG4 Biotinylation Kit,Thermo Scientific﹞進行。在以PBS+0.01% Tween 20清洗該盤三次之後,以1:100的稀釋度﹝於PBS+0.1% BSA+0.01% Tween 20中﹞將小鼠血清培養於該盤上﹝三重複﹞。使用山羊抗小鼠IgG+IgM─HRP抗體﹝Jackson Immuno Research),以1:1,000的稀釋度偵測結合的小鼠抗體。在清洗之後,使用TMB作為受質,且以TMB終止溶液(TMB Stop solution)終止呈色反應。於450 nm的波長下讀取訊號。
於第12圖中,單隻小鼠的平均值﹝OD 450 nm數值﹞係以散點圖(scatter dot blot)呈現,包含正控制組的四個訊號,用以凸顯該ELISA作為技術對照的飽和範圍。
在重複性注射PEG─SADC之後,PEG─SADC仍未誘導任何可偵測的抗PEG抗體的增加﹝參見第12圖﹞,因此強調本發明的PEG─SADC用以於活體內降低非預期的抗PEG抗體的合適性,甚至在重複性投予亦是如此。
第15實例:藉由使用基於胜肽的連接片段增加PEG偶聯的密度。
測試基於胜肽的連接片段是否能夠改善PEG與該生物聚合物框架的偶聯。
於室溫下,將一生物聚合物框架﹝人類原轉鐵蛋白﹞與75莫耳過量(75-molar excess)的Sulfo─GMBS(N-γ-maleimidobutyryl-oxysulfosuccinimide ester)1小時,以凝膠過濾法(gel filtration)移除過量的Sulfo─GMBS。接著,加入40莫耳過量(40-molar excess)的胜肽CGK﹝生物素─Aca﹞GGGGNPGY─NH 2﹝SED ID NO:58),且該混合物係於室溫下培養1小時[Aca為ɛ胺基己酸(epsilon-aminocaproic acid)。以超過濾法(ultrafiltration),搭配使用載留分子量為50 kDa的過濾膜(50-kDa-cut-off membrane),以過量的間隔胜肽(spacer peptide),接著再加入80莫耳過量(80-molar excess)的2 kDa的NHS─PEG,且該混合物係於室溫下培養1小時,以產生該最終化合物S3,進行二重複﹝樣品3、4;參照第3表﹞。
為了進行比較,使該生物聚合物框架﹝人類原轉鐵蛋白﹞與80莫耳過量(80-molar excess)的2 kDa的NHS─PEG進行培養﹝於室溫下,反應1小時﹞,以產生化合物S5﹝進行二重複﹞。
另創造其他的比較構築S1、S2及S4﹝參照下列第3表﹞。
為確定共價結合的PEG分子的量,依如下的流程進行粒徑篩析層析法與多角度光散射儀聯用(size exclusion chromatography with inline multi-angle light scattering,SEC-MALS):在注入之前,將樣品以10,000 g的轉速離心10分鐘。使用Malvern Panalytical OMNISEC系統,將樣品以0.5 ml/min的速率注入管柱﹝Superdex 200 increase 10/300 GL size exclusion column﹞中,使用PBS作為電泳緩衝液(running buffer),BSA用以校準及確認由折射率(refractive index)、紫外光/可見光及光散射偵測器(light scattering detector)所組成的偵測系統。數據以OMNISEC version 5.12軟體進行分析,使用蛋白質偶聯物分析方法。
另人驚訝的是,結果表明,基於胜肽的連接片段適合用以增加PEG偶聯密度,並同時保持該化合物的抗體消耗功能。第3表﹝參照下表﹞顯示藉由使用基於一短肽的連接片段,與該生物聚合物框架結合的PEG的量顯著地提升約68%﹝參照化合物S3、化合物S5的比較結果﹞。
第3表
構築 樣品 胜肽 PEG GMBS 總質量(Da) 蛋白質質量(Da)
S1 1 無胜肽 83,590  
S2 2 胜肽 108,300 108,300
S3 3 胜肽 131,675 107,841.83
S3 4 胜肽 129,449 104,206.45
S4 5 無胜肽   82,770  
S5 6 無胜肽 96,643 81,276.76
S5 7 無胜肽 96,269 82,310
第3表(續)
構築 樣品 胜肽質量(Da) #胜肽 PEG質量(Da) #PEG 平均#PEG
S1 1          
S2 2 24,710 18.18      
S3 3     23,833.18 11.92 12.27
S3 4     25,242.56 12.62  
S4 5          
S5 6     15,366.24 7.68 7.33
S5 7     13,959.01 6.98  
第16實例:2 kDa的PEG─SADC及10 kDa的PEG─SADC的比較。
於24小時的時間點,將50 µg的2 kDa及10 kDa的甲氧基PEG-hu原轉鐵蛋白及hu原轉鐵蛋白控制組注射至各組小鼠﹝分別包含4隻雌性BALB/c小鼠﹞,其於0小時的時間點,分別藉由靜脈注射接受10 µg的兔子抗甲氧基PEG抗體﹝abcam,ab190652;濃度為0.1 mg/mL﹞,經由後眼窩路徑(retro-orbital route,r.o.),如X軸所示,每24小時採血一次。
結果如第13圖所示,以標準ELISA搭配甲氧基PEG生物素披覆的卵白素(streptavidin)ELISA盤﹝CreativePEGworks﹞來偵測血清中游離的兔子抗PEG;Y軸代表使用GraphPad Prism自EC50所計算出的相對抗PEG減少﹝以%計﹞,與其他試驗中一樣。
在較長的觀察期內,該獨立試驗證實了第13實例的驚人的結果。該2 kDa的PEG─SADC製劑是最有效的,並導致長效的抗PEG抗體的降低,相比之下,該10kDa的PEG─SADC製劑仍可以達成抗PEG抗體的降低,但效果較差。
非專利文獻:
Akbarzadehlaleh, Parvin, et al. "PEGylated human serum albumin: review of PEGylation, purification and characterization methods." Advanced pharmaceutical bulletin 6.3 (2016): 309.
Aldosari, Basmah N., Iman M. Alfagih, and Alanood S. Almurshedi. "Lipid nanoparticles as delivery systems for RNA-based vaccines." Pharmaceutics 13.2 (2021): 206.
Armstrong, Jonathan K. "The occurrence, induction, specificity and potential effect of antibodies against poly (ethylene glycol)." Pegylated protein drugs: Basic science and clinical applications. Birkhäuser Basel, 2009. 147-168.
Balakrishnan, Balaji, and Ernest David. "Biopolymers augment viral vectors based gene delivery." Journal of biosciences 44.4 (2019): 84.
Barry, Michael A., Jeffrey D. Rubin, and Shao‐Chia Lu. "Retargeting adenoviruses for therapeutic applications and vaccines." FEBS letters (2020).
Binder, Uli, and Arne Skerra. "PASylation: a versatile technology to extend drug delivery." Current Opinion in Colloid & Interface Science 31 (2017): 10-17.
Booth, Claire, and H. Bobby Gaspar. "Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID)." Biologics: targets & therapy 3 (2009): 349.
Bozovičar, Krištof, and Tomaž Bratkovič. "Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties." International Journal of Molecular Sciences 22.4 (2021): 1611.
Carter, John Mark, and Larry Loomis‐Price. "B cell epitope mapping using synthetic peptides." Current protocols in immunology 60.1 (2004): 9-4.
Dong, Yetian, et al. "A systematic review of SARS-CoV-2 vaccine candidates." Signal transduction and targeted therapy 5.1 (2020): 1-14.
Dijkstra, C. D., et al. "The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3." Microenvironments in the Lymphoid System. Springer, Boston, MA, 1985. 409-419.
Chapman, Andrew P. "PEGylated antibodies and antibody fragments for improved therapy: a review." Advanced drug delivery reviews 54.4 (2002): 531-545.
Elia, Natalie. "Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint." The FEBS Journal 288.4 (2021): 1107-1117. Epub 2020 Jul 22.
Elliott, Serra E., et al. "A pre-eclampsia-associated Epstein-Barr virus antibody cross-reacts with placental GPR50." Clinical Immunology 168 (2016): 64-71.
Erlandsson, Ann, et al. "In vivo clearing of idiotypic antibodies with antiidiotypic antibodies and their derivatives." Molecular immunology 43.6 (2006): 599-606.
Etzerodt, Anders, et al. "Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163." Journal of controlled release 160.1 (2012): 72-80.
Fabriek, Babs O., et al. "The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria." Blood 113.4 (2009): 887-892.
Galanis, Kosmas A., et al. "Linear B-cell epitope prediction for in silico vaccine design: a performance review of methods available via command-line interface." International journal of molecular sciences 22.6 (2021): 3210.
Garay, Ricardo P., et al. "Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents." (2012): 1319-1323.
Garces, Jorge Carlos, et al. "Antibody-mediated rejection: a review." The Ochsner Journal 17.1 (2017): 46.
Gaspar, Maria Manuela, et al. "Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats." Journal of aerosol medicine and pulmonary drug delivery 25.6 (2012): 310-318.
Gazarian, Karlen, et al. "Mimotope peptides selected from phage display combinatorial library by serum antibodies of pigs experimentally infected with Taenia solium as leads to developing diagnostic antigens for human neurocysticercosis." Peptides 38.2 (2012): 381-388.
Gfeller, David, et al. "Current tools for predicting cancer-specific T cell immunity." Oncoimmunology 5.7 (2016): e1177691.
Granfeldt, Asger, et al. "Targeting dexamethasone to macrophages in a porcine endotoxemic model." Critical Care Medicine 41.11 (2013): e309-e318.
Graversen, Jonas H., et al. "Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone." Molecular Therapy 20.8 (2012): 1550-1558.
Gurda, Brittney L., et al. "Mapping a neutralizing epitope onto the capsid of adeno-associated virus serotype 8." Journal of virology 86.15 (2012): 7739-7751.
Hansen, Lajla Bruntse, Soren Buus, and Claus Schafer-Nielsen. "Identification and mapping of linear antibody epitopes in human serum albumin using high-density peptide arrays." PLoS One 8.7 (2013): e68902.
Hoang Thi, Thai Thanh, et al. "The Importance of Poly (ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation." Polymers 12.2 (2020): 298.
Homma, Masayuki, et al. "A Novel Fusion Protein, AChR-Fc, Ameliorates Myasthenia Gravis by Neutralizing Antiacetylcholine Receptor Antibodies and Suppressing Acetylcholine Receptor-Reactive B Cells." Neurotherapeutics 14.1 (2017): 191-198.
Howard Jr, James F. "Myasthenia gravis: the role of complement at the neuromuscular junction." Annals of the New York Academy of Sciences 1412.1 (2018): 113-128.
Howarth, M., & Brune, K. D. (2018). New routes and opportunities for modular construction of particulate vaccines: stick, click and glue. Frontiers in immunology, 9, 1432.
Inglut, Collin T., et al. "Immunological and toxicological considerations for the design of liposomes." Nanomaterials 10.2 (2020): 190.
Ishida, Tatsuhiro, et al. "Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection." Journal of controlled release 115.3 (2006): 251-258.
Jain, Swati, et al. "Nucleic acid therapeutics: a focus on the development of aptamers." Expert Opinion on Drug Discovery 16.3 (2021): 255-274.
Jansson, Liselotte, et al. "Immunotherapy With Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice." Endocrinology 159.9 (2018): 3446-3457.
Jensen, Kamilla Kjærgaard, et al. "Improved methods for predicting peptide binding affinity to MHC class II molecules." Immunology 154.3 (2018): 394-406.
Jurtz, Vanessa, et al. "NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data." The Journal of Immunology 199.9 (2017): 3360-3368.
Kang, Tse Siang, and Raymond C. Stevens. "Structural aspects of therapeutic enzymes to treat metabolic disorders." Human mutation 30.12 (2009): 1591-1610.
Kant, Sam, and Mohamed G. Atta. "Therapeutic advances in Fabry disease: The future awaits." Biomedicine & Pharmacotherapy 131 (2020): 110779.
Kaur, Simran Preet, and Vandana Gupta. "COVID-19 Vaccine: A comprehensive status report." Virus research (2020): 198114.
Kim, Jaesung, et al. "Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials." Biomaterials 33.6 (2012): 1838-1850.
Kim, Tae Hyung, et al. "PEG-transferrin conjugated TRAIL (TNF-related apoptosis-inducing ligand) for therapeutic tumor targeting." Journal of controlled release 162.2 (2012): 422-428.
Koşaloğlu-Yalçın, Zeynep, et al. "Predicting T cell recognition of MHC class I restricted neoepitopes." Oncoimmunology 7.11 (2018): e1492508.
Koniev, Oleksandr, and Alain Wagner. "Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation." Chemical Society Reviews 44.15 (2015): 5495-5551.
Krutzke, Lea, et al. "Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: preventing vector clearance and preserving infectivity." Journal of Controlled Release 235 (2016): 379-392.
Lazaridis, Konstantinos, et al. "Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis." Journal of neuroimmunology 312 (2017): 24-30.
Lee, Gary K., et al. "PEG conjugation moderately protects adeno‐associated viral vectors against antibody neutralization." Biotechnology and bioengineering 92.1 (2005): 24-34.
Leung, Nicki YH, et al. "Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries." Cellular & molecular immunology 14.3 (2017): 308-318.
Lim, Sung In, and Inchan Kwon. "Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids." Critical reviews in biotechnology 36.5 (2016): 803-815.
Lin, Chia-Hao, et al. "Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease." Nature medicine 22.9 (2016): 994.
Lorentz, Kristen M., et al. "Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase." Science advances 1.6 (2015): e1500112.
Lu, Xueguang, and Ke Zhang. "PEGylation of therapeutic oligonucletides: From linear to highly branched PEG architectures." Nano research 11.10 (2018): 5519-5534.
Lubich, Christian, et al. "The mystery of antibodies against polyethylene glycol (PEG)-what do we know?." Pharmaceutical research 33.9 (2016): 2239-2249.
Luo, Jie, et al. "Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity." Journal of Neuroscience 29.44 (2009): 13898-13908.
Luo, Jie, and Jon Lindstrom. "AChR-specific immunosuppressive therapy of myasthenia gravis." Biochemical pharmacology 97.4 (2015): 609-619.
Luo, Ying-Li, et al. "Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles." ACS nano 12.2 (2018): 994-1005.
Lutz, Gordon J., Shashank R. Sirsi, and Jason H. Williams. "PEG–PEI copolymers for oligonucleotide delivery to cells and tissues." Gene Therapy Protocols. Humana Press, 2008. 141-150.
Majowicz, Anna, et al. "Seroprevalence of pre-existing NABs against AAV1, 2, 5, 6 and 8 in the South African Hemophilia B patient population." (2019): 3353-3353.
Mazor, Ronit, et al. "Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity." Proceedings of the National Academy of Sciences 115.4 (2018): E733-E742.
McSweeney, Morgan D., et al. "Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG." Journal of Controlled Release 311 (2019): 138-146.
Meister, Daniel, S. Maryamdokht Taimoory, and John F. Trant. "Unnatural amino acids improve affinity and modulate immunogenicity: Developing peptides to treat MHC type II autoimmune disorders." Peptide Science 111.1 (2019): e24058.
Meneguetti, Giovanna Pastore, et al. "Novel site-specific PEGylated L-asparaginase." PloS one 14.2 (2019): e0211951.
Mingozzi, Federico, et al. "Overcoming preexisting humoral immunity to AAV using capsid decoys." Science translational medicine 5.194 (2013): 194ra92-194ra92.
Mingozzi, Federico, and Katherine A. High. "Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape." Annual review of virology 4 (2017): 511-534.
Morimoto et. al., Bioconjugate Chemistry 25 (8) (2014): 1479-1491
Moussa, Ehab M., et al. "Immunogenicity of therapeutic protein aggregates." Journal of pharmaceutical sciences 105.2 (2016): 417-430.
Müller, Manuel M. "Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges." Biochemistry 57.2 (2017): 177-185.
O'Riordan, Catherine R., et al. "PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo." Human gene therapy 10.8 (1999): 1349-1358.
Park, Eun Ji, et al. "Emerging PEGylated non-biologic drugs." Expert opinion on emerging drugs 24.2 (2019): 107-119.
Peters, Bjoern, et al. "A community resource benchmarking predictions of peptide binding to MHC-I molecules." PLoS computational biology 2.6 (2006): e65.
Pishesha, Novalia, et al. "Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease." Proceedings of the National Academy of Sciences (2017): 201701746.
Podust, Vladimir N., et al. "Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer." Protein Engineering, Design & Selection 26.11 (2013): 743-753.
Qiu, Yingshan, et al. "Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide." Journal of Controlled Release 314 (2019): 102-115.
Ramana, Jayashree, and Kusum Mehla. "Immunoinformatics and Epitope Prediction." Immunoinformatics. Humana, New York, NY, 2020. 155-171.
Rey et al., Clinical Immunology 96 (3) (2000): 269-279
Ruff, Robert L., and Robert P. Lisak. "Nature and action of antibodies in myasthenia gravis." Neurologic clinics 36.2 (2018): 275-291.
Rummler, Silke, et al. "Current techniques for AB0-incompatible living donor liver transplantation." World journal of transplantation 6.3 (2016): 548.
Runcie, Karie, et al. "Bi-specific and tri-specific antibodies-the next big thing in solid tumor therapeutics." Molecular Medicine 24.1 (2018): 50.
Ryan, Brent J., Ahuva Nissim, and Paul G. Winyard. "Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases." Redox biology 2 (2014): 715-724.
Saifer, Mark GP, et al. "Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins." Molecular immunology 57.2 (2014): 236-246.
Sekiya, Toshiki, et al. "PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antibody and CD8+ T cell responses." Biomaterials 137 (2017): 61-72.
Shanmugam, Arulkumaran, et al. "Identification of PSA peptide mimotopes using phage display peptide library." Peptides 32.6 (2011): 1097-1102.
Sharp, Kim A., et al. "Synthesis and application of a poly (ethylene glycol)-antibody affinity ligand for cell separations in aqueous polymer two-phase systems." Analytical biochemistry 154.1 (1986): 110-117.
Sherman, Merry R., et al. "Role of the methoxy group in immune responses to mPEG-protein conjugates." Bioconjugate chemistry 23.3 (2012): 485-499.
Shiraishi, Kouichi, and Masayuki Yokoyama. "Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review." Science and technology of advanced materials 20.1 (2019): 324-336.
Siang Ong, Yong, et al. "Recent advances in synthesis and identification of cyclic peptides for bioapplications." Current topics in medicinal chemistry 17.20 (2017): 2302-2318.
Siekmann, Jürgen, and Peter L. Turecek. "PEGylation of human coagulation factor VIII and other plasma proteins." Polymer-Protein Conjugates. Elsevier, 2020. 155-174.
Skytthe, Maria K., Jonas Heilskov Graversen, and Søren K. Moestrup. "Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases." International Journal of Molecular Sciences 21.15 (2020): 5497.
Solomon, Melani, and Silvia Muro. "Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives." Advanced drug delivery reviews 118 (2017): 109-134.
Sørensen, Karen Kristine, et al. "Liver sinusoidal endothelial cells." Comprehensive Physiology 5.4 (2011): 1751-1774.
Spiess, Christoph, Qianting Zhai, and Paul J. Carter. "Alternative molecular formats and therapeutic applications for bispecific antibodies." Molecular immunology 67.2 (2015): 95-106.
Suk, Jung Soo, et al. "PEGylation as a strategy for improving nanoparticle-based drug and gene delivery." Advanced drug delivery reviews 99 (2016): 28-51.
Sun, Pingping, et al. "Advances in in-silico B-cell epitope prediction." Current topics in medicinal chemistry 19.2 (2019): 105-115.
Swierczewska, Magdalena, Kang Choon Lee, and Seulki Lee. "What is the future of PEGylated therapies?." Expert opinion on emerging drugs 20.4 (2015): 531-536.
Sun, Yanping, et al. "Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism." Acta biomaterialia 97 (2019): 93-104.
Taddeo, Adriano, et al. "Selection and depletion of plasma cells based on the specificity of the secreted antibody." European journal of immunology 45.1 (2015): 317-319.
Teschner, Sven, et al. "ABO‐incompatible kidney transplantation using regenerative selective immunoglobulin adsorption." Journal of clinical apheresis 27.2 (2012): 51-60.
Tetala, Kishore KR, et al. "Selective depletion of neuropathy-related antibodies from human serum by monolithic affinity columns containing ganglioside mimics." Journal of medicinal chemistry 54.10 (2011): 3500-3505.
Torres‐Obreque, Karin, et al. "Production of a novel N‐terminal PEGylated crisantaspase." Biotechnology and applied biochemistry 66.3 (2019): 281-289.
Turk, Viktorija Erdeljic. "Anaphylaxis associated with the mRNA COVID-19 vaccines: Approach to allergy investigation." Clinical Immunology 227 (2021): 108748.
Vincent, Angela, et al. "Serological and experimental studies in different forms of myasthenia gravis." Annals of the New York Academy of Sciences 1413.1 (2018): 143-153.
Wallukat, Gerd, et al. "Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT 1 receptor." The Journal of clinical investigation 103.7 (1999): 945-952.
Weaver, Eric A., and Michael A. Barry. "Effects of shielding adenoviral vectors with polyethylene glycol on vector-specific and vaccine-mediated immune responses." Human gene therapy 19.12 (2008): 1369-1382.
Wegmann, Frank, et al. "Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens." Nature biotechnology 30.9 (2012): 883-888.
Worm, Margitta, et al. "Practical recommendations for the allergological risk assessment of the COVID-19 vaccination–a harmonized statement of allergy centers in Germany." Allergologie select 5 (2021): 72.
Yang, Qi, and Samuel K. Lai. "Anti‐PEG immunity: emergence, characteristics, and unaddressed questions." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7.5 (2015): 655-677.
Yang, Qi, et al. "Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population." Analytical chemistry 88.23 (2016): 11804-11812.
Yoshimoto, Noriko, et al. "PEG chain length impacts yield of solid‐phase protein PEGylation and efficiency of PEGylated protein separation by ion‐exchange chromatography: Insights of mechanistic models." Biotechnology journal 8.7 (2013): 801-810.
Zhang, Tingting, et al. "Moderate PEGylation of the carrier protein improves the polysaccharide-specific immunogenicity of meningococcal group A polysaccharide conjugate vaccine." Vaccine 33.28 (2015): 3208-3214.
Zhou, Cissy C., et al. "Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice." Nature medicine 14.8 (2008): 855.
Zinsli, Léa V., et al. "Deimmunization of protein therapeutics–Recent advances in experimental and computational epitope prediction and deletion." Computational and Structural Biotechnology Journal (2020).
由以下的圖式及實例進一步說明本發明,惟不以此為限。於下列的圖式及實例中,本發明的化合物亦稱為〝選擇性抗體消耗化合物(selective antibody depletion compound,SADC)。 [第1a~1e圖]   SADC成功地降低非預期的抗體的效價。在時間點0,藉由腹膜內注射的方式,將各SADC投予已被針對一經定義的抗原之胜肽免疫進行預先疫苗接種的Balb/c小鼠。各上方小圖顯示相對於OD值﹝Y軸﹞的抗胜肽效價﹝0.5倍稀釋步驟;X軸顯示log(x)稀釋度﹞,依據一標準酵素結合免疫吸附分析法(enzyme-linked immunosorbent assay,ELISA),以偵測對應抗體;各下方小圖顯示在注射各SADC之前﹝即,於─48小時及─24小時的效價﹞的效價LogIC 50﹝Y軸﹞,以及在投予各SADC之後﹝即,注射之後,+24小時、+48小時及+72小時;於X軸上所指﹞的效價LogIC 50﹝Y軸﹞。 [第1a圖]    以白蛋白作為該生物聚合物框架的化合物,其結合針對EBNA1的抗體﹝與子癇前症(pre-eclampsia)相關﹞。該些小鼠以攜帶有該EBNA-1模型表位(model epitope)的一胜肽疫苗進行預先疫苗接種。 [第1b圖]    以白蛋白作為該生物聚合物框架的化合物,其結合針對衍生自人類AChR蛋白質的主要免疫原區(main immunogenic region,MIR)的一胜肽的抗體﹝與重症肌無力症(myasthenia gravis)相關﹞。該些小鼠以攜帶有該AChR主要免疫原區模型表位的一胜肽疫苗進行預先疫苗接種。 [第1c圖]    以免疫球蛋白作為該生物聚合物框架的化合物,其結合針對EBNA1的抗體﹝與子癇前症相關﹞。該些小鼠以攜帶有該EBNA-1模型表位的一胜肽疫苗進行預先疫苗接種。 [第1d圖]    以結合球蛋白作為該生物聚合物框架的化合物,其結合針對EBNA1的抗體﹝與子癇前症相關﹞。該些小鼠以攜帶有該EBNA-1模型表位的一胜肽疫苗進行預先疫苗接種。 [第1e圖]    使用已經用於第1c圖所示的實驗中,結合針對EBNA1的抗體的相同的基於免疫球蛋白的SADC,以證明選擇性。該些小鼠以無關的胺基酸序列進行預先疫苗接種。沒有發生效價降低,顯示該化合物的選擇性。 [第2圖] SADC為非免疫原性的,且在重複注射於小鼠之後,不會誘導形成抗體。動物C1~C4及動物C5~C8係以腹膜內注射投予兩種不同的SADC以進行治療,控制組動物C以衍生自人類AChR蛋白質主要免疫原區的一鎖孔帽貝血藍素(keyhole limpet hemocyanin,KLH)胜肽進行免疫,分別使用牛血清白蛋白(bovine serum albumin,BSA)接合之胜肽探針T3-1、T9-1及E005﹝灰色長條,如圖所示﹞,以1:100的稀釋度,藉由標準酵素結合免疫吸附分析法偵測抗體的效價,可以證明當與以該疫苗進行治療的控制組動物C相比,在以SADC進行治療的動物中不存在有抗體的誘導﹝Y軸,OD450 nm﹞。 [第3圖] 使用攜帶多套單價或雙價胜肽的SADC,成功於試管內消耗抗體。具有單價或雙價胜肽的SADC非常適合吸收抗體,進而消耗抗體。〝單價〞係指胜肽單體(monomer)結合該生物聚合物框架﹝即,n=1﹞,而〝雙價〞則指胜肽二聚體(dimer)結合該生物聚合物框架﹝即,n=2﹞。於當前情況下,該雙價胜肽為〝同雙價(homodivalent)〞,即,該SADC的n個單體單元的胜肽為E006─間隔片段─E006。 [第4圖] 使用各種SADC生物聚合物框架,於小鼠中快速、選擇性地消耗抗體。當與該模擬治療控制組SADC─CTL﹝包含一無關之胜肽﹞相比,治療組於24小時的時間點已經顯示出快速且明顯的抗體減少﹝特別是SADC─TF﹞。帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:SADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF。 [第5圖] 在以SADC注射之後24小時,經由SADC的胜肽部分(peptide moiety)偵測血漿中的SADC。兩種基於結合球蛋白框架的SADC﹝SADC─HP及SADC─CTL﹞均具有相對較短的血漿半衰期,這代表相較於帶有其他生物聚合物框架的SADC﹝例如,SADC─ALB、SADC─IG或SADC─TF﹞具有優勢。帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:SADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF。 [第6圖] 在以SADC注射之後24小時,偵測血漿中的SADC─IgG複合物。當與帶有其他生物聚合物框架的SADC相比,基於結合球蛋白的SADC具有加速的清除速度。帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:ADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF。 [第7圖] 於試管內分析SADC─IgG複合物的形成。動物SADC─TF及SADC─ALB表現出明顯的免疫複合物的形成,以及與C1q的結合,在100 ng/mL之SADC─TF的情況下,是由於抗原─抗體平衡(antigen-antibody equilibrium)轉變到抗原過剩(antigen excess)而導致的強訊號(strong signal)及尖銳的訊號降低(sharp signal lowering);反之,於本分析中,SADC─HP或SADC─IG的試管內之免疫複合物的形成的效率大幅降低。這些發現證實結合球蛋白框架優於其他SADC生物聚合物框架,因為其活化該補體系統的傾向降低。帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:SADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF。 [第8a~8b圖]   測定SADC於試管內捕獲的IgG。當與SADC─TF或SADC─ALB相比,SADC─HP於試管內顯示顯著較低的抗體結合能力。帶有白蛋白框架的SADC:SADC─ALB,帶有免疫球蛋白框架的SADC:SADC─IG,帶有結合球蛋白框架的SADC:SADC─HP,及帶有轉鐵蛋白框架的SADC:SADC─TF。 [第9圖] 基於抗CD163抗體的生物聚合物框架的血液清除。於一小鼠模型中,﹝對鼠類CD163具有特異性的﹞單株抗體E10B10比單株抗體Mac2-158﹝對人類CD163具有特異性,而非對鼠類163具有特異性,因此於本試驗中作為負控制組﹞更快地自循環中清除。 [第10圖] PEG與一轉鐵蛋白生物聚合物框架有效地偶聯,以產生本發明的化合物。以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分析2.5 μg的與PEG﹝10 kDa、5 kDa、2 kDa、750 Da﹞偶聯的人類原轉鐵蛋白(apo-transferrin)。與未偶聯的原轉鐵蛋白﹝電泳泳道2,其描繪未偶聯的框架蛋白質的遷移﹞相比,所有的偶聯物都顯示出根據其偶聯的PEG分子的完全變化﹝電泳泳道3~6,PEG尺寸分別為10 kDa、5 kDa、2 kDa及750 Da﹞。原始的人類原轉鐵蛋白條帶﹝電泳泳道2﹞在與PEG偶聯之後完全消失﹝電泳泳道3~6﹞,進而對使用PEG─SADC的功能性動物試驗提供品質證明及一致性檢查。電泳泳道1包含一蛋白質階梯(protein ladder)。 [第11圖]    藉由本發明的化合物,於活體內的選擇性抗PEG抗體的消耗。出乎意料的是,2 kDa、5 kDa及750 Da的PEG─SADC提供有效且快速的抗PEG抗體訊號的降低,該2 kDa的PEG─SADC製劑是最有效的,並導致長效的抗PEG抗體的降低,直到該試驗結束的時間點﹝T﹞120小時﹝T120﹞,相比之下,該10kDa的PEG─SADC製劑的效果較差。重要的是,先前所建議的游離的PEG 10 kDa製劑﹝〝PEG 10kDa〞,無生物聚合物框架﹞於可比較劑量下,並未顯示任何抗體訊號的降低,單獨的生物聚合物框架﹝〝hu─apo─TF〞﹞也沒有。 [第12圖]    本發明的化合物為非免疫原性的。在重覆性注射之後,PEG─SADC不會誘導任何可偵測的抗PEG抗體的增加。 [第13圖]    2 kDa的PEG─SADC及10 kDa的PEG─SADC的比較。在較長觀察期內的獨立試驗證實了第11圖中所顯示的驚人的結果。該2 kDa的PEG─SADC製劑是最有效的,並導致長效的抗PEG抗體的降低,相比之下,該10kDa的PEG─SADC製劑仍可以達成抗PEG抗體的降低,但效果較差。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017

Claims (19)

  1. 一種化合物,包含: 一生物聚合物框架;及 一或多個聚乙二醇(PEG)鏈。
  2. 如請求項1之化合物,其中,該一或多個PEG鏈包含至少二PEG鏈,各該二PEG鏈具有一分子量介於100~10,000 Da之間,較佳介於200~8,000 Da之間,更佳介於300~6,000 Da之間,再更佳介於400~5,000 Da之間,又更佳介於500~4,000 Da之間,再又更佳介於600~3,000 Da之間,特別是介於700~2,500 Da之間。
  3. 如請求項2之化合物,其中,該分子量介於1,500~2,500 Da之間。
  4. 如請求項1~3中任一項之化合物,其中,該一或多個PEG鏈包含至少一PEG鏈,具有一游離的甲氧基端基或一游離的羥基端基。
  5. 如請求項1~4中任一項之化合物,其中,該生物聚合物框架選自由α1球蛋白、α2球蛋白、β球蛋白及白蛋白所組成的群組,尤其是其中,該生物聚合物框架為結合球蛋白或轉鐵蛋白,特別是轉鐵蛋白;或者其中,該生物聚合物框架為針對CD163蛋白具有特異性的抗體或其CD163結合片段。
  6. 如請求項1~5中任一項之化合物,其中,該一或多個PEG鏈的至少一部分經由至少一連接片段共價地結合該生物聚合物框架,其中,該連接片段包含一胜肽或一單一個胺基酸,例如一半胱胺酸。
  7. 如請求項1~6中任一項之化合物,其中,該化合物於一哺乳動物個體中,較佳於一人類個體中、於一非人之靈長類個體中、於一綿羊個體中、於一豬個體中、於一狗個體中,或於一囓齒動物個體中,為非免疫原性的。
  8. 一種醫藥組合物,包含如請求項1~7中任一項的化合物;及至少一醫藥學上可接受的賦形劑。
  9. 如請求項8之醫藥組合物,其中,該組合物於一人類個體中為非免疫原性的。
  10. 如請求項8或9之醫藥組合物用以進行治療的用途。
  11. 用以使用的如請求項10之醫藥組合物,用以抑制一個體對活性劑治療的一免疫反應,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的;其中較佳地,該醫藥組合物在96小時的時間窗內投予至少二次,其中,該時間窗係接續於投予該活性劑的24小時之內。
  12. 用以使用的如請求項10之醫藥組合物,用以於一個體中抑制一活性劑的中和化,尤其是加速的血液清除,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的;其中較佳地,該醫藥組合物在96小時的時間窗內投予至少二次,其中,該時間窗係接續於投予該活性劑的24小時之內。
  13. 用以使用的如請求項11或12之醫藥組合物,其中,該活性劑為一蛋白質或胜肽,其中較佳地,該活性劑選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成的群組;或者其中,該活性劑為一病毒載體,例如用以基因治療或疫苗接種的一病毒載體。
  14. 用以使用的如請求項11或12之醫藥組合物,其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸;其中較佳地,該核苷酸為RNA,尤其是mRNA或siRNA,或者是DNA。
  15. 一種螯合存在於一個體中的一或多個抗體的方法,包含: 獲得如請求項8或9之醫藥組合物,其中,該組合物於該個體中為非免疫原性的,且該一或多個抗體為抗PEG抗體;及 將該醫藥組合物投予該個體。
  16. 一種醫藥組合物,包含如請求項1~7中任一項之化合物,且另包含一活性劑及可選的至少一醫藥學上可接受的賦形劑,其中,該活性劑包含至少一PEG,尤其是其中,該活性劑為經PEG修飾的。
  17. 如請求項16之醫藥組合物,其中,該活性劑為一病毒載體或一蛋白質或胜肽,特別是選自由酵素、酵素抑制劑、抗體、抗體片段、抗體模擬物、抗體─藥物接合物、荷爾蒙、生長因子、凝血因子及細胞激素所組成之群組。
  18. 如請求項16之醫藥組合物,其中,該活性劑為一核苷酸─脂質粒子、一核苷酸─聚合物粒子、一核苷酸─脂質─聚合物粒子或一核苷酸;其中較佳地,該核苷酸為RNA,尤其是mRNA或siRNA,或者是DNA。
  19. 一種於以一活性劑進行治療的一所需個體中,用以抑制以該活性劑進行治療所造成的免疫反應的方法,包含: 獲得如請求項16~18中任一項之醫藥組合物,其中,該醫藥組合物的化合物於該個體中為非免疫原性的;及 將該醫藥組合物投予該個體。
TW110134895A 2020-09-23 2021-09-17 用以於一患者中螯合非預期的抗peg抗體的化合物 TW202228784A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP20197699.0 2020-09-23
EP20197699 2020-09-23
EP21167124.3 2021-04-07
EP21167124 2021-04-07

Publications (1)

Publication Number Publication Date
TW202228784A true TW202228784A (zh) 2022-08-01

Family

ID=77924438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134895A TW202228784A (zh) 2020-09-23 2021-09-17 用以於一患者中螯合非預期的抗peg抗體的化合物

Country Status (12)

Country Link
US (1) US20230355660A1 (zh)
EP (1) EP4217005A1 (zh)
JP (1) JP2023542392A (zh)
KR (1) KR20230074550A (zh)
AR (1) AR123581A1 (zh)
AU (1) AU2021348226A1 (zh)
BR (1) BR112023005246A2 (zh)
CA (1) CA3192744A1 (zh)
IL (1) IL301338A (zh)
MX (1) MX2023003378A (zh)
TW (1) TW202228784A (zh)
WO (1) WO2022063885A1 (zh)

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022544A (en) 1983-01-24 2000-02-08 The John Hopkins University Therapeutic suppression of specific immune responses by administration of oligomeric forms of antigen of controlled chemistry
US5372933A (en) 1988-10-03 1994-12-13 The Scripps Research Institute Polypeptides that mimic receptor-induced binding sites, and methods of using same
US5268454A (en) 1991-02-08 1993-12-07 La Jolla Pharmaceutical Company Composition for inducing humoral anergy to an immunogen comprising a t cell epitope-deficient analog of the immunogen conjugated to a nonimmunogenic carrier
US6897287B1 (en) 1990-01-31 2005-05-24 Oklahoma Medical Research Foundation Ro/SSA peptide reagents for diagnosis of autoantibodies
US7888458B1 (en) 1993-11-30 2011-02-15 John B. Harley Diagnostics and therapy of epstein-barr virus in autoimmune disorders
AU2173500A (en) 1998-12-09 2000-06-26 La Jolla Pharmaceutical Company Methods and formulations for reducing circulating antibodies
PT1328297E (pt) 2000-10-16 2010-01-04 Cytoguide Aps Função de um receptor de haptoglobina-hemoglobina e suas utilizações
EP1446438A2 (en) 2001-11-07 2004-08-18 Nektar Therapeutics Al, Corporation Branched polymers and their conjugates
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
EP1597271B1 (de) 2003-01-31 2013-03-06 Max-Delbrück-Centrum Für Molekulare Medizin Peptide gegen kälteunverträglichkeit hervorrufende autoantikörper und ihre verwendung
WO2004089422A2 (en) 2003-03-30 2004-10-21 La Jolla Pharmaceutical Co. Methods of treating and monitoring systemic lupus erythematosus in individuals
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
DK2369005T3 (da) 2007-06-21 2013-06-24 Univ Muenchen Tech Biologisk aktive proteiner med forøget stabilitet in vivo og/eller in vitro
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
GB0917044D0 (en) 2009-09-29 2009-11-18 Cytoguide As Agents, uses and methods
SG10201505470QA (en) 2010-04-13 2015-08-28 Medimmune Llc Trail r2-specific multimeric scaffolds
EA024755B1 (ru) 2010-05-21 2016-10-31 ИксЭль-ПРОТЕИН ГМБХ Биосинтетические нерегулярные спиральные полипептиды пролина/аланина и их применения
EP2402016A1 (en) 2010-06-29 2012-01-04 Charité - Universitätsmedizin Berlin Aptamers that inhibit interaction between antibody and 1st or 2nd extracellular loop of human beta-1-adrenergic receptor
US9006417B2 (en) 2010-06-30 2015-04-14 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
CA3179537A1 (en) 2012-02-27 2013-09-06 Amunix Pharmaceuticals, Inc. Xten conjugate compositions and methods of making same
WO2015056713A1 (ja) 2013-10-15 2015-04-23 国立大学法人東京大学 c-Metタンパク質アゴニスト
PL3116887T3 (pl) 2014-03-13 2021-09-06 Universität Basel Ligandy węglowodanowe, które wiążą się z przeciwciałami igm przeciwko glikoproteinie związanej z mieliną
WO2015181393A1 (en) 2014-05-30 2015-12-03 Per-Johan Jakobsson Novel sfti and cyclotide based peptides
EP2982756A1 (en) 2014-08-04 2016-02-10 Berlin Cures Holding AG Aptamers for use against autoantibody-associated diseases
US11091591B2 (en) 2015-09-16 2021-08-17 Universität Basel Carbohydrate ligands that bind to antibodies against glycoepitopes of glycosphingolipids
WO2018102668A1 (en) 2016-12-02 2018-06-07 The Texas A&M University System Fusion proteins for selectively depleting antigen-specific antibodies
US11813333B2 (en) 2017-08-28 2023-11-14 The University Of North Carolina At Chapel Hill Use of high molecular weight polyethylene glycol compositions to restore the efficacy of pegylated therapeutic compositions
CR20200546A (es) 2018-05-21 2021-05-18 Nektar Therapeutics ESTIMULADOR SELECTIVO TREG RUR20kD-IL-2 Y COMPOSICIONES RELACIONADAS
EP3715374A1 (en) * 2019-03-23 2020-09-30 Ablevia biotech GmbH Compound for the sequestration of undesirable antibodies in a patient

Also Published As

Publication number Publication date
AU2021348226A9 (en) 2024-02-08
BR112023005246A2 (pt) 2023-04-25
AR123581A1 (es) 2022-12-21
KR20230074550A (ko) 2023-05-30
AU2021348226A1 (en) 2023-05-18
JP2023542392A (ja) 2023-10-06
EP4217005A1 (en) 2023-08-02
CA3192744A1 (en) 2022-03-31
US20230355660A1 (en) 2023-11-09
MX2023003378A (es) 2023-06-05
IL301338A (en) 2023-05-01
WO2022063885A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
Chen et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals
Hou et al. Protein PEPylation: a new paradigm of protein–polymer conjugation
Sherman et al. Role of the methoxy group in immune responses to mPEG-protein conjugates
JP2020023503A (ja) バイオ医薬の送達のためのエキソソーム
JP5850561B2 (ja) 癌細胞増殖を阻害するためのウレアーゼの使用
US11376333B2 (en) mTG substrates for covalent conjugation of compounds
ES2927642T3 (es) Compuesto para el secuestro de anticuerpos indeseables en un paciente
JP4966434B2 (ja) 結合抗体の存在下における組換え血液凝固因子のpeg化
Elsadek et al. Immunological responses to PEGylated proteins: anti-PEG antibodies
CA3143257A1 (en) Viral vector therapy
US20230355747A1 (en) Compound for increasing efficacy of viral vectors
Lin et al. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture
TW202228784A (zh) 用以於一患者中螯合非預期的抗peg抗體的化合物
JP2022519586A (ja) 糖ポリシアル酸化治療用タンパク質を使用する方法
CN116669771A (zh) 用于隔离患者体内不需要的抗peg抗体的化合物
Phillips et al. Drug delivery technologies for autoimmune disease
US20230381334A1 (en) Compound for the sequestration of undesirable antibodies in a patient
US20230365655A1 (en) Compound for increasing the efficacy of factor viii replacement therapy
Scherer et al. Revival of Bioengineered Proteins as Carriers for Nucleic Acids
CN116710143A (zh) 用于预防或治疗重症肌无力的化合物