US20120135048A1 - novel formulation of indomethacin - Google Patents
novel formulation of indomethacin Download PDFInfo
- Publication number
- US20120135048A1 US20120135048A1 US13/266,125 US201013266125A US2012135048A1 US 20120135048 A1 US20120135048 A1 US 20120135048A1 US 201013266125 A US201013266125 A US 201013266125A US 2012135048 A1 US2012135048 A1 US 2012135048A1
- Authority
- US
- United States
- Prior art keywords
- indomethacin
- sodium
- composition
- milling
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/02—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/143—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/145—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/146—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/904—Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
- Y10S977/915—Therapeutic or pharmaceutical composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to methods for producing particles of indomethacin using dry milling processes as well as compositions comprising indomethacin, medicaments produced using indomethacin in particulate form and/or compositions, and to methods of treatment of an animal, including man, using a therapeutically effective amount of indomethacin administered by way of said medicaments.
- Poor bioavailability is a significant problem encountered in the development of compositions in the therapeutic, cosmetic, agricultural and food industries, particularly those materials containing a biologically active material that is poorly soluble in water at physiological pH.
- An active material's bioavailability is the degree to which the active material becomes available to the target tissue in the body or other medium after systemic administration through, for example, oral or intravenous means. Many factors affect bioavailability, including the form of dosage and the solubility and dissolution rate of the active material.
- poorly and slowly water-soluble materials tend to be eliminated from the gastrointestinal tract before being absorbed into the circulation.
- poorly soluble active agents tend to be disfavored or even unsafe for intravenous administration due to the risk of particles of agent blocking blood flow through capillaries.
- dry milling techniques have been used to reduce particle size and hence influence drug absorption.
- the limit of fineness is reached generally in the region of about 100 microns (100,000 nm), at which point material cakes on the milling chamber and prevents any further diminution of particle size.
- wet grinding may be employed to reduce particle size, but flocculation restricts the lower particle size limit to approximately 10 microns (10,000 nm).
- the wet milling process is prone to contamination, thereby leading to a bias in the pharmaceutical art against wet milling.
- Another alternative milling technique commercial airjet milling, has provided particles ranging in average size from as low as about 1 to about 50 microns (1,000-50,000 nm).
- Another method of providing reduced particle size is the formation of pharmaceutical drug microcapsules, which techniques include micronizing, polymerisation and co-dispersion.
- these techniques suffer from a number of disadvantages including at least the inability to produce sufficiently small particles such as those obtained by milling, and the presence of co-solvents and/or contaminants such as toxic monomers which are difficult to remove, leading to expensive manufacturing processes.
- Mechanochemical synthesis refers to the use of mechanical energy to activate, initiate or promote a chemical reaction, a crystal structure transformation or a phase change in a material or a mixture of materials, for example by agitating a reaction mixture in the presence of a milling media to transfer mechanical energy to the reaction mixture, and includes without limitation “mechanochemical activation”, “mechanochemical processing”, “reactive milling”, and related processes.
- the present invention provides methods for overcoming the problems identified by the prior art by providing a milling process which provides particles with increased surface area, yet can also be scaled up to a commercial scale.
- indomethacin is prescribed for chronic and acute pain.
- indomethacin physicians are encourage to use the lowest effective dose for the shortest duration consistent with individual patient treatment goals.
- Indomethacin is a poorly water soluble drug so dissolution and absorption to the body is slow. So a method such as the present invention which provides for improved dissolution, will likely provide much faster absorption resulting in a more rapid onset of the therapeutic effect.
- the method of present invention also has the potential to increase the bioavailability of poorly water soluble drugs. If the invention does increase the rate and amount of absorption a formulation could be developed with a lower amount of active. This would be of benefit to patients and physicians for meeting therapeutic goals with the lowest effective dose.
- applications of the methods of the present invention are clearly not limited to such.
- applications of the methods of the present invention include but are not limited to: nutraceutical and nutritional compounds, complementary medicinal compounds, veterinary therapeutic applications and agricultural chemical applications, such as pesticide, fungicide or herbicide.
- an application of the current invention would be to materials which contain a biologically active compound such as, but not limited to a therapeutic or pharmaceutical compound, a nutraceutical or nutrient, a complementary medicinal product such as active components in plant or other naturally occurring material, a veterinary therapeutic compound or an agricultural compound such as a pesticide, fungicide or herbicide.
- a biologically active compound such as, but not limited to a therapeutic or pharmaceutical compound, a nutraceutical or nutrient, a complementary medicinal product such as active components in plant or other naturally occurring material, a veterinary therapeutic compound or an agricultural compound such as a pesticide, fungicide or herbicide.
- Specific examples would be the spice turmeric that contains the active compound curcumin, or flax seed that contains the nutrient ALA an omega 3 fatty acid.
- this invention could be applied to, but not limited to, a range of natural products such as seeds, cocoa and cocoa solids, coffee, herbs, spices, other plant materials or food materials that contain a biologically active compound.
- the present invention is directed to the unexpected finding that particles of a biologically active material can be produced by dry milling processes at commercial scale.
- the particle size produced by the process is equal to or less than 2000 nm.
- the particle size produced by the process is equal to or less than 1000 nm.
- the crystallinity of the active material is unchanged or not substantially changed.
- the present invention is directed to the unexpected finding that particles of indomethacin can be produced by dry milling processes at commercial scale.
- the invention comprises a method producing a composition, comprising the steps of dry milling a solid biologically active material and a millable grinding matrix in a mill comprising a plurality of milling bodies, for a time period sufficient to produce particles of the biologically active material dispersed in an at least partially milled grinding material.
- the average particle size, determined on a particle number basis is equal to or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the average particle size is equal to or greater than 25 nm.
- the particles have a median particle size, determined on a particle volume basis, equal or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the median particle size is equal to or greater than 25 nm.
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 2000 nm (% ⁇ 2000 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 1000 nm (% ⁇ 1000 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 500 nm (% ⁇ 500 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 300 nm (% ⁇ 300 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 200 nm (% ⁇ 200 nm).
- the Dx of the particle size distribution is selected from the group consisting of less than or equal to 10,000 nm, 5000 nm, 3000 nm, 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm; wherein x is greater than or equal to 90.
- the crystallinity profile of the biologically active material is selected from the group consisting of: at least 50% of the biologically active material is crystalline, at least 60% of the biologically active material is crystalline, at least 70% of the biologically active material is crystalline, at least 75% of the biologically active material is crystalline, at least 85% of the biologically active material is crystalline, at least 90% of the biologically active material is crystalline, at least 95% of the biologically active material is crystalline and at least 98% of the biologically active material is crystalline. More preferably, the crystallinity profile of the biologically active material is substantially equal to the crystallinity profile of the biologically active material before the material was subjected to the method as described herein.
- the amorphous content of the biologically active material is selected from the group consisting of: less than 50% of the biologically active material is amorphous, less than 40% of the biologically active material is amorphous, less than 30% of the biologically active material is amorphous, less than 25% of the biologically active material is amorphous, less than 15% of the biologically active material is amorphous, less than 10% of the biologically active material is amorphous, less than 5% of the biologically active material is amorphous and less than 2% of the biologically active material is amorphous.
- the biologically active material has no significant increase in amorphous content after subjecting the material to the method as described herein.
- the milling time period is a range selected from the group consisting of: between 10 minutes and 2 hours, between 10 minutes and 90 minutes, between 10 minutes and 1 hour, between 10 minutes and 45 minutes, between 10 minutes and 30 minutes, between 5 minutes and 30 minutes, between 5 minutes and 20 minutes, between 2 minutes and 10 minutes, between 2 minutes and 5 minutes, between 1 minutes and 20 minutes, between 1 minute and 10 minutes, and between 1 minute and 5 minutes.
- the milling medium is selected from the group consisting of: ceramics, glasses, polymers, ferromagnetics and metals.
- the milling medium is steel balls having a diameter selected from the group consisting of: between 1 and 20 mm, between 2 and 15 mm and between 3 and 10 mm.
- the milling medium is zirconium oxide balls having a diameter selected from the group consisting of: between 1 and 20 mm, between 2 and 15 mm and between 3 and 10 mm.
- the dry milling apparatus is a mill selected from the group consisting of: attritor mills (horizontal or vertical), nutating mills, tower mills, pearl mills, planetary mills, vibratory mills, eccentric vibratory mills, gravity-dependent-type ball mills, rod mills, roller mills and crusher mills.
- the milling medium within the milling apparatus is mechanically agitated by 1, 2 or 3 rotating shafts.
- the method is configured to produce the biologically active material in a continuous fashion.
- the total combined amount of biologically active material and grinding matrix in the mill at any given time is equal to or greater than a mass selected from the group consisting of: 200 grams, 500 grams, 1 kg, 2 kg, 5 kg, 10 kg, 20 kg, 30 kg, 50 kg, 75 kg, 100 kg, 150 kg, 200 kg.
- the total combined amount of biologically active material and grinding matrix is less than 2000 kg.
- the biologically active material is selected from the group consisting of: indomethacin or a derivative or salt thereof.
- the grinding matrix is a single material or is a mixture of two or more materials in any proportion.
- the single material or a mixture of two or more materials is selected from the group consisting of: mannitol, sorbitol, Isomalt, xylitol, maltitol, lactitol, erythritol, arabitol, ribitol, glucose, fructose, mannose, galactose, anhydrous lactose, lactose monohydrate, sucrose, maltose, trehalose, maltodextrins, dextrin, Inulin, dextrates, polydextrose, starch, wheat flour, corn flour, rice flour, rice starch, tapioca flour, tapioca starch, potato flour, potato starch, other flours and starches, milk powder, skim milk powders, other milk solids and derivatives, soy flour, soy meal or other soy products, cellulose, microcrystalline
- the concentration of the single (or first) material is selected from the group consisting of: 5-99% w/w, 10-95% w/w, 15-85% w/w, of 20-80% w/w, 25-75% w/w, 30-60% w/w, 40-50% w/w.
- the concentration of the second or subsequent material is selected from the group consisting of: 5-50% w/w, 5-40% w/w, 5-30% w/w, of 5-20% w/w, 10-40% w/w, 10-30% w/w, 10-20% w/w, 20-40% w/w, or 20-30% w/w or if the second or subsequent material is a surfactant or water soluble polymer the concentration is selected from 0.1-10% w/w, 0.1-5% w/w, 0.1-2.5% w/w, of 0.1-2% w/w, 0.1-1%, 0.5-5% w/w, 0.5-3% w/w, 0.5-2% w/w, 0.5-1.5%, 0.5-1% w/w, of 0.75-1.25% w/w, 0.75-1% and 1% w/w.
- the grinding matrix is selected from the group consisting of:
- the grinding matrix is selected from the group consisting of: a material considered to be ‘Generally Regarded as Safe’ (GRAS) for pharmaceutical products; a material considered acceptable for use in an agricultural formulation; and a material considered acceptable for use in a veterinary formulation.
- GRAS Generally Regarded as Safe
- a milling aid or combination of milling aids is used.
- the milling aid is selected from the group consisting of: colloidal silica, a surfactant, a polymer, a stearic acid and derivatives thereof.
- the surfactant is selected from the group consisting of: polyoxyethylene alkyl ethers, polyoxyethylene stearates, polyethylene glycols (PEG), poloxamers, poloxamines, sarcosine based surfactants, polysorbates, aliphatic alcohols, alkyl and aryl sulfates, alkyl and aryl polyether sulfonates and other sulfate surfactants, trimethyl ammonium based surfactants, lecithin and other phospholipids, bile salts, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, Sorbitan fatty acid esters, Sucrose fatty acid esters, alkyl glucopyranosides, alkyl maltopyranosides, glycerol fatty acid esters, Alkyl Benzene Sulphonic Acids, Alkyl Ether Carboxylic Acids, Alkyl and aryl Phosphat
- the surfactant is selected from the group consisting of: sodium lauryl sulfate, sodium stearyl sulfate, sodium cetyl sulfate, sodium cetostearyl sulfate, sodium docusate, sodium deoxycholate, N-lauroylsarcosine sodium salt, glyceryl monostearate, glycerol distearate glyceryl palmitostearate, glyceryl behenate, glyceryl caprylate, glyceryl oleate, benzalkonium chloride, CTAB, CTAC, Cetrimide, cetylpyridinium chloride, cetylpyridinium bromide, benzethonium chloride, PEG 40 stearate, PEG 100 stearate, poloxamer 188, poloxamer 338, poloxamer 407 polyoxyl 2 stearyl ether, polyoxyl 100 stearyl ether, polyoxyl 20 stearyl
- the polymer is selected from the list of: polyvinylpyrrolidones (PVP), polyvinylalcohol, acrylic acid based polymers and copolymers of acrylic acid
- PVP polyvinylpyrrolidones
- polyvinylalcohol polyvinylalcohol
- acrylic acid based polymers and copolymers of acrylic acid
- the milling aid has a concentration selected from the group consisting of: 0.1-10% w/w, 0.1-5% w/w, 0.1-2.5% w/w, of 0.1-2% w/w, 0.1-1%, 0.5-5% w/w, 0.5-3% w/w, 0.5-2% w/w, 0.5-1.5%, 0.5-1% w/w, of 0.75-1.25% w/w, 0.75-1% and 1% w/w.
- a facilitating agent is used or combination of facilitating agents is used.
- the facilitating agent is selected from the group consisting of: surfactants, polymers, binding agents, filling agents, lubricating agents, sweeteners, flavouring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents, agents that may form part of a medicament, including a solid dosage form or a dry powder inhalation formulation and other material required for specific drug delivery.
- the facilitating agent is added during dry milling.
- the facilitating agent is added to the dry milling at a time selected from the group consisting of: with 1-5% of the total milling time remaining, with 1-10% of the total milling time remaining, with 1-20% of the total milling time remaining, with 1-30% of the total milling time remaining, with 2-5% of the total milling time remaining, with 2-10% of the total milling time remaining, with 5-20% of the total milling time remaining and with 5-20% of the total milling time remaining.
- the disintegrant is selected from the group consisting of: crosslinked PVP, cross linked carmellose and sodium starch glycolate.
- the facilitating agent is added to the milled biologically active material and grinding matrix and further processed in a mechanofusion process. Mechanofusion milling causes mechanical energy to be applied to powders or mixtures of particles in the micrometre and nanometre range.
- facilitating agents include, but are not limited to providing better dispersibility, control of agglomeration, the release or retention of the active particles from the delivery matrix.
- facilitating agents include, but are not limited to crosslinked PVP (crospovidone), cross linked carmellose (croscarmellose), sodium starch glycolate, Povidone (PVP), Povidone K12, Povidone K17, Povidone K25, Povidone K29/32 and Povidone K30, stearic acid, magnesium stearate, calcium stearate, sodium stearyl fumarate, sodium stearyl lactylate, zinc stearate, sodium stearate or lithium stearate, other solid state fatty acids such as oleic acid, lauric acid, palmitic acid, erucic acid, behenic acid, or derivatives (such as esters and salts), Amino acids such as leucine, isoleucine, lysine, valine, methionine, phenyla
- the facilitating agent is added to the milled mixture of biologically active material and co-grinding matrix and further processed in another milling device such as Mechnofusion, Cyclomixing, or impact milling such as ball milling, jet milling, or milling using a high pressure homogeniser, or combinations thereof.
- another milling device such as Mechnofusion, Cyclomixing, or impact milling such as ball milling, jet milling, or milling using a high pressure homogeniser, or combinations thereof.
- the facilitating agent is added to the milling of the mixture of biologically active material and co-grinding matrix as some time before the end of the milling process.
- indomethacin is milled with lactose monohydrate and alkyl sulfates.
- indomethacin is milled with lactose monohydrate and sodium lauryl sulfate.
- indomethacin is milled with lactose monohydrate and sodium octadecyl sulfate.
- Indomethacin is milled with lactose monohydrate, alkyl sulfates and another surfactant or polymers.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and polyether sulfates.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and polyethylene glycol 40 stearate.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and polyethylene glycol 100 stearate.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and a poloxamer.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and poloxamer 407.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and poloxamer 338.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and poloxamer 188.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and a solid polyethylene glycol.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and polyethylene glycol 6000.
- indomethacin is milled with lactose monohydrate, sodium lauryl sulfate and polyethylene glycol 3000.
- Indomethacin is milled with lactose monohydrate and polyether sulfates.
- indomethacin is milled with lactose monohydrate and polyethylene glycol 40 stearate.
- indomethacin is milled with lactose monohydrate and polyethylene glycol 100 stearate
- indomethacin is milled with lactose monohydrate and polyvinyl-pyrrolidine.
- indomethacin is milled with lactose monohydrate and polyvinyl-pyrrolidone with an approximate molecular weight of 30,000-40,000.
- indomethacin is milled with lactose monohydrate and alkyl sulfonates.
- indomethacin is milled with lactose monohydrate and docusate sodium.
- indomethacin is milled with lactose monohydrate and a surfactant.
- indomethacin is milled with lactose monohydrate and lecithin.
- indomethacin is milled with lactose monohydrate and sodium n-lauroyl sarcosine.
- indomethacin is milled with lactose monohydrate and polyoxyethylene alkyl ether surfactants.
- indomethacin is milled with lactose monohydrate and PEG 6000.
- indomethacin is milled with lactose monohydrate and silica.
- indomethacin is milled with lactose monohydrate and Aerosil R972 fumed silica.
- indomethacin is milled with lactose monohydrate, tartaric acid and sodium lauryl sulfate.
- indomethacin is milled with lactose monohydrate, sodium bicarbonate and sodium lauryl sulfate.
- indomethacin is milled with lactose monohydrate, potassium bicarbonate and sodium lauryl sulfate.
- indomethacin is milled with mannitol and alkyl sulfates.
- indomethacin is milled with mannitol and sodium lauryl sulfate.
- indomethacin is milled with mannitol and sodium octadecyl sulfate.
- Indomethacin is milled with mannitol, alkyl sulfates and another surfactant or polymers.
- indomethacin is milled with mannitol, sodium lauryl sulfate and polyether sulfates.
- indomethacin is milled with mannitol, sodium lauryl sulfate and polyethylene glycol 40 stearate.
- indomethacin is milled with mannitol, sodium lauryl sulfate and polyethylene glycol 100 stearate.
- indomethacin is milled with mannitol, sodium lauryl sulfate and a poloxamer.
- indomethacin is milled with mannitol, sodium lauryl sulfate and poloxamer 407.
- indomethacin is milled with mannitol, sodium lauryl sulfate and poloxamer 338.
- indomethacin is milled with mannitol, sodium lauryl sulfate and poloxamer 188.
- indomethacin is milled with mannitol, sodium lauryl sulfate and a solid polyethylene glycol.
- indomethacin is milled with mannitol, sodium lauryl sulfate and polyethylene glycol 6000.
- indomethacin is milled with mannitol, sodium lauryl sulfate and polyethylene glycol 3000.
- Indomethacin is milled with mannitol and polyether sulfates.
- indomethacin is milled with mannitol and polyethylene glycol 40 stearate.
- indomethacin is milled with mannitol and polyethylene glycol 100 stearate
- indomethacin is milled with mannitol and polyvinyl-pyrrolidine.
- indomethacin is milled with mannitol and polyvinyl-pyrrolidone with an approximate molecular weight of 30,000-40,000.
- indomethacin is milled with mannitol and alkyl sulfonates.
- indomethacin is milled with mannitol and docusate sodium.
- indomethacin is milled with mannitol and a surfactant.
- indomethacin is milled with mannitol and lecithin.
- indomethacin is milled with mannitol and sodium n-lauroyl sarcosine.
- indomethacin is milled with mannitol and polyoxyethylene alkyl ether surfactants.
- indomethacin is milled with mannitol and PEG 6000.
- indomethacin is milled with mannitol and silica.
- indomethacin is milled with mannitol and Aerosil R972 fumed silica.
- indomethacin is milled with mannitol, tartaric acid and sodium lauryl sulfate.
- indomethacin is milled with mannitol, sodium bicarbonate and sodium lauryl sulfate.
- indomethacin is milled with mannitol, potassium bicarbonate and sodium lauryl sulfate.
- the invention comprises a biologically active material produced by the method described herein and composition comprising the biologically active material as described herein.
- the average particle size determined on a particle number basis, is equal to or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the average particle size is equal to or greater than 25 nm.
- the particles have a median particle size, determined on a particle volume basis, equal or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the median particle size is equal to or greater than 25 nm.
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 2000 nm (% ⁇ 2000 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 1000 nm (% ⁇ 1000 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 500 nm (% ⁇ 500 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 300 nm (% ⁇ 300 nm).
- the percentage of particles, on a particle volume basis is selected from the group consisting of: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100% less than 200 nm (% ⁇ 200 nm).
- the Dx of the particle size distribution is selected from the group consisting of less than or equal to 10,000 nm, 5000 nm, 3000 nm, 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm; wherein x is greater than or equal to 90.
- the crystallinity profile of the biologically active material is selected from the group consisting of: at least 50% of the biologically active material is crystalline, at least 60% of the biologically active material is crystalline, at least 70% of the biologically active material is crystalline, at least 75% of the biologically active material is crystalline, at least 85% of the biologically active material is crystalline, at least 90% of the biologically active material is crystalline, at least 95% of the biologically active material is crystalline and at least 98% of the biologically active material is crystalline.
- the crystallinity profile of the biologically active material is substantially equal to the crystallinity profile of the biologically active material before the material was subject to the method described herein.
- the amorphous content of the biologically active material is selected from the group consisting of: less than 50% of the biologically active material is amorphous, less than 40% of the biologically active material is amorphous, less than 30% of the biologically active material is amorphous, less than 25% of the biologically active material is amorphous, less than 15% of the biologically active material is amorphous, less than 10% of the biologically active material is amorphous, less than 5% of the biologically active material is amorphous and less than 2% of the biologically active material is amorphous.
- the biologically active material has had no significant increase in amorphous content following subjecting the material to the method as described herein.
- the invention comprises compositions comprising the biologically active ingredient together with a grinding matrix, a mixture of grinding matrix materials, milling aids, mixtures of milling aids, facilitating agents and/or mixtures of facilitating agents as described herein, in concentrations and ratios as described herein under the methods of the invention.
- the invention comprises a pharmaceutical composition comprising a biologically active material produced by the method described herein and compositions described herein.
- the invention comprises pharmaceutical compositions comprising the biologically active ingredient together with a grinding matrix, a mixture of grinding matrix materials, milling aids, mixtures of milling aids, facilitating agents and/or mixtures of facilitating agents as described herein, in concentrations and ratios as described herein under the methods of the invention.
- the average particle size, determined on a particle number basis is equal to or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the average particle size is equal to or greater than 25 nm.
- the particles have a median particle size, determined on a particle volume basis, equal or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the median particle size is equal to or greater than 25 nm.
- the percentage of particles, on a particle volume basis is selected from the group consisting of: less than 2000 nm (% ⁇ 2000 nm) is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100%; less than 1000 nm (% ⁇ 1000 nm) is selected from the group consisting of: 50%, 60%, 70%, 80%, 90%, 95% and 100%; less than 500 nm (% ⁇ 500 nm) is selected from the group 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100%; less than 300 nm (% ⁇ 300 nm) is selected from the group 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100%; and less than 200 nm (% ⁇ 200 nm) is selected from the group 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 100%.
- the composition has a T max less than that of the equivalent conventional composition administered at the same dosage, wherein the composition comprises indomethacin.
- the composition has a C max greater than that of the equivalent conventional composition administered at the same dosage, wherein the composition comprises indomethacin.
- the composition has an AUC greater than that of the equivalent conventional composition administered at the same dosage, wherein the composition comprises indomethacin.
- the invention comprises a method of treating a human in need of such treatment comprising the step of administering to the human an effective amount of a pharmaceutical composition as described herein.
- the invention comprises the use of a pharmaceutical composition as described herein in the manufacture of a medicament for the treatment of a human in need of such treatment.
- the invention comprises a method for manufacturing a pharmaceutical composition as described herein comprising the step of combining a therapeutically effective amount of a biologically active material prepared by a method described herein or a composition as described herein, together with a pharmaceutically acceptable carrier to produce a pharmaceutically acceptable dosage form.
- the invention comprises a method for manufacturing a veterinary product comprising the step of combining a therapeutically effective amount of the biologically active material prepared by a method as described herein or a composition as described herein, together with an acceptable excipient to produce a dosage form acceptable for veterinary use.
- the invention comprises a method for manufacturing of a pharmaceutical formulation comprising the step of combining an effective amount of the biologically active material prepared by a method described herein together with acceptable excipients to produce a formulation that can deliver a therapeutically effective amount of active to the pulmonary or nasal area.
- a formulation could be, but is not limited to a dry powder formulation for oral inhalation to the lungs or a formulation for nasal inhalation.
- the method for manufacturing such a formulation uses lactose, mannitol, sucrose, sorbitol, xylitol or other sugars or polyols as the co-grinding matrix together with surfactant such as, but not limited to lecithin, DPPC (dipalmitoyl phosphatidylcholine), PG (phosphatidylglycerol), dipalmitoyl phosphatidyl ethanolamine (DPPE), dipalmitoyl phosphatidylinositol (DPPI) or other phospholipid.
- surfactant such as, but not limited to lecithin, DPPC (dipalmitoyl phosphatidylcholine), PG (phosphatidylglycerol), dipalmitoyl phosphatidyl ethanolamine (DPPE), dipalmitoyl phosphatidylinositol (DPPI) or other phospholipid.
- surfactant such as, but not limited to
- the method of the present invention has particular application in the preparation of poorly water-soluble biologically active materials, the scope of the invention is not limited thereto.
- the method of the present invention enables production of highly water-soluble biologically active materials. Such materials may exhibit advantages over conventional materials by way of, for example, more rapid therapeutic action or lower dose.
- wet grinding techniques utilizing water (or other comparably polar solvents) are incapable of being applied to such materials, as the particles dissolve appreciably in the solvent.
- FIG. 1A Powder charge composition and particle size distribution of material milled in SPEX mill, examples A to S.
- FIG. 1B Powder charge composition and particle size distribution of material milled in SPEX mill, examples T to AL.
- FIG. 1C Powder charge composition and particle size distribution of material milled in SPEX mill, examples AM to BE.
- FIG. 1D Powder charge composition and particle size distribution of material milled in SPEX mill, examples BF to BX.
- FIG. 1E Powder charge composition and particle size distribution of material milled in SPEX mill, examples BY to CQ.
- FIG. 1F Powder charge composition and particle size distribution of material milled in SPEX mill, examples CR to DJ.
- FIG. 1G Powder charge composition and particle size distribution of material milled in SPEX mill, examples DK to EC.
- FIG. 1H The figure shows the X-Ray diffraction patterns: (A) after milling of Naproxen sodium in tartaric acid; (B) unmilled Naproxen sodium and (C) unmilled Naproxen acid.
- FIG. 2A Powder charge composition and particle size distribution of material milled in 110 mL HD01 Attritor mill, examples A to F.
- FIG. 3A Powder charge composition and particle size distribution of material containing a mixture of 2 matrices, milled in SPEX mill, examples A to E.
- FIG. 4A Powder charge composition and particle size distribution of material milled in 1 L HD01 Attritor mill, examples A to G.
- FIG. 5A Powder charge composition and particle size distribution of material milled in 750 mL 1S Attritor mill, examples A to F.
- FIG. 6A Powder charge composition and particle size distribution of material milled in 1 ⁇ 2 Gallon 1S Attritor mill, examples A to R.
- FIG. 6B Powder charge composition and particle size distribution of material milled in 1 ⁇ 2 Gallon 1S Attritor mill, examples S to AK.
- FIG. 6C Powder charge composition and particle size distribution of material milled in 1 ⁇ 2 Gallon 1S Attritor mill, examples AL to AU.
- FIG. 7A Powder charge composition and particle size distribution of Metaxalone milled in a variety of mills, examples A to O.
- FIG. 8A Powder charge composition and particle size distribution of material milled in HICOM mill, examples A to P.
- FIG. 9A Powder charge composition and particle size distribution of material milled in 11 ⁇ 2 Gallon 1S Attritor mill, examples A to S.
- FIG. 9B Powder charge composition and particle size distribution of material milled in 11 ⁇ 2Gallon 1S Attritor mill, examples T to AL.
- FIG. 10A Powder charge composition and particle size distribution of material milled in a variety of large scale mills, examples A to F.
- FIG. 11A Powder charge composition and particle size distribution of Naproxen Acid milled in Mannitol in a 1 ⁇ 2 Gallon 1S Attritor mill, examples A to M.
- FIG. 12A Powder charge composition and particle size distribution of Naproxen Acid milled in SPEX mill and particle size distribution after filtration, examples A to L.
- the invention described herein may include one or more ranges of values (e.g. size, concentration etc).
- a range of values will be understood to include all values within the range, including the values defining the range, and values adjacent to the range that lead to the same or substantially the same outcome as the values immediately adjacent to that value which defines the boundary to the range.
- “Therapeutically effective amount” as used herein with respect to methods of treatment and in particular drug dosage shall mean that dosage that provides the specific pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that “therapeutically effective amount,” administered to a particular subject in a particular instance will not always be effective in treating the diseases described herein, even though such dosage is deemed a “therapeutically effective amount” by those skilled in the art. It is to be further understood that drug dosages are, in particular instances, measured as oral dosages, or with reference to drug levels as measured in blood.
- inhibitor is defined to include its generally accepted meaning which includes prohibiting, preventing, restraining, and lowering, stopping, or reversing progression or severity, and such action on a resultant symptom.
- the present invention includes both medical therapeutic and prophylactic administration, as appropriate.
- biologically active material is defined to mean a biologically active compound or a substance which comprises a biologically active compound.
- a compound is generally taken to mean a distinct chemical entity where a chemical formula or formulas can be used to describe the substance.
- Such compounds would generally, but not necessarily be identified in the literature by a unique classification system such as a CAS number. Some compounds may be more complex and have a mixed chemical structure. For such compounds they may only have an empirical formula or be qualitatively identified.
- a compound would generally be a pure material, although it would be expected that up to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the substance could be other impurities and the like.
- biologically active compounds are, but not limited to, pharmaceutical actives, and analogs, homologs and first order derivatives thereof.
- a substance that contains a biologically active compound is any substance which has as one of its components a biologically active compound.
- substances containing biologically active compounds are, but not limited to, pharmaceutical formulations and products.
- biological(ly) active any of the terms, “biological(ly) active”, “active”, “active material” shall have the same meaning as biologically active material.
- grinding matrix is defined as any inert substance that a biologically active material can or is combined with and milled.
- co-grinding matrix and “matrix” are interchangeable with “grinding matrix”.
- Photon correlation spectroscopy also known as ‘dynamic light scattering’ (DLS) is commonly used to measure particles with a size less than 10 micron. Typically this measurement yields an equivalent hydrodynamic radius often expressed as the average size of a number distribution.
- the other common particle size measurement is laser diffraction which is commonly used to measure particle size from 100 nm to 2000 micron. This technique calculates a volume distribution of equivalent spherical particles that can be expressed using descriptors such as the median particle size or the % of particles under a given size.
- descriptors such as the median particle size or the % of particles under a given size.
- number average particle size is defined as the average particle diameter as determined on a number basis.
- median particle size is defined as the median particle diameter as determined on an equivalent spherical particle volume basis. Where the term median is used, it is understood to describe the particle size that divides the population in half such that 50% of the population is greater than or less than this size.
- the median particle size is often written as D50, D(0.50) or D[0.5] or similar. As used herein D50, D(0.50) or D[0.5] or similar shall be taken to mean ‘median particle size’.
- Dx of the particle size distribution refers to the xth percentile of the distribution; thus, D90 refers to the 90 th percentile, D95 refers to the 95 th percentile, and so forth. Taking D90 as an example this can often be written as, D(0.90) or D[0.9] or similar. With respect to the median particle size and Dx an upper case D or lowercase d are interchangeable and have the same meaning. Another commonly used way of describing a particle size distribution measured by laser diffraction, or an equivalent method known in the art, is to describe what % of a distribution is under or over a nominated size.
- percentage less than also written as “% ⁇ ” is defined as the percentage, by volume, of a particle size distribution under a nominated size—for example the % ⁇ 1000 nm.
- percentage greater than also written as “%>” is defined as the percentage, by volume, of a particle size distribution over a nominated size—for example the %>1000 nm.
- the particle size used to describe this invention should be taken to mean the particle size as measured at or shortly before the time of use.
- the particle size is measured 2 months after the material is subject to the milling method of this invention.
- the particle size is measured at a time selected from the group consisting of: 1 day after milling, 2 days after milling, 5 days after milling, 1 month after milling, 2 months after milling, 3 months after milling, 4 months after milling, 5 months after milling, 6 months after milling, 1 year after milling, 2 years after milling, 5 years after milling.
- the particle size can be easily measured.
- the active material has poor water solubility and the matrix it is milled in has good water solubility the powder can simply be dispersed in an aqueous solvent. In this scenario the matrix dissolves leaving the active material dispersed in the solvent. This suspension can then be measured by techniques such as PCS or laser diffraction.
- Suitable methods to measure an accurate particle size where the active material has substantive aqueous solubility or the matrix has low solubility in a water based dispersant are outlined below.
- dry mill or variations, such as “dry milling”, should be understood to refer to milling in at least the substantial absence of liquids. If liquids are present, they are present in such amounts that the contents of the mill retain the characteristics of a dry powder.
- Flowable means a powder having physical characteristics rendering it suitable for further processing using typical equipment used for the manufacture of pharmaceutical compositions and formulations.
- millable means that the grinding matrix is capable of being physically degraded under the dry milling conditions of the method of the invention.
- the milled grinding matrix is of a comparable particle size to the biologically active material.
- the particle size of the matrix is substantially reduced but not as small as the biologically active material
- the present invention is directed to a method for producing a composition, comprising the steps of: dry milling a solid biologically active material and a millable grinding matrix in a mill comprising a plurality of milling bodies, for a time period sufficient to produce particles of the biologically active material dispersed in an at least partially milled grinding material.
- the mixture of active material and matrix may then be separated from the milling bodies and removed from the mill.
- the mixture of active material and matrix is then further processed.
- the grinding matrix is separated from the particles of biologically active material.
- at least a portion of the milled grinding matrix is separated from the particulate biologically active material.
- the milling bodies are essentially resistant to fracture and erosion in the dry milling process.
- the quantity of the grinding matrix relative to the quantity of biologically active material in particulate form, and the extent of milling of the grinding matrix, is sufficient to inhibit re-agglomeration of the particles of the active material.
- the present invention also relates to biologically active materials produced by said methods, to medicaments produced using said biologically active materials and to methods of treatment of an animal, including man, using a therapeutically effective amount of said biologically active materials administered by way of said medicaments.
- the present invention is directed to the unexpected finding that particles of a biologically active material can be produced by dry milling processes as described herein at commercial scale.
- the particle size produced by the process is equal to or less than 2000 nm.
- the particle size produced by the process is equal to or less than 1000 nm. This can result in a more efficient and cost effective process.
- One of the key goals of reducing manufacturing costs is the encapsulation of the nanoparticles into materials that do not have to be removed. This enables a simple manufacturing process where conventional formulation technologies can be used to progress the matrix encapsulated nanoparticles directly to a final product. In order to do this the materials used within the matrix must be acceptable to industry regulators. In some cases materials may be acceptable for use but only in limited quantities. Another aspect of matrix choice is functionality. Some matrices that produce good encapsulated nanoparticles may be acceptable from a safety perspective but these materials may make manufacture of a dosage form such as tablet limited.
- the process results in the biologically active material having an improved dissolution profile.
- An improved dissolution profile has significant advantages including the improvement of bioavailability of the biologically active material in vivo.
- the improved dissolution profile is observed in vitro.
- the improved dissolution profile is observed in vivo by the observation of an improved bioavailability profile.
- Standard methods for determining the dissolution profile of a material in vitro are available in the art.
- a suitable method to determine an improved dissolution profile in vitro may include determining the concentration of the sample material in a solution over a period of time and comparing the results from the sample material to a control sample.
- the measurement sample is herein defined as the mixture of biologically active material with grinding matrix and/or other additives that has been subject to the processes of the invention described here.
- a control sample is defined as a physical mixture (not subject to the processes described in this invention) of the components in the measurement sample with the same relative proportions of active, matrix and/or additive as the measurement sample.
- a prototype formulation of the measurement sample could also be used. In this case the control sample would be formulated in the same way. Standard methods for determining the improved dissolution profile of a material in vivo are available in the art.
- a suitable method to determine an improved dissolution profile in a human may be after delivering the dose to measure the rate of active material absorption by measuring the plasma concentration of the sample compound over a period of time and comparing the results from the sample compound to a control.
- An observation that peak plasma concentration for the sample compound was achieved in less time than the control would indicate (assuming it is statistically significant) that the sample compound has improved bioavailability and an improved dissolution profile.
- the improved dissolution profile is observed at a relevant gastrointestinal pH, when it is observed in vitro.
- the improved dissolution profile is observed at a pH which is favourable at indicating improvements in dissolution when comparing the measurement sample to the control compound.
- Suitable methods for quantifying the concentration of a compound in an in vitro sample or an in vivo sample are widely available in the art. Suitable methods could include the use of spectroscopy or radioisotope labeling.
- the method of quantification of dissolution is determined in a solution with a pH selected from the group consisting of: pH 1, pH 2, pH 3, pH 4, pH 5, pH 6, pH 7, pH 7.3, pH 7.4, pH 8, pH 9, pH 10, pH 11, pH 12, pH 13, pH 14 or a pH with 0.5 of a pH unit of any of this group.
- Suitable methods may include X-ray diffraction, differential scanning calorimetry, raman or IR spectroscopy.
- Suitable methods may include X-ray diffraction, differential scanning calorimetry, raman or IR spectroscopy.
- a highly advantageous application of the method of the invention is the use of a water-soluble grinding matrix in conjunction with a poorly water-soluble biologically active material.
- the second key advantage is the ability, if required, to remove or partially remove the matrix prior to further processing or formulation.
- Another advantageous application of the method of the invention is the use of a water-insoluble grinding matrix, particularly in the area of agricultural use, when a biologically active material such as a fungicide is commonly delivered as part of a dry powder or a suspension.
- a biologically active material such as a fungicide
- the presence of a water insoluble matrix will afford benefits such as increased rain fastness.
- the physical degradation (including but not limited to particle size reduction) of the millable grinding matrix affords the advantage of the invention, by acting as a more effective diluent than grinding matrix of a larger particle size.
- a highly advantageous aspect of the present invention is that certain grinding matrixes appropriate for use in the method of the invention are also appropriate for use in a medicament.
- the present invention encompasses methods for the production of a medicament incorporating both the biologically active material and the grinding matrix or in some cases the biologically active material and a portion of the grinding matrix, medicaments so produced, and methods of treatment of an animal, including man, using a therapeutically effective amount of said biologically active materials by way of said medicaments.
- a highly advantageous aspect of the present invention is that certain grinding matrixes appropriate for use in the method of the invention are also appropriate for use in a carrier for an agricultural chemical, such as a pesticide, fungicide, or herbicide.
- the present invention encompasses methods for the production of an agricultural chemical composition incorporating both the biologically active material in particulate form and the grinding matrix, or in some cases the biologically active material, and a portion of the grinding matrix, and agricultural chemical compositions so produced.
- the medicament may include only the biologically active material together with the milled grinding matrix or, more preferably, the biologically active material and milled grinding matrix may be combined with one or more pharmaceutically acceptable carriers, as well as any desired excipients or other like agents commonly used in the preparation of medicaments.
- the agricultural chemical composition may include only the biologically active material together with the milled grinding matrix or, more preferably, the biologically active materials and milled grinding matrix may be combined with one or more carriers, as well as any desired excipients or other like agents commonly used in the preparation of agricultural chemical compositions.
- the grinding matrix is both appropriate for use in a medicament and readily separable from the biologically active material by methods not dependent on particle size.
- Such grinding matrixes are described in the following detailed description of the invention.
- Such grinding matrixes are highly advantageous in that they afford significant flexibility in the extent to which the grinding matrix may be incorporated with the biologically active material into a medicament.
- the grinding matrix is harder than the biologically active material, and is thus capable of reducing the particle size of the active material under the dry milling conditions of the invention.
- the millable grinding matrix affords the advantage of the present invention through a second route, with the smaller particles of grinding matrix produced under the dry milling conditions enabling greater interaction with the biologically active material.
- the quantity of the grinding matrix relative to the quantity of biologically active material, and the extent of physical degradation of the grinding matrix is sufficient to inhibit re-agglomeration of the particles of the active material
- the quantity of the grinding matrix relative to the quantity of biologically active material, and the extent of physical degradation of the grinding matrix is sufficient to inhibit re-agglomeration of the particles of the active material in nanoparticulate form.
- the grinding matrix is not generally selected to be chemically reactive with the biologically active material under the milling conditions of the invention, excepting for example, where the matrix is deliberately chosen to undergo a mechanico-chemical reaction. Such a reaction might be the conversion of a free base or acid to a salt or vice versa.
- the method of the present invention requires the grinding matrix to be milled with the biologically active material; that is, the grinding matrix will physically degrade under the dry milling conditions of the invention to facilitate the formation and retention of particulates of the biologically active material with reduced particle size.
- the precise extent of degradation required will depend on certain properties of the grinding matrix and the biologically active material, the ratio of biologically active material to grinding matrix, and the particle size distribution of the particles comprising the biologically active material.
- the physical properties of the grinding matrix necessary to achieve the requisite degradation are dependent on the precise milling conditions. For example, a harder grinding matrix may degrade to a sufficient extent provided it is subjected to more vigorous dry milling conditions. Physical properties of the grinding matrix relevant to the extent that the agent will degrade under dry milling conditions include hardness, friability, as measured by indicia such as hardness, fracture toughness and brittleness index.
- a low hardness (typically a Mohs Hardness less than 7) of the biologically active material is desirable to ensure fracture of the particles during processing, so that composite microstructures develop during milling.
- the hardness is less than 3 as determined using the Mohs Hardness scale.
- the grinding matrix is of low abrasivity.
- Low abrasivity is desirable to minimise contamination of the mixture of the biologically active material in the grinding matrix by the milling bodies and/or the milling chamber of the media mill.
- An indirect indication of the abrasivity can be obtained by measuring the level of milling-based contaminants.
- the grinding matrix has a low tendency to agglomerate during dry milling. While it is difficult to objectively quantify the tendency to agglomerate during milling, it is possible to obtain a subjective measure by observing the level of “caking” of the grinding matrix on the milling bodies and the milling chamber of the media mill as dry milling progresses.
- the grinding matrix may be an inorganic or organic substance.
- the grinding matrix is selected from the following, either as a single substance or a combination of two or more substances: Polyols (sugar alcohols) for example (but not limited to) mannitol, sorbitol, isomalt, xylitol, maltitol, lactitol, erythritol, arabitol, ribitol, monosaccharides for example (but not limited to) glucose, fructose, mannose, galactose, disaccharides and trisaccharides for example (but not limited to) anhydrous lactose, lactose monohydrate, sucrose, maltose, trehalose, polysaccharides for example (but not limited to) maltodextrins, dextrin, Inulin, dextrates, polydextrose, other carbohyrates for example (but not limited to) starch, wheat flour, corn flour, rice flour, rice starch, tapioca flour,
- dibasic calcium phosphate tribasic calcium phosphate, sodium sulfate, sodium chloride, sodium metabisulphite, sodium thiosulfate, ammonium chloride, Glauber's salt, ammonium carbonate, sodium bisulfate, magnesium sulfate, potash alum, potassium chloride, sodium hydrogen sulfate, sodium hydroxide, crystalline hydroxides, hydrogen carbonates, hydrogen carbonates of pharmaceutical acceptable alkali metals, such as but not limited by, sodium, potassium, lithium, calcium, and barium, ammonium salts (or salts of volatile amines), for example (but not limited to) ammonium chloride, methylamine hydrochloride, ammonium bromide, other inorganics for example (but not limited to), thermal silica, chalk, mica, silica, alumina, titanium dioxide, talc, kaolin, bentonite, hectorite, magnesium trisilicate, other clay or clay derivatives or aluminium silicates, a
- the grinding matrix is a matrix that is considered GRAS (generally regarded as safe) by persons skilled in the pharmaceutical arts.
- a combination of two or more suitable matrices can be used as the grinding matrix to provide improved properties such as the reduction of caking, and greater improvement of the dissolution profile.
- Combination matrices may also be advantageous when the matrices have different solubility's allowing the removal or partial removal of one matrix, while leaving the other or part of the other to provide encapsulation or partial encapsulation of the biologically active material.
- a suitable milling aid in the matrix to improve milling performance. Improvements to milling performance would be things such as, but not limited to, a reduction in caking or higher recovery of powder from the mill.
- suitable milling aids include surfactants, polymers and inorganics such as silica (including colloidal silica), aluminium silicates and clays.
- the surfactant is a solid, or can be manufactured into a solid.
- the surfactant is selected from the group consisting of: polyoxyethylene alkyl ethers, polyoxyethylene stearates, polyethylene glycols (PEG), poloxamers, poloxamines, sarcosine based surfactants, polysorbates, aliphatic alcohols, alkyl and aryl sulfates, alkyl and aryl polyether sulfonates and other sulfate surfactants, trimethyl ammonium based surfactants, lecithin and other phospholipids, bile salts, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, Sorbitan fatty acid esters, Sucrose fatty acid esters, alkyl glucopyranosides, alkyl maltopyranosides, glyce
- the surfactant is selected from the group consisting of: sodium lauryl sulfate, sodium stearyl sulfate, sodium cetyl sulfate, sodium cetostearyl sulfate, sodium docusate, sodium deoxycholate, N-lauroylsarcosine sodium salt, glyceryl monostearate, glycerol distearate glyceryl palmitostearate, glyceryl behenate, glyceryl caprylate, glyceryl oleate, benzalkonium chloride, CTAB, CTAC, Cetrimide, cetylpyridinium chloride, cetylpyridinium bromide, benzethonium chloride, PEG 40 stearate, PEG 100 stearate, poloxamer 188, poloxamer 338, poloxamer 407 polyoxyl 2 stearyl ether, polyoxyl 100 stearyl ether, polyoxyl 20 stearyl
- the milling aid has a concentration selected from the group consisting of: 0.1-10% w/w, 0.1-5% w/w, 0.1-2.5% w/w, of 0.1-2% w/w, 0.1-1%, 0.5-5% w/w, 0.5-3% w/w, 0.5-2% w/w, 0.5-1.5%, 0.5-1% w/w, of 0.75-1.25% w/w, 0.75-1% and 1% w/w.
- the milling bodies are preferably chemically inert and rigid.
- chemically-inert means that the milling bodies do not react chemically with the biologically active material or the grinding matrix. As described above, the milling bodies are essentially resistant to fracture and erosion in the milling process.
- the milling bodies are desirably provided in the form of bodies which may have any of a variety of smooth, regular shapes, flat or curved surfaces, and lacking sharp or raised edges.
- suitable milling bodies can be in the form of bodies having ellipsoidal, ovoid, spherical or right cylindrical shapes.
- the milling bodies are provided in the form of one or more of beads, balls, spheres, rods, right cylinders, drums or radius-end right cylinders (i.e., right cylinders having hemispherical bases with the same radius as the cylinder).
- the milling media bodies desirably have an effective mean particle diameter (i.e. “particle size”) between about 0.1 and 30 mm, more preferably between about 1 and about 15 mm, still more preferably between about 3 and 10 mm.
- the milling bodies may comprise various substances such as ceramic, glass, metal or polymeric compositions, in a particulate form.
- Suitable metal milling bodies are typically spherical and generally have good hardness (i.e. RHC 60-70), roundness, high wear resistance, and narrow size distribution and can include, for example, balls fabricated from type 52100 chrome steel, type 316 or 440C stainless steel or type 1065 high carbon steel.
- Preferred ceramics for example, can be selected from a wide array of ceramics desirably having sufficient hardness and resistance to fracture to enable them to avoid being chipped or crushed during milling and also having sufficiently high density.
- Suitable densities for milling media can range from about 1 to 15 g/cm 3 ′, preferably from about 1 to 8 g/cm 3 .
- Preferred ceramics can be selected from steatite, aluminum oxide, zirconium oxide, zirconia-silica, yttria-stabilized zirconium oxide, magnesia-stabilized zirconium oxide, silicon nitride, silicon carbide, cobalt-stabilized tungsten carbide, and the like, as well as mixtures thereof.
- Preferred glass milling media are spherical (e.g. beads), have a narrow size distribution, are durable, and include, for example, lead-free soda lime glass and borosilicate glass.
- Polymeric milling media are preferably substantially spherical and can be selected from a wide array of polymeric resins having sufficient hardness and friability to enable them to avoid being chipped or crushed during milling, abrasion-resistance to minimize attrition resulting in contamination of the product, and freedom from impurities such as metals, solvents, and residual monomers.
- Preferred polymeric resins can be selected from crosslinked polystyrenes, such as polystyrene crosslinked with divinylbenzene, styrene copolymers, polyacrylates such as polymethylmethacrylate, polycarbonates, polyacetals, vinyl chloride polymers and copolymers, polyurethanes, polyamides, high density polyethylenes, polypropylenes, and the like.
- crosslinked polystyrenes such as polystyrene crosslinked with divinylbenzene, styrene copolymers, polyacrylates such as polymethylmethacrylate, polycarbonates, polyacetals, vinyl chloride polymers and copolymers, polyurethanes, polyamides, high density polyethylenes, polypropylenes, and the like.
- Polymeric resins typically can have densities ranging from about 0.8 to 3.0 g/cm 3 . Higher density polymeric resins are preferred.
- the milling media can be composite particles comprising dense core particles having a polymeric resin adhered thereon. Core particles can be selected from substances known to be useful as milling media, for example, glass, alumina, zirconia silica, zirconium oxide, stainless steel, and the like. Preferred core substances have densities greater than about 2.5 g/cm 3 .
- the milling media are formed from a ferromagnetic substance, thereby facilitating removal of contaminants arising from wear of the milling media by the use of magnetic separation techniques.
- metals have the highest specific gravities, which increase grinding efficiency due to increased impact energy.
- Metal costs range from low to high, but metal contamination of final product can be an issue.
- Glasses are advantageous from the standpoint of low cost and the availability of small bead sizes as low as 0.004 mm.
- specific gravity of glasses is lower than other media and significantly more milling time is required.
- ceramics are advantageous from the standpoint of low wear and contamination, ease of cleaning, and high hardness.
- the biologically active material and grinding matrix in the form of crystals, powders, or the like, are combined in suitable proportions with the plurality of milling bodies in a milling chamber that is mechanically agitated (i.e. with or without stirring) for a predetermined period of time at a predetermined intensity of agitation.
- a milling apparatus is used to impart motion to the milling bodies by the external application of agitation, whereby various translational, rotational or inversion motions or combinations thereof are applied to the milling chamber and its contents, or by the internal application of agitation through a rotating shaft terminating in a blade, propeller, impeller or paddle or by a combination of both actions.
- motion imparted to the milling bodies can result in application of shearing forces as well as multiple impacts or collisions having significant intensity between milling bodies and particles of the biologically active material and grinding matrix.
- the nature and intensity of the forces applied by the milling bodies to the biologically active material and the grinding matrix is influenced by a wide variety of processing parameters including: the type of milling apparatus; the intensity of the forces generated, the kinematic aspects of the process; the size, density, shape, and composition of the milling bodies; the weight ratio of the biologically active material and grinding matrix mixture to the milling bodies; the duration of milling; the physical properties of both the biologically active material and the grinding matrix; the atmosphere present during activation; and others.
- the media mill is capable of repeatedly or continuously applying mechanical compressive forces and shear stress to the biologically active material and the grinding matrix.
- Suitable media mills include but are not limited to the following: high-energy ball, sand, bead or pearl mills, basket mill, planetary mill, vibratory action ball mill, multi-axial shaker/mixer, stirred ball mill, horizontal small media mill, multi-ring pulverizing mill, and the like, including small milling media.
- the milling apparatus also can contain one or more rotating shafts.
- the dry milling is performed in a ball mill.
- dry milling is carried out by way of a ball mill.
- this type of mill are attritor mills, nutating mills, tower mills, planetary mills, vibratory mills and gravity-dependent-type ball mills.
- dry milling in accordance with the method of the invention may also be achieved by any suitable means other than ball milling.
- dry milling may also be achieved using jet mills, rod mills, roller mills or crusher mills.
- the biologically active material includes active compounds, including compounds for veterinary and human use such as but not limited to, pharmaceutical actives and the like.
- the biologically active material is ordinarily a material for which one of skill in the art desires improved dissolution properties.
- the biologically active material may be a conventional active agent or drug, although the process of the invention may be employed on formulations or agents that already have reduced particle size compared to their conventional form.
- Biologically active materials suitable for use in the invention include indomethacin.
- biologically active materials that are poorly water soluble at gastrointestinal pH will particularly benefit from being prepared, and the method of the present invention is particularly advantageously applied to materials that are poorly water soluble at gastrointestinal pH.
- the biologically active material is capable of withstanding temperatures that are typical in uncooled dry milling, which may exceed 80° C. Therefore, materials with a melting point about 80° C. or greater are highly suitable.
- the media mill may be cooled, thereby allowing materials with significantly lower melting temperatures to be processed according to the method of the invention.
- a simple water-cooled mill will keep temperatures below 50° C., or chilled water could be used to further lower the milling temperature.
- a high energy ball mill could be designed to run at any temperature between say ⁇ 30 to 200° C.
- the biologically active material is obtained in a conventional form commercially and/or prepared by techniques known in the art.
- the particle size of the biologically active material be less than about 1000 ⁇ m, as determined by sieve analysis. If the coarse particle size of the biologically active material is greater than about 1000 ⁇ m, then it is preferred that the particles of the biologically active material substrate be reduced in size to less than 1000 ⁇ m using another standard milling method.
- the biologically active materials which have been subject to the methods of the invention, comprises particles of biologically active material of an average particle size, determined on a particle number basis, is equal to or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- the biologically active materials which have been subject to the methods of the invention, comprises particles of biologically active material of a median particle size, determined on a particle volume basis, equal or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm and 100 nm.
- a median particle size determined on a particle volume basis, equal or less than a size selected from the group 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700
- the biologically active materials which have been subject to the methods of the invention, comprises particles of biologically active material and wherein the Dx of the particle size distribution, as measured on a particle volume basis, is selected from the group consisting of less than or equal to 10,000 nm, 5000 nm, 3000 nm, 2000 nm, 1900 nm, 1800 nm, 1700 nm, 1600 nm, 1500 nm, 1400 nm, 1300 nm, 1200 nm, 1100 nm, 1000 nm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm; wherein x is greater than or equal to 90, These sizes refer to particles either fully dispersed or partially agglomerated.
- Agglomerates comprising particles of biologically active material, said particles having a particle size within the ranges specified above, should be understood to fall within the scope of the present invention, regardless of whether the agglomerates exceed the ranges specified above.
- Agglomerates comprising particles of biologically active material, said agglomerates having a total agglomerate size within the ranges specified above, should be understood to fall within the scope of the present invention.
- Agglomerates comprising particles of biologically active material should be understood to fall within the scope of the present invention if at the time of use, or further processing, the particle size of the agglomerate is within the ranges specified above.
- Agglomerates comprising particles of biologically active material, said particles having a particle size within the ranges specified above, at the time of use, or further processing, should be understood to fall within the scope of the present invention, regardless of whether the agglomerates exceed the ranges specified above.
- the biologically active material and the grinding matrix are dry milled for the shortest time necessary to form the mixture of the biologically active material in the grinding matrix such that the active material has improved dissolution to minimise any possible contamination from the media mill and/or the plurality of milling bodies.
- This time varies greatly, depending on the biologically active material and the grinding matrix, and may range from as short as 1 minute to several hours. Dry milling times in excess of 2 hours may lead to degradation of the biologically active material and an increased level of undesirable contaminants.
- Suitable rates of agitation and total milling times are adjusted for the type and size of milling apparatus as well as the milling media, the weight ratio of the biologically active material and grinding matrix mixture to the plurality of milling bodies, the chemical and physical properties of the biologically active material and grinding matrix, and other parameters that may be optimized empirically.
- the grinding matrix is not separated from the biologically active material but is maintained with the biologically active material in the final product.
- the grinding matrix is considered to be Generally Regarded as Safe (GRAS) for pharmaceutical products.
- the grinding matrix is separated from the biologically active material.
- the unmilled grinding matrix is separated from the biologically active material.
- at least a portion of the milled grinding matrix is separated from the biologically active material.
- any portion of the grinding matrix may be removed, including but not limited to 10%, 25%, 50%, 75%, or substantially all of the grinding matrix.
- a significant portion of the milled grinding matrix may comprise particles of a size similar to and/or smaller than the particles comprising the biologically active material.
- portion of the milled grinding matrix to be separated from the particles comprising the biologically active material comprises particles of a size similar to and/or smaller than the particles comprising the biologically active material, separation techniques based on size distribution are inapplicable.
- the method of the present invention may involve separation of at least a portion of the milled grinding matrix from the biologically active material by techniques including but not limited to electrostatic separation, magnetic separation, centrifugation (density separation), hydrodynamic separation, froth flotation.
- the step of removing at least a portion of the milled grinding matrix from the biologically active material may be performed through means such as selective dissolution, washing, or sublimation.
- An advantageous aspect of the invention would be the use of grinding matrix that has two or more components where at least one component is water soluble and at least one component has low solubility in water. In this case washing can be used to remove the matrix component soluble in water leaving the biologically active material encapsulated in the remaining matrix components.
- the matrix with low solubility is a functional excipient.
- a highly advantageous aspect of the present invention is that certain grinding matrixes appropriate for use in the method of the invention (in that they physically degrade to the desired extent under dry milling conditions) are also pharmaceutically acceptable and thus appropriate for use in a medicament.
- the method of the present invention does not involve complete separation of the grinding matrix from the biologically active material
- the present invention encompasses methods for the production of a medicament incorporating both the biologically active material and at least a portion of the milled grinding matrix, medicaments so produced and methods of treatment of an animal, including man, using a therapeutically effective amount of said biologically active materials by way of said medicaments.
- the medicament may include only the biologically active material and the grinding matrix or, more preferably, the biologically active materials and grinding matrix may be combined with one or more pharmaceutically acceptable carriers, as well as any desired excipients or other like agents commonly used in the preparation of medicaments.
- a highly advantageous aspect of the present invention is that certain grinding matrixes appropriate for use in the method of the invention (in that they physically degrade to a desirable extent under dry milling conditions) are also appropriate for use in an agricultural chemical composition.
- the method of the present invention does not involve complete separation of the grinding matrix from the biologically active material
- the present invention encompasses methods for the production of a agricultural chemical composition incorporating both the biologically active material and at least a portion of the milled grinding matrix, agricultural chemical composition so produced and methods of use of such compositions.
- the agricultural chemical composition may include only the biologically active material and the grinding matrix or, more preferably, the biologically active materials and grinding matrix may be combined with one or more acceptable carriers, as well as any desired excipients or other like agents commonly used in the preparation of agricultural chemical compositions.
- the grinding matrix is both appropriate for use in a medicament and readily separable from the biologically active material by methods not dependent on particle size.
- Such grinding matrixes are described in the following detailed description of the invention.
- Such grinding matrixes are highly advantageous in that they afford significant flexibility in the extent to which the grinding matrix may be incorporated with the biologically active material into a medicament.
- the mixture of biologically active material and grinding matrix may then be separated from the milling bodies and removed from the mill.
- the grinding matrix is separated from the mixture of biologically active material and grinding matrix. Where the grinding matrix is not fully milled, the unmilled grinding matrix is separated from the biologically active material. In a further aspect, at least a portion of the milled grinding matrix is separated from the biologically active material.
- the milling bodies are essentially resistant to fracture and erosion in the dry milling process.
- the quantity of the grinding matrix relative to the quantity of biologically active material, and the extent of milling of the grinding matrix, is sufficient to provide reduced particle size of the biologically active material.
- the grinding matrix is neither chemically nor mechanically reactive with the pharmaceutical material under the dry milling conditions of the method of the invention except, for example, where the matrix is deliberately chosen to undergo a mechanico-chemical reaction.
- a reaction might be the conversion of a free base or acid to a salt or vice versa.
- the medicament is a solid dosage form, however, other dosage forms may be prepared by those of ordinary skill in the art.
- the method may comprise the step of:
- the step of using said mixture of biologically active material and grinding matrix in the manufacture of a medicament more particularly comprises the step of using the mixture of biologically active material and grinding matrix enriched in the biologically active material form in the manufacture of a medicament.
- the present invention includes medicaments manufactured by said methods, and methods for the treatment of an animal, including man, by the administration of a therapeutically effective amount of the biologically active materials by way of said medicaments.
- a facilitating agent or a combination of facilitating agents is also comprised in the mixture to be milled.
- facilitating agents appropriate for use in the invention include diluents, surfactants, polymers, binding agents, filling agents, lubricating agents, sweeteners, flavouring agents, preservatives, buffers, wetting agents, disintegrants, effervescent agents and agents that may form part of a medicament, including a solid dosage form, or other excipients required for other specific drug delivery, such as the agents and media listed below under the heading Medicinal and Pharmaceutical Compositions, or any combination thereof.
- the present invention encompasses pharmaceutically acceptable materials produced according to the methods of the present invention, compositions including such materials, including compositions comprising such materials together with the grinding matrix with or without milling aids, facilitating agents, with at least a portion of the grinding matrix or separated from the grinding matrix.
- the pharmaceutically acceptable materials within the compositions of the invention are present at a concentration of between about 0.1% and about 99.0% by weight.
- concentration of pharmaceutically acceptable materials within the compositions will be about 5% to about 80% by weight, while concentrations of 10% to about 50% by weight are highly preferred.
- the concentration will be in the range of about 10 to 15% by weight, 15 to 20% by weight, 20 to 25% by weight, 25 to 30% by weight, 30 to 35% by weight, 35 to 40% by weight, 40 to 45% by weight, 45 to 50% by weight, 50 to 55% by weight, 55 to 60% by weight, 60 to 65% by weight, 65 to 70% by weight, 70 to 75% by weight or 75 to 80% by weight for the composition prior to any later removal (if desired) of any portion of the grinding matrix.
- the relative concentration of pharmaceutically acceptable materials in the composition may be considerably higher depending on the amount of the grinding matrix that is removed. For example, if all of the grinding matrix is removed the concentration of particles in the preparation may approach 100% by weight (subject to the presence of facilitating agents).
- compositions produced according to the present invention are not limited to the inclusion of a single species of pharmaceutically acceptable materials. More than one species of pharmaceutically acceptable materials may therefore be present in the composition. Where more than one species of pharmaceutically acceptable materials is present, the composition so formed may either be prepared in a dry milling step, or the pharmaceutically acceptable materials may be prepared separately and then combined to form a single composition.
- the medicaments of the present invention may include the pharmaceutically acceptable material, optionally together with the grinding matrix or at least a portion of the grinding matrix, with or without milling aids, facilitating agents, combined with one or more pharmaceutically acceptable carriers, as well as other agents commonly used in the preparation of pharmaceutically acceptable compositions.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
- the carrier is suitable for parenteral administration, intravenous, intraperitoneal, intramuscular, sublingual, pulmonary, transdermal or oral administration.
- Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for the manufacture of medicaments is well known in the art. Except insofar as any conventional media or agent is incompatible with the pharmaceutically acceptable material, use thereof in the manufacture of a pharmaceutical composition according to the invention is contemplated.
- Pharmaceutical acceptable carriers according to the invention may include one or more of the following examples:
- Medicaments of the invention suitable for use in animals and in particular in man typically must be stable under the conditions of manufacture and storage.
- the medicaments of the invention comprising the biologically active material can be formulated as a solid, a solution, a microemulsion, a liposome, or other ordered structures suitable to high drug concentration.
- Actual dosage levels of the biologically active material in the medicament of the invention may be varied in accordance with the nature of the biologically active material, as well as the potential increased efficacy due to the advantages of providing and administering the biologically active material (e.g., increased solubility, more rapid dissolution, increased surface area of the biologically active material, etc.).
- therapeutically effective amount will refer to an amount of biologically active material required to effect a therapeutic response in an animal. Amounts effective for such a use will depend on: the desired therapeutic effect; the route of administration; the potency of the biologically active material; the desired duration of treatment; the stage and severity of the disease being treated; the weight and general state of health of the patient; and the judgment of the prescribing physician.
- the biologically active material, optionally together with the grinding matrix or at least a portion of the grinding matrix, of the invention may be combined into a medicament with another biologically active material, or even the same biologically active material.
- a medicament may be achieved which provides for different release characteristics—early release from the biologically active material, and later release from a larger average size biologically active material.
- Suitable animal models to determine pharmacokinetic parameters are described in the prior art, such as the beagle dog model described in U.S. Pat. No. 7,101,576.
- the indomethacin compositions of the invention exhibit faster therapeutic effects.
- the indomethacin compositions of the invention comprising indomethacin have a T max of less than about 5 hours, less than about 4.5 hours, less than about 4 hours, less than about 3.5 hours, less than about 3 hours, less than about 2.75 hours, less than about 2.5 hours, less than about 2.25 hours, less than about 2 hours, less than about 1.75 hours, less than about 1.5 hours, less than about 1.25 hours, less than about 1.0 hours, less than about 50 minutes, less than about 40 minutes, less than about 30 minutes, less than about 25 minutes, less than about 20 minutes, less than about 15 minutes, less than about 10 minutes, less than about 5 minutes, or less than about 1 minute.
- the indomethacin compositions of the invention preferably exhibit increased bioavailability (AUC) and require smaller doses as compared to prior conventional compositions administered at the same dose.
- Any drug composition can have adverse side effects.
- lower doses of drugs which can achieve the same or better therapeutic effects as those observed with larger doses of conventional compositions are desired.
- Such lower doses can be realized with the compositions of the invention because the greater bioavailability observed with the compositions as compared to conventional drug formulations means that smaller doses of drug are required to obtain the desired therapeutic effect.
- the invention encompasses indomethacin compositions wherein the pharmacokinetic profile of the composition is not substantially affected by the fed or fasted state of a subject ingesting the composition. This means that there is no substantial difference in the quantity of composition or the rate of composition absorption when the compositions are administered in the fed versus the fasted state.
- the compositions of the invention substantially eliminate the effect of food on the pharmacokinetics of the composition.
- the difference in absorption of the indomethacin composition of the invention, when administered in the fed versus the fasted state, is less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, or less than about 3%. This is an especially important feature in treating patients with difficulty in maintaining a fed state.
- the difference in the rate of absorption (i.e., T max ) of the indomethacin compositions of the invention, when administered in the fed versus the fasted state is less than about 100%, less than about 90%, less than about 80%, less than about 70%, less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 3%, or essentially no difference.
- Benefits of a dosage form which substantially eliminates the effect of food include an increase in subject convenience, thereby increasing subject compliance, as the subject does not need to ensure that they are taking a dose either with or without food.
- the T max of an administered dose of a indomethacin composition of the invention is less than that of a conventional drug active composition, administered at the same dosage.
- a preferred indomethacin composition of the invention exhibits in comparative pharmacokinetic testing with a standard conventional drug active composition, in oral suspension, capsule or tablet form, a T max which is less than about 100%, less than about 90%, less than about 80%, less than about 70%, less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, or less than about 10% of the T max exhibited by the standard conventional drug active composition.
- the C max of a indomethacin composition of the invention is greater than the C max of a conventional drug active composition, administered at the same dosage.
- a preferred indomethacin composition of the invention exhibits in comparative pharmacokinetic testing with a standard conventional drug active composition, in oral suspension, capsule or tablet form, a C max which is greater than about 5%, greater than about 10%, greater than about 15%, greater than about 20%, greater than about 30%, greater than about 40%, greater than about 50%, greater than about 60%, greater than about 70%, greater than about 80%, greater than about 90%, greater than about 100%, greater than about 110%, greater than about 120%, greater than about 130%, greater than about 140%, or greater than about 150% than the C max exhibited by the standard conventional drug active composition.
- the indomethacin composition has an AUC greater than that of the equivalent conventional composition administered at the same dosage.
- a preferred indomethacin composition of the invention exhibits in comparative pharmacokinetic testing with a standard conventional drug active composition, in oral suspension, capsule or tablet form, a AUC which is greater than about 5%, greater than about 10%, greater than about 15%, greater than about 20%, greater than about 30%, greater than about 40%, greater than about 50%, greater than about 60%, greater than about 70%, greater than about 80%, greater than about 90%, greater than about 100%, greater than about 110%, greater than about 120%, greater than about 130%, greater than about 140%, or greater than about 150% than the AUC exhibited by the standard conventional drug active composition.
- Any standard pharmacokinetic protocol can be used to determine blood plasma concentration profile in humans following administration of a composition, and thereby establish whether that composition meets the pharmacokinetic criteria set out herein.
- a randomized single-dose crossover study can be performed using a group of healthy adult human subjects. The number of subjects should be sufficient to provide adequate control of variation in a statistical analysis, and is typically about 10 or greater, although for certain purposes a smaller group can suffice.
- Each subject receives by oral administration at time zero a single dose (e.g., 300 mg) of a test formulation of composition, normally at around 8 am following an overnight fast. The subjects continue to fast and remain in an upright position for about 4 hours after administration of the composition.
- Blood samples are collected from each subject prior to administration (e.g., 15 minutes) and at several intervals after administration. For the present purpose it is preferred to take several samples within the first hour, and to sample less frequently thereafter. Illustratively, blood samples could be collected at 15, 30, 45, 60, and 90 minutes after administration, then every hour from 2 to 10 hours after administration. Additional blood samples may also be taken later, for example at 12 and 24 hours after administration. If the same subjects are to be used for study of a second test formulation, a period of at least 7 days should elapse before administration of the second formulation. Plasma is separated from the blood samples by centrifugation and the separated plasma is analyzed for composition by a validated high performance liquid chromatography (HPLC) or liquid chromatography mass spectrometry (LCMS) procedure. Plasma concentrations of composition referenced herein are intended to mean total concentrations including both free and bound composition.
- HPLC high performance liquid chromatography
- LCMS liquid chromatography mass spectrometry
- any formulation giving the desired pharmacokinetic profile is suitable for administration according to the present methods.
- Exemplary types of formulations giving such profiles are liquid dispersions and solid dose forms of composition. If the liquid dispersion medium is one in which the composition has very low solubility, the particles are present as suspended particles. The smaller the particles the higher the probability that the formulation will exhibit the desired pharmacokinetic profile.
- an indomethacin composition of the invention upon administration to a subject, provides improved pharmacokinetic and/or pharmacodynamic properties compared with a standard reference indomethacin composition as measured by at least one of speed of absorption, dosage potency, efficacy, and safety.
- Medicaments of the invention can be administered to animals, including man, in any pharmaceutically acceptable manner, such as orally, rectally, pulmonary, intravaginally, locally (powders, ointments or drops), transdermal, parenteral administration, intravenous, intraperitoneal, intramuscular, sublingual or as a buccal or nasal spray
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, pellets, and granules. Further, incorporating any of the normally employed excipients, such as those previously listed, and generally 5-95% of the biologically active agent, and more preferably at a concentration of 10%-75% will form a pharmaceutically acceptable non-toxic oral composition.
- Medicaments of the invention may be parenterally administered as a solution of the biologically active agent suspended in an acceptable carrier, preferably an aqueous carrier.
- an aqueous carriers may be used, e.g. water, buffered water, 0.4% saline, 0.3% glycine, hyaluronic acid and the like.
- compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered.
- the resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.
- medicaments of the invention are preferably supplied along with a surfactant or polymer and propellant.
- the surfactant or polymer must, of course, be non-toxic, and preferably soluble in the propellant.
- Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride.
- Mixed esters, such as mixed or natural glycerides may be employed.
- the surfactant or polymer may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%.
- the balance of the composition is ordinarily propellant.
- a carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.
- Medicaments of the invention may also be administered via liposomes, which serve to target the active agent to a particular tissue, such as lymphoid tissue, or targeted selectively to cells.
- Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations the composite microstructure composition is incorporated as part of a liposome, alone or in conjunction with a molecule that binds to or with other therapeutic or immunogenic compositions.
- the biologically active material can be formulated into a solid dosage form (e.g., for oral or suppository administration), together with the grinding matrix or at least a portion of it. In this case there may be little or no need to add stabilizing agents since the grinding matrix may effectively act as a solid-state stabilizer.
- the particles comprising the biologically active material may require further stabilization once the solid carrier has been substantially removed to ensure the elimination, or at least minimisation of particle agglomeration.
- Therapeutic uses of the medicaments of the invention include pain relief, anti-inflammatory, migraine, asthma, and other disorders that require the active agent to be administered with a high bioavailability.
- the minor analgesics such as cyclooxygenase inhibitors (aspirin related drugs) may be prepared as medicaments according to the present invention.
- Medicaments of the invention may also be used for treatment of eye disorders. That is, the biologically active material may be formulated for administration on the eye as an aqueous suspension in physiological saline, or a gel. In addition, the biologically active material may be prepared in a powder form for administration via the nose for rapid central nervous system penetration.
- Treatment of cardiovascular disease may also benefit from biologically active materials according to the invention, such as treatment of angina pectoris and, in particular, molsidomine may benefit from better bioavailability.
- medicaments of the present invention include treatment of hair loss, sexual dysfunction, or dermal treatment of psoriasis.
- Active pharmaceutical ingredients were sourced from commercial suppliers, excipients from either commercial suppliers such as Sigma-Aldrich or retailers, while food ingredients were sourced from retailers.
- Attritor-Type Mill
- the grinding media consisted of 20 kg of 3 ⁇ 8′′ stainless steel balls.
- the mill was loaded through the loading port, with the grinding media added initially, then followed by the dry powders.
- the milling process was conducted with the jacket cooled to ambient temperature and the shaft rotating at 300 rpm.
- the milled powder was discharged from the mill through the bottom discharge port at 77 rpm for 5 min.
- the largest scale attritor millings were done in a 30S Union Process mill with a 25 gallon grinding chamber (Union Process, Akron Ohio, USA).
- the grinding media consisted of 454 kg of 3 ⁇ 8′′ stainless steel balls.
- the mill was loaded through its split top lid, with the grinding media added initially, then followed by the dry powders (25 kg).
- the milling process was conducted with the jacket cooled to 10° C. and the shaft rotating at 130 rpm. Upon completion of milling, the milled powder was discharged from the mill through the bottom discharge port at 77 rpm for 5 min.
- Millings performed in a nutating Hicom mill utilized 14 kg of stainless steel 0.25′′ grinding media together with a powder charge of 480 g.
- the mill was loaded by pre-mixing media and powder, then adding the mixture to the grinding chamber through the loading port at the top of the mill.
- the milling was done at 1000 rpm and the mill discharged by inverting the mill and emptying through the loading port.
- the recovered material was sieved to separate the grinding media from the powder.
- the particle size distribution was determined using a Malvern Mastersizer 2000 fitted with a Malvern Hydro 2000S pump unit. Measurement settings used: Measurement Time: 12 seconds, Measurement cycles: 3. Final result generated by averaging the 3 measurements. Samples were prepared by adding 200 mg of milled material to 5.0 mL of 1% PVP in 10 mM hydrochloric acid (HCl), vortexing for 1 min and then sonicating. From this suspension enough was added into the dispersant (10 mM HCl) to attain a desired obscuration level. If necessary an extra 1-2 minutes of sonication was applied using the internal sonication probe in the measurement cell. The refractive index of the active ingredient to be measured was in the range of 1.49-1.73. Any variations to this general method are summarized in Table B.
- Powder X-Ray diffraction (XRD) patterns were measured with a Diffractometer D 5000, Kristalloflex (Siemens). The measurement range was from 5-18 degrees 2-Theta. The slit width was set to 2 mm and the cathode ray tube was operated at 40 kV and 35 mA. Measurements were recorded at room temperature. The recorded traces were subsequently processed using Bruker EVA software to obtain the diffraction pattern.
- API Name Abbreviation 2,4-Dichlorophenoxyacetic 2,4D acid Anthraquinone ANT Celecoxib CEL Cilostazol CIL Ciprofloxacin CIP Creatine Monohydrate CRM Cyclosporin A CYA Diclofenac Acid DIC Glyphosate GLY Halusulfuron HAL Indomethacin IND Mancozeb MAN Meloxicam MEL Metaxalone MTX Metsulfuron MET Naproxen Acid NAA Naproxen Sodium NAS Progesterone PRO Salbutamol SAL Sulfur SUL Tribenuran TRI
- FIGS. 1A-1G A range of actives, matrices and surfactants in a variety of combinations were milled using the Spex mill. The details of these millings are shown in FIGS. 1A-1G together with the particle size distributions of actives that were milled.
- samples Z and AA compared to sample Y are samples Z and AA compared to sample Y; Sample AB compared to sample AC; sample AE compared to sample AD; sample AG compared to sample AF; sample AP compared to sample AO; sample AR compared to sample AQ, sample AT compared to sample AS; Samples AX, AY and AZ compared to sample AW; sample BC compared to sample BD; sample BI compared to BH; samples BL-BR compared to sample BK; samples CS-DB compared to sample DC.
- FIG. 1H shows XRD data that demonstrates the transformation.
- samples DS and DT could be sized using a saturated solution of the active (salbutamol) demonstrating that actives with high water solubility can be measured as long as care is taken when measuring the size.
- samples N-Q and samples R-U Two sets of data, samples N-Q and samples R-U, also demonstrate that the invention described herein is unique.
- the active milled with a matrix and surfactant produces small particles.
- the particles sizes are larger, in the case of sample Q they are not even nanoparticles.
- the active is milled with just 1% surfactant the resultant particle size is very large. Even when 80% surfactant is used the size is large.
- a range of actives, matrices and surfactants in a variety of combinations were milled using the 110 ml stirred attritor mill. The details of these millings are shown in FIG. 2A together with the particle size distributions of actives that were milled.
- millings demonstrate that the addition of a small amount of surfactant to the milling matrix delivers a smaller particle size compared to millings of just an active and a single matrix in a small scale stirred mill as well as the vibratory Spex mill.
- Sample F also demonstrates that small particles can be achieved at high % actives when a surfactant is present.
- Sample D and E also show that the addition of the surfactant also increased the yield of powder from the mill.
- naproxen was milled with a mixture of two matrices using the Spex mill.
- the details of these millings are shown in FIG. 3A together with the particle size distributions of actives that were milled.
- Samples A and B were milled in a primary matrix of lactose monohydrate and 20% of second matrix.
- the particle size of these millings is smaller than the same milling with just lactose monohydrate (See example 1 sample No AH, FIG. 1B ).
- the particle size is also smaller than naproxen milled in the secondary matrices (See example 1 sample No AI and AJ, FIG. 1B ). This shows the mixed matrices have synergy together.
- Samples C-E were milled in anhydrous lactose with 20% of a second matrix. All these samples had a particle size much smaller than naproxen milled in anhydrous lactose alone (See example 1 sample No AK, FIG. 1B ).
- millings demonstrate that the addition of a second matrix to the primary milling matrix delivers a smaller particle size compared to millings with just a single matrix.
- Sample A and B are millings of meloxicam at 20%. While sample B has a slightly smaller particle size than sample A there is a dramatic difference in the amount of material recovered from the milling. Sample A, milled with 3% SDS has a high yield of 90% whereas sample B with no surfactant has practically no yield with all the powder caked in the mill.
- samples C-F the milling of 13% indomethacin shows that the use of a second matrix (tartaric acid) in combination with 1% SDS delivers the best outcome of a good particle size and high yield.
- Sample D which has just the mixed matrix has very good particle size but poor yield.
- samples A-C three millings of naproxen are shown.
- Sample A has just 1% SDS as a surfactant.
- Samples B and C have a second surfactant present and these samples have a smaller particle size as measured by the % ⁇ 500 nm, % ⁇ 1000 nm and % ⁇ 2000 nm.
- samples D-F three millings of indomethacin are shown.
- Sample D has just 1% SDS as a surfactant.
- Samples E and F have a second surfactant present and these samples have a smaller particle size compared to sample D.
- a range of actives, matrices and surfactants in a variety of combinations were milled using the 1 ⁇ 2 gallon 1S mill. The details of these millings are shown in FIGS. 6A-C together with the particle size distributions of actives that were milled.
- Sample C and D shows Naproxen acid milled in Mannitol with yields of 92% and 23%, with and without surfactant.
- Sample S and AL show the same for glyphosate with yields of 95% and 26%, respectively.
- Sample AI and AJ FIG. 6B
- Sample AM an AN
- FIG. 6C show Celecoxib yields of 86% and 57% with and without surfactants.
- samples AP and AQ FIG. 6C shows milling Mancozeb with or without surfactants results in yields of 90% and 56%, respectively.
- sample C and D shows a D(0.5) of 0.181 and 0.319 with or without surfactant
- sample AM and AN shows D(0.5) of 0.205 and 4.775 with and without surfactants.
- the series of samples Q-S are timepoints taken from a single glyphosate milling.
- the data demonstrates that the size of the actives decreases with milling time.
- V-AA show examples were surfactants suitable for use with IV formulations can be used to manufacture very small particles.
- FIGS. 6A-C Some of the particle size data in FIGS. 6A-C was converted to a number average particle size and is shown in the tables. This number was calculated in the following way. The Volume distribution was transformed to the number distribution using the Malvern Mastersizer software. For each size bin the size of the bin was multiplied by the % of particles in the bin. This numbers were added together and divided by 100 to give the number average particle size.
- Metaxalone was milled with various combinations of matrices and surfactants using a variety of mills. The details of these millings are shown in FIG. 7A together with the particle size distributions of actives that were milled. Samples A, B, E, G, H and I were milled in a Spex mill. Samples C, D and F were milled in the 750 ml alingeror. The remaining samples were milled in the 1 ⁇ 2 gallon 1S mill.
- Samples A compared to sample B and sample H compared to sample G demonstrate that the addition of one or more surfactants enables the production of smaller active particles.
- Other millings such as samples C—F show that metaxalone can be milled small at very high active loadings.
- Sample I shows that disintegrant can be added during milling and not effect the production of small active particles. Note that the particle size in sample I is after filtration through a 10 micron filter.
- Sample N shows an alternative way to manufacture a formulation with small particles and disintegrants. In this example the powder from sample M was left in the mill and a wetting agent (PVP) and disintegrant were added. The powder was milled for a further 2 minutes and then unloaded with a very high yield of 97%.
- PVP wetting agent
- the series of samples J-M are timepoints taken from a single milling.
- the data demonstrates that the size of the actives decreases with milling time.
- a range of actives, matrices and surfactants in a variety of combinations were milled using the Hicom mill. The details of these millings are shown in FIG. 8A together with the particle size distributions of actives that were milled.
- the data shows that the invention described herein can be used with the Hicom mill with its nutating action.
- the data in FIG. 8A shows that a variety of actives can be milled small in very short times and give very good yields at 500 gram scale.
- a range of actives, matrices and surfactants in a variety of combinations were milled using the 1.5 Gallon 1S mill. The details of these millings are shown in FIGS. 9A-B together with the particle size distributions of actives that were milled.
- sample J and N shows yields of 51% and 80%, without and with surfactant.
- Sample K and P show yields of 27% and 80%, without and with surfactant, while sample L ( FIG. 9A ) show a yield of 94% with surfactant and the control without surfactant (sample M, FIG. 9A ) resulted in no yield due to caking within the mill.
- sample F and G shows a D(0.5) of 0.137 and 4.94 with or without surfactant
- sample K and P shows D(0.5) of 0.242 and 0.152 without and with surfactants.
- the series of samples AI-AL are timepoints taken from a single meloxicam milling.
- the data demonstrates that the size of the actives decreases with milling time.
- Sample M was a milling of meloxicam in lactose monohydrate without surfactant. 3 minutes into the milling the mill refused to turn. The milling was stopped and started again but only ran for another 3 minutes before stopping again. At this point the mill was taken apart and no evidence of caking was found. However the powder had a gritty feeling to it and was locking the medium and shaft such that it was not possible to turn. The media was weighed and it as found that 150 grams of powder was on the media indicating that it was sticking to the media and making it hard to move. At this point the mill was re-assembled and the powder and media put back in. 30.4 grams of SDS was included in the milling making it similar to milling L.
- the mill was run for another 14 minutes (giving a total of 20 mins) without incident. After offloading the powder the media was weighed and the weigh of powder on the media was only 40.5 grams. This indicates the addition of surfactant has improved the milling performance and ability to mill the powder.
- FIGS. 9A-B Some of the particle size data in FIGS. 9A-B was converted to a number average particle size and is shown in the tables. This number was calculated in the following way. The Volume distribution was transformed to the number distribution using the Malvern Mastersizer software. For each size bin the size of the bin was multiplied by the % of particles in the bin. This numbers were added together and divided by 100 to give the number average particle size.
- Sample A ( FIG. 10A ) was milled in the Siebtechnik mill for 15 minutes. After this time the powder was completely caked onto the walls of the mill and the media. No powder could be removed to measure the particle size. At this point 0.25 g (1 w/w %) SLS was added to mill chamber and milling was then undertaken for a further 15 minutes. After the second period of milling in the presence of SLS powder was no longer caked onto the media and some free powder was also present. The observations made before and after the addition of the SLS demonstrate that the addition of the surfactant lessens the problem of caking. With the addition of surfactant the caked material could be recovered to become free powder again with small particle size.
- Sample B-E was milled in horizontal Simoloyer mills. The details of these millings are shown in FIG. 10A together with the particle size distributions of actives that were milled.
- Sample F was milled in a vertical attritor mill (Union Process S-30). The details of this milling is shown in FIG. 10A together with the particle size distribution of the active milled. The data shows that the invention described herein can be used with a S-30 mills with its vertical attritor action. Of particular note is that this milling was at 25 kg scale. This demonstrates the invention described herein is suitable for commercial scale milling.
- Naproxen was milled in mannitol with a range of surfactants using the 1 ⁇ 2 Gallon 1S mill. The details of these millings are shown in FIG. 11A together with the particle size distributions of actives that were milled.
- Naproxen acid milled in Mannitol with a surfactant leads to higher yields, as compared to Naproxen acid milled in Mannitol without surfactant (Sample K, FIG. 11A ).
- Naproxen acid milled in Mannitol and either microcrystalline cellulose or the disintegrant primellose leads to small particle size with D(0.5) around 0.25 in both cases.
- Some matrices, milling aids or facilitating agents that are used by this invention are not water soluble. Examples of these are microcrystalline cellulose and disintegrants such as croscarmellose and sodium starch glycolate.
- filtration methods can be used to remove them allowing a characterisation of the active.
- naproxen was milled with lactose monohydrate and microcrystalline cellulose (MCC).
- MMC microcrystalline cellulose
- the particle size was characterised before and after filtration and the ability of the filters to let through the naproxen was demonstrated using HPLC assays. The milling details and the particle size are shown in FIG. 12 a . Note in this table the particle size with milling details is un-filtered.
- the particle size in the rows with no milling details is after filtration.
- the sample that was filtered is indicated in the Active material section.
- the HPLC assays were performed by taking samples before and after filtration through 10 micron poroplast filters. The samples taken were diluted to give a nominal concentration of 100 ⁇ g/ml.
- the HPLC assay data is shown in Table 12
- Sample A was milled with 5% MCC. Before filtration the D50 was 2.5 ⁇ m, after filtration (sample B) the D50 was 183 nm. When sample B was assayed the concentration was 94 ⁇ g/ml indicating that filtration process retained little naproxen. A second milling (sample C) was undertaken without MCC. The D50 was 160 nm as would be expected. After filtration (sample D) the particle size was unchanged indicating that if the filtration process did remove any naproxen then it was removed in an even way. Some of sample C was then milled with MCC for 1 minute. This is long enough to incorporate the MCC into the powder but not long enough to affect the particle size distribution. Two millings were undertaken.
- Sample E incorporated 5% w/w MCC into the powder and Sample F 9% w/w. After incorporation of the MCC the particle size increased dramatically. These samples where then filtered (Sample E and F) and the size remeasured. After filtration the particle size is the same as Sample C which was the starting material.
- the assay of samples E-H indicates that filtration did not remove any naproxen of any significance.
- the combination of particle size and assay data clearly shows that material such as MCC can easily and successfully be removed allowing the true particle size of the active to be measured.
- Samples I and J were millings conducted with 10 and 20% w/w MCC.
- the particle size post filtration is show as sample K and L. Again the filtration has delivered a reduction in particle size due to the removal of the MCC component. And again the HPLC assay of sample 1-L shows little naproxen was lost during filtration.
- the high shear granulator was operated with an impeller speed of 250 rpm and a chopper speed of 2500 rpm. A portion of the povidone solution (80.3 g) was introduced into the granulator over a period of approximately 8 minutes using a peristaltic pump. An additional 30 g of purified water was then added to the granulation.
- the wet granules were spread on to paper-lined trays to a thickness of approximately 1 ⁇ 2′′, and were dried in an oven at 70° C. for approximately 1 hour. The granules were then manually screened through a 10 mesh hand screen, and spread on to paper-lined trays for additional drying. The granules were dried for a second hour, and then tested for loss on drying; the LOD value was 1.987%.
- the dried granules were processed in a Quadro CoMill (20 mesh screen, 0.225 inch spacer) at 2500 rpm, yielding 689.9 g of milled granules having the final composition of 12.60% indomethacin, 62.50% lactose monohydrate, 20.86% tartaric acid, 0.95% sodium lauryl sulfate, 3.09% povidone K30.
- the granules were manually filled into size 4 white opaque hard gelatin capsules using a MiniCap 100 Capsule Filling Machine set up with size 4 capsule change parts.
- the target fill weight of each capsule was 158.7 mg and the average empty capsule shell weight was 38 mg.
- Capsules were filled manually using a scraper and periodically tested for gross weight. Tamping and vibration were adjusted as necessary to achieve the target fill weight.
- the filled capsules were polished in a Capsule Polishing Machine, yielding a net weight of 803 g of filled capsules (approximately 4,056 capsules).
- Granulation sublot A was prepared by charging indomethacin milled powder (750.0 g, Example 9, Sample U) into the bowl of a KG-5 high shear granulator. Separately, a 30% solution of povidone K30 in purified water was prepared by dissolving 47.8 g of povidone in 111.5 g of purified water. The granulator was operated with an impeller speed of 250 rpm and a chopper speed of 2500 rpm. A portion of the povidone solution (80.3 g) was introduced into the granulator over a period of approximately 9 minutes, using a peristaltic pump. An additional 20 g of purified water was then added to the granulation.
- Granulation sublot B was prepared by charging indomethacin milled powder (731.6 g, Example 9, Sample V and 18.4 g, Example 9, Sample U) into the bowl of a KG-5 high shear granulator. Separately, a 30% solution of povidone K30 in purified water was prepared by dissolving 47.8 g of povidone in 111.5 g of purified water. The granulator was operated with an impeller speed of 250 rpm and a chopper speed of 2500 rpm. A portion of the povidone solution (80.3 g) was introduced into the granulator over a period of approximately 10 minutes, using a peristaltic pump. An additional 20 g of purified water was then added to the granulation.
- indomethacin milled powder 731.6 g, Example 9, Sample V and 18.4 g, Example 9, Sample U
- a 30% solution of povidone K30 in purified water was prepared by dissolving 47.8 g of povidone in 111.5
- the wet granules were spread on to paper-lined trays to a thickness of approximately 1 ⁇ 2′′.
- the wet granules from both sublots were dried in an oven at 70° C. for approximately 2.5 hours.
- the granules were then manually screened through a 10 mesh hand screen, and spread on to paper-lined trays for additional drying.
- the granules were dried for another 1.5 hours, until the LOD value was 1.699%.
- the dried granules were processed in a Quadro CoMill (20 mesh screen, 0.225 inch spacer) at 2500 rpm. The milled granules were then added to an 8 qt V-blender and mixed for 5 minutes, yielding 1390.7 g of granules with a final composition of 12.60% indomethacin, 62.50% lactose monohydrate, 20.86% tartaric acid, 0.95% sodium lauryl sulfate, 3.09% povidone K30.
- An IN-CAP® automated capsule filling machine Dolt. Bonapace & C., Milano, Italy was set up with size (2) 16 mm dosing disc and size (2) tamping pins.
- Milled granules were charged into the encapsulator, along with size 1 white opaque hard gelatin capsule shells.
- the target capsule fill weight was 317.7 mg, and the average empty capsule shell weight was 75 mg.
- Tamping pins 1-4 were all set to 9 mm, and the encapsulator was run at speed 2. Weight checks, closure checks, and appearance checks were performed every 15 minutes. Filled capsules were polished in a capsule polishing machine. The net weight of filled, polished capsules was 1225.5 g (approximately 3,183 capsules).
- dissolution rate is compared between 20 mg and 40 mg nanoformulations of the invention (Example 13(a) and 13(b)), and commercial reference indomethacin USP 25 mg capsules (Mylan Pharmaceuticals Inc).
- the dissolution was performed using Apparatus I (baskets) according to USP ⁇ 711>.
- the dissolution medium (900 ml at 37° C.) was 100 mM citric acid buffer (pH 5.5 ⁇ 0.05); the apparatus was stirred at 100 rpm. Sampling times were 5, 10, 20, 30, 45, and 60 min plus an additional time point at 75 min (250 rpm). Samples of 8 mL were taken and filtered through a 0.45 ⁇ m PVDF filter. The samples were assayed by UV-visible spectroscopy with a detection wavelength of 319 nm. The data in Table 14a below report the percent dissolved of the amount of active in each test article, for the specified time points.
- This Example describes a Single-Dose, Five-Way Crossover, Relative Bioavailability Study of Indomethacin 20 mg, 40 mg, and 50 mg Capsules in Healthy Subjects under Fasted and Fed Conditions.
- Test product i.e. 20 mg and 40 mg capsules of indomethacin
- Reference product 50 mg capsule of indomethacin
- Forty (40) healthy adult male and female subjects who met all study eligibility criteria were randomized equally on a 1:1:1:1:1 basis to one of 10 pre-determined sequences of treatment administration. Each subject received 5 treatments in order of their assigned sequence according to the randomization schedule. Subjects entered the clinic on Day ⁇ 1 of Treatment Period 1 and fasted overnight.
- Subjects were males and females who provided written informed consent, were at least 18 years of age, and had a body weight of at least 110 pounds and a body mass index (BMI) between 18 and 30 kg/m2, and were healthy on the basis of medical history, physical examination, electrocardiogram (ECG), and clinical laboratory test results. All females were non-pregnant and non-nursing; females of child-bearing potential agreed to take precautions to prevent pregnancy. Eligibility criteria required that subjects demonstrate negative test results for hepatitis B, hepatitis C, and human immunodeficiency virus, as well as a negative urine test result for drugs of abuse.
- BMI body mass index
- the 20 mg Test product was indomethacin nanoformulation 20 mg capsules.
- the 20 mg Test product was administered as Treatment B.
- Subjects assigned to Treatment B received a single 20 mg capsule by mouth with 240 mL of water after an overnight fast.
- the 40 mg Test product was indomethacin nanoformulation 40 mg, capsules.
- the 40 mg Test product was administered as Treatments A and D.
- Subjects assigned to Treatment A received a single 40 mg capsule by mouth with 240 mL of water after an overnight fast.
- Subjects assigned to Treatment D received a single 40 mg capsules by mouth with 240 mL of water 30 minutes after the start of a FDA High-Fat Breakfast.
- the duration of treatment was a single dose in each Treatment Period.
- the Reference product was indomethacin 50 mg capsules, manufactured by Mylan® Pharmaceuticals Inc. A single lot of the Reference product was used in this study (Lot number 3001162).
- the Reference product was administered as Treatments C and E. Subjects assigned to Treatment C received a single 50 mg capsule by mouth with 240 mL of water after an overnight fast. Subjects assigned to Treatment E received a single 50 mg capsule by mouth with 240 mL of water 30 minutes after the start of a FDA High-Fat Breakfast.
- Plasma samples for measurement of indomethacin concentrations in plasma were collected pre-dose and 0.167, 0.33, 0.50, 0.75, 1, 1.33, 1.67, 2, 2.33, 2.67, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 24, and 32 hours post-dose.
- Primary PK variables included: area under the concentration-time curve from time zero to the time of the last sample with a quantifiable concentration (AUC 0-t ); area under the concentration time curve from time zero extrapolated to infinity (AUC 0- ⁇ ); and, measured maximal concentrations (C max ).
- Secondary PK variables included: time to reach maximum concentration (T max ); terminal elimination rate constant (K e ); and terminal elimination half-life (T 1/2 ).
- Treatment-emergent AEs were summarized by incidence. The events were also coded using the Medical Dictionary for Regulatory Activities (MedDRA) and summarized by system organ class (SOC) and preferred term (PT).
- MedDRA Medical Dictionary for Regulatory Activities
- SOC system organ class
- PT preferred term
- the 40 subjects who received at least one dose of study drug were included in the full analysis set and ranged in age from 18 to 79 years, with a mean age of 37.6 years. There were 20 male subjects (50.0%) and 20 female subjects (50.0%). With regard to race/ethnicity, 21 subjects (52.5%) were Black, 14 subjects (35.0%) were Caucasian, 1 subject (2.5%) was Hispanic, and 4 subjects (10.0%) were Other.
- the mean height was 169.6 cm, with a range of 151 to 191 cm.
- the mean body weight was 73.6 kg, with a range of 51.1 to 98.5 kg.
- the mean BMI was 25.5 kg/m 2 . Demographic findings were reflective of a healthy adult population.
- Test Product - Fasted Subjects Pharmacokinetic Test Product Test Product Parameter/Unit 20 mg Fasted a 40 mg Fasted a Ratio b 90% CI c AUC (0-t) hr*ng/mL 6430 6511 0.988 0.956, 1.020 AUC (0- ⁇ ) hr*ng/mL 6760 6682 1.012 0.980, 1.044 C max ng/mL 2730 2995 0.911 0.825, 1.007 T max d hr 1.11(1.00) 1.25(1.17) 0.891 — K e 1/hr 0.1054 0.0960 1.098 — T 1/2 hr 7.74 7.73 1.001 — Abbreviations: ANOVA (analysis of variance); AUC (0-t) (area under the concentration-time curve from zero to the last measurable concentration; AUC (0- ⁇ ) (area under the concentration-time curve from zero to infinity; CI(confidence interval); C max (measured maximal plasma concentration); K e (terminal elimination rate constant
- the Test product indomethacin nanoformulation 40 mg capsules, showed AUC (0-t) and AUC (0- ⁇ ) to be 26% less than the Reference product, Mylan 50 mg capsules, under fasted conditions.
- C max was 14% greater than the Reference product.
- T max was 37% less than the Reference product.
- the Test product indomethacin nanoformulation 20 mg capsules, showed AUC (0-t) and AUC (0- ⁇ ) to be 63% less than the Reference product, Mylan 50 mg capsules under fasted conditions. C max was 48% less than the Reference product. T max was 44% less than the Reference product.
- the Test product indomethacin nanoformulation 40 mg capsules, showed AUC (0-t) and AUC (0- ⁇ ) to be 23% less than the Reference product, Mylan 50 mg capsules, under fed conditions.
- C max was 3% less than the Reference product.
- T max was 32% less than the Reference product.
- This Example describes a Phase 2, Randomized, Double-Blind, Single-Dose, Parallel-Group, Active- and Placebo-Controlled Study of Indomethacin Nanoformulation Capsules for the Treatment of Pain After Surgical Removal of Impacted Third Molars
- VAS pain intensity
- Acetaminophen (1000 mg) was permitted as the initial rescue medication. Subjects were encouraged to wait at least 60 minutes after receiving study drug before taking rescue medication.
- Subjects were not permitted to take medications (except hormonal contraceptives, vitamins, nutritional supplements, and study drug) within 5 half-lives (or, if half-life was unknown, within 48 hours) before dosing with study drug until discharge from the study site (approximately 8 hours after Time 0).
- Other restrictions included the following: no alcohol use from 24 hours before surgery until discharge on Day 1; nothing by mouth (NPO) from midnight before surgery until 1 hour after surgery; clear liquids only from 1 hour after surgery until 1 hour after dosing; and advancement of diet 1 hour after dosing according to standard practice.
- Efficacy was assessed during the 8 hours after Time 0. Safety was assessed by the incidence of treatment-emergent AEs (TEAEs) and changes in vital sign measurements.
- TEAEs treatment-emergent AEs
- ITT intent-to-treat
- PP per-protocol
- Eligible for inclusion in this study were subjects between ⁇ 18 and ⁇ 50 years of age; weighing ⁇ 45 kg; having a body mass index (BMI) ⁇ 35 kg/m 2 ; requiring extraction of 2 or more third molars, at least 1 of which was a fully or partially bone impacted mandibular molar; and experiencing moderate to severe pain intensity (a score of ⁇ 50 mm on a 100-mm visual analogue scale [VAS]) within 6 hours after surgery.
- Female subjects of childbearing potential could not be lactating or pregnant at Screening or before surgery on the day of surgery. All other female subjects had to be either not of childbearing potential or practicing at least 1 medically acceptable method of birth control.
- Test product was administered in a single dose.
- the primary efficacy endpoint was the sum of total pain relief (TOTPAR) over 0 to 8 hours (TOTPAR-8) after Time 0.
- the TOTPAR was calculated using the pain relief score (5-point categorical scale) at each follow-up time point weighted (multiplied) using the amount of time since the prior assessment.
- the safety endpoints were the incidence of TEAEs and changes in vital sign measurements.
- Demographic and baseline characteristics were summarized descriptively by treatment group and overall using the Safety population. No formal statistical analyses were performed.
- the null hypothesis was that TOTPAR over 0 to 8 hours after Time 0 (TOTPAR-8) for placebo would be equal to TOTPAR-8 for 40-mg Indomethacin Nanoformulation Capsules.
- the null hypothesis was analyzed using analysis of covariance (ANCOVA) models, which included treatment effect and significant covariates.
- ANCOVA covariance
- the analysis was based on a 2-sided test at the significance level of 0.05.
- the least squares (LS) mean and 95% confidence interval (CI) for each treatment regimen, the mean (LS mean) difference between the 2 treatments, and the associated P value and 95% CI for the mean difference were computed from the ANCOVA model.
- This analysis utilized primarily the ITT population, and sensitivity analysis utilized the PP population.
- Time to onset of analgesia was based on data collected using the 2-stopwatch method. Time to onset of analgesia was right-censored at 8 hours for subjects who did not experience both perceptible pain relief and meaningful pain relief during the 8-hour interval after Time 0.
- a summary table provided the number of subjects analyzed, the number of subjects censored, estimates for the quartiles, and 95% confidence intervals (CIs) for the estimated median. P values from log-rank tests were also used to examine treatment effect.
- Cox proportional hazard models were used to explore potential covariates such as sex, baseline pain intensity, and surgical trauma rating, if appropriate.
- missing observations were imputed using a baseline-observation-carried-forward (BOCF) approach for subjects who withdrew from the study due to lack of efficacy or an AE/intolerance to study drug.
- BOCF baseline-observation-carried-forward
- the BOCF imputation was applied in place of all scheduled assessments after the time of early termination due to lack of efficacy or an AE/intolerance to study drug using the baseline observation taken before Time 0.
- missing observations were imputed using 0 (no pain relief) for subjects who withdrew from the study due to lack of efficacy or an AE/intolerance to study drug. (Baseline value for pain relief was 0.)
- LOCF last-observation-carried-forward
- Protocol-specified safety data were provided in by-subject listings.
- the Medical Dictionary for Regulatory Activities (MedDRA) (version 11.0) was used to classify all AEs with respect to system organ class and preferred term.
- Adverse event summaries included only TEAEs, which were summarized by incidence, severity, and relationship to study drug for each treatment group.
- the Cochran-Mantel-Haenszel test was used to compare the rates of occurrence between the placebo and Indomethacin Nanoformulation Capsule groups for all TEAEs.
- Vital sign measurements were summarized using descriptive statistics (mean, standard deviation [SD], median, minimum, and maximum) at each scheduled time point for each treatment group. Changes from Baseline for vital signs were calculated for each subject and summarized for each treatment group at each scheduled time point after Baseline. No formal statistical tests were performed.
- the standard deviation of TOTPAR-8 was assumed to be ⁇ 9.3.
- a sample size of 50 subjects per treatment group was expected to provide ⁇ 80% power to detect a minimal difference of 5.3 in TOTPAR-8 using a 2-sample t-test with a 0.05 two-sided significance level (nQuery Advisor v6.0).
- the mean score in each active treatment group was statistically significantly greater than in the placebo group.
- Mean VASPID scores were statistically significantly greater and mean VAS pain intensity scores were statistically significantly less in each active treatment group than in the placebo group at the following scheduled time points after Time 0: from 30 minutes onward for the celecoxib 400 mg group and from 1 hour onward for the Indomethacin Nanoformulation Capsules 20 mg and 40 mg groups.
- VASSPID-4 and VASSPID-8 scores in each active treatment group were statistically significantly greater than those in the placebo group.
- Pain relief scores in each active treatment group were statistically significantly more favorable than in the placebo group at the following scheduled time points after Time 0: from 45 minutes onward for the celecoxib 400 mg group and from 1 hour onward for the Indomethacin Nanoformulation Capsules 20 mg and 40 mg groups.
- the proportion of subjects using rescue medication was statistically significantly smaller and the mean time to first use of rescue medication was statistically significantly longer in each active treatment group than in the placebo group.
- Model 1 included baseline pain intensity as only covariate.
- c Mean differences (treatment ⁇ placebo), 95% CIs, and P values were obtained from ANCOVA models with appropriate baseline variables as covariates, as indicated, and with treatment as factor.
- Model 2 included baseline pain intensity, gender, and surgical trauma rating as covariates
- a Kaplan-Meier estimates for the time to response b Kaplan-Meier log-rank test to compare the time to response among 4 treatment groups.
- d Cox proportional hazard regression models included treatment, gender, and surgical trauma rating as factor and baseline pain intensity as a covariate and compared each study drug treatment separately to placebo.
- a Kaplan-Meier estimates for the time to response b Kaplan-Meier log-rank test to compare the time to response among 4 treatment groups.
- d Cox proportional hazard regression models included treatment, gender, and surgical trauma rating as factor and baseline pain intensity as a covariate and compared each study drug treatment separately to placebo.
- a Kaplan-Meier estimates for the time to response b Kaplan-Meier log-rank test to compare the time to response among 4 treatment groups.
- d Cox proportional hazard regression models included treatment, gender, and surgical trauma rating as factor and baseline pain intensity as a covariate and compared each study drug treatment separately to placebo.
- a Kaplan-Meier estimates for the time to response b Kaplan-Meier log-rank test to compare the time to response among 4 treatment groups.
- d Cox proportional hazard regression models included treatment, gender, and surgical trauma rating as factor and baseline pain intensity as a covariate and compared each study drug treatment separately to placebo.
- a Kaplan-Meier estimates for the time to response b Kaplan-Meier Log-rank test to compare the time to response among 4 treatment groups.
- TEAEs occurred in less than half of subjects (45.8%). Across individual treatment groups, they occurred relatively less often in subjects treated with Indomethacin Nanoformulation Capsules 20 mg (38.0%) or celecoxib 400 mg (37.3%) than in subjects treated with Indomethacin Nanoformulation Capsules 40 mg (51.0%) or placebo (56.9%).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Pain & Pain Management (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Rheumatology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Indole Compounds (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009901745 | 2009-04-24 | ||
AU2009901745A AU2009901745A0 (en) | 2009-04-24 | A Novel Formulation of Indomethacin | |
PCT/AU2010/000472 WO2010121328A1 (en) | 2009-04-24 | 2010-04-23 | A novel formulation of indomethacin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2010/000472 A-371-Of-International WO2010121328A1 (en) | 2009-04-24 | 2010-04-23 | A novel formulation of indomethacin |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/776,536 Continuation US8734847B2 (en) | 2009-04-24 | 2013-02-25 | Formulation of indomethacin |
US14/148,635 Continuation US9095496B2 (en) | 2009-04-24 | 2014-01-06 | Formulation of indomethacin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120135048A1 true US20120135048A1 (en) | 2012-05-31 |
Family
ID=43010611
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/266,125 Abandoned US20120135048A1 (en) | 2009-04-24 | 2010-04-23 | novel formulation of indomethacin |
US13/776,536 Active US8734847B2 (en) | 2009-04-24 | 2013-02-25 | Formulation of indomethacin |
US14/148,635 Active US9095496B2 (en) | 2009-04-24 | 2014-01-06 | Formulation of indomethacin |
US14/282,915 Active US8992982B2 (en) | 2009-04-24 | 2014-05-20 | Formulation of indomethacin |
US14/284,981 Active US9089471B2 (en) | 2009-04-24 | 2014-05-22 | Formulation of indomethacin |
US14/810,240 Active US9522135B2 (en) | 2009-04-24 | 2015-07-27 | Formulation of indomethacin |
US15/384,174 Active US9849111B2 (en) | 2009-04-24 | 2016-12-19 | Formulation of indomethacin |
US15/852,596 Active US10172828B2 (en) | 2009-04-24 | 2017-12-22 | Formulation of indomethacin |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/776,536 Active US8734847B2 (en) | 2009-04-24 | 2013-02-25 | Formulation of indomethacin |
US14/148,635 Active US9095496B2 (en) | 2009-04-24 | 2014-01-06 | Formulation of indomethacin |
US14/282,915 Active US8992982B2 (en) | 2009-04-24 | 2014-05-20 | Formulation of indomethacin |
US14/284,981 Active US9089471B2 (en) | 2009-04-24 | 2014-05-22 | Formulation of indomethacin |
US14/810,240 Active US9522135B2 (en) | 2009-04-24 | 2015-07-27 | Formulation of indomethacin |
US15/384,174 Active US9849111B2 (en) | 2009-04-24 | 2016-12-19 | Formulation of indomethacin |
US15/852,596 Active US10172828B2 (en) | 2009-04-24 | 2017-12-22 | Formulation of indomethacin |
Country Status (22)
Country | Link |
---|---|
US (8) | US20120135048A1 (ja) |
EP (1) | EP2421513B1 (ja) |
JP (3) | JP6027890B2 (ja) |
KR (3) | KR101743847B1 (ja) |
CN (2) | CN103932988A (ja) |
AP (2) | AP2015008955A0 (ja) |
AU (1) | AU2010239081C1 (ja) |
BR (1) | BRPI1014275B8 (ja) |
CA (1) | CA2759125C (ja) |
CO (1) | CO6470807A2 (ja) |
DK (1) | DK2421513T3 (ja) |
EA (1) | EA201171286A1 (ja) |
IL (2) | IL215872A (ja) |
MA (1) | MA33296B1 (ja) |
MX (1) | MX351930B (ja) |
MY (1) | MY159208A (ja) |
NZ (3) | NZ710384A (ja) |
SG (2) | SG175315A1 (ja) |
TN (1) | TN2011000544A1 (ja) |
UA (1) | UA106231C2 (ja) |
WO (1) | WO2010121328A1 (ja) |
ZA (1) | ZA201108646B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734847B2 (en) | 2009-04-24 | 2014-05-27 | Iceutica Py Ltd. | Formulation of indomethacin |
WO2017136617A1 (en) | 2016-02-04 | 2017-08-10 | Cinrx Pharma, Llc | Deuterated domperidone compositions and methods for therapy of disorders |
US11364226B2 (en) | 2017-06-30 | 2022-06-21 | Cinrx Pharma, Llc | Deuterated domperidone compositions, methods, and preparation |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2054042B8 (en) | 2006-06-30 | 2020-06-10 | iCeutica Pty Ltd | Methods for the preparation of biologically active compounds in nanoparticulate form |
UA111138C2 (uk) * | 2009-04-24 | 2016-04-11 | Айсьютіка Пті Лтд | Спосіб одержання композиції твердого біологічно активного матеріалу |
KR101679522B1 (ko) * | 2009-04-24 | 2016-11-24 | 아이슈티카 피티와이 리미티드 | 생물학적 활성 물질의 용해 프로파일 개선방법 |
CN103249405A (zh) * | 2010-08-23 | 2013-08-14 | 哈佛学院院长等 | 用于药物递送和其他应用的颗粒 |
WO2012027366A2 (en) | 2010-08-23 | 2012-03-01 | President And Fellows Of Harvard College | Acoustic waves in microfluidics |
JP5909796B2 (ja) | 2012-03-02 | 2016-04-27 | 株式会社サンギ | 難溶性物質の水溶解性改善方法 |
US20150246060A1 (en) | 2013-03-15 | 2015-09-03 | Iceutica Inc. | Abiraterone Acetate Formulation and Methods of Use |
US20140287039A1 (en) * | 2013-03-15 | 2014-09-25 | Iceutica Inc. | Abiraterone Acetate Formulation |
US20150157646A1 (en) | 2013-09-27 | 2015-06-11 | Iceutica Inc. | Abiraterone Steroid Formulation |
US9526734B2 (en) | 2014-06-09 | 2016-12-27 | Iceutica Pty Ltd. | Formulation of meloxicam |
US10258987B2 (en) | 2014-06-26 | 2019-04-16 | President And Fellows Of Harvard College | Fluid infection using acoustic waves |
JP6657379B2 (ja) | 2015-08-27 | 2020-03-04 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 弾性波による分離 |
US11197830B2 (en) | 2019-02-27 | 2021-12-14 | Aft Pharmaceuticals Limited | Pharmaceutical composition containing acetaminophen and ibuprofen |
US11701658B2 (en) | 2019-08-09 | 2023-07-18 | President And Fellows Of Harvard College | Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves |
TR202017034A2 (tr) * | 2020-10-26 | 2021-09-21 | Hacettepe Ueniversitesi Rektoerluek | Kuru öğütme yöntemi̇ i̇le hazirlanan ve çözünme hizi arttirilmiş selekoksi̇b i̇çeren farmasöti̇k kompozi̇syonlar |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4200631A (en) * | 1975-12-17 | 1980-04-29 | Richter Gedeon Vegyeszeti Gyar Rt. | Treating mammalian subject sensitive to indomethacin ulcerogenisis |
US4606909A (en) * | 1981-11-20 | 1986-08-19 | A/S Alfred Benzon | Pharmaceutical multiple-units formulation |
US20100016597A1 (en) * | 2007-04-06 | 2010-01-21 | Activus Pharma Co., Ltd. | Method for producing pulverized organic compound particle |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3172546A (en) | 1961-05-19 | 1965-03-09 | Union Carbide Corp | Size reduction of biological substances |
US4133814A (en) | 1975-10-28 | 1979-01-09 | Eli Lilly And Company | 2-Phenyl-3-aroylbenzothiophenes useful as antifertility agents |
IT1082518B (it) | 1977-01-25 | 1985-05-21 | Fiat Spa | Specchio a cristallo liquido da impiegare particolarmente come retrovisore per veicoli |
NL175882C (nl) * | 1977-03-28 | Procter & Gamble | Farmaceutisch preparaat, dat een verbinding met ontstekingtegengaande werking bevat. | |
US4418068A (en) | 1981-04-03 | 1983-11-29 | Eli Lilly And Company | Antiestrogenic and antiandrugenic benzothiophenes |
US4380635A (en) | 1981-04-03 | 1983-04-19 | Eli Lilly And Company | Synthesis of acylated benzothiophenes |
DE3312671A1 (de) | 1983-04-08 | 1984-10-11 | Heinz Finzer KG, 7880 Bad Säckingen | Stanz- und biegewerkzeug-aggregat |
GB8403359D0 (en) * | 1984-02-08 | 1984-03-14 | Erba Farmitalia | Pharmaceutical compositions |
US4851228A (en) * | 1984-06-20 | 1989-07-25 | Merck & Co., Inc. | Multiparticulate controlled porosity osmotic |
IT1227626B (it) | 1988-11-28 | 1991-04-23 | Vectorpharma Int | Farmaci supportati aventi velocita' di dissoluzione aumentata e procedimento per la loro preparazione |
JP2642486B2 (ja) * | 1989-08-04 | 1997-08-20 | 田辺製薬株式会社 | 難溶性薬物の超微粒子化法 |
US5145684A (en) | 1991-01-25 | 1992-09-08 | Sterling Drug Inc. | Surface modified drug nanoparticles |
AU660852B2 (en) | 1992-11-25 | 1995-07-06 | Elan Pharma International Limited | Method of grinding pharmaceutical substances |
US5298262A (en) | 1992-12-04 | 1994-03-29 | Sterling Winthrop Inc. | Use of ionic cloud point modifiers to prevent particle aggregation during sterilization |
US5336507A (en) | 1992-12-11 | 1994-08-09 | Sterling Winthrop Inc. | Use of charged phospholipids to reduce nanoparticle aggregation |
ZA951497B (en) | 1994-03-02 | 1996-08-23 | Lilly Co Eli | Orally administerable pharmaceutical formulations |
US5478705A (en) | 1994-05-25 | 1995-12-26 | Eastman Kodak Company | Milling a compound useful in imaging elements using polymeric milling media |
US5500331A (en) | 1994-05-25 | 1996-03-19 | Eastman Kodak Company | Comminution with small particle milling media |
US5631369A (en) | 1994-08-31 | 1997-05-20 | Eli Lilly And Company | Process for preparing benzoic acid derivative intermediates and benzothiophene pharmaceutical agents |
US5534270A (en) | 1995-02-09 | 1996-07-09 | Nanosystems Llc | Method of preparing stable drug nanoparticles |
US5591456A (en) | 1995-02-10 | 1997-01-07 | Nanosystems L.L.C. | Milled naproxen with hydroxypropyl cellulose as a dispersion stabilizer |
US5510118A (en) | 1995-02-14 | 1996-04-23 | Nanosystems Llc | Process for preparing therapeutic compositions containing nanoparticles |
TW487582B (en) | 1995-08-11 | 2002-05-21 | Nissan Chemical Ind Ltd | Method for converting sparingly water-soluble medical substance to amorphous state |
SE9600070D0 (sv) | 1996-01-08 | 1996-01-08 | Astra Ab | New oral pharmaceutical dosage forms |
US6458811B1 (en) | 1996-03-26 | 2002-10-01 | Eli Lilly And Company | Benzothiophenes formulations containing same and methods |
US6713494B1 (en) | 1996-08-28 | 2004-03-30 | Eli Lilly And Company | Amorphous benzothiophenes, methods of preparation and methods of use |
WO1998035666A1 (en) | 1997-02-13 | 1998-08-20 | Nanosystems Llc | Formulations of nanoparticle naproxen tablets |
JP4117811B2 (ja) * | 1997-04-22 | 2008-07-16 | 日本化薬株式会社 | フルタミド製剤及びその製法 |
AU750125B2 (en) | 1997-08-27 | 2002-07-11 | Hexal Ag | New pharmaceutical compositions of meloxicam with improved solubility and bioavailability |
JPH11130698A (ja) * | 1997-10-31 | 1999-05-18 | Freunt Ind Co Ltd | アルギン酸多価金属塩球状微粒子集合体、該球状微粒子集合体に難溶性薬剤を担持した放出制御製剤及びそれらの製造方法 |
US6165506A (en) | 1998-09-04 | 2000-12-26 | Elan Pharma International Ltd. | Solid dose form of nanoparticulate naproxen |
JP2000095674A (ja) | 1998-09-22 | 2000-04-04 | Sato Pharmaceutical Co Ltd | 口腔内崩壊時間短縮化錠剤の製造方法及び装置 |
US20040013613A1 (en) | 2001-05-18 | 2004-01-22 | Jain Rajeev A | Rapidly disintegrating solid oral dosage form |
US8236352B2 (en) | 1998-10-01 | 2012-08-07 | Alkermes Pharma Ireland Limited | Glipizide compositions |
US8293277B2 (en) | 1998-10-01 | 2012-10-23 | Alkermes Pharma Ireland Limited | Controlled-release nanoparticulate compositions |
US7521068B2 (en) | 1998-11-12 | 2009-04-21 | Elan Pharma International Ltd. | Dry powder aerosols of nanoparticulate drugs |
US6428814B1 (en) | 1999-10-08 | 2002-08-06 | Elan Pharma International Ltd. | Bioadhesive nanoparticulate compositions having cationic surface stabilizers |
EP1066825A1 (en) | 1999-06-17 | 2001-01-10 | The Procter & Gamble Company | An anti-microbial body care product |
DE19932157A1 (de) | 1999-07-13 | 2001-01-18 | Pharmasol Gmbh | Verfahren zur schonenden Herstellung von hochfeinen Mikropartikeln und Nanopartikeln |
US6316029B1 (en) | 2000-05-18 | 2001-11-13 | Flak Pharma International, Ltd. | Rapidly disintegrating solid oral dosage form |
EP1913939B1 (en) | 2000-06-27 | 2017-05-31 | Vectura Limited | Formulations for use in inhaler devices |
JP4969761B2 (ja) | 2000-08-31 | 2012-07-04 | オバン・エナジー・リミテッド | 所望粒度を持つ固体基材の小粒子および第一材料の小粒状物を含む相乗作用性混合物を製造する方法 |
US7276249B2 (en) | 2002-05-24 | 2007-10-02 | Elan Pharma International, Ltd. | Nanoparticulate fibrate formulations |
JP4541647B2 (ja) | 2000-11-20 | 2010-09-08 | エラン ファーマ インターナショナル,リミティド | 表面安定剤として共重合体を含むナノ粒子組成物 |
ATE517607T1 (de) | 2000-11-30 | 2011-08-15 | Vectura Ltd | Verfahren zur herstellung von partikeln zur verwendung in einer pharmazeutischen zusammensetzung |
WO2002045684A2 (en) | 2000-12-06 | 2002-06-13 | Pharmacia Corporation | Rapidly dispersing pharmaceutical composition comprising effervescent agents |
FI20010115A0 (fi) | 2001-01-18 | 2001-01-18 | Orion Corp | Menetelmä nanopartikkelien valmistamiseksi |
CA2451161A1 (en) | 2001-06-22 | 2003-01-03 | Elan Pharma International, Ltd. | Method for high through put screening using a small scale mill or microfluidics |
JP2003066613A (ja) | 2001-08-22 | 2003-03-05 | Columbia Music Entertainment Inc | スタンパの製造方法 |
DK1443912T3 (da) | 2001-10-12 | 2008-01-21 | Elan Pharma Int Ltd | Sammensætninger med en kombination af umiddelbare og kontrollerede frisætningsegenskaber |
US6407128B1 (en) | 2001-12-03 | 2002-06-18 | Elan Pharmaceuticals, Inc. | Method for increasing the bioavailability of metaxalone |
US7714006B1 (en) | 2001-12-03 | 2010-05-11 | King Pharmaceuticals Research & Development, Inc. | Methods of modifying the bioavailability of metaxalone |
US7101576B2 (en) | 2002-04-12 | 2006-09-05 | Elan Pharma International Limited | Nanoparticulate megestrol formulations |
US6825161B2 (en) | 2002-04-26 | 2004-11-30 | Salvona Llc | Multi component controlled delivery system for soap bars |
AU2003276688A1 (en) | 2002-09-02 | 2004-03-19 | Sun Pharmaceutical Industries Limited | Pharmaceutical composition of metaxalone with enhanced oral bioavailability |
JP2004099442A (ja) * | 2002-09-04 | 2004-04-02 | Nisshin Pharma Inc | 難溶性薬物含有製剤およびその製造方法 |
ATE541840T1 (de) | 2002-09-30 | 2012-02-15 | Gea Farmaceutisk Fabrik As | Raloxifene-l-lactat oder ein hemihydrat davon, deren verwendungen, pharmazeutischen zusammensetzungen und herstellungsverfahren |
AU2003297151A1 (en) | 2002-12-17 | 2004-07-22 | Elan Pharma International Ltd. | Milling microgram quantities of nanoparticulate candidate compounds |
US20040121003A1 (en) * | 2002-12-19 | 2004-06-24 | Acusphere, Inc. | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
AU2003230189A1 (en) | 2003-01-29 | 2004-08-23 | Nitin Bhalachandra Dharmadhikari | Oral controlled release pharmaceutical composition containing metaxalone as active agent |
US8512727B2 (en) | 2003-03-03 | 2013-08-20 | Alkermes Pharma Ireland Limited | Nanoparticulate meloxicam formulations |
US7749533B2 (en) * | 2003-05-07 | 2010-07-06 | Akina, Inc. | Highly plastic granules for making fast melting tablets |
US20060141038A1 (en) * | 2003-06-27 | 2006-06-29 | Bioprogress S. P. A. | Composite product obtainable by cogrinding of a active principle with a copolymer n-vinyl-2 pyrrolidone/vinyl-acetate |
US20050042177A1 (en) | 2003-07-23 | 2005-02-24 | Elan Pharma International Ltd. | Novel compositions of sildenafil free base |
ATE415946T1 (de) | 2003-08-08 | 2008-12-15 | Elan Pharma Int Ltd | Neue metaxalon-zusammensetzungen |
US9149440B2 (en) | 2003-09-02 | 2015-10-06 | University Of South Florida | Nanoparticles for drug-delivery |
CA2539303C (fr) | 2003-10-01 | 2012-07-17 | Debio Recherche Pharmaceutique S.A. | Dispositif et procede pour la fabrication de particules |
ES2366646T3 (es) | 2003-11-05 | 2011-10-24 | Elan Pharma International Limited | Composiciones en forma de nanopartículas que tienen un péptido como estabilizante superficial. |
DK2110124T3 (da) | 2004-03-08 | 2013-10-21 | Spireas Spiridon | Biotilgængelige faste dosisformer af metaxalon |
EP1768647B1 (en) | 2004-06-17 | 2012-08-08 | Virun, Inc. | Compositions comprising a mucoadhesive protein and an active principle for mucosal delivery of said agent |
WO2006009419A1 (es) | 2004-07-19 | 2006-01-26 | Luis Cordova Boone | Neumáticos con doble banda de rodamiento |
KR20060024927A (ko) | 2004-09-15 | 2006-03-20 | 씨제이 주식회사 | 기계적 분쇄법에 의한 미크론 사이즈 인삼 분말의제조방법 |
WO2006041843A2 (en) | 2004-10-04 | 2006-04-20 | Dr. Reddy's Laboratories Ltd. | Pharmaceutical dosage form comprising meloxicam |
AU2005297923B2 (en) * | 2004-10-25 | 2010-12-23 | Japan Tobacco Inc. | Solid medicinal preparation improved in solubility and stability and process for producing the same |
CA2598204C (en) | 2004-11-09 | 2015-01-13 | Board Of Regents, The University Of Texas System | Stabilized hme composition with small drug particles |
UA89513C2 (uk) | 2004-12-03 | 2010-02-10 | Элан Фарма Интернешнл Лтд. | Стабільна композиція з наночастинок ралоксифену гідрохлориду |
CN101094659A (zh) | 2004-12-31 | 2007-12-26 | 伊休蒂卡有限公司 | 纳米微粒组合物及其合成方法 |
BRPI0608771A2 (pt) | 2005-05-10 | 2010-01-26 | Elan Pharma Int Ltd | formulações de clopidogrel em nanopartìcula |
JO3352B1 (ar) | 2005-06-17 | 2019-03-13 | Apr Applied Pharma Res Sa | صيغ دايكلوفيناك وطرق استخدامه |
US20080292584A1 (en) | 2005-10-14 | 2008-11-27 | Mutual Pharmaceutical Company, Inc. | Metaxalone products, method of manufacture, and method of use |
JP2009519970A (ja) | 2005-12-15 | 2009-05-21 | アキュスフィア, インコーポレイテッド | 粒子ベースの経口投与用製薬剤形の製造方法 |
DE602006009710D1 (de) | 2005-12-15 | 2009-11-19 | Acusphere Inc | Verfahren zur herstellung von pharmazeutischen formulierungen auf teilchenbasis zur parenteralen verabreichung |
EP1973523A2 (en) * | 2005-12-15 | 2008-10-01 | Acusphere, Inc. | Processes for making particle-based pharmaceutical formulations for pulmonary or nasal administration |
WO2007074477A2 (en) | 2005-12-29 | 2007-07-05 | Dabur Pharma Limited | Metaxalone polymorphs |
PT2012763E (pt) | 2006-04-28 | 2011-04-29 | Gruenenthal Gmbh | Combinação farmacêutica que compreende 3-(3-dimetilamino-1-etil-2-metil-propil)fenol e um aine |
US8420122B2 (en) | 2006-04-28 | 2013-04-16 | Merck Sharp & Dohme Corp. | Process for the precipitation and isolation of 6,6-dimethyl-3-aza-bicyclo [3.1.0] hexane-amide compounds by controlled precipitation and pharmaceutical formulations containing same |
KR20090023729A (ko) | 2006-06-23 | 2009-03-05 | 엘란 파마 인터내셔널 리미티드 | 나노입자형 멜록시캄 및 조절 방출형 하이드로코돈을 포함하는 조성물 |
EP2054042B8 (en) * | 2006-06-30 | 2020-06-10 | iCeutica Pty Ltd | Methods for the preparation of biologically active compounds in nanoparticulate form |
CN104288103B (zh) | 2006-06-30 | 2019-10-15 | 伊休蒂卡有限公司 | 用于制备纳米粒形式的生物活性化合物的方法 |
CN100386312C (zh) | 2006-07-18 | 2008-05-07 | 上海世景国际贸易有限公司 | 2,4-二氨基苯磺酸及其盐的合成方法 |
US20100003332A1 (en) | 2006-07-27 | 2010-01-07 | Amorepacific Corporation | Process For Preparing Powder Comprising Nanoparticles of Sparingly Soluble Drug |
GB0625322D0 (en) * | 2006-12-19 | 2007-01-24 | Pharmakodex Ltd | Pharmaceutical compositions |
PE20081891A1 (es) | 2007-03-22 | 2008-12-27 | Opko Health Inc | Formulaciones de comprimidos que contienen sales de 8-[{1-(3,5-bis-(trifluorometil)fenil)-etoxi}-metil]-8-fenil-1,7-diaza-spiro[4.5]decan-2-ona y comprimidos elaborados a partir de estas |
AR067997A1 (es) | 2007-08-24 | 2009-10-28 | Novartis Ag | Compuestos organicos |
US8568696B2 (en) | 2008-08-06 | 2013-10-29 | Indiana Nanotech Llc | Grinding method for the manipulation or preservation of calcium phosphate hybrid properties |
SG175768A1 (en) | 2009-04-24 | 2011-12-29 | Iceutica Pty Ltd | A novel formulation of meloxicam |
SG10201401720RA (en) | 2009-04-24 | 2014-06-27 | Iceutica Pty Ltd | A novel formulation of naproxen |
AP2015008933A0 (en) | 2009-04-24 | 2015-12-31 | Iceutica Pty Ltd | A novel formulation of diclofenac |
SG175312A1 (en) | 2009-04-24 | 2011-11-28 | Iceutica Pty Ltd | Method for the production of commercial nanoparticle and microparticle powders |
UA111138C2 (uk) | 2009-04-24 | 2016-04-11 | Айсьютіка Пті Лтд | Спосіб одержання композиції твердого біологічно активного матеріалу |
KR101679522B1 (ko) | 2009-04-24 | 2016-11-24 | 아이슈티카 피티와이 리미티드 | 생물학적 활성 물질의 용해 프로파일 개선방법 |
KR20150032759A (ko) | 2009-04-24 | 2015-03-27 | 아이슈티카 피티와이 리미티드 | 큰 용적 분율로 캅셀화된 나노입자의 생산 |
EP2421530B1 (en) | 2009-04-24 | 2019-08-21 | Iceutica Pty Ltd. | Formulation of metaxalone |
CN103932988A (zh) * | 2009-04-24 | 2014-07-23 | 伊休蒂卡有限公司 | 吲哚美辛的新剂型 |
JP2011005735A (ja) | 2009-06-25 | 2011-01-13 | Olympus Corp | 画像記録装置及び画像記録装置の初期化制御方法 |
-
2010
- 2010-04-23 CN CN201410140157.4A patent/CN103932988A/zh active Pending
- 2010-04-23 SG SG2011077468A patent/SG175315A1/en unknown
- 2010-04-23 MX MX2011011226A patent/MX351930B/es active IP Right Grant
- 2010-04-23 US US13/266,125 patent/US20120135048A1/en not_active Abandoned
- 2010-04-23 NZ NZ710384A patent/NZ710384A/en not_active IP Right Cessation
- 2010-04-23 UA UAA201113759A patent/UA106231C2/uk unknown
- 2010-04-23 NZ NZ595986A patent/NZ595986A/en not_active IP Right Cessation
- 2010-04-23 KR KR1020157005724A patent/KR101743847B1/ko active IP Right Grant
- 2010-04-23 AP AP2015008955A patent/AP2015008955A0/xx unknown
- 2010-04-23 AU AU2010239081A patent/AU2010239081C1/en not_active Ceased
- 2010-04-23 EA EA201171286A patent/EA201171286A1/ru unknown
- 2010-04-23 WO PCT/AU2010/000472 patent/WO2010121328A1/en active Application Filing
- 2010-04-23 CA CA2759125A patent/CA2759125C/en active Active
- 2010-04-23 NZ NZ620879A patent/NZ620879A/en not_active IP Right Cessation
- 2010-04-23 DK DK10766521.8T patent/DK2421513T3/en active
- 2010-04-23 EP EP10766521.8A patent/EP2421513B1/en active Active
- 2010-04-23 KR KR1020117027889A patent/KR20120101285A/ko active Application Filing
- 2010-04-23 MA MA34382A patent/MA33296B1/fr unknown
- 2010-04-23 MY MYPI2011005116A patent/MY159208A/en unknown
- 2010-04-23 SG SG10201401695VA patent/SG10201401695VA/en unknown
- 2010-04-23 JP JP2012506290A patent/JP6027890B2/ja not_active Expired - Fee Related
- 2010-04-23 KR KR1020147011503A patent/KR20140077945A/ko active Search and Examination
- 2010-04-23 CN CN201080018017XA patent/CN102438594A/zh active Pending
- 2010-04-23 BR BRPI1014275A patent/BRPI1014275B8/pt not_active IP Right Cessation
- 2010-04-23 AP AP2011005992A patent/AP3628A/xx active
-
2011
- 2011-10-23 IL IL215872A patent/IL215872A/en active IP Right Grant
- 2011-10-24 TN TNP2011000544A patent/TN2011000544A1/en unknown
- 2011-11-23 CO CO11160588A patent/CO6470807A2/es not_active Application Discontinuation
- 2011-11-24 ZA ZA2011/08646A patent/ZA201108646B/en unknown
-
2013
- 2013-02-25 US US13/776,536 patent/US8734847B2/en active Active
-
2014
- 2014-01-06 US US14/148,635 patent/US9095496B2/en active Active
- 2014-05-20 US US14/282,915 patent/US8992982B2/en active Active
- 2014-05-22 US US14/284,981 patent/US9089471B2/en active Active
- 2014-11-10 JP JP2014227872A patent/JP6043329B2/ja not_active Expired - Fee Related
-
2015
- 2015-07-27 US US14/810,240 patent/US9522135B2/en active Active
-
2016
- 2016-08-01 IL IL247034A patent/IL247034A/en active IP Right Grant
- 2016-09-12 JP JP2016177675A patent/JP6239709B2/ja not_active Expired - Fee Related
- 2016-12-19 US US15/384,174 patent/US9849111B2/en active Active
-
2017
- 2017-12-22 US US15/852,596 patent/US10172828B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4200631A (en) * | 1975-12-17 | 1980-04-29 | Richter Gedeon Vegyeszeti Gyar Rt. | Treating mammalian subject sensitive to indomethacin ulcerogenisis |
US4606909A (en) * | 1981-11-20 | 1986-08-19 | A/S Alfred Benzon | Pharmaceutical multiple-units formulation |
US20100016597A1 (en) * | 2007-04-06 | 2010-01-21 | Activus Pharma Co., Ltd. | Method for producing pulverized organic compound particle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734847B2 (en) | 2009-04-24 | 2014-05-27 | Iceutica Py Ltd. | Formulation of indomethacin |
US9849111B2 (en) | 2009-04-24 | 2017-12-26 | Iceutica Pty Ltd. | Formulation of indomethacin |
US10172828B2 (en) | 2009-04-24 | 2019-01-08 | Iceutica Pty Ltd. | Formulation of indomethacin |
WO2017136617A1 (en) | 2016-02-04 | 2017-08-10 | Cinrx Pharma, Llc | Deuterated domperidone compositions and methods for therapy of disorders |
WO2019006078A1 (en) | 2016-02-04 | 2019-01-03 | Cinrx Pharma, Llc | DETERERATED DOMPERIDONE COMPOSITIONS, METHODS AND PREPARATION |
US10590110B2 (en) | 2016-02-04 | 2020-03-17 | CinDome Pharma, LLC | Deuterated domperidone compositions, methods, and preparation |
US11364226B2 (en) | 2017-06-30 | 2022-06-21 | Cinrx Pharma, Llc | Deuterated domperidone compositions, methods, and preparation |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10172828B2 (en) | Formulation of indomethacin | |
US20180296514A1 (en) | Novel formulation of diclofenac | |
AU2016200397B2 (en) | A Novel Formulation of Indomethacin | |
AU2014202776B2 (en) | A Novel Formulation of Indomethacin | |
AU2014208310A1 (en) | A Novel Formulation of Diclofenac |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ICEUTICA PTY LTD., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DODD, AARON;REEL/FRAME:030912/0290 Effective date: 20100601 Owner name: ICEUTICA PTY LTD., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSCH, H. WILLIAM;REEL/FRAME:030912/0407 Effective date: 20090423 Owner name: ICEUTICA PTY LTD., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEISER, FELIX;NORRET, MARCK;RUSSELL, ADRIAN;REEL/FRAME:030912/0145 Effective date: 20100601 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |