US20110076816A1 - Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing - Google Patents

Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing Download PDF

Info

Publication number
US20110076816A1
US20110076816A1 US12/961,193 US96119310A US2011076816A1 US 20110076816 A1 US20110076816 A1 US 20110076816A1 US 96119310 A US96119310 A US 96119310A US 2011076816 A1 US2011076816 A1 US 2011076816A1
Authority
US
United States
Prior art keywords
gate
region
erase
floating gate
gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/961,193
Other versions
US7927994B1 (en
Inventor
Xian Liu
Amitay Levi
Alexander Kotov
Yuri Tkachev
Viktor Markov
James Yingbo Jia
Chien-Sheng Su
Yaw Wen Hu
Original Assignee
Xian Liu
Amitay Levi
Alexander Kotov
Yuri Tkachev
Viktor Markov
James Yingbo Jia
Chien-Sheng Su
Yaw Wen Hu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/834,574 priority Critical patent/US20090039410A1/en
Priority to US12/618,632 priority patent/US7868375B2/en
Application filed by Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien-Sheng Su, Yaw Wen Hu filed Critical Xian Liu
Priority to US12/961,193 priority patent/US7927994B1/en
Publication of US20110076816A1 publication Critical patent/US20110076816A1/en
Application granted granted Critical
Publication of US7927994B1 publication Critical patent/US7927994B1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILICON STORAGE TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL CORPORATION, MICROCHIP TECHNOLOGY INCORPORATED, MICROSEMI CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., SILICON STORAGE TECHNOLOGY, INC.
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATMEL CORPORATION, MICROCHIP TECHNOLOGY INCORPORATED, MICROSEMI CORPORATION, MICROSEMI STORAGE SOLUTIONS, INC., SILICON STORAGE TECHNOLOGY, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • H01L27/115Electrically programmable read-only memories; Multistep manufacturing processes therefor
    • H01L27/11517Electrically programmable read-only memories; Multistep manufacturing processes therefor with floating gate
    • H01L27/11521Electrically programmable read-only memories; Multistep manufacturing processes therefor with floating gate characterised by the memory core region
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling

Abstract

An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 11/834,574, filed Aug. 6, 2007, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a non-volatile flash memory cell which has a select gate, a floating gate, a control gate, and an erase gate having an overhang with the floating gate in a certain dimensional ratio. The present invention also relates to an array of such flash memory cells, and methods of manufacturing such cell and array.
  • BACKGROUND OF THE INVENTION
  • Split gate non-volatile flash memory cells having a select gate, a floating gate, a control gate and an erase gate are well known in the art. See for example U.S. Pat. No. 6,747,310. An erase gate having an overhang over the floating gate is also well know in the art. See for example, U.S. Pat. No. 5,242,848. Both of the foregoing disclosures are incorporated herein by reference in their entirety.
  • Heretofore, the prior art has failed to teach or disclose that an overhang of the erase gate to the floating gate within certain limitations enhances the erase efficiency.
  • Accordingly, it is one of the objectives of the present invention to improve the erase efficiency of such a cell by certain dimensional relationship between the erase gate and the floating gate.
  • SUMMARY OF THE INVENTION
  • In the present invention, a split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate insulated and spaced apart from a first portion of the channel region. The cell further has a floating gate insulated and spaced apart from a second portion of the channel region. The floating gate has a first end closest to the select gate and a second end furthest away from the select gate. An erase gate is insulated and spaced apart from the substrate and is closest to the second end of the floating gate. A control gate is insulated and spaced apart from the floating gate, the select gate and the erase gate and is positioned above the floating gate and is between the erase gate and the select gate. The erase gate further has two electrically connected portions: a first portion laterally adjacent to and insulated from the second end of the floating gate and a second portion overlying and insulated from the floating gate and is adjacent to the control gate. The second portion of the erase gate is separated from the floating gate by a first length measured in a direction substantially perpendicular to the direction from the first region to the second region. The second portion of the erase gate has an end closest to the control gate, and the first portion of the erase gate has an end closest to the floating gate. The second portion of the erase gate overlies the floating gate by a second length measured from the end of the second portion of the erase gate closest to the control gate to the end of the first portion of the erase gate closest to the floating gate in a direction substantially perpendicular to the first length direction. Finally, the ratio of the second length to the first length is between approximately 1.0 and 2.5.
  • The present invention also relates to an array of the foregoing memory cells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a cross sectional view of an improved non-volatile memory cell of the present invention.
  • FIG. 1B is an enlarged view of a portion of the cell shown in FIG. 1A, wherein the dimensional relationship between the overhang of the erase gate to the floating gate is shown in greater detail.
  • FIG. 2 is a graph showing the improvement to erase efficiency by the improved cell of the present invention.
  • FIGS. 3(A-L) are cross sectional views of one process to make one embodiment the memory cell of the present invention.
  • FIGS. 4(A-L) are cross sectional views of another process to make another embodiment of the memory cell of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1A there is shown a cross-sectional view of an improved non-volatile memory cell 10 of the present invention. The memory cell 10 is made in a substantially single crystalline substrate 12, such as single crystalline silicon, which is of P conductivity type. Within the substrate 12 is a first region 14 of a second conductivity type. If the first conductivity type is P then the second conductivity type is N. Spaced apart from the first region is a second region 16 of the second conductivity type. Between the first region 14 and the second region 16 is a channel region 18, which provides for the conduction of charges between the first region 14 and the second region 16.
  • Positioned above, and spaced apart and insulated from the substrate 12 is a select gate 20, also known as the word line 20. The select gate 20 is positioned over a first portion of the channel region 18. The first portion of the channel region 18, immediately abuts the first region 14. Thus, the select gate 20 has little or no overlap with the first region 14. A floating gate 22 is also positioned above and is spaced apart and is insulated from the substrate 12. The floating gate 22 is positioned over a second portion of the channel region 18 and a portion of the second region 16. The second portion of the channel region 18 is different from the first portion of the channel region 18. Thus, the floating gate 22 is laterally spaced apart and is insulated from and is adjacent to the select gate 20. An erase gate 24 is positioned over and spaced apart from the second region 16, and is insulated from the substrate 12. The erase gate 24 is laterally insulated and spaced apart from the floating gate 22. The select gate 20 is to one side of the floating gate 22, with the erase gate 24 to another side of the floating gate 22. Finally, positioned above the floating gate 22 and insulated and spaced apart therefrom is a control gate 26. The control gate 26 is insulated and spaced apart from the erase gate 24 and the select gate 20 and is positioned between the erase gate 24 and the select gate 20. Thus far, the foregoing description of the memory cell 10 is disclosed in U.S. Pat. No. 6,747,310.
  • In the improvement of the present invention, the erase gate 24 has a portion that overhangs the floating gate 22. This is shown in greater detail in FIG. 1B. The erase gate 24 comprises of two parts that are electrically connected. In the preferred embodiment, the two parts form a monolithic structure, although it is within the present invention that the two parts can be separate parts and electrically connected. A first part of the erase gate 24 is immediately laterally adjacent to the floating gate 22 and is above the second region 16. The first part of the erase gate 24 has an end 32 that is closest to the floating gate 22. The second part of the erase gate 24 is laterally adjacent to the control gate 26 and overhangs a portion of the floating gate 22. The second part of the erase gate has an end 34 that is closest to the control gate 26. The horizontal distance (as measured in the direction between the first region 14 and the second region 16) between the end 34 and the end 32 is called “EG Overhang” as shown in FIG. 1B. The second part of the erase gate 24 which is laterally adjacent to the control gate 26 and overhangs the floating gate 22 is also vertically spaced apart from the floating gate 22. The vertical distance between the floating gate 22 and the second part of the erase gate 24, as measured in the “vertical” direction is called “Tox” as shown in FIG. 1B. The vertical distance of “Tox” is measured in a direction that is substantially perpendicular to the horizontal distance “EG Overhang”.
  • As described in U.S. Pat. No. 6,747,310, the memory cell 10 erases by electrons tunneling through the Fowler-Nordheim mechanism, from the floating gate 22 to the erase gate. Further, to improve the erase mechanism, the floating gate 22 may have a sharp corner closest to the erase gate 24 to enhance the local electrical field during erase and in turn enhance the flow of electrons from the corner of the floating gate 22 to the erase gate 24. It has been found that erase efficiency is enhanced when the ratio of “EG Overhang” to “Tox” is between approximately 1.0 and 2.5. This is shown in FIG. 2. Referring to FIG. 2, there is shown a graph 30 of FTV, CR, and Verase as functions of the ratio of “EG overhang”/“Tox”. Verase is the voltage applied to the erase gate 24 during the erase operation, which can sufficiently erase the cell to “1” state. Verase=(FTV+QFG/Ctotal)/(1−CR). Ctotal is the total capacitance between the floating gate 22 and all surrounding nodes. CR is the coupling ratio between the erase gate 24 and the floating gate 22. CR=CEG-FG/Ctotal, where CEG-FG is the capacitance between the erase gate 24 and the floating gate 22. QFG is the net charge on the floating gate which corresponds to “1” state. FTV is the voltage difference between the erase gate 24 and the floating gate 22 required to erase the cell to “1” state. When “EG overhang” is significantly smaller than “Tox”, the electron tunneling barrier in the tunnel oxide adjacent to the corner of floating gate 22 is electrically exposed to the lower potential of the nearby coupling gate 26, resulting in an increase of FTV, and in turn an increase of Verase. When “EG overhang” is significantly larger than “Tox”, CR is increased, which also in turn increases Verase. As shown in FIG. 2, the graph 30 shows a minimum of Verase when “EG Overhang”/“Tox” is at approximately 1.6. With Verase requirement reduced, the requirement on the charge pump is similarly reduced. Thus, erase efficiency is enhanced.
  • There are two embodiments of the memory cell 10 of the present invention. The select gate 20 of the memory cell 10 is separated from the floating gate by an insulating region W1. In the first embodiment of the memory cell 10, the region W1 is silicon dioxide. This is called the cell 10 option A. In the second embodiment of the memory cell 10, the region W1 is a composite layer comprising silicon dioxide, silicon nitride, and silicon dioxide, and this embodiment is called the cell 10 option B.
  • Referring to FIGS. 3(A-L) there is shown cross-sectional views of the steps in the process to make a cell 10 option A of the present invention. Commencing with FIG. 3A, there is shown the formation of a layer of silicon dioxide 40 on the substrate 12 of P type single crystalline silicon. For the 90 n nm (or 120 nm) process, the layer 40 of silicon dioxide is on the order of 80-100 angstroms. Thereafter a first layer 42 of polysilicon (or amorphous silicon) is deposited or formed on the layer 40 of silicon dioxide. Again for purpose of explanation for the 90 nm process, the first layer 42 of polysilicon is on the order of 300-800 angstroms. The first layer 42 of polysilicon is subsequently patterned in a direction perpendicular to the select gate 20.
  • Referring to FIG. 3B there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. Another insulating layer 44, such as silicon dioxide (or even a composite layer, such as ONO) is deposited or formed on the first layer 42 of polysilicon. Depending on whether the material is silicon dioxide or ONO, the layer 44 can be on the order of 100-200 angstroms. A second layer 46 of polysilicon is then deposited or formed on the layer 44. The second layer 46 of polysilicon is on the order of 500-4000 angstroms thick. Another layer 48 of insulator is deposited or formed on the second layer 46 of polysilicon and used as a hard mask during subsequent dry etching. In the preferred embodiment, the layer 48 is a composite layer, comprising silicon nitride 48 a, silicon dioxide 48 b, and silicon nitride 48 c. In the preferred embodiment for the 90 nm process, the dimensions are 200-600 angstroms for layer 48 a, 200-600 angstroms for layer 48 b, and 500-3000 angstroms for layer 48 c.
  • Referring to FIG. 3C there is shown a cross sectional view of the next step in the process of making the cell 10 option A of the present invention. Photoresist material (not shown) is deposited on the structure shown in FIG. 3B, and a masking step is formed exposing selected portions of the photoresist material. The photoresist is developed and using the photoresist as a mask, the structure is etched. The composite layer 48, the second layer 46 of polysilicon, the insulating layer 44 are then anisotropically etched, until the first layer 42 of polysilicon is exposed. The resultant structure is shown in FIG. 3C. Although only two “stacks”: S1 and S2 are shown, it should be clear that there are number of such “stacks” that are separated from one another.
  • Referring to FIG. 3D there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. Silicon dioxide 49 is deposited or formed on the structure. This is followed by the deposition of silicon nitride layer 50. The silicon dioxide 49 and silicon nitride 50 are anisotropically etched leaving a spacer 51 (which is the combination of the silicon dioxide 49 and silicon nitride 50) around each of the stacks S1 and S2. The resultant structure is shown in FIG. 3D.
  • Referring to FIG. 3E there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. A photoresist mask is formed over the regions between the stacks S1 and S2, and other alternating pairs stacks. For the purpose of this discussion, this region between the stacks S1 and S2 will be called the “inner region” and the regions not covered by the photoresist, shall be referred to as the “outer regions”. The exposed first polysilicon 42 in the outer regions is anisotropically etched. The oxide layer 40 is similarly anisotropically etched. The resultant structure is shown in FIG. 3E.
  • Referring to FIG. 3F there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. The photoresist material is removed from the structure shown in FIG. 3E. A layer of oxide 52 is then deposited or formed. The oxide layer 52 is then subject to an anisotropical etch leaving spacers 52, adjacent to the stacks S1 and S2. The resultant structure is shown in FIG. 3F.
  • Referring to FIG. 3G there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. Photoresist material is then deposited and is masked leaving openings in the inner regions between the stacks S1 and S2. Again, similar to the drawing shown in FIG. 3E, the photoresist is between other alternating pairs of stacks. The polysilicon 42 in the inner regions between the stacks S1 and 52 (and other alternating pairs of stacks) is anisotropically etched. The silicon dioxide layer 40 beneath the polysilicon 42 may also be anisotropically etched. The resultant structure is subject to a high voltage ion implant forming the second regions 16. The resultant structure is shown in FIG. 3G.
  • Referring to FIG. 3H there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. The oxide spacer 52 adjacent to the stacks S1 and S2 in the inner region is removed by e.g. a wet etch or a dry isotropic etch. The resultant structure is shown in FIG. 3H.
  • Referring to FIG. 3I there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. The photoresist material in the outer regions of the stacks S1 and S2 is removed. Silicon dioxide 54 is deposited or formed everywhere. The resultant structure is shown in FIG. 3I.
  • Referring to FIG. 3J there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. The structure is once again covered by photoresist material and a masking step is performed exposing the outer regions of the stacks S1 and S2 and leaving photoresist material covering the inner region between the stacks S1 and S2. An oxide anisotropical etch is performed, to reduce the thickness of the spacer 54 in the outer regions of the stack S1 and S2, and to completely remove silicon dioxide from the exposed silicon substrate 12 in the outer regions. The resultant structure is shown in FIG. 3J.
  • Referring to FIG. 3K there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. A thin layer 56 of silicon dioxide, on the order of 20-100 angstroms, is formed on the structure. This oxide layer 56 is the gate oxide between the select gate and the substrate 12. the resultant structure is shown in FIG. 3K.
  • Referring to FIG. 3L there is shown a cross sectional view of the next steps in the process of making the cell 10 option A of the present invention. Polysilicon 60 is deposited everywhere. The layer 60 of polysilicon is then subject to an anisotropical etch forming spacers in the outer regions of the stack S1 and S2 which form the select gates 20 of two memory cells 10 adjacent to one another sharing a common second region 16. In addition, the spacers within the inner regions of the stacks S1 and S2 are merged together forming a single erase gate 24 which is shared by the two adjacent memory cells 10. A layer of insulator 62 is deposited on the structure, and etched anisotropically to form spacers 62 next to the select gates 20. In the preferred embodiment, insulator 62 is a composite layer comprising silicon dioxide and silicon nitride. Thereafter, an ion implant step is performed forming the first regions 14. Each of these memory cells on another side share a common first region 14. Insulators and metallization layers are subsequently deposited and patterned to form bit line 70 and bit line contacts 72.
  • Referring to FIGS. 4(A-L) there is shown cross-sectional views of the steps in the process to make a cell 10 option B of the present invention. The steps and the description set forth hereinafter are similar to the steps and description above for the method of forming the memory cells 10 option A shown and described in FIGS. 3(A-L). Thus, the same numbers will be used for the same parts. Commencing with FIG. 4A, there is shown the formation of a layer of silicon dioxide 40 on the substrate 12 of P type single crystalline silicon. For the 90 nm process, the layer 40 of silicon dioxide is on the order of 80-100 angstroms. Thereafter a first layer 42 of polysilicon (or amorphous silicon) is deposited or formed on the layer 40 of silicon dioxide. Again for purpose of explanation for the 90 nm process, the first layer 42 of polysilicon is on the order of 300-800 angstroms. The first layer 42 of polysilicon is subsequently patterned in a direction perpendicular to the select gate 20.
  • Referring to FIG. 4B there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. Another insulating layer 44, such as silicon dioxide (or even a composite layer, such as ONO) is deposited or formed on the first layer 42 of polysilicon. Depending on whether the material is silicon dioxide or ONO, the layer 44 can be on the order of 100-200 angstroms. A second layer 46 of polysilicon is then deposited or formed on the layer 44. The second layer 46 of polysilicon is on the order of 500-4000 angstroms thick. Another layer 48 of insulator is deposited or formed on the second layer 46 of polysilicon and used as a hard mask during subsequent dry etching. In the preferred embodiment, the layer 48 is a composite layer, comprising silicon nitride 48 a, silicon dioxide 48 b, and silicon nitride 48 c. In the preferred embodiment for the 90 nm process, the dimensions are 200-600 angstroms for layer 48 a, 200-600 angstroms for layer 48 b, and 500-3000 angstroms for layer 48 c.
  • Referring to FIG. 4C there is shown a cross sectional view of the next step in the process of making the cell 10 option B of the present invention. Photoresist material (not shown) is deposited on the structure shown in FIG. 4B, and a masking step is formed exposing selected portions of the photoresist material. The photoresist is developed and using the photoresist as a mask, the structure is etched. The composite layer 48, the second layer 46 of polysilicon, the insulating layer 44 are then anisotropically etched, until the first layer 42 of polysilicon is exposed. The resultant structure is shown in FIG. 4C. Although only two “stacks”: S1 and S2 are shown, it should be clear that there are number of such “stacks” that are separated from one another.
  • Referring to FIG. 4D there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. A photoresist mask is formed over the regions between the stacks S1 and S2, and other alternating pairs stacks. For the purpose of this discussion, this region between the stacks S1 and S2 will be called the “inner region” and the regions not covered by the photoresist, shall be referred to as the “outer regions”. The exposed first polysilicon 42 in the outer regions is anisotropically etched. The oxide layer 40 is similarly anisotropically etched. The resultant structure is shown in FIG. 4D.
  • Referring to FIG. 4E there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. Silicon dioxide 49 is deposited or formed on the structure. This is followed by the deposition of silicon nitride layer 50. The silicon dioxide 49 and silicon nitride 50 are anisotropically etched leaving a spacer 51 (which is the combination of the silicon dioxide 49 and silicon nitride 50) around each of the stacks S1 and S2 (and all the other spaced apart stacks which are not shown). The resultant structure is shown in FIG. 4E.
  • Referring to FIG. 4F there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. A layer of oxide 52 is then deposited or formed. The oxide layer 52 is then subject to an anisotropical etch leaving spacers 52, adjacent to the stacks S1 and S2. The resultant structure is shown in FIG. 4F.
  • Referring to FIG. 4G there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. Photoresist material is then deposited and is masked leaving openings in the inner regions between the stacks S1 and S2. Again, the photoresist is between other alternating pairs of stacks. The polysilicon 42 in the inner regions between the stacks S1 and S2 (and other alternating pairs of stacks) is anisotropically etched. The silicon dioxide layer 40 beneath the polysilicon 42 may also be anisotropically etched. The resultant structure is subject to a high voltage ion implant forming the second regions 16. The resultant structure is shown in FIG. 4G.
  • Referring to FIG. 4H there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. The oxide spacer 52 adjacent to the stacks S1 and S2 in the inner region is removed by e.g. a wet etch or a dry isotropic etch. The resultant structure is shown in FIG. 4H.
  • Referring to FIG. 4I there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. The photoresist material in the outer regions of the stacks S1 and S2 is removed. Silicon dioxide 54 is deposited or formed everywhere. The resultant structure is shown in FIG. 4I.
  • Referring to FIG. 4J there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. The structure is once again covered by photoresist material and a masking step is performed exposing the outer regions of the stacks S1 and S2 and leaving photoresist material covering the inner region between the stacks S1 and S2. An oxide anisotropical etch is performed, to reduce the thickness of the oxide spacer 54 in the outer regions of the stack S1 and S2, and to completely remove silicon dioxide from the exposed silicon substrate 12 in the outer regions. The resultant structure is shown in FIG. 4J.
  • Referring to FIG. 4K there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. A thin layer 56 of silicon dioxide, on the order of 20-100 angstroms, is formed on the structure. This oxide layer 56 is the gate oxide between the select gate and the substrate 12. the resultant structure is shown in FIG. 4J.
  • Referring to FIG. 4L there is shown a cross sectional view of the next steps in the process of making the cell 10 option B of the present invention. Polysilicon 60 is deposited everywhere. The layer 60 of polysilicon is then subject to an anisotropical etch forming spacers in the outer regions of the stack S1 and S2 which form the select gates 20 of two memory cells 10 adjacent to one another sharing a common second region 16. In addition, the spacers within the inner regions of the stacks S1 and S2 are merged together forming a single erase gate 24 which is shared by the two adjacent memory cells 10. A layer of insulator 62 is deposited on the structure, and etched anisotropically to form spacers 62 next to the select gates 20. In the preferred embodiment, insulator 62 is a composite layer comprising silicon dioxide and silicon nitride. Thereafter, an ion implant step is performed forming the first regions 14. Each of these memory cells on another side share a common first region 14. Insulators and metallization layers are subsequently deposited and patterned to form bit line 70 and bit line contacts 72.
  • The operations of program, read and erase and in particular the voltages to be applied may be the same as those as set forth in U.S. Pat. No. 6,747,310, whose disclosure is incorporated herein by reference in its entirety.
  • However, the operating conditions may also be different. For example, for erase operation, the following voltages may be applied.
  • WL (20) BL (70) SL (16) CG (26) EG (24) Un- Un- Un- Un- Un- Select select Select select Select select Select select Select select 0 v 0 v 0 v 0 v 0 v 0 v 0 v or 0 v 9-11 v 0 v −6 to or −9 v 7-9 v

    During erase, a negative voltage on the order of −6 to −9 volts may be applied to the select control gate 26. In that event, the voltage applied to the select erase gate 24 may be lowered to approximately 7-9 volts. The “overhang” of the erase gate 24 shields the tunneling barrier from the negative voltage applied to the select control gate 26.
  • For programming, the following voltages may be applied.
  • WL (20) BL (70) SL (16) CG (26) EG (24) Un- Un- Un- Un- Un- Select select Select select Select select Select select Select select 1-2 v 0 v 0.5- 1.5- 3-6 v 0 v 6-9 v 0 v 6-9 v 0 v 5 uA 3 v

    During programming, the selected cell is programmed through efficient hot-electron injection with the portion of the channel under the floating gate in inversion. The medium voltage of 3-6 volts is applied to the select SL to generate the hot electrons. The select control gate 26 and erase gate 24 are biased to a high voltage (6-9 volts) to utilize the high coupling ratio and to maximize the voltage coupling to the floating gate. The high voltage coupled to the floating gate induces FG channel inversion and concentrates lateral field in the split area to generate hot electrons more effectively. In addition, the voltages provide a high vertical field to attract hot electron into the floating gate and reduce injection energy barrier.
  • For reading, the following voltages may be applied.
  • WL (20) BL (70) SL (16) CG (26) EG (24) Un- Un- Un- Un- Un- Select select Select select Select select Select select Select select 1.5- 0 v 0.5- 0 v 0 v 0 v 0 v- 0 v 0 v- 0 v 3.7 v 1.5 v 3.7 V 3.7 V

    During read, depending upon the balance between program and read operations, the voltages on the select control gate 26 and the select erase gate 24 can be balanced because each is coupled to the floating gate. Thus, the voltages applied to each of the select control gate 26 and select erase gate 24 can be a combination of voltages ranging from 0 to 3.7V to achieve optimum window. In addition, because voltage on the select control gate is unfavorable due to the RC coupling, voltages on the select erase gate 24 can result in a faster read operation.

Claims (8)

1-11. (canceled)
12. A process of fabricating an array of non-volatile memory cells comprising:
forming a plurality of first region and second region spaced apart therefrom of a second conductivity type in a substrate of a first conductivity type;
forming staked pairs of control gates and floating gates above the substrate on opposite sides of the first region, with each stacked pair having a control gate position above a floating gate, positioned above the substrate, with each of the floating gate and control gate having a length measured in a direction from the first region to the second region, and with the control gate having a length less than the length of the floating gate with each floating gate closest to the first region having an exposed portion not covered above by the control gate, and having a tip, with a tunneling barrier covering said tip;
forming an erase gate above the first region on the substrate between a stacked pair of control gate and floating gate, with said erase gate having two portions: a first portion between the exposed portions of the floating gates and insulated therefrom, and having a first end closest to the floating gate; and a second portion electrically connected to the first portion, said second portion above the exposed portion of the floating gate and insulated therefrom by said tunneling barrier, shielding the tunneling barrier from the control gate, wherein said second portion of the erase gate separated from the floating gate by a first length measured in a direction substantially perpendicular to the length direction; said second portion having a first end closest to the control gate, said second portion of the erase gate having a second length measured from the first end of the second portion of the erase gate to a vertical line aligned with the first end of the first portion of the erase gate in a direction substantially parallel to the length direction; wherein said ratio of the second length to the first length is between approximately 1.0 and 2.5;
forming select gates above the substrate and between the stacked pair of control gate and floating gate and the second region.
13. The process of claim 12 wherein said select gates and said erase gates are formed in the same step.
14. The process of claim 13 wherein said selected gates and said erase gates are formed by depositing a layer of silicon over, between and beside the stacked gates, and removing portions of the silicon above the stacked gates and above the second regions.
15. The process of claim 12 wherein said first region is formed after the stacked pairs of control gates and floating gates are formed.
16. The process of claim 15 wherein said second region is formed after the select gates and erase gates are formed.
17. The process of claim 16 wherein said first regions and second regions are formed by ion implantation.
18-19. (canceled)
US12/961,193 2007-08-06 2010-12-06 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing Active US7927994B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/834,574 US20090039410A1 (en) 2007-08-06 2007-08-06 Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US12/618,632 US7868375B2 (en) 2007-08-06 2009-11-13 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing
US12/961,193 US7927994B1 (en) 2007-08-06 2010-12-06 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/961,193 US7927994B1 (en) 2007-08-06 2010-12-06 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing
US13/023,443 US20110127599A1 (en) 2007-08-06 2011-02-08 Split Gate Non-volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/618,632 Division US7868375B2 (en) 2007-08-06 2009-11-13 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/023,443 Division US20110127599A1 (en) 2007-08-06 2011-02-08 Split Gate Non-volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing

Publications (2)

Publication Number Publication Date
US20110076816A1 true US20110076816A1 (en) 2011-03-31
US7927994B1 US7927994B1 (en) 2011-04-19

Family

ID=40345645

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/834,574 Abandoned US20090039410A1 (en) 2007-08-06 2007-08-06 Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US12/618,632 Active US7868375B2 (en) 2007-08-06 2009-11-13 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing
US12/961,193 Active US7927994B1 (en) 2007-08-06 2010-12-06 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing
US13/023,443 Abandoned US20110127599A1 (en) 2007-08-06 2011-02-08 Split Gate Non-volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/834,574 Abandoned US20090039410A1 (en) 2007-08-06 2007-08-06 Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US12/618,632 Active US7868375B2 (en) 2007-08-06 2009-11-13 Split gate non-volatile flash memory cell having a floating gate, control gate, select gate and an erase gate with an overhang over the floating gate, array and method of manufacturing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/023,443 Abandoned US20110127599A1 (en) 2007-08-06 2011-02-08 Split Gate Non-volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing

Country Status (5)

Country Link
US (4) US20090039410A1 (en)
JP (1) JP5361292B2 (en)
KR (1) KR20090014967A (en)
CN (3) CN101364614B (en)
TW (1) TWI393263B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028358A1 (en) * 2011-08-24 2013-02-28 Silicon Storage Technology, Inc. A method of making a split gate non-volatile floating gate memory cell having a separate erase gate, and a memory cell made thereby
WO2015142440A1 (en) * 2014-03-17 2015-09-24 Silicon Storage Technology, Inc. Embedded memory device on bulk/soi hybrid substrate, and method of making same
US20160336415A1 (en) * 2015-05-15 2016-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell structure for improving erase speed
KR101759814B1 (en) 2013-03-14 2017-07-19 실리콘 스토리지 테크놀로지 인크 Low leakage, low threshold voltage, split-gate flash cell operation
WO2017200709A1 (en) * 2016-05-18 2017-11-23 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell
US10276696B2 (en) 2016-05-18 2019-04-30 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
JP5503843B2 (en) * 2007-12-27 2014-05-28 ルネサスエレクトロニクス株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
US20090267130A1 (en) * 2008-04-28 2009-10-29 International Business Machines Corporation Structure and process integration for flash storage element and dual conductor complementary mosfets
CN101882576B (en) * 2009-05-06 2012-03-14 中芯国际集成电路制造(北京)有限公司 Method for improving efficiency of erasing floating gate
US8445953B2 (en) * 2009-07-08 2013-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. Structure for flash memory cells
US8470670B2 (en) * 2009-09-23 2013-06-25 Infineon Technologies Ag Method for making semiconductor device
CN102097384B (en) * 2009-12-15 2013-05-29 中芯国际集成电路制造(上海)有限公司 Method for manufacturing storage device
CN102104044B (en) * 2009-12-17 2013-02-27 中芯国际集成电路制造(上海)有限公司 Separate gate flash memory and manufacturing method thereof
CN102263064A (en) * 2010-05-28 2011-11-30 中芯国际集成电路制造(上海)有限公司 Method for forming discrete grid storage device
CN102386141B (en) * 2010-08-27 2013-10-30 中芯国际集成电路制造(上海)有限公司 Method for preventing collapse of stacked grid line in split grid flash memory
CN102543885A (en) * 2010-12-31 2012-07-04 中芯国际集成电路制造(上海)有限公司 Split-gate memory device and forming method thereof
CN102610575A (en) * 2011-01-21 2012-07-25 中芯国际集成电路制造(上海)有限公司 Method for manufacturing separated gate electrode type flash memory unit
KR101787488B1 (en) 2011-03-24 2017-10-19 삼성전자주식회사 Non-volatile memory device and method of forming the same
US8384147B2 (en) * 2011-04-29 2013-02-26 Silicon Storage Technology, Inc. High endurance non-volatile memory cell and array
US8711636B2 (en) * 2011-05-13 2014-04-29 Silicon Storage Technology, Inc. Method of operating a split gate flash memory cell with coupling gate
CN102956562B (en) * 2011-08-22 2015-04-29 中芯国际集成电路制造(上海)有限公司 Memory device forming method
CN102969346B (en) * 2011-08-31 2016-08-10 硅存储技术公司 There is band and improve floating boom and the Nonvolatile memery unit of coupling grid of coupling ratio
CN102270608B (en) * 2011-09-01 2016-12-28 上海华虹宏力半导体制造有限公司 Manufacturing method of split-gate type flash memory
CN102299157B (en) * 2011-09-01 2016-08-03 上海华虹宏力半导体制造有限公司 Gate-division type flash memory and manufacture method thereof
US8488388B2 (en) * 2011-11-01 2013-07-16 Silicon Storage Technology, Inc. Method of programming a split gate non-volatile floating gate memory cell having a separate erase gate
US8513728B2 (en) 2011-11-17 2013-08-20 Silicon Storage Technology, Inc. Array of split gate non-volatile floating gate memory cells having improved strapping of the coupling gates
US8804429B2 (en) 2011-12-08 2014-08-12 Silicon Storage Technology, Inc. Non-volatile memory device and a method of programming such device
CN103178018A (en) * 2011-12-22 2013-06-26 中芯国际集成电路制造(上海)有限公司 Method for manufacturing separation gate quick-flashing memory unit
US9330922B2 (en) 2012-03-07 2016-05-03 Silicon Storage Technology, Inc. Self-aligned stack gate structure for use in a non-volatile memory array and a method of forming such structure
US8811093B2 (en) * 2012-03-13 2014-08-19 Silicon Storage Technology, Inc. Non-volatile memory device and a method of operating same
US8878281B2 (en) 2012-05-23 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for non-volatile memory cells
US8890230B2 (en) 2012-07-15 2014-11-18 United Microelectronics Corp. Semiconductor device
US9466732B2 (en) * 2012-08-23 2016-10-11 Silicon Storage Technology, Inc. Split-gate memory cell with depletion-mode floating gate channel, and method of making same
US8785307B2 (en) 2012-08-23 2014-07-22 Silicon Storage Technology, Inc. Method of forming a memory cell by reducing diffusion of dopants under a gate
US9018690B2 (en) * 2012-09-28 2015-04-28 Silicon Storage Technology, Inc. Split-gate memory cell with substrate stressor region, and method of making same
CN103715144B (en) * 2012-09-29 2016-02-17 中芯国际集成电路制造(上海)有限公司 Discrete grid storage device and forming method thereof
US9123401B2 (en) 2012-10-15 2015-09-01 Silicon Storage Technology, Inc. Non-volatile memory array and method of using same for fractional word programming
US8669607B1 (en) * 2012-11-01 2014-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for non-volatile memory cells with increased programming efficiency
JP6114534B2 (en) 2012-11-07 2017-04-12 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
US9472284B2 (en) 2012-11-19 2016-10-18 Silicon Storage Technology, Inc. Three-dimensional flash memory system
CN102983139B (en) * 2012-11-30 2017-09-29 上海华虹宏力半导体制造有限公司 Semiconductor memory
US8946807B2 (en) 2013-01-24 2015-02-03 Micron Technology, Inc. 3D memory
CN105027216B (en) * 2013-03-14 2017-09-22 硅存储技术公司 Programming non-volatile memory calculation device and method
US9293359B2 (en) 2013-03-14 2016-03-22 Silicon Storage Technology, Inc. Non-volatile memory cells with enhanced channel region effective width, and method of making same
US9276011B2 (en) 2013-03-15 2016-03-01 Micron Technology, Inc. Cell pillar structures and integrated flows
US9184175B2 (en) 2013-03-15 2015-11-10 Micron Technology, Inc. Floating gate memory cells in vertical memory
US8867281B2 (en) 2013-03-15 2014-10-21 Silicon Storage Technology, Inc. Hybrid chargepump and regulation means and method for flash memory device
CN104157614A (en) * 2013-05-14 2014-11-19 中芯国际集成电路制造(上海)有限公司 Manufacture method for separated grid type flash memory
US9484261B2 (en) * 2013-07-05 2016-11-01 Silicon Storage Technology, Inc. Formation of self-aligned source for split-gate non-volatile memory cell
US9431256B2 (en) * 2013-07-11 2016-08-30 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US9123822B2 (en) * 2013-08-02 2015-09-01 Silicon Storage Technology, Inc. Split gate non-volatile flash memory cell having a silicon-metal floating gate and method of making same
US9048316B2 (en) * 2013-08-29 2015-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Flash memory structure and method of forming the same
US20150155039A1 (en) 2013-12-02 2015-06-04 Silicon Storage Technology, Inc. Three-Dimensional Flash NOR Memory System With Configurable Pins
JP2015130438A (en) 2014-01-08 2015-07-16 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method
US9287282B2 (en) 2014-01-28 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a logic compatible flash memory
US20150249158A1 (en) * 2014-03-03 2015-09-03 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US9159842B1 (en) * 2014-03-28 2015-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded nonvolatile memory
JP6238235B2 (en) 2014-06-13 2017-11-29 ルネサスエレクトロニクス株式会社 Semiconductor device
US9614048B2 (en) * 2014-06-17 2017-04-04 Taiwan Semiconductor Manufacturing Co., Ltd. Split gate flash memory structure and method of making the split gate flash memory structure
US9691883B2 (en) * 2014-06-19 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Asymmetric formation approach for a floating gate of a split gate flash memory structure
US9252150B1 (en) 2014-07-29 2016-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. High endurance non-volatile memory cell
US9286982B2 (en) * 2014-08-08 2016-03-15 Silicon Storage Technology, Inc. Flash memory system with EEPROM functionality
US10312246B2 (en) * 2014-08-08 2019-06-04 Silicon Storage Technology, Inc. Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling
US9391085B2 (en) * 2014-08-08 2016-07-12 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned split gate flash memory having liner-separated spacers above the memory gate
US9660106B2 (en) * 2014-08-18 2017-05-23 United Microelectronics Corp. Flash memory and method of manufacturing the same
US9431407B2 (en) 2014-09-19 2016-08-30 Silicon Storage Technology, Inc. Method of making embedded memory device with silicon-on-insulator substrate
US10312248B2 (en) * 2014-11-12 2019-06-04 Silicon Storage Technology, Inc. Virtual ground non-volatile memory array
US9276005B1 (en) * 2014-12-04 2016-03-01 Silicon Storage Technology, Inc. Non-volatile memory array with concurrently formed low and high voltage logic devices
US9379121B1 (en) 2015-01-05 2016-06-28 Silicon Storage Technology, Inc. Split gate non-volatile flash memory cell having metal gates and method of making same
US9276006B1 (en) * 2015-01-05 2016-03-01 Silicon Storage Technology, Inc. Split gate non-volatile flash memory cell having metal-enhanced gates and method of making same
TWI588992B (en) * 2015-01-13 2017-06-21 Xinnova Tech Ltd Non-volatile memory components and methods of making the same
US9361995B1 (en) 2015-01-21 2016-06-07 Silicon Storage Technology, Inc. Flash memory system using complementary voltage supplies
KR101996745B1 (en) 2015-01-22 2019-07-04 실리콘 스토리지 테크놀로지 인크 High Density Isolated Gate Memory Cell
EP3248220B1 (en) * 2015-01-22 2019-03-06 Silicon Storage Technology Inc. Method of forming split-gate memory cell array along with low and high voltage logic devices
US9721958B2 (en) 2015-01-23 2017-08-01 Silicon Storage Technology, Inc. Method of forming self-aligned split-gate memory cell array with metal gates and logic devices
CN107210202B (en) * 2015-01-23 2018-11-09 硅存储技术公司 The method for forming autoregistration splitting bar memory cell array with metal gate and logical device
TWI606551B (en) * 2015-02-16 2017-11-21 Xinnova Tech Ltd Non-volatile memory device method
US9620216B2 (en) 2015-02-17 2017-04-11 Silicon Storage Technology, Inc. Flash memory device configurable to provide read only memory functionality
CN105990367B (en) 2015-02-27 2019-03-12 硅存储技术公司 Nonvolatile memory unit array with ROM cell
US9793280B2 (en) 2015-03-04 2017-10-17 Silicon Storage Technology, Inc. Integration of split gate flash memory array and logic devices
US10134475B2 (en) 2015-03-31 2018-11-20 Silicon Storage Technology, Inc. Method and apparatus for inhibiting the programming of unselected bitlines in a flash memory system
CN106158027B (en) 2015-04-09 2020-02-07 硅存储技术公司 System and method for programming split-gate non-volatile memory cells
US9608000B2 (en) 2015-05-27 2017-03-28 Micron Technology, Inc. Devices and methods including an etch stop protection material
US9431406B1 (en) * 2015-05-28 2016-08-30 Macronix International Co., Ltd. Semiconductor device and method of forming the same
US9672930B2 (en) 2015-05-29 2017-06-06 Silicon Storage Technology, Inc. Low power operation for flash memory system
US9793279B2 (en) 2015-07-10 2017-10-17 Silicon Storage Technology, Inc. Split gate non-volatile memory cell having a floating gate, word line, erase gate, and method of manufacturing
US9793281B2 (en) 2015-07-21 2017-10-17 Silicon Storage Technology, Inc. Non-volatile split gate memory cells with integrated high K metal gate logic device and metal-free erase gate, and method of making same
US9711513B2 (en) 2015-08-14 2017-07-18 Globalfoundries Inc. Semiconductor structure including a nonvolatile memory cell and method for the formation thereof
JP2017045755A (en) 2015-08-24 2017-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
JP6568751B2 (en) 2015-08-28 2019-08-28 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN106531212B (en) 2015-09-11 2020-02-07 硅存储技术公司 Flash memory system using memory cells as source line pull-down circuits
US9634019B1 (en) * 2015-10-01 2017-04-25 Silicon Storage Technology, Inc. Non-volatile split gate memory cells with integrated high K metal gate, and method of making same
US9634020B1 (en) 2015-10-07 2017-04-25 Silicon Storage Technology, Inc. Method of making embedded memory device with silicon-on-insulator substrate
US9673208B2 (en) * 2015-10-12 2017-06-06 Silicon Storage Technology, Inc. Method of forming memory array and logic devices
US10141321B2 (en) * 2015-10-21 2018-11-27 Silicon Storage Technology, Inc. Method of forming flash memory with separate wordline and erase gates
CN108243625A (en) 2015-11-03 2018-07-03 硅存储技术公司 Splitting grid non-volatile flash memory unit and its manufacturing method with metal gates
US20170125603A1 (en) * 2015-11-03 2017-05-04 Silicon Storage Technology, Inc. Integration Of Metal Floating Gate In Non-Volatile Memory
US9960176B2 (en) 2015-11-05 2018-05-01 Taiwan Semiconductor Manufacturing Co., Ltd. Nitride-free spacer or oxide spacer for embedded flash memory
US9548312B1 (en) 2015-11-10 2017-01-17 Globalfoundries Inc. Method including a formation of a control gate of a nonvolatile memory cell and semiconductor structure including a nonvolatile memory cell
US9583640B1 (en) * 2015-12-29 2017-02-28 Globalfoundries Inc. Method including a formation of a control gate of a nonvolatile memory cell and semiconductor structure
US9673210B1 (en) 2016-02-25 2017-06-06 Globalfoundries Inc. Semiconductor structure including a nonvolatile memory cell having a charge trapping layer and method for the formation thereof
CN107293546A (en) 2016-04-08 2017-10-24 硅存储技术公司 Reduction type split-gate nonvolatile flash cell and its manufacture method
CN107316868B (en) * 2016-04-22 2020-04-07 中芯国际集成电路制造(上海)有限公司 Semiconductor device, manufacturing method thereof and electronic device
CN107342288A (en) * 2016-04-29 2017-11-10 硅存储技术公司 Divide grid-type dual bit nonvolatile memory unit
US9922986B2 (en) 2016-05-16 2018-03-20 Globalfoundries Inc. Semiconductor structure including a plurality of pairs of nonvolatile memory cells and an edge cell and method for the formation thereof
US10269440B2 (en) 2016-05-17 2019-04-23 Silicon Storage Technology, Inc. Flash memory array with individual memory cell read, program and erase
US9953719B2 (en) 2016-05-18 2018-04-24 Silicon Storage Technology, Inc. Flash memory cell and associated decoders
US9911501B2 (en) 2016-05-24 2018-03-06 Silicon Storage Technology, Inc. Sensing amplifier comprising a built-in sensing offset for flash memory devices
US9972493B2 (en) * 2016-08-08 2018-05-15 Silicon Storage Technology, Inc. Method of forming low height split gate memory cells
US9997524B2 (en) * 2016-08-24 2018-06-12 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memory device and manufacturing method thereof
US10510544B2 (en) * 2016-11-29 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Non-volatile memory semiconductor device and manufacturing method thereof
CN106601749A (en) * 2016-12-15 2017-04-26 武汉新芯集成电路制造有限公司 Flash memory unit structure and discrete gate flash memory
US10431265B2 (en) 2017-03-23 2019-10-01 Silicon Storage Technology, Inc. Address fault detection in a flash memory system
US10381088B2 (en) 2017-03-30 2019-08-13 Silicon Storage Technology, Inc. System and method for generating random numbers based on non-volatile memory cell array entropy
CN108695331A (en) * 2017-04-05 2018-10-23 中芯国际集成电路制造(北京)有限公司 Memory and its programmed method, method for deleting and read method, electronic device
CN107221350A (en) * 2017-05-15 2017-09-29 上海华虹宏力半导体制造有限公司 Accumulator system, memory array and its reading and operation scheme for programming
US10192874B2 (en) * 2017-06-19 2019-01-29 United Microelectronics Corp. Nonvolatile memory cell and fabrication method thereof
US10586598B2 (en) 2017-09-14 2020-03-10 Silicon Storage Technology, Inc. System and method for implementing inference engine by optimizing programming operation
US10534554B2 (en) * 2017-10-13 2020-01-14 Silicon Storage Technology, Inc. Anti-hacking mechanisms for flash memory device
US10515694B2 (en) 2017-11-03 2019-12-24 Silicon Storage Technology, Inc. System and method for storing multibit data in non-volatile memory
US10600484B2 (en) 2017-12-20 2020-03-24 Silicon Storage Technology, Inc. System and method for minimizing floating gate to floating gate coupling effects during programming in flash memory
CN110010606A (en) 2018-01-05 2019-07-12 硅存储技术公司 With the dual bit nonvolatile memory unit of floating gate in substrate trenches
US10312247B1 (en) 2018-03-22 2019-06-04 Silicon Storage Technology, Inc. Two transistor FinFET-based split gate non-volatile floating gate flash memory and method of fabrication
US10580491B2 (en) 2018-03-23 2020-03-03 Silicon Storage Technology, Inc. System and method for managing peak power demand and noise in non-volatile memory array
US10468428B1 (en) 2018-04-19 2019-11-05 Silicon Storage Technology, Inc. Split gate non-volatile memory cells and logic devices with FinFET structure, and method of making same
US10418451B1 (en) * 2018-05-09 2019-09-17 Silicon Storage Technology, Inc. Split-gate flash memory cell with varying insulation gate oxides, and method of forming same
CN108831829A (en) * 2018-06-19 2018-11-16 上海华力微电子有限公司 A kind of side wall gate isolation etched membrane layer technique under division grid structure
US20200013786A1 (en) 2018-07-05 2020-01-09 Silicon Storage Technology, Inc. Split Gate Non-Volatile Memory Cells With Three-Dimensional FINFET Structure, And Method Of Making Same
US20200066738A1 (en) 2018-08-23 2020-02-27 Silicon Storage Technology, Inc. Method Of Programming A Split-Gate Flash Memory Cell With Erase Gate
US10644011B1 (en) 2018-11-09 2020-05-05 Iotmemory Technology Inc. Non-volatile memory
US20200176460A1 (en) 2018-12-03 2020-06-04 Silicon Storage Technology, Inc. Memory Cell With Floating Gate, Coupling Gate And Erase Gate, And Method Of Making Same
US20200176578A1 (en) 2018-12-03 2020-06-04 Silicon Storage Technology, Inc. FINFET-Based Split Gate Non-volatile Flash Memory With Extended Source Line FINFET, and Method Of Fabrication
US20200176459A1 (en) 2018-12-03 2020-06-04 Silicon Storage Technology, Inc. Split Gate Non-volatile Memory Cells With FINFET Structure And HKMG Memory And Logic Gates, And Method Of Making Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242848A (en) * 1990-01-22 1993-09-07 Silicon Storage Technology, Inc. Self-aligned method of making a split gate single transistor non-volatile electrically alterable semiconductor memory device
US5268319A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US6747310B2 (en) * 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
US6992929B2 (en) * 2004-03-17 2006-01-31 Actrans System Incorporation, Usa Self-aligned split-gate NAND flash memory and fabrication process
US7718488B2 (en) * 2004-03-17 2010-05-18 Silicon Storage Technology, Inc. Process of fabricating flash memory with enhanced program and erase coupling
US20100171167A1 (en) * 2007-04-09 2010-07-08 Shih-Chang Liu Gated Semiconductor Device and Method of Fabricating Same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640588B2 (en) * 1987-03-13 1994-05-25 株式会社東芝 Semiconductor memory device
JPH01143361A (en) * 1987-11-30 1989-06-05 Sony Corp Nonvolatile memory
US5095344A (en) * 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
WO1992018980A1 (en) * 1991-04-09 1992-10-29 Silicon Storage Technology, Inc. A single transistor non-volatile electrically alterable semiconductor memory device
US5579259A (en) * 1995-05-31 1996-11-26 Sandisk Corporation Low voltage erase of a flash EEPROM system having a common erase electrode for two individually erasable sectors
JP3241316B2 (en) * 1998-01-07 2001-12-25 日本電気株式会社 Manufacturing method of flash memory
JP4222675B2 (en) * 1999-03-29 2009-02-12 三洋電機株式会社 Nonvolatile semiconductor memory device
US20040256657A1 (en) * 2003-06-20 2004-12-23 Chih-Wei Hung [flash memory cell structure and method of manufacturing and operating the memory cell]
US6951782B2 (en) * 2003-07-30 2005-10-04 Promos Technologies, Inc. Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions
FR2871940B1 (en) * 2004-06-18 2007-06-15 St Microelectronics Rousset Transistor mos with floating grid, with double control grid
JP2006108668A (en) * 2004-09-30 2006-04-20 Samsung Electronics Co Ltd Nonvolatile memory device and manufacturing method therefor
TWI284415B (en) * 2005-10-26 2007-07-21 Promos Technologies Inc Split gate flash memory cell and fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268319A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5242848A (en) * 1990-01-22 1993-09-07 Silicon Storage Technology, Inc. Self-aligned method of making a split gate single transistor non-volatile electrically alterable semiconductor memory device
US6747310B2 (en) * 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
US6992929B2 (en) * 2004-03-17 2006-01-31 Actrans System Incorporation, Usa Self-aligned split-gate NAND flash memory and fabrication process
US7718488B2 (en) * 2004-03-17 2010-05-18 Silicon Storage Technology, Inc. Process of fabricating flash memory with enhanced program and erase coupling
US20100171167A1 (en) * 2007-04-09 2010-07-08 Shih-Chang Liu Gated Semiconductor Device and Method of Fabricating Same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028358A1 (en) * 2011-08-24 2013-02-28 Silicon Storage Technology, Inc. A method of making a split gate non-volatile floating gate memory cell having a separate erase gate, and a memory cell made thereby
CN102956643A (en) * 2011-08-24 2013-03-06 硅存储技术公司 Non-volatile floating gate storage unit manufacturing method and storage unit manufactured by same
TWI466240B (en) * 2011-08-24 2014-12-21 Silicon Storage Tech Inc A method of making a split gate non-volatile floating gate memory cell having a separate erase gate, and a memory cell made thereby
KR101537915B1 (en) * 2011-08-24 2015-07-17 실리콘 스토리지 테크놀로지 인크 A method of making a split gate non-volatile floating gate memory cell having a separate erase gate, and a memory cell made thereby
US9190532B2 (en) 2011-08-24 2015-11-17 Silicon Storage Technology, Inc. Method of making a split gate non-volatile floating gate memory cell having a separate erase gate, and a memory cell made thereby
KR101759814B1 (en) 2013-03-14 2017-07-19 실리콘 스토리지 테크놀로지 인크 Low leakage, low threshold voltage, split-gate flash cell operation
WO2015142440A1 (en) * 2014-03-17 2015-09-24 Silicon Storage Technology, Inc. Embedded memory device on bulk/soi hybrid substrate, and method of making same
US20160336415A1 (en) * 2015-05-15 2016-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell structure for improving erase speed
US9917165B2 (en) * 2015-05-15 2018-03-13 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell structure for improving erase speed
WO2017200709A1 (en) * 2016-05-18 2017-11-23 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell
US10276696B2 (en) 2016-05-18 2019-04-30 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell
US10615270B2 (en) 2016-05-18 2020-04-07 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell
US10644139B2 (en) 2016-05-18 2020-05-05 Silicon Storage Technology, Inc. Method of making split gate non-volatile flash memory cell

Also Published As

Publication number Publication date
CN102522409A (en) 2012-06-27
CN101364614B (en) 2012-02-08
TW200917495A (en) 2009-04-16
US20090039410A1 (en) 2009-02-12
US7868375B2 (en) 2011-01-11
JP5361292B2 (en) 2013-12-04
US20110127599A1 (en) 2011-06-02
CN101364614A (en) 2009-02-11
JP2009044164A (en) 2009-02-26
US20100054043A1 (en) 2010-03-04
KR20090014967A (en) 2009-02-11
TWI393263B (en) 2013-04-11
US7927994B1 (en) 2011-04-19
CN102403274A (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US6503785B2 (en) Flash memory cell with contactless bit line, and process of fabrication
US6208557B1 (en) EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming
US6828624B1 (en) Nonvolatile semiconductor memory device covered with insulating film which is hard for an oxidizing agent to pass therethrough
US6548856B1 (en) Vertical stacked gate flash memory device
EP0740854B1 (en) A self-aligned dual-bit split gate (dsg) flash eeprom cell
US5231299A (en) Structure and fabrication method for EEPROM memory cell with selective channel implants
US7018895B2 (en) Nonvolatile memory cell with multiple floating gates formed after the select gate
US4852062A (en) EPROM device using asymmetrical transistor characteristics
US5278439A (en) Self-aligned dual-bit split gate (DSG) flash EEPROM cell
US6777725B2 (en) NROM memory circuit with recessed bitline
US6917069B2 (en) Semiconductor memory array of floating gate memory cells with buried bit-line and vertical word line transistor
US6570213B1 (en) Self-aligned split-gate flash memory cell and its contactless NOR-type memory array
US6184086B1 (en) Method for forming a floating gate semiconductor device having a portion within a recess
US5364806A (en) Method of making a self-aligned dual-bit split gate (DSG) flash EEPROM cell
US5120672A (en) Fabricating a single level merged EEPROM cell having an ONO memory stack substantially spaced from the source region
JP4412881B2 (en) Nonvolatile memory device having two transistors operated by two bits and manufacturing method thereof
JP4262314B2 (en) NAND-type nonvolatile memory device, manufacturing method and driving method thereof
KR100437453B1 (en) NAND-type non-volatile memory device having SONOS gate structure and method of forming the same
US6818944B2 (en) Nonvolatile memory devices and methods of fabricating the same
US7338859B2 (en) Non-volatile memory cells having floating gate and method of forming the same
US6548861B2 (en) Memory cell, memory cell arrangement and fabrication method
US7227219B2 (en) Charge trapping memory cell and fabrication method
US7274063B2 (en) Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions
US6222227B1 (en) Memory cell with self-aligned floating gate and separate select gate, and fabrication process
US5173436A (en) Method of manufacturing an EEPROM with trench-isolated bitlines

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:SILICON STORAGE TECHNOLOGY, INC.;REEL/FRAME:041675/0316

Effective date: 20170208

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:SILICON STORAGE TECHNOLOGY, INC.;REEL/FRAME:041675/0316

Effective date: 20170208

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001

Effective date: 20180529

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:046426/0001

Effective date: 20180529

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206

Effective date: 20180914

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS NOTES C

Free format text: SECURITY INTEREST;ASSIGNORS:MICROCHIP TECHNOLOGY INCORPORATED;SILICON STORAGE TECHNOLOGY, INC.;ATMEL CORPORATION;AND OTHERS;REEL/FRAME:047103/0206

Effective date: 20180914

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8