US20100224264A1 - Apparatus and process for integrated gas blending - Google Patents
Apparatus and process for integrated gas blending Download PDFInfo
- Publication number
- US20100224264A1 US20100224264A1 US11/993,795 US99379506A US2010224264A1 US 20100224264 A1 US20100224264 A1 US 20100224264A1 US 99379506 A US99379506 A US 99379506A US 2010224264 A1 US2010224264 A1 US 2010224264A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- active
- diluent
- gas
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008569 process Effects 0.000 title claims abstract description 21
- 238000002156 mixing Methods 0.000 title claims description 23
- 239000012530 fluid Substances 0.000 claims abstract description 460
- 239000000203 mixture Substances 0.000 claims abstract description 115
- 239000003085 diluting agent Substances 0.000 claims abstract description 112
- 239000004065 semiconductor Substances 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 231
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 238000004377 microelectronic Methods 0.000 claims description 15
- 238000005468 ion implantation Methods 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 12
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 238000007865 diluting Methods 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000010897 surface acoustic wave method Methods 0.000 claims description 6
- 239000003463 adsorbent Substances 0.000 claims description 5
- -1 diborane Chemical compound 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910000078 germane Inorganic materials 0.000 claims description 4
- 238000012806 monitoring device Methods 0.000 claims description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 claims description 3
- ZRNSSRODJSSVEJ-UHFFFAOYSA-N 2-methylpentacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(C)C ZRNSSRODJSSVEJ-UHFFFAOYSA-N 0.000 claims description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 239000004254 Ammonium phosphate Substances 0.000 claims description 2
- 229910015900 BF3 Inorganic materials 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004341 Octafluorocyclobutane Substances 0.000 claims description 2
- 229910018503 SF6 Inorganic materials 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 2
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 2
- 239000001273 butane Substances 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 claims description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N monofluoromethane Natural products FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 2
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001272 nitrous oxide Substances 0.000 claims description 2
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 claims description 2
- 235000019407 octafluorocyclobutane Nutrition 0.000 claims description 2
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 claims description 2
- 125000002524 organometallic group Chemical group 0.000 claims description 2
- 229960004065 perflutren Drugs 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000058 selane Inorganic materials 0.000 claims description 2
- 239000005049 silicon tetrachloride Substances 0.000 claims description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 2
- 239000005052 trichlorosilane Substances 0.000 claims description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 description 10
- 230000003068 static effect Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 7
- 230000008054 signal transmission Effects 0.000 description 7
- 238000002955 isolation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000002020 sage Nutrition 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 1
- 229910003822 SiHCl3 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 235000014366 other mixer Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/2225—Diffusion sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
- B01F23/19—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
- B01F23/191—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means characterised by the construction of the controlling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/213—Measuring of the properties of the mixtures, e.g. temperature, density or colour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/2132—Concentration, pH, pOH, p(ION) or oxygen-demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/2201—Control or regulation characterised by the type of control technique used
- B01F35/2202—Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/83—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
- B01F35/833—Flow control by valves, e.g. opening intermittently
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
- F17C7/02—Discharging liquefied gases
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D11/00—Control of flow ratio
- G05D11/02—Controlling ratio of two or more flows of fluid or fluent material
- G05D11/13—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
- G05D11/131—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
- G05D11/132—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0157—Compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/03—Control means
- F17C2250/032—Control means using computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0443—Flow or movement of content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0447—Composition; Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0447—Composition; Humidity
- F17C2250/0452—Concentration of a product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/02—Mixing fluids
- F17C2265/025—Mixing fluids different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0518—Semiconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2496—Self-proportioning or correlating systems
- Y10T137/2499—Mixture condition maintaining or sensing
- Y10T137/2509—By optical or chemical property
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87571—Multiple inlet with single outlet
Definitions
- the present invention relates to apparatus and method for supplying dilute gases at predetermined concentrations, e.g., as source gas for ion implantation doping of semiconductor or other microelectronic device materials.
- the semiconductor industry uses a wide variety of dilute gases in applications where the source material is highly toxic or hazardous and the dosage of active gas species is small.
- ion implantation doping of epitaxial films by requires source gases such as arsine, phosphine, and germane in highly dilute states.
- arsenic may be implanted in a semiconductor film for doping thereof, from a dilute arsine/hydrogen gas mixture.
- a source gas of low arsine content e.g., 50 parts per million (ppm) may be further diluted with hydrogen to achieve a desired hydrogen/arsine gas mixture.
- the flows of the dilute arsine starting material and the diluent hydrogen that is added thereto to form the final dilute arsine gas mixture can be controlled by mass flow controllers, to deliver a metered amount of the final diluted arsine to the ionizer unit of the ion implant system.
- a first category of dilute gas supply techniques utilizes pre-mixed high-pressure gas mixtures (containing the low-concentration active gas component) as the source gas medium, as dispensed for use from high-pressure gas supply vessels such as pressurized gas cylinders.
- This gas supply approach has the following deficiencies:
- the second general category of dilute gas supply techniques involves in-situ generation of gas, using solids or liquid raw materials to generate the desired gas species through chemical reaction.
- In-situ gas generation has the following associated deficiencies:
- U.S. Pat. No. 7,063,097 issued Jun. 20, 2006 to Jose I. Arno and James A. Dietz for “In-Situ Gas Blending and Dilution System for Delivery of Dilute Gas at a Predetermined Concentration” describes an in-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration, which includes an active gas source and a diluent gas source.
- a gas flow-metering device is provided for dispensing the active gas at a predetermined flow rate.
- a gas blender mixer is arranged to mix (i) active gas from the active gas source that is dispensed at the predetermined flow rate by the gas flow-metering device, with (ii) diluent gas, to form a diluted active gas mixture.
- the system further includes a monitor arranged to sense concentration of active gas in the diluted active gas mixture and to responsively adjust the gas flow-metering device, to control the dispensing rate of the active gas, and maintain a predetermined concentration of active gas in the diluted active gas mixture.
- the monitor in one embodiment of the system described in U.S. Pat. No. 7,063,097, as adapted for delivery of gas for ion implantation in a semiconductor manufacturing facility, the monitor includes a thermopile infrared (TPIR) detector, and the system utilizes a variable restricted flow orifice (RFO) as a flow control device for the source gas, and a mass flow controller (MFC) as a flow control device for the diluent gas, with a micro-pump to deliver a specific concentration of the source gas to the semiconductor manufacturing ion implant tool from the gas blender.
- TPIR thermopile infrared
- RFO variable restricted flow orifice
- MFC mass flow controller
- the TPIR detector may be unable to sense any level of source gas.
- the active gas source used in gas blender delivery systems of the type discussed above can include fluid storage and dispensing packages in which a physical adsorbent retains the active gas thereon in a vessel, for desorption of the active gas and discharge from the vessel under dispensing conditions.
- Such gas supply systems are commercially available from ATMI, Inc., Danbury, Conn., USA under the trademarks SDS and SAGE and are described, for example, in U.S. Pat. Nos. 5,518,528; 5,704,965; 5,704,967; and 5,707,424.
- the active gas source used in the gas blender delivery system alternatively can include a fluid storage and dispensing package in which a pressure regulator is positioned in the interior volume of a vessel holding the active fluid under pressure.
- the pressure regulator is arranged with a set point permitting dispensing of gas deriving from the fluid, at pressure determined by the set point, e.g., a subatmospheric pressure providing a high level of safety in operation.
- Internal regulator gas supply packages of such type are commercially available from ATMI, Inc., Danbury, Conn., USA under the trademark VAC and are described, for example, in U.S. Pat. Nos. 6,101,816 and 6,089,027.
- microelectronic product manufacturing industry has continuing need for improved gas supply sources and monitoring of gas-dispensing operations, for efficient and economic delivery of dilute gases to process equipment.
- the present invention relates to a system for delivery of diluted fluid, e.g., to a fluid-utilizing unit such as an ion implantation tool employed for manufacture of semiconductor devices and integrated circuit structures, or other microelectronic device manufacturing operation.
- a fluid-utilizing unit such as an ion implantation tool employed for manufacture of semiconductor devices and integrated circuit structures, or other microelectronic device manufacturing operation.
- the present invention relates to a system for delivery of dilute fluid, including:
- an active fluid source a diluent fluid source; a fluid flow metering device for dispensing of one of the active and diluent fluids; a mixer arranged to mix the active and diluent fluids to form a diluted active fluid mixture; a monitor arranged to sense concentration of active fluid and/or diluent fluid in the diluted active fluid mixture, and responsively adjust the fluid flow metering device to achieve a predetermined concentration of active fluid in the diluted active fluid mixture; and a pressure controller arranged to control flow of the other of the active and diluent fluids so as to maintain a predetermined pressure of the diluted active fluid mixture dispensed from the system.
- the invention relates to a system for delivery of dilute fluids, comprising:
- an active fluid source a diluent fluid source; a gas flow metering device that is joined in fluid flow communication with the active fluid source, and selectively adjustable to dispense active fluid at predetermined flow rate; a pressure controller that is joined in fluid flow communication with the diluent fluid source, and arranged to dispense diluent fluid at predetermined pressure; a mixer arranged to mix the dispensed active fluid at predetermined flow rate with the dispensed diluent fluid at predetermined pressure, to form a diluted active fluid mixture; and a monitor arranged to (i) sense concentration of active fluid in the diluted active fluid mixture prior to dispensing thereof from the system, and (ii) responsively adjust the fluid flow metering device, to control dispensing rate of the active fluid so as to maintain a predetermined concentration of active fluid in the diluted active fluid mixture dispensed from the system.
- the invention relates to a fluid blender apparatus, comprising:
- a fluid flow metering device arranged for connection to an active fluid source and to a diluent fluid source; a fluid flow metering device that is joined in fluid flow communication with the active fluid source flow circuitry, and selectively adjustable to dispense active fluid at predetermined flow rate; a pressure controller that is joined in fluid flow communication with the diluent fluid source flow circuitry, and arranged to dispense diluent fluid at predetermined pressure; a mixer arranged to mix the dispensed active fluid at predetermined flow rate with the dispensed diluent fluid at predetermined pressure, to form a diluted active fluid mixture; and a monitor arranged to (i) sense concentration of active fluid in the diluted active fluid mixture prior to dispensing thereof from the fluid blender apparatus, and (ii) responsively adjust the fluid flow metering device, to control dispensing rate of the active fluid so as to maintain a predetermined concentration of active fluid in the diluted active fluid mixture dispensed from the fluid blender apparatus; wherein the fluid flow metering
- a still further aspect of the invention relates to an apparatus for delivery of dilute fluid, wherein said apparatus is adapted for coupling with an active fluid source and with a diluent fluid source, to deliver the dilute fluid as a mixture of active fluid from the active fluid source, and diluent fluid from the diluent fluid source, such apparatus comprising:
- a fluid flow metering device that is adapted to be joined in fluid flow communication with the active fluid source, and selectively adjustable to dispense active fluid at predetermined flow rate; a pressure controller that is adapted to be joined in fluid flow communication with the diluent fluid source, to dispense diluent fluid at predetermined pressure; a mixer arranged to mix the dispensed active fluid at predetermined flow rate with the dispensed diluent fluid at predetermined pressure, to form a diluted active fluid mixture; and a monitor arranged to (i) sense concentration of active fluid in the diluted active fluid mixture prior to dispensing of the diluted active fluid mixture, and (ii) responsively adjust the fluid flow metering device, to control dispensing rate of the active fluid so as to maintain a predetermined concentration of active fluid in the dispensed diluted active fluid mixture.
- the invention relates to methods of delivering fluid, utilizing apparatus and systems of the foregoing types.
- Another aspect of the invention relates to a method for delivery of dilute fluid, comprising:
- an active fluid source and a diluent fluid source controllably dispensing one of the active fluid and diluent fluid from its fluid source at predetermined flow rate; dispensing the other of the active fluid and diluent fluid from its fluid source at predetermined pressure; mixing dispensed active fluid with dispensed diluent fluid, to form a diluted active fluid mixture; monitoring concentration of at least one of the active and diluent fluids in the diluted active fluid mixture, and responsively adjusting the dispensing rate of the fluid dispensed at predetermined flow rate, to maintain a predetermined concentration of active fluid in the diluted active fluid mixture; and dispensing the diluted active fluid mixture for use.
- the invention relates to a method for delivery of dilute fluid, comprising:
- a further aspect of the invention relates to a system for delivery of dilute fluid, including:
- a fluid flow metering device for dispensing of one of the active and diluent fluids
- a mixer arranged to mix the active and diluent fluids to form a diluted active fluid mixture
- a monitor arranged to sense concentration of active fluid and/or diluent fluid in the diluted active fluid mixture, and responsively adjust the fluid flow metering device to achieve a predetermined concentration of active fluid in the diluted active fluid mixture;
- an end point detector assembly arranged to determine when at least one of the active fluid source and diluent fluid source is empty or approaching an empty or near-empty condition, and to responsively disable such fluid source(s) from fluid dispensing.
- Another aspect of the invention relates to a method of blending fluids to form a multicomponent fluid, said method comprising monitoring the multicomponent fluid for concentration of one or more of components thereof, and responsively modulating the blending to maintain the concentration of said one or more components at predetermined level(s) in the multicomponent fluid, monitoring pressure of at least one of the blending fluids, and responsively modulating the flow of at least one of the blending fluids to maintain pressure of the multicomponent fluid at predetermined level(s).
- a still further aspect of the invention relates to a method of making a microelectronic product, comprising use of the multicomponent fluid prepared by the method of the preceding paragraph.
- Yet another aspect of the invention relates to a fluid delivery assembly, including a monitor adapted to determine concentration of one or more components of a multicomponent fluid,
- a controller operatively coupled to the monitor to respond to the determined concentration and generate a correlative output
- a flow control device arranged to modulate flow of one or more components of the multicomponent fluid in response to the correlative output
- a mixer arranged to mix components to form the multicomponent fluid
- a pressure controller adapted to maintain predetermined pressure of multicomponent fluid introduced to said monitor.
- the invention in another aspect, relates to a microelectronic product manufacturing facility comprising a fluid delivery assembly as described herein.
- Additional aspects of the invention relates to methods of delivering fluid, and to methods of making microelectronic products.
- a further aspect of the invention relates to a method of combining two or more fluids to form a multicomponent fluid containing a predetermined concentration of one or more component fluids therein, said method comprising blending said two or more fluids with modulated addition of one or more but less than all of said two or more fluids, wherein such addition is modulated in response to concentration sensing of at least one of said one or more but less than all of said two or more fluids, and controlling pressure of the multicomponent fluid so that same is at predetermined pressure.
- pressure control of the multicomponent fluid other multicomponent fluid parameters may be controlled in specific embodiments of the invention, such as temperature, density, turbidity, etc.
- Another aspect of the invention relates to a method of manufacturing a microelectronic product, comprising use of a multicomponent fluid as produced by the method of the preceding paragraph.
- a further aspect of the invention relates to a subassembly coupleable with sources of active fluid and diluent fluid, for blending thereof to deliver dilute fluid, such subassembly including:
- a fluid flow metering device adapted to dispense one of the active and diluent fluids
- a mixer arranged to mix the active and diluent fluids to form a diluted active fluid mixture
- a monitor arranged to sense concentration of the active fluid and/or the diluent fluid in the diluted active fluid mixture, and to responsively adjust the fluid flow metering device to achieve a predetermined concentration of active fluid in the diluted active fluid mixture;
- a pressure controller arranged to control flow of the other of the active and diluent fluids so as to maintain a predetermined pressure of the diluted active fluid mixture dispensed from the system.
- FIG. 1 is a schematic representation of a gas delivery system arranged to supply a dilute gas mixture to an ion implantation semiconductor manufacturing tool.
- the present invention provides a system for delivery of dilute fluid, utilizing an active fluid source, a diluent fluid source, a fluid flow metering device for dispensing of one of the active and diluent fluids, a mixer arranged to mix the active and diluent fluids to form a diluted active fluid mixture, and a monitor arranged to sense concentration of active fluid and/or diluent fluid in the diluted active fluid mixture, and responsively adjust the fluid flow metering device to achieve a predetermined concentration of active fluid in the diluted active fluid mixture.
- a pressure controller is arranged to control flow of the other of the active and diluent fluids so as to maintain a predetermined pressure of the diluted active fluid mixture dispensed from the system.
- the fluid dispensed from the system then can be adjustably controlled by a flow rate controller, e.g., a mass flow controller, to provide a desired flow to a fluid-utilizing unit, such as a semiconductor process tool.
- a flow rate controller e.g., a mass flow controller
- Semiconductor process tools useful for such purpose can be of any suitable type, e.g., ion implantation tools, chemical vapor deposition tools, epitaxial doping tools, etching tools, etc.
- the invention includes an active fluid source, a diluent fluid source, a fluid flow metering device for dispensing of the active fluid, and a mixer, e.g., a mixing device or a housing or chamber containing such device, or a portion of the flow circuitry, or other apparatus or structure that is arranged to mix the active fluid and the diluent fluid for forming a diluted active fluid mixture.
- a monitor is arranged in this embodiment to sense concentration of active fluid in the diluted active fluid mixture, and responsively adjust the fluid flow metering device for control of dispensing rate of the active fluid, to achieve the predetermined concentration of active fluid in the diluted active fluid mixture that is dispensed from the system.
- a pressure controller is employed in this embodiment to control diluent fluid flow so as to maintain a predetermined pressure of the diluted active fluid mixture dispensed from the system.
- the present invention provides a highly effective system and method for supplying dilute gas at predetermined concentration, e.g., as source gas for ion implantation doping of a semiconductor material.
- the invention resolves a major problem associated with the use of mass flow controllers for delivering dilute gas, namely, the inability of mass flow controllers used in wafer processing tools to accommodate significant deviations in pressure.
- mass flow controllers results in inaccurate monitoring results when MFCs are utilized in streams susceptible to variability in pressure, such as where the flow of carrier gas is modulated to produce a desired concentration of an active gas component in a mixed gas stream formed by combination of the carrier gas with the active gas component.
- the fluid flow metering device includes a variable RFO in a fluid flow line interconnecting the active fluid source and a pump for flowing the active fluid to the mixer
- the pressure controller includes an electronic pressure controller and/or a mechanical pressure controller disposed in a fluid flow line interconnecting the diluent gas source and the mixer
- the mixer includes a static mixer
- the monitor comprises an in-line fluid analyzer arranged to produce an output control signal correlative to the sensed active fluid concentration in the diluted active fluid mixture, with the control signal being transmitted to the fluid flow metering device to modulate the set point thereof to achieve a predetermined constant active fluid concentration for the desired application of the diluted active fluid mixture.
- the invention thereby provides a system for delivery of a controlled pressure diluted fluid mixture including a dilute component fluid at a selected concentration, whereby the user of the dispensed fluid mixture can adjustably control the flow thereof for the desired downstream use thereof at the desired concentration of the dilute component fluid.
- the fluid flow metering device can be of any suitable type, including for example a variable RFO device, as discussed illustratively above, or alternatively a mass flow controller, a micro-valve element actuatable for dispensing very low flow rates of the active fluid component from the active fluid supply, a flowmeter coupled with a flow control valve in the dispensing line, or any other element or assembly that is effective to provide a selected flow rate of the active fluid from the active gas source.
- a variable RFO device as discussed illustratively above, or alternatively a mass flow controller, a micro-valve element actuatable for dispensing very low flow rates of the active fluid component from the active fluid supply, a flowmeter coupled with a flow control valve in the dispensing line, or any other element or assembly that is effective to provide a selected flow rate of the active fluid from the active gas source.
- the fluid flow metering device in another embodiment includes a fluid regulator element associated with a fluid storage and dispensing vessel, e.g., of a type described in U.S. Pat. No. 6,089,027, wherein the fluid regulator element is operatively coupled with a feedback control loop, arranged to achieve a desired active gas concentration in the dispensed fluid mixture.
- a fluid regulator element associated with a fluid storage and dispensing vessel, e.g., of a type described in U.S. Pat. No. 6,089,027, wherein the fluid regulator element is operatively coupled with a feedback control loop, arranged to achieve a desired active gas concentration in the dispensed fluid mixture.
- the active fluid source can be of any suitable type, e.g., a gas storage and dispensing vessel or container holding the neat active gas to be diluted for use.
- the active fluid source comprises a sub-atmospheric pressure active gas storage and dispensing vessel of the type described in U.S. Pat. No. 5,518,528 to Glenn M. Tom et al. and commercially available from ATMI, Inc., Danbury, Conn., USA) under the trademark SDS, wherein active gas is sorptively retained on a physical adsorbent and selectively desorbed therefrom for dispensing of active gas from the vessel.
- the neat active fluid source comprises a gas storage and dispensing vessel of the type described in U.S. Pat.
- the active fluid source may alternatively be constituted and/or arranged, in any suitable manner, e.g., as a supply structure, material or operation.
- the active fluid source may include a solid physical adsorbent-based package of the type described in U.S. Pat. No. 5,518,528 to Glenn M. Tom et al.
- the active fluid may be liberated from a liquid solution, or be generated by an in-situ generator, or be generated from a reactive liquid as described in U.S. Patent Publication No. 20040206241 published October, 2004 for “Reactive Liquid Based Gas Storage and Delivery System,” or be obtained from a reactive solid, or from a vaporizable or sublimable solid.
- the active fluid source includes a retention structure, as described in U.S. Pat. No. 5,916,245 issued Jun. 29, 1999 for “High Capacity Gas Storage and Dispensing System.”
- the mixer arranged to mix the active fluid and the diluent fluid for forming a diluted active fluid mixture can be of any suitable type, whereby the active fluid and the diluent fluid are intermixed with one another for discharge at a desired dilute concentration of the active fluid, e.g., for flow to a downstream dilute fluid mixture-utilizing process.
- the mixer can include a dynamic mixing device such as for example a pump, compressor, rotary mixer, or the like, or alternatively a venturi, static mixer, ejector, eductor, opposed jet-equipped mixing chamber, or other device, structure or assembly that effects mixing of the active fluid and the diluent fluid to produce the diluted active fluid mixture.
- one mixing device that can advantageously be employed in the practice of the invention is a ConPro Tec ST250-36 static mixer, commercially available from ConPro Tec, Inc. (Salem, N.H., USA).
- the mixer in another embodiment is constituted by a mixing chamber housing a mixing device, arranged to mix active gas with diluent gas.
- the monitor arranged to sense concentration of active fluid in the diluted active fluid mixture, and responsively control the dispensing rate of the active fluid, to achieve a predetermined concentration of active fluid in the diluted active fluid mixture can be of any suitable type, including spectrometric, spectroscopic, electrochemical, acoustic, thermal, photometric, chromatographic, colorimetric, surface acoustic wave (SAW), photonic and flame ionizer types.
- Preferred monitor types include TPIR, Fourier Transform-Infrared (FT-IR) and IR photometric monitors.
- the monitor can be arranged in any suitable manner, e.g., disposed in-line in the diluted active fluid mixture discharge line, or disposed to sample fluid via a side-stream sampling arrangement, or in any other suitable fashion.
- the monitor can include one or multiple monitoring devices or components, as desired in a given application of the invention.
- the signals generated by each of the constituent monitoring devices or components that are indicative of the concentration of the active fluid in the diluted active fluid mixture can be processed to provide an average or corrected output signal correlative to the concentration of the active fluid in the diluted active fluid mixture.
- the monitor can be operatively coupled with a controller, so that the controller responds to the signal(s) from the monitor(s) in the system, and responsively adjusts the system to maintain a predetermined concentration of the active gas in the multicomponent gas mixture formed by the active gas and the carrier gas.
- Such signal processing can be carried out by a programmable general purpose computer that is programmed to process the respective output signals of the respective monitoring devices or components, according to a suitable algorithm or computational procedure, to provide a net output signal correlative of the concentration of the active fluid in the diluted active fluid mixture.
- the signal processing can be carried out by a comparator or bridge circuit, microprocessor, central processing unit (CPU) or other processor, to provide appropriate output for modulating the fluid flow metering device to achieve the desired active fluid concentration in the diluted active fluid mixture.
- the active fluid in the dilute fluid supply system of the invention can be of any suitable type, depending on the specific diluted active fluid mixture-using process for which the diluted active fluid mixture is to be provided.
- the fluid can for example be a gas that is a source material for forming a dopant or trace reagent species, for manufacturing of semiconductor or other microelectronic products.
- the fluid alternatively could be diluted for use as a calibration standard, as a sterilant for use below hazardous concentration levels, as a reactant for nano-concentration chemical reactions, or used for preparation of low concentration mutagenic agent samples, for research and testing purposes, etc.
- the active fluid although typically constituting a single component fluid, can in some embodiments of the invention be provided as a premixed gas mixture, which then is blended with a diluent gas.
- the diluent gas in turn may be a single component or a multicomponent gas.
- the diluted active fluid mixture-using process can be correspondingly varied, and can variously include industrial processes, medical diagnostics, research investigations, agricultural assays, treatment of the body with dilute radiological therapeutic agents, etc.
- the diluted active fluid mixture is dispensed for use in ion implantation to form semiconductor devices or integrated circuitry structures or substrates in microelectronic device manufacture.
- the diluent fluid can be of any suitable type, and can variously include single component diluent compositions, as well as multi-component diluent formulations.
- Illustrative potentially suitable diluent fluids in specific applications of the invention include, without limitation, nitrogen, argon, helium, air, krypton, xenon, xenon halides, hydrogen, oxygen, ammonia, and gaseous organometallic compounds.
- FIG. 1 is a schematic representation of a gas delivery system 10 arranged to supply a dilute gas mixture to an ion implantation semiconductor manufacturing tool 20 .
- the dilute gas supply system 10 includes a neat active gas source 12 , which may for example compromise a fluid storage and dispensing vessel such as a conventional high-pressure gas cylinder or alternatively a sub-atmospheric pressure gas dispensing system, e.g., of the type disclosed in U.S. Pat. No. 5,518,528 to Glenn M. Tom, et al. or the type disclosed in U.S. Pat. No. 6,089,027 to Luping Wang, et al.
- a neat active gas source 12 may for example compromise a fluid storage and dispensing vessel such as a conventional high-pressure gas cylinder or alternatively a sub-atmospheric pressure gas dispensing system, e.g., of the type disclosed in U.S. Pat. No. 5,518,528 to Glenn M. Tom, et al. or the type disclosed in U.S. Pat. No. 6,089,027 to Luping Wang, et al.
- the neat active gas source 12 thus may comprise a vessel equipped with a valve head, or alternatively coupled with an external regulator, restricted orifice flow control element(s), and other conventional flow circuitry elements.
- the valve head can contain a conventional flow control valve (head valve) controllable by a hand wheel actuator, or alternatively by an automatic valve controller, e.g., a pneumatic actuator, or electrical solenoid valve actuator, etc.
- the neat active gas source 12 is coupled in closed gas flow communication with discharge line 22 having valve 24 and variable restricted flow orifice (RFO) 24 disposed therein.
- the discharge line 26 downstream of the variable RFO 24 is coupled to mini-pump 28 .
- the mini-pump is operable to pump neat active gas from discharge line 26 into branch line 30 , for flow therefrom into line 36 and passage to static mixer 38 , along with the added diluent gas in line 36 .
- one such mini-pump that may be usefully employed in the practice of the invention is a MB-41 bellows pump, commercially available from Senior Operations, Inc. (Sharon, Mass., USA).
- Illustrative of variable RFO devices that may be useful in the practice of the invention is the Model 1 VSO valve, commercially available from Pneutronics Division of Parker-Hannifin (Hollis, N.H., USA).
- a dilute gas source 14 is provided in the system, and arranged to discharge diluting gas in line 32 to electronic pressure controller (EPC) 34 for flow therethrough and discharge from the EPC in line 36 for flow to the static mixer 38 .
- EPC electronic pressure controller
- a rotary mixer, impeller mixer, eductor, or other mixer could be employed.
- the static mixer 38 functions to blend the active gas and the diluting gas, to form a diluted active gas mixture that is discharged from the static mixer in line 40 and passed to the TPIR unit 42 for analysis to determine concentration of the active component in the diluted active gas mixture.
- the TPIR in-line gas analyzer 42 is constructed and arranged to generate an output control signal indicative of the concentration of the active gas in the diluted gas stream flowing through the analyzer from line 40 and dispensed from the analyzer 42 in line 44 for flow to the mass flow controller 18 .
- the controlled flowrate stream of diluted active gas mixture is discharged from the mass flow controller 18 into line 46 and flowed therein to downstream gas-using process unit 20 , e.g., an ion implant facility or other semiconductor process tool or microelectronic device manufacturing installation.
- An electronic signal indicative of the dilute gas concentration in the gas mixture is generated by the TPIR in-line analyzer 42 and is transmitted in signal transmission line 48 to controller 50 .
- the controller 50 responds by generating a control signal that is transmitted in signal transmission line 52 to the variable RFO 24 to adjust the setting of the RFO device and thereby modulate the flow rate of the neat active gas in discharge line 26 that is flowed to the mini-pump 28 for pumping through lines 30 and 36 to the static mixer 38 , so that a predetermined concentration of active gas component is maintained in the gas mixture flowed to the TPIR analyzer 42 .
- the EPC unit 34 functions to maintain a constant set point pressure in the flow path including gas flow lines 36 , 40 and 44 , so that the pressure of the diluted gas mixture entering the downstream mass flow controller 18 is maintained constant at a desired pressure level.
- the pressure controller is typically employed as a separate and independent component of the blended gas delivery system, in relation to the fluid flow metering device, in some embodiments of the invention the pressure controller can serve as a fluid flow metering device, obviating the need for a separate metering device component.
- the components of the gas delivery system 10 including variable RFO 24 , mini-pump 28 , EPC 34 , static mixer 38 , TPIR analyzer 42 , and controller 50 , along with associated gas flow lines and signal transmission lines, may be provided in a unitary enclosure 16 , to provide a gas blender box as a modular unitary apparatus, with lines 22 , 32 and 44 protruding from the gas blender box, or otherwise terminating at the box surface in ports, connectors or other coupling structure, to facilitate connection of such lines to active gas supply 12 , diluent gas supply 14 and external flow controller 18 , respectively.
- neat (100% concentration) active gas is dispensed from neat gas source 12 into discharge line 22 containing variable RFO 24 , which operates to control the delivery rate of the neat gas.
- Line 22 contains isolation valve 17 , which is open during the dispensing of gas from the neat active gas source 12 , while isolation valve 21 in the branch line 19 is closed.
- the resulting modulated flow rate neat gas from active gas source 12 in discharge line 22 is pumped by mini-pump 28 through line 30 to line 36 for introduction to the static mixer 38 for mixing therein with the diluting gas stream flowed from diluting gas source 14 through line 32 and EPC 34 to line 36 .
- the resulting mixed dilute gas stream (constituted by the active gas and diluting gas) is flowed in line 40 to the TPIR in-line gas analyzer 42 , where concentration of active gas in the gas mixture is determined and used to responsively generate the control signal transmitted in signal transmission line 48 to the controller 50 .
- the controller responsively generates a control signal transmitted in line 52 to modulate the variable RFO, i.e., to increase or decrease the active gas delivery rate to achieve the desired diluted active gas concentration in the diluted active gas mixture in line 44 flowed to the downstream process unit 20 .
- the in-line gas monitor/analyzer 42 alternatively can operate by any suitable mode of operation, including for example, photometry, spectroscopy, electrochemistry, acoustic monitoring, thermal monitoring, etc., or a combination of two or more of such modes of operation, to determine concentration of active gas in the gas mixture as diluted for flow to the downstream gas-using process.
- the gas monitor/analyzer is an infrared photometric monitor of the type disclosed in U.S. Pat. No. 6,909,973.
- the delivery system shown in FIG. 1 may alternatively be configured so that the fluid flow metering device is arranged to dispense the diluent fluid, the monitor is arranged to sense concentration of the diluent fluid in the diluted active fluid mixture, and the pressure controller is arranged to control active fluid flow to maintain the predetermined pressure of the diluted active fluid mixture dispensed from the system.
- multiple fluid flow metering devices, monitors and pressure controllers may be employed for each of the active and diluent streams, and/or multiple active and/or diluent fluids can be blended in the blender delivery system, as may be necessary or desirable in a given application of the invention.
- the active fluid as mentioned can be of any suitable type, including, for example, in the case of semiconductor process or other microelectronic process usage, gases such as hydrides (e.g., arsine, phosphine, silane, germane, etc.), acid gases (e.g., SiHCl 3 , SiF 4 , SiH 2 Cl 2 ), boranes, etc.
- gases such as hydrides (e.g., arsine, phosphine, silane, germane, etc.), acid gases (e.g., SiHCl 3 , SiF 4 , SiH 2 Cl 2 ), boranes, etc.
- Diluting gases for such semiconductor or microelectronic device manufacturing applications can include, for example, homonuclear diatomic species (e.g., H 2 , N 2 , O 2 ) or atomic gases (e.g., argon, helium, and the like).
- the active fluid can be a single component fluid, or alternatively, a multicomponent fluid, as may be appropriate in a given implementation of the invention.
- Illustrative gases that may be present in or constitute the active fluid in specific applications of the invention include, without limitation, arsine, phosphine, hydrogen, nitrogen trifluoride, ammonia, nitrous oxide, tungsten hexafluoride, hydrogen chloride, chlorine, hydrogen bromide, diborane, methane, methane, ethylene, chloroform, propane, butane, sulfur hexafluoride, nitrogen, fluorine, ammonium fluoride, ammonium phosphate, ammonium hydroxide, boron trifluoride, boron trichloride, dichlorosilane, germane, tetrafluoromethane, trifluoromethane, difluoromethane, methyl fluoride, hexafluoroethane, pentafluoromethane, perfluor
- the invention is illustratively shown with reference to delivery of dilute gas species as the active fluid, the invention is also amenable to delivery of blends of materials in the liquid phase including an active liquid of a desired concentration.
- the dilute fluid supply system of the invention can be operated and arranged to supply a plurality of active species; e.g., a blend of complex dopants.
- the active fluid and/or the diluent fluid may include a supercritical fluid.
- the active fluid source is a sub-atmospheric gas source such as those of the aforementioned Tom, et al and Wang, et al patents.
- the system of the present invention by virtue of its use of a real-time fluid monitor, provides a continuous measure of the fluid mixture to ensure a constant diluted active fluid concentration in the delivered dilute fluid mixture, and at the same time provides the delivered dilute fluid mixture at a set point pressure (determined by the EPC or other pressure controller unit) that accommodates downstream flow control by the end user, without loss of accuracy of the in-line analyzer or deviation from the desired concentration level of the active fluid component in the diluted fluid mixture. If active fluid concentration deviates from a set point value, a control signal is sent from the fluid monitor to the active fluid metering device, e.g., the variable RFO, to increase or decrease the active fluid delivery rate to maintain the desired concentration value.
- the active fluid metering device e.g., the variable RFO
- the system of the invention provides a conveniently transported and installed point-of-use gas delivery unit, which can be readily connected to source gas vessels or other gas supply means and to the downstream flow controller and gas-utilizing process facility, to provide the desired amount of diluted gas mixture containing a precisely controlled concentration of active component.
- a constant pressure can be maintained in the gas blender, regardless of what overall flow rate is selected by the end user for delivery to the downstream gas-utilizing installation.
- the MKS 640 Absolute Pressure Controller commercially available from MKS, Inc. (Wilmington, Mass., USA), is an electronic pressure controller that can be usefully employed for such purpose. Maintaining the gas blender at a constant pressure allows the analyzer to determine concentration of the diluted active gas component in an accurate manner at all times.
- the pressure controller in the fluid blender system will terminate the flow of the diluent fluid, since the pressure inside the fluid blender box will reach the pressure set point of the pressure controller. At such point, the flow of the active fluid will also turn off, since the active fluid is being controlled by the variable RFO (or other flow controller), which is operatively coupled with the controller that in turn is interconnected with the in-line analyzer.
- the in-line analyzer will sense the concentration of the active fluid in the fluid mixture, which will rise slightly above the controller set point, and cause the variable RFO (or other flow controller) to close by action of the controller, thereby terminating the flow of active fluid into the blender as well.
- the EPC or other pressure controller
- the variable RFO or other flow controller
- the blender delivery system of the invention also can be implemented with an end point detection capability and multiple active fluid packages arranged for sequential use, so that approach to exhaustion of a package is detected and the exhausting package is switched out while a fresh package of active fluid is switched in, to maintain continuity of dispensing operation.
- the end point detection capability can additionally be employed if the diluent fluid source is of packaged form, with corresponding switching of diluent fluid packages, from an exhausted or near-exhausted package to a fresh package of the fluid.
- the gas delivery system 10 shown in FIG. 1 may be arranged as illustrated with two active gas sources 12 and 15 , arranged for operation so that upon exhaustion of the active gas source 12 , such source can be isolated and a fresh source brought on-stream into active dispensing operation.
- the gas delivery system 10 features two active gas sources 12 and 15 , with 12 as previously described being joined by discharge line 22 to the variable restrictive flow orifice 24 .
- An isolation valve 17 is disposed in line 22 , so that source 12 can be taken off-stream when it is exhausted.
- the source 15 contains active gas and is joined by branch line 19 , containing isolation valve 21 therein, to the discharge line 22 .
- branch line 19 containing isolation valve 21 therein
- flow control valve 17 which is open during normal dispensing operation from such source, then is closed, and concurrently flow control valve 21 , which theretofore had been closed, is opened, to enable flow of active gas from the source 15 through discharge branch line 19 to the discharge line 22 .
- source 12 may be switched out to ensure continuity of flow of active gas, by switch-in of source 15 upon depletion or approach to depletion of source 12 .
- the gas delivery system 10 uses the variable RFO 24 as a flow control device.
- the variable RFO is connected to controller 50 and the controller 50 is additionally coupled to the TPIR analyzer 42 .
- the TPIR analyzer measures the gas concentration downstream and responsively sends a concentration-sensing signal to controller 50 through signal transmission line 48 . Based on the controller concentration set point, the orifice of the variable RFO 24 will either open or close until the concentration set point in the controller 50 matches the TPIR concentration reading.
- variable RFO opens and closes based on the amount of voltage being supplied to it, as a voltage-responsive flow control device. The higher the voltage that is supplied to the variable RFO, the more open is the orifice of such device. Accordingly, by monitoring the voltage being supplied to the orifice, the endpoint of the active gas source 12 can be determined, since as the soiirce 12 is progressively emptied, the pressure of the active gas dispensed from such source drops as well.
- variable RFO 24 In order to maintain gas concentration at the controller set point as measured by the TPIR analyzer 42 , the orifice of the variable RFO 24 will continue to open further and further, until there is no more pressure drop across the orifice. Since the variable RFO is operated by a voltage source, when maximum voltage is being supplied to the variable RFO, the source 12 is nearly empty, signaling the endpoint of such source, and the corresponding need to isolate such source 12 and switch-in the fresh source 15 .
- the controller 50 therefore is programmatically arranged to monitor voltage being applied to the variable RFO and when such voltage is at a predetermined value, the controller operates to transmit a control signal to isolation valve 17 in signal transmission line 23 , to close such valve and thereby isolate the source 12 so that it can be uncoupled from the flow circuitry and removed from the gas delivery system. Concurrently, the controller 50 transmits a signal in signal transmission line 25 to isolation valve 21 in line 19 , opening such valve so that fresh active gas then is supplied to the downstream flow circuitry from source 15 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Accessories For Mixers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/993,795 US20100224264A1 (en) | 2005-06-22 | 2006-06-22 | Apparatus and process for integrated gas blending |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69301505P | 2005-06-22 | 2005-06-22 | |
PCT/US2006/024308 WO2007002288A2 (en) | 2005-06-22 | 2006-06-22 | Apparatus and process for integrated gas blending |
US11/993,795 US20100224264A1 (en) | 2005-06-22 | 2006-06-22 | Apparatus and process for integrated gas blending |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/024308 A-371-Of-International WO2007002288A2 (en) | 2005-06-22 | 2006-06-22 | Apparatus and process for integrated gas blending |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,745 Continuation US9666435B2 (en) | 2005-06-22 | 2013-08-12 | Apparatus and process for integrated gas blending |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100224264A1 true US20100224264A1 (en) | 2010-09-09 |
Family
ID=37595829
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/993,795 Abandoned US20100224264A1 (en) | 2005-06-22 | 2006-06-22 | Apparatus and process for integrated gas blending |
US13/964,745 Active US9666435B2 (en) | 2005-06-22 | 2013-08-12 | Apparatus and process for integrated gas blending |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,745 Active US9666435B2 (en) | 2005-06-22 | 2013-08-12 | Apparatus and process for integrated gas blending |
Country Status (6)
Country | Link |
---|---|
US (2) | US20100224264A1 (ko) |
EP (1) | EP1899040A2 (ko) |
JP (1) | JP2008543563A (ko) |
KR (1) | KR101241922B1 (ko) |
TW (2) | TWI402098B (ko) |
WO (1) | WO2007002288A2 (ko) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021011A1 (en) * | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
US20110290371A1 (en) * | 2008-09-16 | 2011-12-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'ex | Miniaturized Plant for Producing Gas Mixtures |
CN102616756A (zh) * | 2011-01-27 | 2012-08-01 | 大阳日酸株式会社 | 硒化氢制造装置 |
WO2014088797A1 (en) * | 2012-12-05 | 2014-06-12 | Linde Aktiengesellschaft | Diborane storage and blending |
WO2014137872A1 (en) * | 2013-03-05 | 2014-09-12 | Advanced Technology Materials, Inc. | Ion implantation compositions, systems, and methods |
WO2014158410A1 (en) * | 2013-03-13 | 2014-10-02 | Applied Materials, Inc | Acoustically-monitored semiconductor substrate processing systems and methods |
WO2014186575A1 (en) * | 2013-05-17 | 2014-11-20 | Advanced Technology Materials, Inc. | Preparation of high pressure bf3/h2 mixtures |
US20150096349A1 (en) * | 2012-05-14 | 2015-04-09 | Pen Inc. | Optimize analyte dynamic range in gas chromatography |
US9012874B2 (en) | 2010-02-26 | 2015-04-21 | Entegris, Inc. | Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system |
US20150114486A1 (en) * | 2012-05-03 | 2015-04-30 | International Engine Intellectual Property Company, Llc | Ammonia flow modulator to prevent moisture build-up |
US9038855B2 (en) | 2009-06-10 | 2015-05-26 | Advanced Technology Materials, Inc. | Fluid processing systems and methods |
US9109755B2 (en) | 2010-06-18 | 2015-08-18 | Entegris, Inc. | Endpoint determination for capillary-assisted flow control |
US9142387B2 (en) | 2009-10-27 | 2015-09-22 | Entegris, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
US9171725B2 (en) | 2010-02-26 | 2015-10-27 | Entegris, Inc. | Enriched silicon precursor compositions and apparatus and processes for utilizing same |
US9455147B2 (en) | 2005-08-30 | 2016-09-27 | Entegris, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
US9666435B2 (en) | 2005-06-22 | 2017-05-30 | Entegris, Inc. | Apparatus and process for integrated gas blending |
US20170205836A1 (en) * | 2016-01-19 | 2017-07-20 | Peter Adam | Gas dilution system |
US20170271184A1 (en) * | 2016-03-15 | 2017-09-21 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US9958302B2 (en) | 2011-08-20 | 2018-05-01 | Reno Technologies, Inc. | Flow control system, method, and apparatus |
US9960042B2 (en) | 2012-02-14 | 2018-05-01 | Entegris Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
CN108119749A (zh) * | 2017-12-20 | 2018-06-05 | 国网河北省电力有限公司电力科学研究院 | 一种sf6和n2混合气体充气装置及精确充气方法 |
US20180272099A1 (en) * | 2017-03-23 | 2018-09-27 | General Electric Company | Gas mixer incorporating sensors for measuring flow and concentration |
WO2018232292A1 (en) * | 2017-06-15 | 2018-12-20 | Versum Materials Us, Llc | Gas supply system |
US10269600B2 (en) | 2016-03-15 | 2019-04-23 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10303189B2 (en) | 2016-06-30 | 2019-05-28 | Reno Technologies, Inc. | Flow control system, method, and apparatus |
US10409297B2 (en) | 2014-02-06 | 2019-09-10 | Praxair Technology, Inc. | Dynamic gas blending system and process for producing mixtures with minimal variation within tolerance limits and increased gas utilization |
US10663337B2 (en) | 2016-12-30 | 2020-05-26 | Ichor Systems, Inc. | Apparatus for controlling flow and method of calibrating same |
US10679880B2 (en) | 2016-09-27 | 2020-06-09 | Ichor Systems, Inc. | Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same |
CN111649227A (zh) * | 2020-06-16 | 2020-09-11 | 大连三木气体有限公司 | 一种用于混合气体的钢瓶充入系统及其方法 |
US10838437B2 (en) | 2018-02-22 | 2020-11-17 | Ichor Systems, Inc. | Apparatus for splitting flow of process gas and method of operating same |
US10946160B2 (en) | 2017-03-23 | 2021-03-16 | General Electric Company | Medical vaporizer with carrier gas characterization, measurement, and/or compensation |
US11003198B2 (en) | 2011-08-20 | 2021-05-11 | Ichor Systems, Inc. | Controlled delivery of process gas using a remote pressure measurement device |
US11062906B2 (en) | 2013-08-16 | 2021-07-13 | Entegris, Inc. | Silicon implantation in substrates and provision of silicon precursor compositions therefor |
US11144075B2 (en) | 2016-06-30 | 2021-10-12 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US11396699B2 (en) * | 2015-05-08 | 2022-07-26 | Applied Materials, Inc. | Method for controlling a processing system |
US20220262600A1 (en) * | 2021-02-12 | 2022-08-18 | Applied Materials, Inc. | Fast gas exchange apparatus, system, and method |
WO2023167978A3 (en) * | 2022-03-02 | 2023-11-09 | Tendo Technologies Inc. | Pumpless dispensing |
US11899477B2 (en) | 2021-03-03 | 2024-02-13 | Ichor Systems, Inc. | Fluid flow control system comprising a manifold assembly |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5518404B2 (ja) * | 2009-09-04 | 2014-06-11 | 大陽日酸株式会社 | 太陽電池用セレン化水素混合ガスの供給方法及び供給装置 |
CN102471061B (zh) * | 2009-09-04 | 2014-09-24 | 大阳日酸株式会社 | 太阳能电池用硒化氢混合气体的供给方法以及供给装置 |
JP5663488B2 (ja) * | 2009-10-14 | 2015-02-04 | 大陽日酸株式会社 | 太陽電池用セレン化水素混合ガスの供給方法及び供給装置 |
GB201006530D0 (en) | 2010-04-19 | 2010-06-02 | Sec Dep For Business Innovatio | Method of and system for calibrating gas flow dilutors |
EP2458377B1 (en) | 2010-11-29 | 2019-07-31 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the molecular weight of a gas |
ES2434260T3 (es) | 2010-11-29 | 2013-12-16 | Air Products And Chemicals, Inc. | Método y aparato para medir el caudal másico de un gas |
CN102616723B (zh) * | 2011-10-27 | 2017-07-11 | 内蒙古神舟硅业有限责任公司 | 小型液态四氯化硅定量供料系统及其控制方法 |
JP2013135133A (ja) * | 2011-12-27 | 2013-07-08 | Honda Motor Co Ltd | 太陽電池用成膜装置及び太陽電池用成膜方法 |
JP5793103B2 (ja) | 2012-04-13 | 2015-10-14 | 岩谷産業株式会社 | 混合気体の供給方法及び供給装置 |
ES2536091T3 (es) | 2012-05-24 | 2015-05-20 | Air Products And Chemicals, Inc. | Aparato para la medición del contenido verdadero de un cilindro de gas bajo presión |
ES2663244T3 (es) * | 2012-05-24 | 2018-04-11 | Air Products And Chemicals, Inc. | Método y aparato para proporcionar una mezcla de gases |
ES2845173T3 (es) | 2012-05-24 | 2021-07-26 | Air Prod & Chem | Procedimiento y aparato para regular el caudal másico de un gas |
EP2667162B1 (en) | 2012-05-24 | 2015-09-30 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the physical properties of two-phase fluids |
EP2667276B1 (en) * | 2012-05-24 | 2017-11-08 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
PL2667159T3 (pl) | 2012-05-24 | 2022-05-02 | Air Products And Chemicals, Inc. | Sposób oraz urządzenie dla mierzenia masowego natężenia przepływu gazu |
US9236958B2 (en) | 2012-08-10 | 2016-01-12 | Skorpios Technologies, Inc. | Method and system for performing testing of photonic devices |
CN103344739B (zh) * | 2013-06-21 | 2015-08-05 | 河南开启电力实业有限公司 | 六氟化硫气体在线检测系统 |
DE102013220388A1 (de) * | 2013-10-09 | 2015-04-09 | Bayerische Motoren Werke Aktiengesellschaft | Sicherheitseinrichtung eines Druckgastanks insbesondere eines Kraftfahrzeugs |
CN104132237B (zh) * | 2014-08-18 | 2016-03-30 | 国家电网公司 | 混合绝缘气体低温补气装置 |
US20180166300A1 (en) * | 2016-12-13 | 2018-06-14 | Lam Research Ag | Point-of-use mixing systems and methods for controlling temperatures of liquids dispensed at a substrate |
WO2019014193A1 (en) * | 2017-07-10 | 2019-01-17 | Flow Control Llc. | INTEGRATED INFUSION VALVE |
CN107477354B (zh) * | 2017-09-08 | 2019-09-17 | 国家电网公司 | 一种六氟化硫/氮气混合气体充气装置及方法 |
KR20190044244A (ko) | 2017-10-20 | 2019-04-30 | 한국전력공사 | 액화온도가 상이한 이종가스의 혼합장치 및 이를 이용한 혼합가스 제조방법 |
US11009455B2 (en) | 2018-07-31 | 2021-05-18 | Applied Materials, Inc. | Precursor delivery system and methods related thereto |
SG11202010408SA (en) * | 2018-07-31 | 2021-02-25 | Applied Materials Inc | Precursor delivery system and methods related thereto |
CN112601720A (zh) | 2018-08-29 | 2021-04-02 | Mks仪器公司 | 臭氧水输送系统及其使用方法 |
CN112780947A (zh) * | 2019-11-06 | 2021-05-11 | 信纮科技股份有限公司 | 气体混合输出系统及方法 |
EP4065313A4 (en) | 2019-11-27 | 2023-08-02 | Diversified Fluid Solutions, LLC | ON-LINE BLENDING AND DISTRIBUTION OF CHEMICALS ON DEMAND |
CN111249932B (zh) * | 2020-02-15 | 2020-11-13 | 北京知天地环境科技有限公司 | 气体动态稀释配气方法及装置 |
TWI809498B (zh) * | 2020-09-18 | 2023-07-21 | 美商慧盛材料美國責任有限公司 | 材料供應系統及使從氣體供應和分配系統分配的氣體的壓力變化實質上降低之方法 |
KR20230025563A (ko) | 2021-08-12 | 2023-02-22 | 세메스 주식회사 | 기판 처리 장치 및 기판 처리 방법 |
CN115751175B (zh) * | 2022-10-21 | 2023-07-18 | 北京航天试验技术研究所 | 一种低温推进剂分段抽空装置 |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4042344A (en) * | 1975-05-09 | 1977-08-16 | The Broken Hill Proprietary Company Limited | Process for the production of gaseous mixtures |
US4275752A (en) * | 1978-09-22 | 1981-06-30 | Collier Nigel A | Fluid flow apparatus and method |
US4816294A (en) * | 1987-05-04 | 1989-03-28 | Midwest Research Institute | Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes |
US4936877A (en) * | 1989-07-18 | 1990-06-26 | Advanced Technology Materials, Inc. | Dopant delivery system for semiconductor manufacture |
US5047352A (en) * | 1985-05-20 | 1991-09-10 | Arch Development Corporation | Selective chemical detection by energy modulation of sensors |
US5054309A (en) * | 1988-11-21 | 1991-10-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for producing low-concentration gas mixtures, and apparatus for producing the same |
US5129412A (en) * | 1991-05-08 | 1992-07-14 | Saes Pure Gas, Inc. | Aerodynamic blender |
US5239856A (en) * | 1988-11-21 | 1993-08-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus for producing standard gas mixtures |
US5279146A (en) * | 1991-08-17 | 1994-01-18 | Horiba Ltd. | Method and apparatus for real time measurement of particulate matter in combustion gases |
US5282473A (en) * | 1992-11-10 | 1994-02-01 | Critikon, Inc. | Sidestream infrared gas analyzer requiring small sample volumes |
US5376409A (en) * | 1992-12-21 | 1994-12-27 | The Research Foundation Of State University Of New York | Process and apparatus for the use of solid precursor sources in liquid form for vapor deposition of materials |
US5403089A (en) * | 1989-09-27 | 1995-04-04 | Union Carbide Chemicals & Plastics Technology Corporation | Method and apparatus for metering and mixing non-compressible and compressible fluids |
US5470390A (en) * | 1993-05-07 | 1995-11-28 | Teisan Kabushiki Kaisha | Mixed gas supply system with a backup supply system |
US5518528A (en) * | 1994-10-13 | 1996-05-21 | Advanced Technology Materials, Inc. | Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds |
US5570743A (en) * | 1993-06-03 | 1996-11-05 | Halliburton Company | Continuous multi-component slurrying process at oil or gas well |
US5782974A (en) * | 1994-02-02 | 1998-07-21 | Applied Materials, Inc. | Method of depositing a thin film using an optical pyrometer |
US5826607A (en) * | 1996-11-25 | 1998-10-27 | Sony Corporation | Dual exhaust controller |
US5887611A (en) * | 1996-12-31 | 1999-03-30 | The University Of Florida | Gas blender |
US6050283A (en) * | 1995-07-07 | 2000-04-18 | Air Liquide America Corporation | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing |
US6067840A (en) * | 1997-08-04 | 2000-05-30 | Texas Instruments Incorporated | Method and apparatus for infrared sensing of gas |
US6070600A (en) * | 1997-07-01 | 2000-06-06 | Motorola, Inc. | Point of use dilution tool and method |
US6089027A (en) * | 1998-04-28 | 2000-07-18 | Advanced Technology Materials, Inc. | Fluid storage and dispensing system |
US6110257A (en) * | 1997-05-16 | 2000-08-29 | Advanced Technology Materials, Inc. | Low concentration gas delivery system utilizing sorbent-based gas storage and delivery system |
US6190436B1 (en) * | 1999-03-05 | 2001-02-20 | The Boc Group, Inc. | Ozone purification process |
US20010013363A1 (en) * | 1999-04-22 | 2001-08-16 | Hirofumi Kitayama | Apparatus and method for feeding gases for use in semiconductor manufacturing |
US20010032668A1 (en) * | 2000-02-04 | 2001-10-25 | Doty Dean L. | Apparatus and method for mixing gases |
US6370950B1 (en) * | 1998-03-20 | 2002-04-16 | Berkin B.V. | Medium flow meter |
US20020048213A1 (en) * | 2000-07-31 | 2002-04-25 | Wilmer Jeffrey Alexander | Method and apparatus for blending process materials |
US20020051132A1 (en) * | 2000-03-31 | 2002-05-02 | Hiromoto Ohno | Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound |
US6453924B1 (en) * | 2000-07-24 | 2002-09-24 | Advanced Technology Materials, Inc. | Fluid distribution system and process, and semiconductor fabrication facility utilizing same |
US20020168289A1 (en) * | 2001-05-11 | 2002-11-14 | Mcvey Iain F. | Non-dispersive mid-infrared sensor for vaporized hydrogen peroxide |
US6612317B2 (en) * | 2000-04-18 | 2003-09-02 | S.C. Fluids, Inc | Supercritical fluid delivery and recovery system for semiconductor wafer processing |
US6617175B1 (en) * | 2002-05-08 | 2003-09-09 | Advanced Technology Materials, Inc. | Infrared thermopile detector system for semiconductor process monitoring and control |
US6631334B2 (en) * | 2000-12-26 | 2003-10-07 | Mks Instruments, Inc. | Pressure-based mass flow controller system |
US20040007180A1 (en) * | 2002-07-10 | 2004-01-15 | Tokyo Electron Limited | Film-formation apparatus and source supplying apparatus therefor, gas concentration measuring method |
US6689252B1 (en) * | 1999-07-28 | 2004-02-10 | Applied Materials, Inc. | Abatement of hazardous gases in effluent |
US6694800B2 (en) * | 2002-03-22 | 2004-02-24 | Instrumentarium Corp. | Gas analyzer using thermal detectors |
US20040050326A1 (en) * | 2002-09-12 | 2004-03-18 | Thilderkvist Karin Anna Lena | Apparatus and method for automatically controlling gas flow in a substrate processing system |
US6763843B1 (en) * | 1997-03-03 | 2004-07-20 | William H. Dickerson, Jr. | Automatically switching valve with remote signaling |
WO2004088718A2 (en) * | 2003-03-28 | 2004-10-14 | Advanced Technology Materials Inc. | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration |
US6810821B2 (en) * | 2002-05-08 | 2004-11-02 | Benjamin Chun Pong Chan | Hazardous waste treatment method and apparatus |
US20050006799A1 (en) * | 2002-07-23 | 2005-01-13 | Gregg John N. | Method and apparatus to help promote contact of gas with vaporized material |
US7058519B2 (en) * | 2003-03-28 | 2006-06-06 | Advanced Technology Materials, Inc. | Photometrically modulated delivery of reagents |
US7129519B2 (en) * | 2002-05-08 | 2006-10-31 | Advanced Technology Materials, Inc. | Monitoring system comprising infrared thermopile detector |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3625749A (en) * | 1966-04-06 | 1971-12-07 | Matsushita Electronics Corp | Method for deposition of silicon dioxide films |
US3602778A (en) * | 1967-09-25 | 1971-08-31 | Hitachi Ltd | Zener diode and method of making the same |
JPS4820106B1 (ko) * | 1968-03-08 | 1973-06-19 | ||
US3658586A (en) * | 1969-04-11 | 1972-04-25 | Rca Corp | Epitaxial silicon on hydrogen magnesium aluminate spinel single crystals |
US3725749A (en) * | 1971-06-30 | 1973-04-03 | Monsanto Co | GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES |
JPS5183473A (en) * | 1975-01-20 | 1976-07-22 | Hitachi Ltd | Fujunbutsuno doopinguhoho |
US4128733A (en) * | 1977-12-27 | 1978-12-05 | Hughes Aircraft Company | Multijunction gallium aluminum arsenide-gallium arsenide-germanium solar cell and process for fabricating same |
US4369031A (en) * | 1981-09-15 | 1983-01-18 | Thermco Products Corporation | Gas control system for chemical vapor deposition system |
US4619729A (en) * | 1984-02-14 | 1986-10-28 | Energy Conversion Devices, Inc. | Microwave method of making semiconductor members |
US4600801A (en) * | 1984-11-02 | 1986-07-15 | Sovonics Solar Systems | Fluorinated, p-doped microcrystalline silicon semiconductor alloy material |
JP2889098B2 (ja) * | 1993-10-13 | 1999-05-10 | 株式会社本山製作所 | 特定ガスの供給制御装置 |
US5436180A (en) * | 1994-02-28 | 1995-07-25 | Motorola, Inc. | Method for reducing base resistance in epitaxial-based bipolar transistor |
US5704967A (en) | 1995-10-13 | 1998-01-06 | Advanced Technology Materials, Inc. | Fluid storage and delivery system comprising high work capacity physical sorbent |
US5707424A (en) | 1994-10-13 | 1998-01-13 | Advanced Technology Materials, Inc. | Process system with integrated gas storage and delivery unit |
DE19536976A1 (de) * | 1995-10-04 | 1997-04-10 | Basf Ag | Verfahren zur selektiven Abtrennung und Wiedergewinnung von Chlor aus Gasgemischen |
US5916245A (en) | 1996-05-20 | 1999-06-29 | Advanced Technology Materials, Inc. | High capacity gas storage and dispensing system |
JP3077591B2 (ja) * | 1996-06-20 | 2000-08-14 | 日本電気株式会社 | Cvd装置及びcvd成膜方法 |
US6080297A (en) * | 1996-12-06 | 2000-06-27 | Electron Transfer Technologies, Inc. | Method and apparatus for constant composition delivery of hydride gases for semiconductor processing |
US5834371A (en) * | 1997-01-31 | 1998-11-10 | Tokyo Electron Limited | Method and apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof |
KR20010031972A (ko) * | 1997-11-12 | 2001-04-16 | 오노 시게오 | 노광 장치, 디바이스 제조 장치 및 노광 장치의 제조 방법 |
US6346452B1 (en) * | 1999-05-03 | 2002-02-12 | National Semiconductor Corporation | Method for controlling an N-type dopant concentration depth profile in bipolar transistor epitaxial layers |
DE10011274A1 (de) * | 2000-03-08 | 2001-09-13 | Wolff Walsrode Ag | Plasmabehandelte bahnförmige Werkstoffe |
JP2003529926A (ja) * | 2000-03-30 | 2003-10-07 | 東京エレクトロン株式会社 | プラズマ処理システム内への調整可能なガス注入のための方法及び装置 |
TW552373B (en) * | 2000-07-27 | 2003-09-11 | Foster Wheeler Corp | Superatmospheric combustor for combusting lean concentrations of a burnable gas |
US6333272B1 (en) * | 2000-10-06 | 2001-12-25 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
JP2002313776A (ja) * | 2001-04-19 | 2002-10-25 | Toshiba Corp | ドライエッチング方法及びドライエッチング装置 |
US6835414B2 (en) * | 2001-07-27 | 2004-12-28 | Unaxis Balzers Aktiengesellschaft | Method for producing coated substrates |
JP3987312B2 (ja) * | 2001-08-31 | 2007-10-10 | 株式会社東芝 | 半導体装置の製造装置および製造方法ならびに半導体製造装置のクリーニング方法 |
US7192486B2 (en) * | 2002-08-15 | 2007-03-20 | Applied Materials, Inc. | Clog-resistant gas delivery system |
JP4554146B2 (ja) * | 2002-09-24 | 2010-09-29 | 忠弘 大見 | 回転式シリコンウエハ洗浄装置 |
US7172646B2 (en) | 2003-04-15 | 2007-02-06 | Air Products And Chemicals, Inc. | Reactive liquid based gas storage and delivery systems |
TWM245215U (en) * | 2003-08-15 | 2004-10-01 | Shyh-Harn Lin | The improvement of the mixture gas generator |
US20050260354A1 (en) | 2004-05-20 | 2005-11-24 | Varian Semiconductor Equipment Associates, Inc. | In-situ process chamber preparation methods for plasma ion implantation systems |
US7819981B2 (en) | 2004-10-26 | 2010-10-26 | Advanced Technology Materials, Inc. | Methods for cleaning ion implanter components |
US7438079B2 (en) * | 2005-02-04 | 2008-10-21 | Air Products And Chemicals, Inc. | In-line gas purity monitoring and control system |
KR101241922B1 (ko) | 2005-06-22 | 2013-03-11 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | 통합 가스 배합 장치 및 방법 |
SG171606A1 (en) | 2006-04-26 | 2011-06-29 | Advanced Tech Materials | Cleaning of semiconductor processing systems |
-
2006
- 2006-06-22 KR KR1020087001735A patent/KR101241922B1/ko active IP Right Grant
- 2006-06-22 US US11/993,795 patent/US20100224264A1/en not_active Abandoned
- 2006-06-22 TW TW95122439A patent/TWI402098B/zh not_active IP Right Cessation
- 2006-06-22 WO PCT/US2006/024308 patent/WO2007002288A2/en active Search and Examination
- 2006-06-22 JP JP2008518384A patent/JP2008543563A/ja not_active Withdrawn
- 2006-06-22 TW TW102121783A patent/TWI552797B/zh not_active IP Right Cessation
- 2006-06-22 EP EP06785347A patent/EP1899040A2/en not_active Withdrawn
-
2013
- 2013-08-12 US US13/964,745 patent/US9666435B2/en active Active
Patent Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4042344A (en) * | 1975-05-09 | 1977-08-16 | The Broken Hill Proprietary Company Limited | Process for the production of gaseous mixtures |
US4275752A (en) * | 1978-09-22 | 1981-06-30 | Collier Nigel A | Fluid flow apparatus and method |
US5047352A (en) * | 1985-05-20 | 1991-09-10 | Arch Development Corporation | Selective chemical detection by energy modulation of sensors |
US4816294A (en) * | 1987-05-04 | 1989-03-28 | Midwest Research Institute | Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes |
US5054309A (en) * | 1988-11-21 | 1991-10-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for producing low-concentration gas mixtures, and apparatus for producing the same |
US5239856A (en) * | 1988-11-21 | 1993-08-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus for producing standard gas mixtures |
US4936877A (en) * | 1989-07-18 | 1990-06-26 | Advanced Technology Materials, Inc. | Dopant delivery system for semiconductor manufacture |
US5403089A (en) * | 1989-09-27 | 1995-04-04 | Union Carbide Chemicals & Plastics Technology Corporation | Method and apparatus for metering and mixing non-compressible and compressible fluids |
US5129412A (en) * | 1991-05-08 | 1992-07-14 | Saes Pure Gas, Inc. | Aerodynamic blender |
US5279146A (en) * | 1991-08-17 | 1994-01-18 | Horiba Ltd. | Method and apparatus for real time measurement of particulate matter in combustion gases |
US5282473A (en) * | 1992-11-10 | 1994-02-01 | Critikon, Inc. | Sidestream infrared gas analyzer requiring small sample volumes |
US5376409A (en) * | 1992-12-21 | 1994-12-27 | The Research Foundation Of State University Of New York | Process and apparatus for the use of solid precursor sources in liquid form for vapor deposition of materials |
US5376409B1 (en) * | 1992-12-21 | 1997-06-03 | Univ New York State Res Found | Process and apparatus for the use of solid precursor sources in liquid form for vapor deposition of materials |
US5470390A (en) * | 1993-05-07 | 1995-11-28 | Teisan Kabushiki Kaisha | Mixed gas supply system with a backup supply system |
US5570743A (en) * | 1993-06-03 | 1996-11-05 | Halliburton Company | Continuous multi-component slurrying process at oil or gas well |
US5782974A (en) * | 1994-02-02 | 1998-07-21 | Applied Materials, Inc. | Method of depositing a thin film using an optical pyrometer |
US5518528A (en) * | 1994-10-13 | 1996-05-21 | Advanced Technology Materials, Inc. | Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds |
US6050283A (en) * | 1995-07-07 | 2000-04-18 | Air Liquide America Corporation | System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing |
US5826607A (en) * | 1996-11-25 | 1998-10-27 | Sony Corporation | Dual exhaust controller |
US5887611A (en) * | 1996-12-31 | 1999-03-30 | The University Of Florida | Gas blender |
US6763843B1 (en) * | 1997-03-03 | 2004-07-20 | William H. Dickerson, Jr. | Automatically switching valve with remote signaling |
US6110257A (en) * | 1997-05-16 | 2000-08-29 | Advanced Technology Materials, Inc. | Low concentration gas delivery system utilizing sorbent-based gas storage and delivery system |
US6070600A (en) * | 1997-07-01 | 2000-06-06 | Motorola, Inc. | Point of use dilution tool and method |
US6406555B1 (en) * | 1997-07-01 | 2002-06-18 | Motorola Inc. | Point of use dilution tool and method |
US6067840A (en) * | 1997-08-04 | 2000-05-30 | Texas Instruments Incorporated | Method and apparatus for infrared sensing of gas |
US6370950B1 (en) * | 1998-03-20 | 2002-04-16 | Berkin B.V. | Medium flow meter |
US6089027A (en) * | 1998-04-28 | 2000-07-18 | Advanced Technology Materials, Inc. | Fluid storage and dispensing system |
US6190436B1 (en) * | 1999-03-05 | 2001-02-20 | The Boc Group, Inc. | Ozone purification process |
US20010013363A1 (en) * | 1999-04-22 | 2001-08-16 | Hirofumi Kitayama | Apparatus and method for feeding gases for use in semiconductor manufacturing |
US6689252B1 (en) * | 1999-07-28 | 2004-02-10 | Applied Materials, Inc. | Abatement of hazardous gases in effluent |
US6772781B2 (en) * | 2000-02-04 | 2004-08-10 | Air Liquide America, L.P. | Apparatus and method for mixing gases |
US20010032668A1 (en) * | 2000-02-04 | 2001-10-25 | Doty Dean L. | Apparatus and method for mixing gases |
US20020051132A1 (en) * | 2000-03-31 | 2002-05-02 | Hiromoto Ohno | Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound |
US6612317B2 (en) * | 2000-04-18 | 2003-09-02 | S.C. Fluids, Inc | Supercritical fluid delivery and recovery system for semiconductor wafer processing |
US6453924B1 (en) * | 2000-07-24 | 2002-09-24 | Advanced Technology Materials, Inc. | Fluid distribution system and process, and semiconductor fabrication facility utilizing same |
US20020048213A1 (en) * | 2000-07-31 | 2002-04-25 | Wilmer Jeffrey Alexander | Method and apparatus for blending process materials |
US6631334B2 (en) * | 2000-12-26 | 2003-10-07 | Mks Instruments, Inc. | Pressure-based mass flow controller system |
US20020168289A1 (en) * | 2001-05-11 | 2002-11-14 | Mcvey Iain F. | Non-dispersive mid-infrared sensor for vaporized hydrogen peroxide |
US6694800B2 (en) * | 2002-03-22 | 2004-02-24 | Instrumentarium Corp. | Gas analyzer using thermal detectors |
US7011614B2 (en) * | 2002-05-08 | 2006-03-14 | Advanced Technology Materials, Inc. | Infrared thermopile detector system for semiconductor process monitoring and control |
US7172918B2 (en) * | 2002-05-08 | 2007-02-06 | Advanced Technology Materials, Inc. | Infrared thermopile detector system for semiconductor process monitoring and control |
US6617175B1 (en) * | 2002-05-08 | 2003-09-09 | Advanced Technology Materials, Inc. | Infrared thermopile detector system for semiconductor process monitoring and control |
US20060263916A1 (en) * | 2002-05-08 | 2006-11-23 | Jose Arno | Infrared thermopile detector system for semiconductor process monitoring and control |
US6810821B2 (en) * | 2002-05-08 | 2004-11-02 | Benjamin Chun Pong Chan | Hazardous waste treatment method and apparatus |
US6821795B2 (en) * | 2002-05-08 | 2004-11-23 | Advanced Technology Materials, Inc. | Infrared thermopile detector system for semiconductor process monitoring and control |
US7129519B2 (en) * | 2002-05-08 | 2006-10-31 | Advanced Technology Materials, Inc. | Monitoring system comprising infrared thermopile detector |
US20040007180A1 (en) * | 2002-07-10 | 2004-01-15 | Tokyo Electron Limited | Film-formation apparatus and source supplying apparatus therefor, gas concentration measuring method |
US20050006799A1 (en) * | 2002-07-23 | 2005-01-13 | Gregg John N. | Method and apparatus to help promote contact of gas with vaporized material |
US20040050326A1 (en) * | 2002-09-12 | 2004-03-18 | Thilderkvist Karin Anna Lena | Apparatus and method for automatically controlling gas flow in a substrate processing system |
US7058519B2 (en) * | 2003-03-28 | 2006-06-06 | Advanced Technology Materials, Inc. | Photometrically modulated delivery of reagents |
US7063097B2 (en) * | 2003-03-28 | 2006-06-20 | Advanced Technology Materials, Inc. | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration |
US6909973B2 (en) * | 2003-03-28 | 2005-06-21 | Advanced Technology Materials, Inc. | Photometrically modulated delivery of reagents |
WO2004088718A2 (en) * | 2003-03-28 | 2004-10-14 | Advanced Technology Materials Inc. | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration |
US7325560B2 (en) * | 2003-03-28 | 2008-02-05 | Advanced Technology Materials, Inc. | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration |
US7373257B2 (en) * | 2003-03-28 | 2008-05-13 | Advanced Technology Materials, Inc. | Photometrically modulated delivery of reagents |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9666435B2 (en) | 2005-06-22 | 2017-05-30 | Entegris, Inc. | Apparatus and process for integrated gas blending |
US9455147B2 (en) | 2005-08-30 | 2016-09-27 | Entegris, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
US20110290371A1 (en) * | 2008-09-16 | 2011-12-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'ex | Miniaturized Plant for Producing Gas Mixtures |
US9586188B2 (en) | 2009-06-10 | 2017-03-07 | Entegris, Inc. | Fluid processing systems and methods |
US9038855B2 (en) | 2009-06-10 | 2015-05-26 | Advanced Technology Materials, Inc. | Fluid processing systems and methods |
US20110021011A1 (en) * | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
US10497569B2 (en) | 2009-07-23 | 2019-12-03 | Entegris, Inc. | Carbon materials for carbon implantation |
US9685304B2 (en) | 2009-10-27 | 2017-06-20 | Entegris, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
US9142387B2 (en) | 2009-10-27 | 2015-09-22 | Entegris, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
US9754786B2 (en) * | 2010-02-26 | 2017-09-05 | Entegris, Inc. | Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system |
US9012874B2 (en) | 2010-02-26 | 2015-04-21 | Entegris, Inc. | Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system |
US20150228486A1 (en) * | 2010-02-26 | 2015-08-13 | Entegris, Inc. | Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system |
US9171725B2 (en) | 2010-02-26 | 2015-10-27 | Entegris, Inc. | Enriched silicon precursor compositions and apparatus and processes for utilizing same |
US9109755B2 (en) | 2010-06-18 | 2015-08-18 | Entegris, Inc. | Endpoint determination for capillary-assisted flow control |
US9631778B2 (en) | 2010-06-18 | 2017-04-25 | Entegris, Inc. | Endpoint determination for capillary-assisted flow control |
CN102616756A (zh) * | 2011-01-27 | 2012-08-01 | 大阳日酸株式会社 | 硒化氢制造装置 |
US11003198B2 (en) | 2011-08-20 | 2021-05-11 | Ichor Systems, Inc. | Controlled delivery of process gas using a remote pressure measurement device |
US10782165B2 (en) | 2011-08-20 | 2020-09-22 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US9958302B2 (en) | 2011-08-20 | 2018-05-01 | Reno Technologies, Inc. | Flow control system, method, and apparatus |
US9960042B2 (en) | 2012-02-14 | 2018-05-01 | Entegris Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US10354877B2 (en) | 2012-02-14 | 2019-07-16 | Entegris, Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US20150114486A1 (en) * | 2012-05-03 | 2015-04-30 | International Engine Intellectual Property Company, Llc | Ammonia flow modulator to prevent moisture build-up |
US20150096349A1 (en) * | 2012-05-14 | 2015-04-09 | Pen Inc. | Optimize analyte dynamic range in gas chromatography |
WO2014088797A1 (en) * | 2012-12-05 | 2014-06-12 | Linde Aktiengesellschaft | Diborane storage and blending |
WO2014137872A1 (en) * | 2013-03-05 | 2014-09-12 | Advanced Technology Materials, Inc. | Ion implantation compositions, systems, and methods |
US20150380212A1 (en) * | 2013-03-05 | 2015-12-31 | Entegris, Inc. | Ion implantation compositions, systems, and methods |
KR20150127626A (ko) * | 2013-03-05 | 2015-11-17 | 인티그리스, 인코포레이티드 | 이온 주입 조성물, 시스템 및 방법 |
US9831063B2 (en) * | 2013-03-05 | 2017-11-28 | Entegris, Inc. | Ion implantation compositions, systems, and methods |
CN105453225A (zh) * | 2013-03-05 | 2016-03-30 | 恩特格里斯公司 | 离子注入组合物、系统和方法 |
TWI653669B (zh) | 2013-03-05 | 2019-03-11 | 美商恩特葛瑞斯股份有限公司 | 離子植入組成、系統及方法 |
KR102138400B1 (ko) | 2013-03-05 | 2020-07-27 | 엔테그리스, 아이엔씨. | 이온 주입 조성물, 시스템 및 방법 |
WO2014158410A1 (en) * | 2013-03-13 | 2014-10-02 | Applied Materials, Inc | Acoustically-monitored semiconductor substrate processing systems and methods |
US9429247B2 (en) | 2013-03-13 | 2016-08-30 | Applied Materials, Inc. | Acoustically-monitored semiconductor substrate processing systems and methods |
CN105392870B (zh) * | 2013-05-17 | 2019-01-08 | 恩特格里斯公司 | 高压bf3/h2混合物的制备 |
US9996090B2 (en) | 2013-05-17 | 2018-06-12 | Entegris, Inc. | Preparation of high pressure BF3/H2 mixtures |
CN105392870A (zh) * | 2013-05-17 | 2016-03-09 | 恩特格里斯公司 | 高压bf3/h2混合物的制备 |
WO2014186575A1 (en) * | 2013-05-17 | 2014-11-20 | Advanced Technology Materials, Inc. | Preparation of high pressure bf3/h2 mixtures |
US11062906B2 (en) | 2013-08-16 | 2021-07-13 | Entegris, Inc. | Silicon implantation in substrates and provision of silicon precursor compositions therefor |
US10409297B2 (en) | 2014-02-06 | 2019-09-10 | Praxair Technology, Inc. | Dynamic gas blending system and process for producing mixtures with minimal variation within tolerance limits and increased gas utilization |
US20220333238A1 (en) * | 2015-05-08 | 2022-10-20 | Applied Materials, Inc. | Method for controlling a processing system |
US11396699B2 (en) * | 2015-05-08 | 2022-07-26 | Applied Materials, Inc. | Method for controlling a processing system |
US20170205836A1 (en) * | 2016-01-19 | 2017-07-20 | Peter Adam | Gas dilution system |
US11462426B2 (en) | 2016-03-15 | 2022-10-04 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10453721B2 (en) * | 2016-03-15 | 2019-10-22 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10269600B2 (en) | 2016-03-15 | 2019-04-23 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10943803B2 (en) | 2016-03-15 | 2021-03-09 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US11923221B2 (en) | 2016-03-15 | 2024-03-05 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US20170271184A1 (en) * | 2016-03-15 | 2017-09-21 | Applied Materials, Inc. | Methods and assemblies for gas flow ratio control |
US10782710B2 (en) | 2016-06-30 | 2020-09-22 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US11815920B2 (en) | 2016-06-30 | 2023-11-14 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US11144075B2 (en) | 2016-06-30 | 2021-10-12 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US10303189B2 (en) | 2016-06-30 | 2019-05-28 | Reno Technologies, Inc. | Flow control system, method, and apparatus |
US11424148B2 (en) | 2016-09-27 | 2022-08-23 | Ichor Systems, Inc. | Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same |
US10679880B2 (en) | 2016-09-27 | 2020-06-09 | Ichor Systems, Inc. | Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same |
US10663337B2 (en) | 2016-12-30 | 2020-05-26 | Ichor Systems, Inc. | Apparatus for controlling flow and method of calibrating same |
US10946160B2 (en) | 2017-03-23 | 2021-03-16 | General Electric Company | Medical vaporizer with carrier gas characterization, measurement, and/or compensation |
US10610659B2 (en) * | 2017-03-23 | 2020-04-07 | General Electric Company | Gas mixer incorporating sensors for measuring flow and concentration |
US20180272099A1 (en) * | 2017-03-23 | 2018-09-27 | General Electric Company | Gas mixer incorporating sensors for measuring flow and concentration |
US11755437B2 (en) | 2017-06-15 | 2023-09-12 | Versum Materials Us, Llc | Gas supply system |
WO2018232292A1 (en) * | 2017-06-15 | 2018-12-20 | Versum Materials Us, Llc | Gas supply system |
CN108119749A (zh) * | 2017-12-20 | 2018-06-05 | 国网河北省电力有限公司电力科学研究院 | 一种sf6和n2混合气体充气装置及精确充气方法 |
US10838437B2 (en) | 2018-02-22 | 2020-11-17 | Ichor Systems, Inc. | Apparatus for splitting flow of process gas and method of operating same |
CN111649227A (zh) * | 2020-06-16 | 2020-09-11 | 大连三木气体有限公司 | 一种用于混合气体的钢瓶充入系统及其方法 |
US20220262600A1 (en) * | 2021-02-12 | 2022-08-18 | Applied Materials, Inc. | Fast gas exchange apparatus, system, and method |
US12068135B2 (en) * | 2021-02-12 | 2024-08-20 | Applied Materials, Inc. | Fast gas exchange apparatus, system, and method |
US11899477B2 (en) | 2021-03-03 | 2024-02-13 | Ichor Systems, Inc. | Fluid flow control system comprising a manifold assembly |
WO2023167978A3 (en) * | 2022-03-02 | 2023-11-09 | Tendo Technologies Inc. | Pumpless dispensing |
Also Published As
Publication number | Publication date |
---|---|
TWI552797B (zh) | 2016-10-11 |
US20130330917A1 (en) | 2013-12-12 |
JP2008543563A (ja) | 2008-12-04 |
KR20080032113A (ko) | 2008-04-14 |
WO2007002288A3 (en) | 2007-04-05 |
EP1899040A2 (en) | 2008-03-19 |
WO2007002288A2 (en) | 2007-01-04 |
KR101241922B1 (ko) | 2013-03-11 |
TWI402098B (zh) | 2013-07-21 |
TW201402203A (zh) | 2014-01-16 |
TW200711720A (en) | 2007-04-01 |
US9666435B2 (en) | 2017-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9666435B2 (en) | Apparatus and process for integrated gas blending | |
US7063097B2 (en) | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration | |
KR101367575B1 (ko) | 일차 표준가스 혼합물의 제조 시스템 | |
US5661225A (en) | Dynamic dilution system | |
US6319841B1 (en) | Semiconductor processing using vapor mixtures | |
JP2006521707A5 (ko) | ||
JPH06319972A (ja) | 混合ガス供給装置 | |
JP2009500167A (ja) | 化学薬品混合装置、システムおよび方法 | |
US20020152797A1 (en) | Gas delivery apparatus and method for monitoring a gas phase species therein | |
US20060243207A1 (en) | Fluid mixing and delivery system | |
WO2014165637A2 (en) | Delivery of a high concentration hydrogen peroxide gas stream | |
US5948958A (en) | Method and apparatus for verifying the calibration of semiconductor processing equipment | |
JP4354059B2 (ja) | 標準ガス発生装置 | |
US12065359B2 (en) | Portable fluorine generator for on-site calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED TECHNOLOGY MATERIALS, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOMAN, JEFFREY J.;ARNO, JOSE I.;SWEENEY, JOSEPH D.;SIGNING DATES FROM 20080108 TO 20080603;REEL/FRAME:021083/0031 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ENTEGRIS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED TECHNOLOGY MATERIALS, INC.;REEL/FRAME:034894/0025 Effective date: 20150204 |