TWI653669B - 離子植入組成、系統及方法 - Google Patents

離子植入組成、系統及方法 Download PDF

Info

Publication number
TWI653669B
TWI653669B TW103107470A TW103107470A TWI653669B TW I653669 B TWI653669 B TW I653669B TW 103107470 A TW103107470 A TW 103107470A TW 103107470 A TW103107470 A TW 103107470A TW I653669 B TWI653669 B TW I653669B
Authority
TW
Taiwan
Prior art keywords
gas
selenium
flow
source
compound
Prior art date
Application number
TW103107470A
Other languages
English (en)
Other versions
TW201445619A (zh
Inventor
帛爾歐雷格
史溫尼約瑟夫D
唐瀛
瑞理查S
Original Assignee
美商恩特葛瑞斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩特葛瑞斯股份有限公司 filed Critical 美商恩特葛瑞斯股份有限公司
Publication of TW201445619A publication Critical patent/TW201445619A/zh
Application granted granted Critical
Publication of TWI653669B publication Critical patent/TWI653669B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本發明描述用於植入摻雜劑物種的離子植入組成物、系統及方法。本發明描述特殊的硒摻雜劑來源組成物並使用共流氣體來實現在諸如配方轉換、離子束安定性、離子源壽命、離子束均勻性、離子束電流及經營成本等植入系統特性上的優點。

Description

離子植入組成、系統及方法 【相關申請案之交插引用】
依據專利法主張享有2013年3月5號以Oleg Byl等人名義申請之發明名稱為「離子植入組成物、系統及方法(ION IMPLANTATION COMPOSITIONS,SYSTEMS,AND METHODS)」之美國專利臨時申請案第61/773,135號的優先權。美國專利臨時申請案第61/773,135號的揭示內容以引用方式全文併入本案以供參考。
本發明有關離子植入系統和方法,及有關用於離子植入的組成物。
離子植入是一種在製造微電子及半導體產品時廣泛使用的製程,藉以使用離子植入製程精確地將控制量的摻雜雜質引入基板(例如半導體晶圓)中。
在此類應用中所採用的離子植入系統中,通常是將離子源離子化成期望的摻雜元素氣體,並從該來源中以具有期望能量的離子束形式提取出該些離子。離子植入系統中使 用各種不同類型的離子源,包括採用熱電極並利用電弧供能的Freeman型及Bernas型、使用磁控管的微波型來源、間接加熱式陰極(IHC)來源及射頻(RF)電漿來源,且以上所有來源通常都在真空中運作。
在任何系統中,該離子源是藉由引導電子進入充滿摻雜劑氣體(通常稱為「原料氣體」)的真空電弧腔室(以下稱「腔室」)中來產生離子。電子與摻雜劑氣體中的原子及分子發生碰撞,而產生了由摻雜劑正離子和摻雜劑負離子所組成的離子化電漿。帶有負偏壓或正偏壓的提取電極(extraction electrode)將分別允許正離子或負離子通過孔口而成為準直離子束,該離子束經加速而射向目標材料以形成具有期望導電度的區域。
預防性維護(PM)的頻率和持續時間是離子植入工具的其中一個效能因子。整體趨勢是該工具預防性維護的頻率和持續時間應該要減少。離子植入工具最需要維護的零件包括:離子源,視操作條件而定,通常在操作約50小時至300小時之後接受保養;提取電極及高電壓絕緣體,通常在操作數百小時之後進行清洗;及與該工具相連之真空系統的幫浦及真空管線。此外,定期更換離子源的燈絲(filament)。
理想上,注入電弧腔室中的原料分子會離子化且斷裂但實質上不會與電弧腔室本身或與離子植入器的任何其他構件發生交互作用。實際上,原料氣體的離子化作用與斷裂作用可能造成以下這些不受歡迎的作用,例如對電弧腔室構件造成蝕刻或濺射、沉積在電弧腔室表面上、電弧腔室壁材 料重新分佈,等等。這些作用導致離子束不安定且最終可能造成離子源永久性故障。當原料氣體的殘餘物及離子化產物沉積在離子植入工具的高電壓構件(例如離子源絕緣體或提取電極的表面)上時,原料氣體的殘餘物和離子化產物亦可能造成放出高能高電壓火花的現象。這類火花是造成離子束不安定的另一個原因,且這些火花釋出的能量可能損害靈敏電子構件,導致設備故障情形增加且平均故障間隔時間(MTBF)欠佳。
在使用高比例的氫化物氣體作為原料氣體或共流氣體的離子植入器中(共流氣體(co-fow gases)是指與原料氣體同時流向該植入器的氣體,該共流氣體可與原料氣體以混合物形式輸送至該植入器的離子化腔室,或該共流氣體與原料氣體以分開的流動導管輸送至該植入器的離子化腔室),離子源故障模式通常包括:(i)陰極(cathode)的過度濺射,而導致所謂的陰極「擊穿(punch-through)」現象;(ii)固體及絕緣表面的過度沉積作用,導致發生電性短路或「短時脈衝干擾(glitching)」;(iii)固體堆積而在不同電位的兩個構件之間造成短路;及(iv)固體堆積在陰極上造成電子發射效率損失,而導致損失離子束電流。
微電子及半導體元件越來越小,故經常需要以相應較低的能量進行離子植入以提供淺植入區,且此種低能量操作具有成本較高且工具生產力降低的缺點。
離子植入系統中所使用的摻雜劑有著各種不同類型,可包括砷、磷、硼、氧、氮、碲、碳及硒,等等。例如, 硒可作為摻雜劑而用在諸多的植入應用,包括用來製造砷化鎵(GaAs)金屬氧化物半導體場效電晶體(MOSFET)元件、磷化銦(InP)元件及矽玻璃中的量子點。
無論離子植入操作中所使用的摻雜劑種類為何,共同目標是要確保能有效率地處理原料氣體,而能有效且經濟的方式植入離子物種並操作離子植入設備,使得維修需求減至最小,並使系統構件的故障前平均時間達到最大,而盡可能地提高植入工具的生產力。
本發明有關離子植入組成物、系統和方法。
在一態樣中,本發明是關於一種用含有硒的原料氣體作為摻雜劑物種來植入硒的方法,該方法包括以下步驟:使該原料氣體與共流氣體(co-flow gas)流至植入器,該共流氣體能有效對抗以下離子源故障模式中的至少一種故障模式:(i)陰極的濺射作用;(ii)在絕緣表面上沉積固體;(iii)固體堆積而在不同電位的兩構件之間造成短路;及(iv)固體堆積在該陰極上,且視需要而定,其中該等摻雜劑物種經過同位素富集而使得該摻雜劑物種中的一或更多種同位素高於天然含量。
在另一態樣中,本發明有關一種在基板中離子植入硒的方法,該方法包括以下步驟:使含硒原料氣體離子化以形成含硒離子物種,及將來自該含硒離子物種的硒離子植入該基板中,其中該含硒原料氣體包括多硒化物(polyselenide)。
在進一步態樣中,本發明是關於一種在基板中離子 植入硒的方法,該方法包括以下步驟:使含硒原料氣體離子化以形成含硒離子物種,及將來自該含硒離子物種的硒離子植入該基板中,其中該含硒原料氣體包括以下述至少一種形式存在的硒摻雜劑物種:元素硒、硒化氫、有機硒化合物、鹵化硒及多硒化物,及經同位素富集而使至少一硒同位素高於天然含量的上述物種。
本發明的進一步態樣是關於一種離子植入系統,該系統包含離子植入器且該離子植入器包含離子化腔室,及原料氣體供應包以供應關係連接至該離子化腔室以用於輸送該原料氣體至該離子化腔室,其中該系統經建構與配置成可進行本發明之方法。
本發明的又進一步態樣是關於一種摻雜劑物種與共流氣體的組成物,該組成物包括:(i)硒摻雜劑物種,該硒摻雜劑物種包括以下形式中之至少一者:(A)元素硒;(B)硒化氫;(C)有機硒化合物;(D)鹵化硒;(E)多硒化物;及(F)經同位素富集而使至少一硒同位素高於天然含量的上述(A)形式至(E)形式之其中一者或更多者;及(ii)共流氣體。
本發明的又進一步態樣是關於一種用於離子植入系 統的氣體供應套組,該套組包括:(i)第一氣體儲存及分配容器,用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,用於容納共流氣體,其中該原料氣體或該原料氣體的來源試劑包括硒摻雜劑物種,該硒摻雜劑物種包括以下形式中之至少一者:(A)元素硒;(B)硒化氫;(C)有機硒化合物;(D)鹵化硒;(E)多硒化物;及(F)經同位素富集而使至少一種硒同位素高於天然含量的上述(A)形式至(E)形式之其中一者或更多者。
本發明的又另一態樣是關於一種增強離子植入系統操作的方法,該方法包括以下步驟:提供用在該離子植入系統中的以下項目:(i)第一氣體儲存及分配容器,用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,用於容納共流氣體,其中該原料氣體或該原料氣體的來源試劑包括硒摻雜劑物種,該硒摻雜劑物種包括以下形式中之至少一者:(A)元素硒;(B)硒化氫;(C)有機硒化合物;(D)鹵化硒;(E)多硒化物;及 (F)經同位素富集而使至少一硒同位素高於天然含量的上述(A)形式至(E)形式之其中一者或更多者。
本發明的進一步態樣是關於一種用於離子植入的原料供應包,該供應包包括儲存及分配容器,該儲存及分配容器容納硒摻雜劑物種,且該硒摻雜劑物種選自以下群組中:(A)經同位素富集而使至少一硒同位素高於天然含量的元素硒;(B)經同位素富集而使至少一硒同位素高於天然含量的硒化氫;(C)經同位素富集而使至少一硒同位素高於天然含量的有鹵化硒;(D)經同位素富集而使至少一硒同位素高於天然含量的有機硒化合物;及(E)多硒化物,視需要而定,其中該多硒化物可經同位素富集而使至少一硒同位素高於天然含量。
由後續說明及後附請求項可更加完整瞭解本發明的其他態樣、特徵及實施例。
10‧‧‧植入系統
12‧‧‧離子植入器
14‧‧‧氣體供應包
16‧‧‧氣體供應包
18‧‧‧氣體供應包
20‧‧‧容器
22‧‧‧閥頭組件
24‧‧‧排出口
26‧‧‧容器
28‧‧‧閥頭組件
30‧‧‧排出口
32‧‧‧容器
34‧‧‧閥頭組件
36‧‧‧排出口
38‧‧‧手轉輪
40‧‧‧手轉輪
42‧‧‧手轉輪
44‧‧‧原料氣體饋送管線
46‧‧‧流動控制閥
48‧‧‧自動式閥致動器
50‧‧‧訊號傳輸線
52‧‧‧共流氣體饋送管線/氣體分配管線
54‧‧‧流動控制閥
56‧‧‧閥致動器
58‧‧‧訊號傳輸線
60‧‧‧共流氣體排出管線
62‧‧‧流動控制閥
64‧‧‧閥致動器
66‧‧‧訊號傳輸線
68‧‧‧混合腔室
70‧‧‧饋送管線
72‧‧‧繞道管線
74‧‧‧氣體分析儀
76‧‧‧繞道管線
78‧‧‧中央處理器(CPU)
80‧‧‧排出物管線
82‧‧‧排出物處理單元
84‧‧‧排放管
第1圖是離子植入系統的概要圖,該圖圖示根據本發明之操作模式,在該等操作模式中供應硒摻雜劑來源材料至離子植入器以將硒植入基板中。
本發明有關離子植入系統、方法及組成物。
當用於本文及後附請求項時,除非內文中另有明確規定,否則單數型用語「一」、「一個」及「該」包含複數之意。
文中所述化合物的有機部分體(organo moiety)及有 機化合物本身可為任何適當種類且可例如包括元素碳(C)、元素氫(H)及視需要可為雜原子,例如O、N、Si,等等。本發明的此類部分體及有機化合物可具有任意適當的碳數,例如C1~C12或更多,並與該等部分體及有機化合物中的其他元素按化學計量比而組合。
當用於本文中時,碳數範圍的標示(例如,C1~C12)是意欲包括此範圍內每一種成分碳數的部分體,而得以涵蓋介於所述範圍內的每一個居間(intervening)碳數及任何其他所述或居間的碳數值,並可進一步明白在本發明範圍內,落在指定碳數範圍內的碳數子範圍可獨立地包含在較小的碳數範圍中,且本發明包括該些特別排除某個碳數或多個碳數的碳數範圍,本發明亦包括排除指定範圍之任意一個或兩個碳數限值的子範圍。因此,C1~C12烷基意欲包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基及十二烷基,且包括這類烷基的直鏈型基團和支鏈型基團。故可明白,若碳數範圍的標示(例如,C1~C12)廣泛應用在取代基上時,能夠在本發明具體實施例中進一步將該碳數範圍限制為具有落在該取代部分體(substituent moiety)較廣規定範圍內之碳數範圍的子基團。例如在本發明的特定實施例中,可更限制性地規定該碳數範圍(例如,C1~C12烷基)包括子範圍,例如C1~C4烷基、C2~C8烷基、C2~C4烷基、C3~C5烷基或任何廣碳數範圍內的其他子範圍。
涉及本文中舉出的本發明各種不同規格與範例時,可在具體實施例中利用附帶條件或限制來排除特定的取代 基、基團、部分體或結構而進一步規定本發明的該等化合物。因此,本發明預期到諸多嚴格界定的組成物,例如可思及一種組成物,其中Ri為C1~C12烷基,並且當Rj是矽基時,Ri≠C4烷基。
儘管本發明主要有關使用含有硒的原料氣體作為摻雜劑物種來植入硒,但將意識到,文中所述方法及設備用在使用含有其他摻雜劑物種的原料氣體來植入摻雜劑物種(例如,砷、鍺、碲、磷,等等)時亦可帶來相應的好處。
在本發明一般實務中所用的原料氣體可包括以氫化物化合物、鹵化物化合物或有機來源化合物或錯合物形式存在的摻雜劑物種,例如當使用硒作為摻雜劑來源物種時,可使用有機硒化合物或有機硒錯合物。此種有機來源化合物或錯合物的有機部分體可為任何適當種類的部分體且例如可包括C1~C12有機基團,例如C1~C12烷基,符合以上描述的有機取代基。有機硒化合物可用化學式R’SeR”表示,其中R’及R”可各自獨立包括氫、鹵化物、烷基、烷氧基或含氮官能基,包括硒醇(R’SeH)、硒鹵化物(R’SeX,其中X為鹵素(氟、氯、溴及碘))及硒氧化物(R’O-SeR”)。
本發明在一特定態樣中是關於一種用含有硒的原料氣體作為摻雜劑物種以植入硒的方法,該方法包括以下步驟:使該原料氣體與共流氣體流至植入器(implanter),該共流氣體能有效對抗以下離子源故障模式中之至少一者:(i)陰極的濺射作用;(ii)在絕緣表面上沉積固體;(iii)固體堆積而在不同電位的兩構件之間造成短路;及(iv)固體堆積在陰極上, 且視需要而定,其中該等摻雜劑物種經過同位素富集(isotopically enriched)而使得該摻雜劑物種的一或更多種同位素高於天然含量。
在此方法中,原料氣體可包括該等摻雜劑物種的氫化物(hydride)。該原料氣體可與該共流氣體以混合物形式流向該植入器,或者,該原料氣體與該共流氣體可在分開的氣體流動導管中流向該植入器。
在一實施例中,該共流氣體包括選自以下群組中的至少一氣體物種,該群組為:H2、PH3、AsH3、CH4、GeH4、SiH4、H2Se、NH3、F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、N2F4、HF、WF6、MoF6、Ar、Ne、Kr、Xe、He、N2、O2、O3、H2O2、H2O、Cl2、HCl、COF2、CH2O、C2F4H2、PF3、PF5、CF4、CF3H、CF2H2、CFH3、B2F4、CO、CO2;化學式為XyFz的化合物,其中X是按化學計量比與F組合的任何元素,y1及z1;貴重氣體;化學式為CaOxHyFz的氣態化合物,其中a0,x0,y0及z1;化學式為CxFyHz的氣態化合物,其中x0,y>0及z0;及含氟氣體。
在具體實施例中,可選擇該共流氣體,使得該共流氣體可有效對抗陰極的濺射作用。該共流氣體可包括含氟氣體,例如選自於由F2、XeF2及NF3所構成之群組中的含氟氣體。或者,該共流氣體可包括含氯氣體或其他含鹵素的氣體。
該原料氣體可例如包括硒摻雜劑物種,例如採用以下形式中之至少一種形式的硒摻雜劑物種:元素硒;硒化氫;有機硒化合物;多硒化物;及經同位素富集而使至少一種硒 同位素高於天然含量的上述形式。當該硒摻雜劑物種包括有機硒化合物時,此有機硒化合物可用化學式R2Se表示,其中每個R獨立為H或C1~C12烷基且至少一個R是C1~C12烷基。當原料氣體包括多硒化物以作為硒摻雜劑物種時,該多硒化物可用化學式Sen表示,其中n為2至8。當採用經同位素富集的硒摻雜劑物種時,該原料氣體可包括以下述至少一形式存在的這類摻雜劑物種:元素硒、硒化氫、有機硒化合物、鹵化硒及多硒化物,且上述形態可經同位素富集而使至少一種硒同位素高於天然含量,例如該至少一種硒同位素可為74Se、76Se、77Se、78Se、80Se及82Se其中至少一者。在各種實施例中,經同位素富集的硒同位素是經過同位素富集而使80Se高於天然含量。
可採用上述方法將摻雜劑物種植入基板中。該基板可包括晶圓基板或選自以下群組中之元件的元件前驅結構,該元件群組為:半導體元件、平板顯示器元件、太陽能面板元件、LED元件及超級電容器元件。
可利用任何合適的方法植入該等摻雜劑物種,例如可使用束線離子植入法或電漿浸沒離子植入法將摻雜劑物種植入基板。
在各種實施例中,該離子植入方法可使用包含選自以下群組中之氣體組合的硒摻雜劑物種與共流氣體:H2Se+H2
H2Se+H2+XeF2
H2Se+CH4
H2Se+CO
H2Se+COF2
H2Se+COF2+O2+H2
H2Se+SeF4
H2Se+SeF6
H2Se+NF3
H2Se+XeF2
H2Se+F2
本發明在進一步態樣中是關於一種在基板中離子植入硒的方法,該方法包括使含硒原料氣體離子化以形成含硒離子物種,及將來自該含硒離子物種的硒離子植入該基板中,其中該含硒原料氣體包括多硒化物。在此種方法中,該多硒化物的化學式為Sen,其中n是2至8。
本發明的另一態樣是關於一種在基板中離子植入硒的方法,該方法包括以下步驟:使含硒原料氣體離子化以形成含硒離子物種,及將來自該含硒離子物種的硒離子植入該基板中,其中該含硒原料氣體包括以下述至少一種形式存在的硒摻雜劑物種:元素硒、硒化氫、有機硒化合物、鹵化硒及多硒化物,及經同位素富集而使至少一硒同位素高於天然含量的上述物種。在此種方法中,經同位素富集的硒同位素可包括使74Se、76Se、77Se、78Se、80Se及82Se之其中一或更多者成為高於天然含量的同位素,例如,可使80Se成為此種同位素。
本發明預期到一種離子植入系統,該系統包括離子 植入器且該離子植入器包含離子化腔室,及原料氣體供應包(feedstock gas supply package)以供應關係連接至該離子化腔室以用於輸送該原料氣體至該離子化腔室,其中該系統經建構與配置成可用來進行本發明方法。
本發明在另一態樣中是關於一種摻雜劑物種與共流氣體的組成物,該組成物包括:(i)硒摻雜劑物種,包括以下形式中之至少一者:(A)元素硒;(B)硒化氫;(C)有機硒化合物;(D)鹵化硒;(E)多硒化物;及(F)經同位素富集而使至少一硒同位素高於天然含量的上述(A)形式至(E)形式之其中一者或更多者;及(ii)共流氣體。
在此種組成物中,該硒摻雜劑物種可經同位素富集而富含以下同位素中之至少一者:74Se、76Se、77Se、78Se、80Se及82Se,例如可富含80Se。
在具體實施例中,該摻雜劑物種與共流氣體的組成物可包括以下組合中之任一者:H2Se+H2
H2Se+H2+XeF2
H2Se+CH4
H2Se+CO
H2Se+COF2
H2Se+COF2+O2+H2
H2Se+SeF4
H2Se+SeF6
H2Se+NF3
H2Se+XeF2
H2Se+F2
該摻雜劑物種與共流氣體之組成物可由包含選自以下群組中之至少一氣體物種的共流氣體所組成,該群組為:H2、PH3、AsH3、CH4、GeH4、SiH4、H2Se、NH3、F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、N2F4、HF、WF6、MoF6、Ar、Ne、Kr、Xe、He、N2、O2、O3、H2O2、H2O、Cl2、HCl、COF2、CH2O、C2F4H2、PF3、PF5、CF4、CF3H、CF2H2、CFH3、B2F4、CO、CO2;化學式為XyFz的化合物,其中X是按化學計量比與F組合的任何元素,y1及z1;貴重氣體;化學式為CaOxHyFz的氣態化合物,其中a0,x0,y0及z1;化學式為CxFyHz的氣態化合物,其中x0,y>0及z0;及含氟氣體。
可選擇該摻雜劑物種與共流氣體之組成物中的共流氣體以使該共流氣體可抗陰極的濺射作用,且在各種實施例中,該共流氣體可包括含氟氣體(例如F2、XeF2或NF3)或含氯氣體或其他含鹵素的氣體。
該等摻雜劑物種與共流氣體組成物的一實施例中,該共流氣體是選自於由H2、PH3、AsH3、CH4、GeH4、SiH4 及NH3所組成的群組中。在此種組成物的另一實施例中,該共流氣體是選自於由F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、HF、WF6及MoF6所組成的群組中。在此種組成物的又另一實施例中,該共流氣體是選自於由Ne、Kr、Xe及He所組成的群組中。在此種組成物的又進一步實施例中,該共流氣體是選自於由O2、O3、H2O2及H2O所組成的群組中。該組成物的又進一步實施例中包括選自於由Cl2、F2、N2、XeF2及HCl所組成之群組中的共流氣體。在該組成物的另一實施例中,該共流氣體是選自於以下群組中:F2、COF2、CF4、MoF6、B2F4、SeF4、SeF6、NF3、N2F4、XeF2、BF3、SF6、GeF4、SiF4、WF6;化學式為XyFz的化合物,其中X是按化學計量比與F組合的任何元素,y1及z1;及化學式為CaOxHyFz的化合物,其中a0,x0,y0及z1;及化學式為CxFyHz的化合物,其中x0,y>0及z0。
本發明在另一態樣中是關於一種用於離子植入系統的氣體供應套組,該套組包括:(i)第一氣體儲存及分配容器,用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,用於容納共流氣體,其中該原料氣體或該原料氣體的來源試劑包括硒摻雜劑物種,該硒摻雜劑物種包括以下形式中之至少一者:(A)元素硒;(B)硒化氫;(C)有機硒化合物;(D)鹵化硒; (E)多硒化物;及(F)經同位素富集而使至少一種硒同位素高於天然含量的上述(A)形式至(E)形式之其中一者或更多者。
在此種氣體供應套組的一實施例中,該第一氣體儲存及分配容器與該第二氣體儲存及分配容器之其中至少一者包括含有吸附介質的容器,硒摻雜劑物種吸附在該吸附介質上,且當處於分配(dispensing)條件下時,硒摻雜劑物種從該吸附介質上脫附。在此種氣體供應套組的另一實施例中,該第一氣體儲存及分配容器與該第二氣體儲存及分配容器之其中至少一者包括內部壓力調節容器,在該容器的內部體積中包含一或更多個壓力調節器。在又一些其他實施例中,該第一氣體儲存及分配容器與該第二氣體儲存及分配容器之其中至少一者可包括含有離子液體儲存介質的容器,在該含有離子液體儲存介質的容器中是利用可逆的化學反應來儲存硒摻雜劑物種。
本發明在另一態樣中是關於一種增強離子植入系統操作的方法,該方法包括以下步驟:提供可用在該離子植入系統中的以下項目:(i)第一氣體儲存及分配容器,用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,用於容納共流氣體,其中該原料氣體或該原料氣體的來源試劑包括硒摻雜劑物種,該硒摻雜劑物種包括以下形式中之至少一者:(A)元素硒;(B)硒化氫; (C)有機硒化合物;(D)鹵化硒;(E)多硒化物;及(F)經同位素富集而使至少一種硒同位素高於天然含量的上述(A)形式至(E)形式之其中一或更多者。
可執行此方法,其中該增強操作包括相對於該離子植入器在不使用任何此種共流氣體時的對應操作而言,在以下項目中的至少一個項目上增強該離子植入系統的操作特性:配方轉換、離子束安定性、離子源壽命、離子束均勻性、離子束電流及經營成本。該方法可構思成利用該第一氣體儲存及分配容器與該第二氣體儲存及分配容器之其中至少一者作為含有吸附介質的容器,而使硒摻雜劑物種吸附在該吸附介質上,並且當處在分配條件下時,硒摻雜劑物種從該吸附介質上脫附。或者,可執行該方法,而使該第一氣體儲存及分配容器與該第二氣體儲存及分配容器之其中至少一者包含內部壓力調節容器(且在該容器的內部體積中包含一或更多個壓力調節器)或離子液體儲存及分配容器。
本發明的又一態樣是關於一種用於離子植入的原料供應包,該供應包包括儲存及分配容器,該儲存及分配容器可容納硒摻雜劑物種,且該硒摻雜劑物種選自以下群組中:(A)多硒化物;(B)經同位素富集而使至少一硒同位素高於天然含量的元素硒;(C)經同位素富集而使至少一硒同位素高於天然含量的硒化氫;(D)經同位素富集而使至少一硒同位素高於天然含量的有機硒化合物;及(E)經同位素富集而使至 少一硒同位素高於天然含量的多硒化物。
在該原料供應包中,該儲存及分配容器可包括以下至少一者:(i)吸附介質,該硒摻雜劑物種吸附在該吸附介質上,且當處在分配條件下時,該硒摻雜劑物種從該吸附介質上脫附;(ii)供該硒摻雜劑物種使用的離子液體儲存介質;及(iii)位在該容器之內部體積中的一或更多個壓力調節器,該等壓力調節器配置成可用於在從該容器分配出該硒摻雜劑物種時進行壓力調節。
可提供原料供應包,其中該硒摻雜劑物種與共流氣體共混在該儲存及分配容器中。
因此,在各種具體實施例中,本發明有關於一種藉由含有摻雜劑物種之原料氣體(例如,氫化物原料氣體)來植入摻雜物種的方法,且該摻雜劑物種可例如硒、砷、鍺、碲、磷或諸如此類者,其中該原料氣體與共流氣體流向植入器,且該共流氣體能有效對抗以下離子源故障模式中的至少一種故障模式:(i)陰極的過度濺射,而導致所謂的陰極「擊穿」現象;(ii)固體及絕緣表面的過度沉積作用,導致發生電性短路或「短時脈衝干擾(glitching)」;(iii)固體堆積而在不同電位的兩個構件之間造成短路;及(iv)固體堆積在陰極上造成電子發射效率損失,而導致損失離子束電流,且視需要而定,其中該等摻雜劑物種經過同位素富集而使得該摻雜劑物種中的一或更多種同位素高於天然含量。
考慮到上述每一種故障模式(i)~(iv),可配合原料氣體加以選擇該共流氣體以克服這類故障模式。
對於陰極過度濺射及陰極易於被「擊穿」,使得陰極失去結構完整性而導致損失陰極材料的故障模式(i)而言,該陰極通常是由鎢所形成。因此,該共流氣體可加以選擇以期能夠在離子化腔室中發生鎢轉移作用(tungsten transport),使得在該陰極上沉積的鎢可抵消因陰極濺射所損失的鎢。針對此目的的共流氣體可為含氟氣體物種,例如XeF2、NF3、F2,等等,因此從陰極濺射到該植入器之離子化腔室內之周遭環境中所損失的鎢將會與來自該含氟共流氣體的氟發生反應而形成六氟化鎢(WF6),六氟化鎢將轉而在該陰極表面上沉積鎢,藉以對抗該陰極的鎢損失及鎢揮發作用。
此方法的一示例性實例是使硒原料氣體(例如,硒化氫或元素硒氣體)與含氟共流氣體(例如,氟氣)共同流向該植入器。該氟氣將有助於使鎢回沉積在該陰極上,從而抵消該陰極的濺射作用。此外,該氟共流氣體將會使硒無法沉積在該陰極上,或該氟共流氣體可藉由形成揮發性的六氟化硒副產物而清除任何已存在於該陰極上的硒沉積物,並將徹底掃除該離子化腔室中氣相的六氟化硒副產物。
此方法亦可用於其他的氫化物原料氣體,例如,胂(arsine)、膦(phosphine)或鍺烷。再者,取代含氟共流氣體,該共流氣體可包括含氯氣體或任何當與原料氣體一起出現在植入器的離子化腔室中時可有效對抗陰極濺射損失的其他共流氣體,且此外較佳的是該共流氣體能有效地與該摻雜劑物種形成揮發性物種,藉以防止該摻雜劑物種沉積在陰極上或該離子化腔室或其他植入器構件中的其他表面上。
該共流氣體可與原料氣體以混合物形式流向該植入器的離子化腔室,或該共流氣體與原料氣體可分開流向該離子化腔室,例如該共流氣體與原料氣體以分開的流動管線輸送至該離子化腔室。例如,該共流氣體與摻雜劑氣體可包裝在同一個缸瓶或容器中並以混合物形式流向該離子化腔室。在另一替代例中,該共流氣體與摻雜劑氣體可包裝在二或更多個分開的缸瓶中並流經各自的流量控制器且接著在抵達該離子化腔室之前混合。在又進一步替代例中,該共流氣體與摻雜劑氣體可分別地流向該離子化腔室。
對於涉及固體及絕緣表面的過度沉積作用,導致發生電性短路或「短時脈衝干擾(glitching)」及/或固體堆積而在不同電位的兩構件之間造成短路的故障模式(ii)及故障模式(iii)而言,所選擇的共流氣體可以是將化學蝕刻固體以生成揮發性產物,從而有效清除沉積在該植入器之離子化腔室及其他構件上之沉積物的氣體。針對此目的的共流氣體可包括含氟氣體或其他含鹵素氣體,且該共流氣體可與原料氣體以混合物形式輸送至該植入器的離子化腔室(離子源腔室),或該共流氣體與原料氣體以分開的流動管線同時輸送至該植入器的離子化腔室(離子源腔室)。
針對故障模式(iv)而言,在故障模式(iv)中發生陰極過度堆積(excessive cathode buildup)且可能伴隨發生處理氟化摻雜物種之高負載週期(duty cycle)的情形,故可使該氫化物摻雜劑物種與惰性氣體(較佳為較重的惰性氣體,例如氬氣、氙氣或氪氣)採用分開或混合物的方式共流且亦可在相對 高的電弧電壓(例如,80+V)下操作以增進濺射效應。
在進一步態樣中,本發明有關硒的植入,其中是使用多硒化物進行植入。多硒化合物是一種化學式為Sen的氣態分子物種,其中n為2至8,其中該氣體的確切組成取決於溫度而定。例如,在400℃時,Se7、Se6及Se5在該氣體中占了近乎90%,而在800℃時,Se2成為主要的硒單一物種(占該氣體的~50%),且Se和Se5共同組成該氣體的~30%。
本發明相應地考慮到對該多硒組成物進行溫度控制以提供具有期望組成的硒團簇(selenium cluster)來源氣體。最初可使用元素硒或硒化氫或其他硒化合物或硒錯合物作為用來形成多硒化合物或多硒錯合物的來源試劑。硒化氫在高於400℃的溫度下熱分解成氫氣(H2)和硒(Se),這讓硒化氫能夠用在習知離子植入工具中,因為在習知離子植入工具中,離子源是在接近1000℃的溫度下操作。所採用的溫度可有效形成想要的硒團簇來源氣體化合物或錯合物以用於進行離子提取及植入操作。
對最初由硒化氫、其他硒來源化合物或錯合物或元素硒所衍生而來的硒進行熱操控以形成期望的硒團簇來源氣體組成物,此做法能夠在植入器的操作上達成顯著優點。這些優點包括提高有效離子束電離及能夠實現硒的淺植入。
只要提供共流的清潔氣體(cleaning gas),例如先前所描述的含氟氣體,便可在各種實施例中有效進行此種硒的團簇離子植入法。該清潔氣體與該硒原料氣體可採混合物的形式供應至離子植入器,或該清潔氣體與該硒原料氣體可同 時地分別流向該植入器的離子化腔室。
在其他實施例中,例如可根據清潔操作的循環時間計劃表使該清潔氣體定期地流向該植入器的離子化腔室。
本發明的另一態樣是有關硒的離子植入法,其中該含硒原料氣體經同位素富集而使得所選擇的同位素高於天然含量。
在習知的硒離子植入法中,採用硒化氫作為原料氣體,H2Se流至該離子源,且在該離子源中,使H2Se分子離子化並斷裂而形成Se+離子。隨後從該來源中提取出Se+離子,並使Se+離子通過質量分析儀以分離Se同位素並選出一或更多種同位素,且接著將該一或更多種同位素植入基板(例如,GaAs)中。習知實務上是選擇使用80Se同位素進行植入,因為80Se在硒的同位素分佈中占49.61%。
本發明包括使用含硒原料氣體且該含硒原料氣體經同位素富集而使得用於進行離子植入的一或更多種同位素物種高於天然含量。硒的天然含量如下:74Se=0.89%
76Se=9.37%
77Se=7.63%
78Se=23.77%
80Se=49.61%
82Se=8.73%其中該百分比是原子重量百分比。
根據本發明的超含量(即,高於天然含量)含硒原料 氣體可具有任一或更多種含量高於天然含量的此類同位素物種,以原料氣體中所有硒同位素物種的總原子重量為基礎並以該原料氣體中全部的硒同位素物種總計為100原子重量%來計算原子重量百分比時,在植入器離子化腔室內接受離子化的原料氣體中的單種同位素物種可高達100%。
例如,在不同實施例中,富含80Se的原料氣體可具有以下濃度範圍:範圍下限值為50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%、99.5%中之任一者及範圍上限值為55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%、99.5%或100%中之任一者,並包括此等上限或下限原子百分比的任意排列變換,例如範圍在55%至80%、範圍在70%至95%、範圍在60%至100%。在可思及的實施例中,在引入該離子化腔室以用於在基板中進行離子植入的原料氣體中,經同位素富集80Se的原料氣體可含有濃度為上述任一個上限值或下限值的80Se同位素。
本發明包括在二或更多種同位素物種上具有超含量特性的原料氣體,例如該原料氣體中存在濃度為30%的77Se且一併存在濃度為70%的78Se。
在各種實施例中,本發明可預期到數種超含量的含硒原料氣體,在該等原料氣體中,上述硒同位素中的任一或更多種硒同位素可能具有以下任一濃度範圍:下限值比該同位素天然含量值的整位數要高(即,74Se=1%、76Se=10%、77Se=8%、78Se=24%、80Se=50%、82Se=9%)且在單種同位素原料氣體的情況下可高達100原子%,其中當該原料氣 體包含多種硒同位素時,所有硒同位素的全部原子百分比總和為100原子%。
特定單一種同位素硒的原料氣體可能有利於在植入器操作上實現各種益處,例如,由於提高硒離子束電流、降低平均故障間隔時間及/或減少預防性維修頻率,及避免在使用植入器處理不同原料摻雜劑物種的操作期間出現交叉污染問題,從而增進植入工具的生產力。例如,當在植入系統的不同運行階段中使用植入器植入砷及硒兩種摻雜劑時,使用80Se對於降低交叉污染發生機率可能頗為有效(considerable value)。在另一實例中,由於82Se的熱中子截面比76Se或77Se的熱中子截面低1000倍,對於製造容易發生所謂軟性誤差(soft errors)的為電子元件來說明顯有利,因此使用高度富集的82Se(例如,在原料氣體的硒含量中占15原子%~100原子%)可能極為有利。
至於未經同位素富集的材料,可使用相同形式的硒摻雜劑原料材料(例如金屬硒)作為摻雜劑的來源材料,或使用硒化氫或有機金屬硒前驅物(例如,R2Se,其中每個R各自獨立為H或C1~C12烷基且至少一個R是C1~C12烷基),其中硒並不是天然含量分佈的硒同位素,而是經過富集而使一或更多種硒同位素高於天然含量。儘管文中揭示內容主要針對束線模式離子植入法進行描述,但可明白,文中所述技術及方法也適合應用在其他模式的離子植入法,例如電漿浸沒式離子植入法。
在實施本發明時用來植入摻雜劑物種的基板可為任 何適當種類的基板,且例如可包括晶圓基板或是半導體物件、平板顯示器物件、太陽能面板物件、LED物件及超級電容器等等的元件前驅結構。
經同位素富集的摻雜劑來源氣體可與共流氣體一起供應至離子植入器,該共流氣體可為任何適當種類且例如可包括鹵素、氫化物、清潔劑,等等。
在某些實施例中,根據本發明所提供給離子植入器的共流氣體包括共流摻雜劑來源氣體(co-flow dopant source gases),在該等共流摻雜劑來源氣體中,該共流氣體中存在有相同的摻雜劑物種及/或其他摻雜劑物種,例如包含多種植入物種的團簇分子。或者,可使用原料氣體搭配共流氣體進行離子植入,隨後使第二共流氣體流至該植入器且同時持續將該共流氣體引入至該離子植入器,使得在從第一原料氣體轉換成第二原料氣體過程中,該共流氣體持續流動且持續進行過度性轉換(transitionally),而無需中斷該植入設備的運作(在轉換期間,可適當「重新調整(re-tuned)」該設備的離子選擇/提取構件)。藉由此種安排,可以具有運作效率的方式在欲進行離子植入的基板中植入共摻雜物種(co-dopant species)。
在各種實施例中,該共摻雜物種包括碳,例如來自於諸如CO、CO2、CF4、CH4、COF2、CH2O、C2F4H2、C2H6等等來源材料的碳。
各式各樣的共流氣體可考慮用在本發明的廣泛實踐中,及用在本發明的具體實施方案中。例如,共流氣體及該共流氣體的前驅物可包括選自以下群組中的一或更多種材 料:H2、PH3、AsH3、CH4、GeH4、SiH4、H2Se、NH3、F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、N2F4、HF、WF6、MoF6、Ar、Ne、Kr、Xe、He、N2、O2、O3、H2O2、H2O、Cl2、HCl、COF2、CH2O、C2F4H2、PF3、PF5、CF4、CF3H、CF2H2、CFH3、B2F4、CO、CO2;化學式為XyFz的化合物,其中X是按化學計量比與F組合的任何元素,y1及z1;貴重氣體;化學式為CaOxHyFz的化合物,其中a0,x0,y0及z1;化學式為CxFyHz的化合物,其中x0,y>0及z0;及含氟氣體,等等。
示例性的共流氫化物氣體包括H2、PH3、AsH3、CH4、GeH4、SiH4及NH3
可與本發明之該等原料氣體併用的示例性共流氟化物氣體包括F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、HF、WF6及MoF6
可作為共流成分的貴重氣體包括Ar、Ne、Kr、Xe及He。
氧化物氣體共流成分包括O2、O3、H2O2及H2O。
可在本發明實務中作為共流氣體的其他氣體包括,但不限於,Cl2、F2、N2、XeF2及HCl。
在具體實施例中,該原料氣體可與一或更多種氟系化合物氣體採用混合物及/或共流關係的方式供應至該離子植入器,且該一或更多種氟系化合物氣體可選自以下群組中:F2、COF2、CF4、MoF6、B2F4、SeF4、SeF6、NF3、N2F4、XeF2、BF3、SF6、GeF4、SiF4、WF6;化學式為XyFz的化合物,其 中X是按化學計量比與F組合的任何元素,y1及z1;及化學式為CaOxHyFz的化合物,其中a0,x0,y0及z1;及化學式為CxFyHz的化合物,其中x0,y>0及z0。
在一特定態樣中,本發明考慮到包含以下氣體的硒化氫氣體混合物或共流配置:H2Se+H2
H2Se+H2+XeF2
H2Se+CH4
H2Se+CO
H2Se+COF2
H2Se+COF2+O2+H2
H2Se+SeF4
H2Se+SeF6
H2Se+NF3
H2Se+XeF2
H2Se+F2
文中所述的摻雜劑來源氣體可包裝成可供給離子植入設備的任何適當的形式,且該等摻雜劑來源氣體與一種共流氣體或數種共流氣體可採用混合物方式供應,或可採用以包裝好的摻雜劑來源氣體及分開包裝之共流氣體的形式來供應摻雜劑來源氣體與共流氣體。本發明從而考慮到一種包含包裝摻雜劑來源氣體及包裝共流氣體的組合件,以用於供給離子植入設備而可在此設備中同時使用該包裝摻雜劑來源氣 體及該包裝共流氣體。該共流液體可採用任何適當方式流向該離子植入系統,例如在該摻雜劑來源氣體流向該離子植入器的整個期間內使該共流氣體與該摻雜劑來源氣體同時流向該離子植入系統,或者在該摻雜劑來源氣體流向該離子植入器的期間內僅有部分時間使該共流氣體流向該離子植入系統,或者在該摻雜劑來源氣體持續流向該離子植入器的期間內使該共流氣體間歇性地流向該離子植入系統,或是以任何可實現共流氣體之益處的其他方式使該共流氣體流向該離子植入系統。
本發明相應地思及一種用於離子植入系統的氣體供應套組,該套組包括:(i)第一氣體儲存及分配容器,以用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,以用於容納共流氣體。
本發明進一步思及一種增強離子植入系統操作的方法,該方法包括以下步驟:提供用在該離子植入系統中的以下項目:(i)第一氣體儲存及分配容器,以用於容納原料氣體或該原料氣體的來源試劑,及(ii)第二氣體儲存及分配容器,以用於容納共流氣體。
在本發明的各種實施例中,相對於該離子植入器在不使用任何此類共流氣體時的對應操作而言,可採用提供共流氣體與原料氣體的方式,以在下述至少一方面上增強該離子植入器的操作特性:配方轉換、離子束安定性、離子源壽命、離子束均勻性、離子束電流(beam current)及經營成本。
在各種實施例中,摻雜劑原料及共流氣體的具體包 裝包括一種含有吸附介質的儲存及分配容器,在該吸附介質上物理性地吸附原料氣體以用於儲存該氣體,且當處在分配條件下時,該氣體從該吸附介質上脫附以從該容器流出。該吸附介質可為一種固相碳吸附材料。此種類型的吸附式容器可購自ATMI公司(美國,康乃狄克州,丹伯里)隸屬SDS及SAGE商標下的產品。或者,該容器可為一種內部壓力調節式容器,在該容器的內部體積中包含一或更多個壓力調節器。此種壓力調節容器可購自ATMI公司(美國,康乃狄克州,丹伯里)隸屬VAG商標下的產品。在又進一步替代例中,該容器可包含固體形式的摻雜劑來源材料,例如藉由加熱該容器及/或容器內容物使該材料揮發而產生如汽化產物或昇華產物般的摻雜劑氣體。此類型的固體型輸送容器可購自ATMI公司(美國,康乃狄克州,丹伯里)隸屬ProEvap商標下的產品。可思及含有離子液體(ionic liquid)以作為氣體或多種氣體之儲存媒介的其他氣體儲存及分配容器。
現參閱圖式,第1圖是離子植入系統的概要圖,該圖圖示說明根據本發明之操作模式,在操作模式中,供應原料氣體至離子植入器以在基板中植入摻雜劑物種。
如第1圖所示,植入系統10包含離子植入器12,該離子植入器12配置成以可接受的關係連接至氣體供應包14、氣體供應包16及氣體供應包18,以輸送原料氣體及共流氣體至該植入器。
氣體供應包14包含容器,該容器含有含硒原料氣體,例如硒化氫。該容器包含閥頭組件22,該閥頭組件22 具有排出口24且該排出口24連接至原料氣體饋送管線44。該閥頭組件22配備有手轉輪38以用於手動調節該閥頭組件中的閥,以依照期望在全開位置與全關位置之間進行轉換而可分配容器20中所含的氣體或是密閉儲存該容器20中的氣體。
共流氣體供應包16及共流氣體供應包18中含有共流氣體,且共流氣體供應包16及共流氣體供應包18各自的結構類似於來源14。共流氣體供應包16包含容器26,該容器26配備有閥頭組件28,且該閥頭組件28連接至手轉輪40。該閥頭組件28包含排出口30,且該排出口30連接至共流氣體饋送管線52。
共流氣體供應包18包含容器32,該容器32配備有閥頭組件34,且該閥頭組件34連接至手轉輪42以用於驅動該閥頭組件34中的閥。該閥頭組件34亦包含排出口36,且該排出口36連接至共流氣體排出管線60。
在圖中所示的配置中,該等不同容器中所供應的氣體可與上述配置方式不同。例如,可以任何期望的組合方式供應一種摻雜劑來源氣體或數種摻雜劑來源氣體,或供應一或數種摻雜劑氣體及一或數種非摻雜用的共流氣體。因此,圖中所示的配置方式允許提供三種摻雜劑來源氣體,或一種摻雜劑來源氣體及兩種共流氣體,或兩種摻雜劑來源氣體及一種共流氣體,而可選擇性地分配該等氣體以流向混合腔室68。
為了控制從各別來源流出的動作,可在個別氣體饋 送管線44、氣體饋送管線52及氣體饋送管線60中分別提供流動控制閥46、流動控制閥54及流動控制閥62。
流動控制閥46配備有自動式閥致動器48,該致動器48具有訊號傳輸線50,該訊號傳輸線50連接該致動器與中央處理器(CPU)78,使得CPU78能經訊號傳輸線50傳送控制訊號至該閥致動器,藉以調控該閥46的位置,且相應地控制從該容器20流向該混合腔室68的氣體。
以同樣方式,氣體分配管線52包含流動控制閥54,該流動控制閥54配備有閥致動器56,該閥致動器56繼而藉由訊號傳輸線58連接至CPU 78。對應地,氣體分配管線60中的流動控制閥62配備有閥致動器64,該閥致動器64藉由訊號傳輸線66而連接至CPU 78。
以此方式,該CPU可操作地控制著從相應容器20、容器26及容器32中流出的個別氣體。
在多種氣體同時流向(共同流向)混合腔室68的情況下,所得到的氣體隨後排放至饋送管線70以輸送至該離子植入器12。
相應地,若在指定時間僅使單一個氣體供應包14、氣體供應包16或氣體供應包18以分配模式運作時,則藉由相關的流動控制閥進行調控可使該相應的單種氣體流過該混合腔室並進入饋送管線70而流向該離子植入器。
饋送管線70與繞道迴路(bypass flow loop)連接,該繞道迴路是由與該饋送管線連通的繞道管線72和繞道管線76所組成且具有氣體分析儀74。氣體分析儀74故可接收從 饋送管線70中之主線流體所分出的支流,且氣體分析儀74做出回應而產生與該氣流之濃度、流動速率等相關的監控訊號,並經由連接分析儀74與CPU 78的訊號傳輸線來傳送監控訊號。以此方式,CPU 78接收來自氣體分析儀74的該監控訊號,處理該訊號,並作出回應而產生輸出控制訊號,適當地將該等輸出控制訊號傳送給個別的閥致動器48、閥致動器56及閥致動器64,或傳送該等閥致動器之中選定的其中一或多個致動器,藉以針對該離子植入器做出期望的氣體分配操作。
離子植入器12產生排出物(effluent),該排出物流入排出物管線80而流向排出物處理單元82,排出物處理單元82可利用排出物處理作業(包括,洗滌、催化氧化作用,等等)來處理該排出物而生成經處理後的氣體排出物,該經處理的氣體排出物經由排放管84排出該處理單元82並可進行進一步處理或其他處置。
CPU 78可為任何適當類型且可能包括各式各樣種類,包括通用型可程式化電腦、特用型可程式化電腦、可程式化邏輯控制器、微處理器或可如上述般能有效進行該監控訊號的訊號處理並產生一或多個輸出控制訊號的其他運算單元。
因此,該CPU可經過程式化配置以執行循環操作,包括依個別氣體的流動順序,使氣體供應包14、氣體供應包16及氣體供應包18中的其中兩個供應包或全部三個供應包併流地(concurrent)流出氣體。因此,可經調適而配置出任何 流動模式,包括使氣體並流(co-flow),或氣體以混合物方式流動,或使氣體依序流動(sequential gas flow)。
儘管本文中已參照多個具體態樣、特徵及示例性實施例來說明本發明,但本發明所屬領域中具有通常技藝者將可明白本發明的用途並不僅限於此,而是可擴及並涵蓋根據文中描述內容所能思及的各種其他變化、修飾及替代實施例。相應地,應採用廣義方式來分析和解釋以下所請之本發明,且包括所有此類的變化、修飾及替代實施例皆為本發明之精神與範圍所涵蓋。

Claims (10)

  1. 一種植入硒的方法,該方法包括使原料氣體與共流氣體流至植入器,該共流氣體能有效對抗以下離子源故障模式中之至少一者:(i)陰極的濺射作用;(ii)在絕緣表面上沉積固體;(iii)固體堆積而在不同電位的兩構件之間造成短路;及(iv)固體堆積在該陰極上,其中該原料氣體包含經過同位素富集而於一或多種硒同位素高於天然含量的有機硒化合物,該有機硒化合物具有化學式R'SeR",其中R'及R"各可包括氫、鹵化物、烷基、烷氧基或含氮官能基,且其中該有機硒化合物經過同位素富集而於一或多種74Se、76Se、77Se、78Se、80Se及82Se之硒同位素高於天然含量。
  2. 如請求項1所述之方法,其中該原料氣體與該共流氣體是以混合物形式流向該植入器。
  3. 如請求項1所述之方法,其中該原料氣體與該共流氣體在分開的氣體流動導管中流向該植入器。
  4. 如請求項1-3中任一項所述之方法,其中該共流氣體包括選自以下群組中的至少一氣體物種,該群組為:H2、PH3、AsH3、CH4、GeH4、SiH4、H2Se、NH3、F2、XeF2、BF3、SF6、GeF4、SiF4、SeF4、SeF6、NF3、N2F4、HF、WF6、MoF6、Ar、Ne、Kr、Xe、He、N2、O2、O3、H2O2、H2O、Cl2、HCl、COF2、CH2O、C2F4H2、PF3、PF5、CF4、CF3H、CF2H2、CFH3、B2F4、CO、CO2;化學式為XyFz的化合物,其中X是按化學計量比與F組合的任何元素,y1及z 1;貴重氣體;化學式為CaOxHyFz的氣態化合物,其中a0,x0,y0及z1;化學式為CxFyHz的氣態化合物,其中x0,y>0及z0;及含氟氣體。
  5. 如請求項1-3中任一項所述之方法,其中該原料氣體及該共流氣體包括經過同位素富集而於一或多種硒同位素高於天然含量的氣體組合,該氣體組合選自以下構成群組:H2Se+CH4 H2Se+CO H2Se+COF2 H2Se+COF2+O2+H2 H2Se+SeF4 H2Se+SeF6 H2Se+NF3 H2Se+F2
  6. 一種在一基板中離子植入硒的方法,該方法包括以下步驟:使一含硒原料氣體離子化以形成含硒離子物種,及將來自該含硒離子物種的硒離子植入該基板中,其中該含硒原料氣體包括多硒化物。
  7. 如請求項6所述之方法,其中該多硒化物的化學式為Sen,其中n是2至8。
  8. 一種包含有機硒化合物與共流氣體的原料氣體組成物,該有機硒化合物具有化學式R'SeR",其中R'及R"各可包括氫、鹵化物、烷基、烷氧基或含氮官能基,且其中該有機硒化合物經過同位素富集而於一或多種74Se、76Se、77Se、 78Se、80Se及82Se之硒同位素高於天然含量。
  9. 如請求項8所述之原料氣體組成物,其中R'及R"各為氫或C1-C12烷基且R'及R"中至少一者為C1-C12烷基。
  10. 如請求項8或9所述之原料氣體組成物,其中該有機硒化合物與該共流氣體在儲存及分配容器中共混。
TW103107470A 2013-03-05 2014-03-05 離子植入組成、系統及方法 TWI653669B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361773135P 2013-03-05 2013-03-05
US61/773,135 2013-03-05

Publications (2)

Publication Number Publication Date
TW201445619A TW201445619A (zh) 2014-12-01
TWI653669B true TWI653669B (zh) 2019-03-11

Family

ID=51491817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107470A TWI653669B (zh) 2013-03-05 2014-03-05 離子植入組成、系統及方法

Country Status (8)

Country Link
US (1) US9831063B2 (zh)
EP (1) EP2965347A4 (zh)
JP (1) JP2016514352A (zh)
KR (1) KR102138400B1 (zh)
CN (1) CN105453225B (zh)
SG (1) SG11201506605XA (zh)
TW (1) TWI653669B (zh)
WO (1) WO2014137872A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297964B1 (ko) * 2005-08-30 2013-08-19 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 대안적인 불화 붕소 전구체를 이용한 붕소 이온 주입 방법, 및 주입을 위한 대형 수소화붕소의 형성 방법
WO2014179585A1 (en) * 2013-05-02 2014-11-06 Praxair Technology, Inc. Supply source and method for enriched selenium ion implantation
US9887067B2 (en) 2014-12-03 2018-02-06 Varian Semiconductor Equipment Associates, Inc. Boron implanting using a co-gas
JP6779295B2 (ja) * 2015-12-27 2020-11-04 インテグリス・インコーポレーテッド スパッタリングガス混合物中のトレースその場クリーニングガスを利用したイオン注入プラズマフラッドガン(pfg)の性能の改善
US20170292186A1 (en) * 2016-04-11 2017-10-12 Aaron Reinicker Dopant compositions for ion implantation
WO2017196934A1 (en) * 2016-05-13 2017-11-16 Entegris, Inc. Fluorinated compositions for ion source performance improvement in nitrogen ion implantation
US10256069B2 (en) * 2016-11-24 2019-04-09 Axcelis Technologies, Inc. Phosphorous trifluoride co-gas for carbon implants
US10361081B2 (en) * 2016-11-24 2019-07-23 Axcelis Technologies, Inc. Phosphine co-gas for carbon implants
WO2018185987A1 (ja) * 2017-04-06 2018-10-11 株式会社アルバック イオン源及びイオン注入装置
CN207269015U (zh) * 2017-06-16 2018-04-24 上海凯世通半导体股份有限公司 离子注入设备
US10923309B2 (en) 2018-11-01 2021-02-16 Applied Materials, Inc. GeH4/Ar plasma chemistry for ion implant productivity enhancement
SG11202105497PA (en) * 2018-12-15 2021-06-29 Entegris Inc Fluorine ion implantation system with non-tungsten materials and methods of using
JP7195983B2 (ja) * 2019-03-19 2022-12-26 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入方法
US11756772B2 (en) 2019-06-06 2023-09-12 Axcelis Technologies, Inc. System and method for extending a lifetime of an ion source for molecular carbon implants
WO2021055606A1 (en) * 2019-09-20 2021-03-25 Entegris, Inc. Plasma immersion methods for ion implantation
WO2024030209A1 (en) * 2022-08-05 2024-02-08 Entegris, Inc. Gas mixture as co-gas for ion implant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224264A1 (en) 2005-06-22 2010-09-09 Advanced Technology Materials, Inc. Apparatus and process for integrated gas blending
CN102668016A (zh) 2009-10-27 2012-09-12 先进科技材料股份有限公司 离子注入系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259091B1 (en) * 1996-01-05 2001-07-10 Battelle Memorial Institute Apparatus for reduction of selected ion intensities in confined ion beams
US7563308B2 (en) * 2004-09-23 2009-07-21 Air Products And Chemicals, Inc. Ionic liquid based mixtures for gas storage and delivery
US7404845B2 (en) * 2004-09-23 2008-07-29 Air Products And Chemicals, Inc. Ionic liquid based mixtures for gas storage and delivery
WO2007134183A2 (en) * 2006-05-13 2007-11-22 Advanced Technology Materials, Inc. Chemical reagent delivery system utilizing ionic liquid storage medium
DE102006054524B4 (de) * 2006-11-20 2022-12-22 Novaled Gmbh Verwendung von Dithiolenübergangsmetallkomplexen und Selen- analoger Verbindungen als Dotand
DE102006054523B4 (de) * 2006-11-20 2009-07-23 Novaled Ag Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex
US8598022B2 (en) * 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US20110143527A1 (en) * 2009-12-14 2011-06-16 Varian Semiconductor Equipment Associates, Inc. Techniques for generating uniform ion beam
JP5773306B2 (ja) * 2010-01-15 2015-09-02 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 半導体素子構造を形成する方法および装置
US8779383B2 (en) * 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
TWI386983B (zh) * 2010-02-26 2013-02-21 Advanced Tech Materials 用以增進離子植入系統中之離子源的壽命及性能之方法與設備
US9984855B2 (en) * 2010-11-17 2018-05-29 Axcelis Technologies, Inc. Implementation of co-gases for germanium and boron ion implants
EP3267470A3 (en) * 2012-02-14 2018-04-18 Entegris, Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224264A1 (en) 2005-06-22 2010-09-09 Advanced Technology Materials, Inc. Apparatus and process for integrated gas blending
CN102668016A (zh) 2009-10-27 2012-09-12 先进科技材料股份有限公司 离子注入系统及方法

Also Published As

Publication number Publication date
SG11201506605XA (en) 2015-09-29
KR20150127626A (ko) 2015-11-17
JP2016514352A (ja) 2016-05-19
US20150380212A1 (en) 2015-12-31
CN105453225B (zh) 2018-08-28
CN105453225A (zh) 2016-03-30
EP2965347A4 (en) 2017-02-15
TW201445619A (zh) 2014-12-01
WO2014137872A1 (en) 2014-09-12
EP2965347A1 (en) 2016-01-13
US9831063B2 (en) 2017-11-28
KR102138400B1 (ko) 2020-07-27

Similar Documents

Publication Publication Date Title
TWI653669B (zh) 離子植入組成、系統及方法
JP2021044553A (ja) イオン注入システム中のイオン源の寿命および性能を向上させる方法および装置
TWI450994B (zh) 利用選擇性氟化硼前驅物之硼離子植入方法,及供植入用之大群氫化硼之形成方法
US9685304B2 (en) Isotopically-enriched boron-containing compounds, and methods of making and using same
KR101668211B1 (ko) 알루미늄 도펀트 조성물, 이러한 조성물을 함유하는 대기압 미만의 저장 및 전달 패키지, 및 이러한 조성물의 저장 및 전달 방법
KR20130097758A (ko) 동위원소-농축된 붕소-함유 화합물, 및 이의 제조 및 사용 방법
WO2013148463A1 (en) Ion implantation system and method of processing a substrate
EP3699317B1 (en) Storage and delivery of antimony-containing materials to an ion implanter
US10633402B2 (en) Tin-containing dopant compositions, systems and methods for use in ion implantation systems
US11098402B2 (en) Storage and delivery of antimony-containing materials to an ion implanter
TWI838362B (zh) 低於大氣壓之儲存和輸送槽、其製備方法及其使用方法
WO2021232036A1 (en) Storage and delivery of antimony-containing materials to an ion implanter