US20100113629A1 - hydrofluoropropene blowing agents for thermoplastics - Google Patents

hydrofluoropropene blowing agents for thermoplastics Download PDF

Info

Publication number
US20100113629A1
US20100113629A1 US12/532,253 US53225308A US2010113629A1 US 20100113629 A1 US20100113629 A1 US 20100113629A1 US 53225308 A US53225308 A US 53225308A US 2010113629 A1 US2010113629 A1 US 2010113629A1
Authority
US
United States
Prior art keywords
blowing agent
hfc
agent composition
mixtures
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/532,253
Other languages
English (en)
Inventor
Brett L. Van Horn
Maher Y. Elsheikh
Benjamin Bin Chen
Philippe Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema Inc
Original Assignee
Arkema Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39808675&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100113629(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkema Inc filed Critical Arkema Inc
Priority to US12/532,253 priority Critical patent/US20100113629A1/en
Assigned to ARKEMA INC. reassignment ARKEMA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELSHEIKH, MAHER Y., BONNET, PHILIPPE, CHEN, BENJAMIN BIN, VAN HORN, BRETT L.
Publication of US20100113629A1 publication Critical patent/US20100113629A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/202Ternary blends of expanding agents of physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to blowing agent compositions comprising at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions.
  • HCFOs of the present invention include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), particularly the trans-isomer, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), dichloro-fluorinated propenes, and mixtures thereof.
  • blowing agent compositions of the present invention are preferably used with coblowing agents including carbon dioxide, atmospheric gases, hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), alkanes, hydrofluoroethers (HFE), and mixtures thereof.
  • Preferred HFCs used as coblowing agents in the present invention include, but are not limited too, 1,1,1,2-tetrafluoroethane (HFC-134a); 1,1-difluoroethane (HFC-152a); 1,1,1-trifluoroethane (HFC-143a); pentafluorethane (HFC-125); and difluoromethane (HFC-32).
  • the blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
  • HFC hydrofluorocarbons
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • blowing agent compositions comprising a hydrochlorofluorolefin, particularly HCFO-1233zd, HCFO-1233xf, dichloro-fluorinated propenes, and mixtures thereof can permit the production of lower density, closed-cell foam and good k-factor which will be particularly useful for thermal insulating foams.
  • This invention may also permit the production of low density, closed-cell foams with enlarged, controlled cell size.
  • blowing agents comprising halogenated alkenes of generic formula that would include numerous HCFOs, among many other materials including brominated and iodinated compounds and HFOs.
  • Specific HCFOs for use in thermoplastic foaming are not disclosed nor are the benefits of using the HCFOs in terms of increasing the foam cell size as discovered in the present invention.
  • HCFO-1233zd is disclosed for use in polyurethane foaming, however it is not obvious to one skilled in the art that a blowing agent for polyurethane foaming would be particularly good for thermoplastic foaming.
  • GB 950,876 discloses a process for the production of polyurethane foams. It discloses that any suitable halogenated saturated or unsaturated hydrocarbon having a boiling point below 150° C., preferably below 50° C., can be used as the blowing agent. Trichlorofluoroethene, chlorotrifluoroethene, and 1,1-dichloro-2,2-difluoroethene are disclosed in a list of suitable blowing agents. Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs. There is no disclosure related to blowing agents for thermoplastic foaming nor are the benefits of HCFOs in thermoplastic foaming mentioned nor preferred combinations of HCFOs with other coblowing agents.
  • CA 2016328 discloses a process for preparing closed-cell, polyisocyanate foam.
  • organic compound blowing agents including halogenated alkanes and alkenes, where the alkene is propylene, and the halogenated hydrocarbons can be chlorofluorocarbons.
  • Hydrochlorofluoropropenes are not specifically disclosed nor are longer chain HCFOs.
  • blowing agents for thermoplastic foaming nor are the benefits of HCFOs in thermoplastic foaming mentioned nor preferred combinations of HCFOs with other coblowing agents.
  • the present invention relates to the use of blowing agents with negligible ozone-depletion and low GWP comprising a hydrochlorofluoroolefin (HCFO) used with an additional blowing agent.
  • HCFO hydrochlorofluoroolefin
  • the present invention discloses blowing agent and foamable resin compositions useful for the production of foams with decreased density, enlarged cell size, and improved k-factor that can be used as insulating foams.
  • the HCFO is 1-chloro-3,3,3-trilfluoropropene (HCFO-1233zd), preferably the trans isomer; 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), and mixtures thereof.
  • Preferred coblowing agents to be used with the HCFO include hydrofluorocarbons (HFC), preferably 1,1,1,2-tetrafluoroethane; 1,1-difluoroethane (HFC-152a); pentafluoroethane (HFC-125); 1,1,1-trifluoroethane (HFC-143a); difluoromethane (HFC-32); hydrofluoroolefins (HFO), preferably 3,3,3-trifluoropropene (HFO-1243zf); 1,3,3,3-tetrafluoropropene (HFO-1234ze), particularly the trans isomer; 2,3,3,3-tetrafluoropropene (HFO-1234yf); (cis and/or trans)-1,2,3,3,3-pentafluoropropene (HFO-1225ye); carbon dioxide; alkanes, preferably a butane or a pentane, and mixtures thereof.
  • HFC hydroflu
  • Another embodiment of this invention are foamable resin compositions containing greater than about 1 parts per hundred (pph) and less than about 100 pph of the blowing agent composition with respect to resin, preferably greater than about 2 pph and less than about 40 pph, more preferably greater than about 3 pph and less than about 25 pph, and even more preferably greater than about 4 pph and less than about 15 pph of the blowing agent composition with respect to resin.
  • the process for preparing a foamed thermoplastic product is as follows: Prepare a foamable polymer composition by blending together components comprising foamable polymer composition in any order. Typically, prepare a foamable polymer composition by plasticizing a polymer resin and then blending in components of a blowing agent composition at an initial pressure.
  • a common process of plasticizing a polymer resin is heat plasticization, which involves heating a polymer resin enough to soften it sufficiently to blend in a blowing agent composition.
  • heat plasticization involves heating a thermoplastic polymer resin near or above its glass transition temperature (Tg), or melt temperature (Tm) for crystalline polymers.
  • a foamable polymer composition can contain additional additives such as nucleating agents, cell-controlling agents, dyes, pigments, fillers, antioxidants, extrusion aids, stabilizing agents, antistatic agents, fire retardants, IR attenuating agents and thermally insulating additives.
  • Nucleating agents can include, among others, materials such as talc, calcium carbonate, sodium benzoate, and chemical blowing agents such azodicarbonamide or sodium bicarbonate and citric acid.
  • IR attenuating agents and thermally insulating additives can include carbon black, graphite, silicon dioxide, metal flake or powder, among others.
  • Flame retardants can include, among others, brominated materials such as hexabromocyclodecane and polybrominated biphenyl ether.
  • Foam preparation processes of the present invention include batch, semi-batch, and continuous processes. Batch processes involve preparation of at least one portion of the foamable polymer composition in a storable state and then using that portion of foamable polymer composition at some future point in time to prepare a foam.
  • a semi-batch process involves preparing at least a portion of a foamable polymer composition and intermittently expanding that foamable polymer composition into a foam all in a single process.
  • U.S. Pat. No. 4,323,528, incorporated herein by reference discloses a process for making polyolefin foams via an accumulating extrusion process.
  • the process comprises: 1) mixing a thermoplastic material and a blowing agent composition to form a foamable polymer composition; 2) extruding the foamable polymer composition into a holding zone maintained at a temperature and pressure which does not allow the foamable polymer composition to foam; the holding zone has a die defining an orifice opening into a zone of lower pressure at which the foamable polymer composition foams and an openable gate closing the die orifice; 3) periodically opening the gate while substantially concurrently applying mechanical pressure by means of a movable ram on the foamable polymer composition to eject it from the holding zone through the die orifice into the zone of lower pressure, and 4) allowing the ejected foamable polymer composition to expand to form the foam.
  • a continuous process involves forming a foamable polymer composition and then expanding that foamable polymer composition in a non-stop manner.
  • prepare a foamable polymer composition in an extruder by heating a polymer resin to form a molten resin, blending into the molten resin a blowing agent composition at an initial pressure to form a foamable polymer composition, and then extruding that foamable polymer composition through a die into a zone at a foaming pressure and allowing the foamable polymer composition to expand into a foam.
  • cool the foamable polymer composition after addition of the blowing agent and prior to extruding through the die in order to optimize foam properties. Cool the foamable polymer composition, for example, with heat exchangers.
  • Foams of the present invention can be of any form imaginable including sheet, plank, rod, tube, beads, or any combination thereof. Included in the present invention are laminate foams that comprise multiple distinguishable longitudinal foam members that are bound to one another.
  • a 15 m long, 0.53 mm diameter GC capillary-column was prepared with a 3 micron thick polystyrene internal film coating.
  • the column was installed into a Hewlet Packard 5890 Series II Gas Chromatograph with flame ionizer detector. Elution profiles for gases being tested were analyzed according the method outlined in the reference, using methane as the reference gas. The results give the diffusion coefficient of the gas through the polymer, Dp, and the solubility of the gas in the polymer in terms of the partition coefficient, K, which is the ratio of the concentration of the gas in the polymer phase to the concentration in the vapor phase. As such, the greater the value of K for a particular gas in the resin the greater its solubility in that resin.
  • Table 1 shows the partition coefficient and diffusivity values for several gases in polystyrene at 140° C. Comparative examples 1-5 show the solubility and diffusivity of HCFC-142b (1-chloro-1,1-difluoroethane), HFC-152a (1,1-difluoroethane), HFC-134a (1,1,1,2-tetrafluoroethane), HFC-32 (difluoromethane), and HFC-245fa (1,1,1,3,3-pentafluoropropane) in polystyrene (PS).
  • HCFO-1233zd and HCFO-1233xf have sufficient solubility and diffusivity in polystyrene resin to be effective blowing agents or as useful coblowing agents with other blowing agents such as HFCs or carbon dioxide.
  • HCFO-1233xf for instance, was found to have a solubility comparable to that of HCFC-142b.
  • the diffusivities of HCFO-1233zd and HCFO-1233xf were found to be low, indicating that should be useful in providing foams with improved k-factor.
  • Extruded polystyrene foam was produced using a counter-rotating twin screw extruder with internal barrel diameters or 27 mm and a barrel length of 40 diameters.
  • the screw design was suitable for foaming applications.
  • the pressure in the extruder barrel was controlled with the gear pump and was set high enough such that the blowing agent dissolved in the extruder.
  • the extruder die for examples 9-20 was an adjustable-lip slot die with a gap width of 6.35 mm. For example 1, the die was a 2 mm diameter strand die with a 1 mm land length.
  • Two grades of general purpose polystyrene were used for the extrusion trials and fed to the extruder at rates of either 2.27 or 4.54 kg/hr (5 or 10 lb/hr).
  • Blowing agents were pumped into the polystyrene resin melt at a controlled rate using high pressure delivery pumps.
  • the blowing agent is mixed and dissolved in the resin melt to produce an expandable resin composition.
  • the expandable resin composition is cooled to an appropriate foaming temperature and then extruded from the die where the drop in pressure initiates foaming.
  • Talc was used as a nucleating agent and was pre-blended with polystyrene to make a masterbatch of 50 wt % talc in polystyrene. Beads of this masterbatch were mixed with polystyrene pellets to achieve 0.5 wt % talc in each experiment.
  • the density, open cell content, and cell size was measured for foam samples collected during each run. Density was measured according to ASTM D792, open cell content was measured using gas pychnometry according to ASTM D285-C, and cell size was measured by averaging the cell diameters from scanning electron microscope (SEM) micrographs of foam sample fracture surfaces. SEM images are also used to observe the cell structure and qualitatively check for open cell content.
  • SEM scanning electron microscope
  • Table 2 shows data for examples 8 through 20, including the loading of each blowing agent in the formulation, the resin feed rate, melt flow index of the resin, the expandable resin melt temperature, and the density, cell size, and open cell content of the resulting foamed product.
  • Comparative example 8 is typical for polystyrene foaming with HFC-134a, where the poor solubility and difficulties in processing tend to lead to higher density foam with smaller size and more open cells.
  • Comparative examples 9 and 10 show results for foaming with 3,3,3-trifluoropene (HFO-1243zf; TFP).
  • blowing agent compositions of TFP (HFO-1243zf) and HCFO-1233zd permitted production of lower density foam than achievable with TFP alone along with a beneficial enlargement in the cell size, where it was possible to produce closed-cell foam product with cell sizes greater than 0.2 mm at densities less than 53 kg/m 3 and even less than 45 kg/m 3 . These foams would be useful as thermal insulating foams with improved k-factor.
  • Examples 13 through 16 were produced during the same extrusion trial.
  • HFC-134a was used as the only blowing agent at a loading of 5.3 wt %.
  • the foamed product had significant defects including blowholes and large voids.
  • HCFO-1233zd predominantly the trans isomer, was added to produce example 14, which resulted in reduction of the popping at the die with a reduction in the die pressure along with reducing the number of defects in the foamed product.
  • the blowing agent feeds were adjusted to generate examples 15 and 16, where there was no popping at the die and only a few defects.
  • HCFO-1233zd improved the processing of the 134a blown foams, improved the general quality of the foamed product, and permitted production of lower density foam.
  • Examples 17 and 18 were produced during using HFO-1234yf (2,3,3,3-tetrafluoroethane) as the only blowing agent.
  • HFO-1234yf (2,3,3,3-tetrafluoroethane)
  • the foamed product had very small cell size, macrovoids, blowholes, high open cell content, and frequent periods of popping at the die caused by undissolved blowing agent. Increasing the content of 1234yf made these problems worse.
  • blowing agent compositions of HFO-1234yf and HCFO-1233zd permitted production of lower density foam than was produced using the HFO-1234yf alone.
  • the foamed samples of examples 19 and 20 were of good quality, with few defects and produced without popping at the die.
  • the HCFO-1233zd was predominantly the trans-isomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
US12/532,253 2007-03-29 2008-03-28 hydrofluoropropene blowing agents for thermoplastics Abandoned US20100113629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/532,253 US20100113629A1 (en) 2007-03-29 2008-03-28 hydrofluoropropene blowing agents for thermoplastics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90876207P 2007-03-29 2007-03-29
US12/532,253 US20100113629A1 (en) 2007-03-29 2008-03-28 hydrofluoropropene blowing agents for thermoplastics
PCT/US2008/058596 WO2008121779A1 (en) 2007-03-29 2008-03-28 Blowing agent compositions of hydrochlorofluoroolefins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/058596 A-371-Of-International WO2008121779A1 (en) 2007-03-29 2008-03-28 Blowing agent compositions of hydrochlorofluoroolefins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/342,307 Division US20120101177A1 (en) 2007-03-29 2012-01-03 Blowing agent compositions of hydrochlorofluoroolefins

Publications (1)

Publication Number Publication Date
US20100113629A1 true US20100113629A1 (en) 2010-05-06

Family

ID=39808675

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/532,238 Abandoned US20100105789A1 (en) 2007-03-29 2008-03-28 Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
US12/532,207 Abandoned US20100112328A1 (en) 2007-03-29 2008-03-28 Hydrofluoropropene blowing agents for thermoplastics
US12/532,253 Abandoned US20100113629A1 (en) 2007-03-29 2008-03-28 hydrofluoropropene blowing agents for thermoplastics
US13/342,247 Active US8648123B2 (en) 2007-03-29 2012-01-03 Hydrofluoropropene blowing agents for thermoplastics
US13/342,307 Abandoned US20120101177A1 (en) 2007-03-29 2012-01-03 Blowing agent compositions of hydrochlorofluoroolefins

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/532,238 Abandoned US20100105789A1 (en) 2007-03-29 2008-03-28 Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
US12/532,207 Abandoned US20100112328A1 (en) 2007-03-29 2008-03-28 Hydrofluoropropene blowing agents for thermoplastics

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/342,247 Active US8648123B2 (en) 2007-03-29 2012-01-03 Hydrofluoropropene blowing agents for thermoplastics
US13/342,307 Abandoned US20120101177A1 (en) 2007-03-29 2012-01-03 Blowing agent compositions of hydrochlorofluoroolefins

Country Status (9)

Country Link
US (5) US20100105789A1 (ja)
EP (3) EP2129710B1 (ja)
JP (6) JP5762737B2 (ja)
CN (4) CN105001440A (ja)
AT (2) ATE532818T1 (ja)
CA (3) CA2681605A1 (ja)
ES (3) ES2377420T3 (ja)
PL (3) PL2129710T3 (ja)
WO (3) WO2008121776A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216904A1 (en) * 2009-02-24 2010-08-26 E. I. Du Pont De Nemours And Company Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams
US20110124758A1 (en) * 2008-08-13 2011-05-26 E.I. Du Pont De Nemours And Company Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and hydrocarbon and their uses in the preparation of polyisocyanate-based foams
US20110175015A1 (en) * 2008-10-28 2011-07-21 Honeywell International Inc. Azeotrope-Like Compositions Comprising Trans-1-Chloro-3,3,3-Trifluoropropene
US20120064014A1 (en) * 2008-10-28 2012-03-15 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
WO2012024252A3 (en) * 2010-08-17 2012-05-31 Honeywell International Inc. Compositions containing 1-chloro-3,3,3 trifluoropropene and 1-fluoro-1,1 dichloroethane
US20120329893A1 (en) * 2010-03-09 2012-12-27 Arkema France Hydrochlorofluoroolefin blowing agent compositions
US8680168B2 (en) 2010-11-17 2014-03-25 Fomo Products, Inc. Method for filling wall cavities with expanding foam insulation
US20160017111A1 (en) * 2014-07-16 2016-01-21 Owens Corning Intellectual Capital, Llc Non-voc processing aids for use in manufacturing foams using low global warming potential blowing agents
US9254468B2 (en) 2008-03-07 2016-02-09 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
US10053549B2 (en) 2011-06-27 2018-08-21 Owens Corning Intellectual Capital, Llc Organic infrared attenuation agents
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10301236B2 (en) 2015-05-21 2019-05-28 The Chemours Company Fc, Llc Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene
US10676581B2 (en) 2013-03-15 2020-06-09 Owens Corning Intellectual Capital, Llc Processing aids for use in manufacture extruded polystyrene foams using low global warming potential blowing agents
US10858561B2 (en) 2008-10-16 2020-12-08 Arkema France Heat transfer method

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181410B2 (en) 2002-10-25 2015-11-10 Honeywell International Inc. Systems for efficient heating and/or cooling and having low climate change impact
US20090253820A1 (en) * 2006-03-21 2009-10-08 Honeywell International Inc. Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming
US20110037016A1 (en) * 2003-10-27 2011-02-17 Honeywell International Inc. Fluoropropene compounds and compositions and methods using same
US9499729B2 (en) * 2006-06-26 2016-11-22 Honeywell International Inc. Compositions and methods containing fluorine substituted olefins
US20110152392A1 (en) * 2009-12-17 2011-06-23 Honeywell International Inc. Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents
TW201815923A (zh) 2005-06-24 2018-05-01 美商哈尼威爾國際公司 含有經氟取代之烯烴之發泡劑及組合物,及發泡方法
US8895635B2 (en) 2007-03-29 2014-11-25 Arkema Inc. Blowing agent compositions of hydrochlorofluoroolefins
EP2129710B1 (en) * 2007-03-29 2011-11-09 Arkema, Inc. Hydrofluoropropene blowing agents for polystyrene
US9206297B2 (en) 2007-03-29 2015-12-08 Arkema Inc. Blowing agent compositions of hydrochlorofluoroolefins
GB201002625D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8628681B2 (en) 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8512591B2 (en) 2007-10-12 2013-08-20 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
GB2457345B (en) * 2007-10-12 2012-02-08 Ineos Fluor Holdings Ltd Heat transfer compositions
HUE059978T2 (hu) * 2008-05-07 2023-01-28 Chemours Co Fc Llc Kompozíciók
US9340758B2 (en) * 2008-05-12 2016-05-17 Arkema Inc. Compositions of hydrochlorofluoroolefins
US9926244B2 (en) 2008-10-28 2018-03-27 Honeywell International Inc. Process for drying HCFO-1233zd
US9150768B2 (en) * 2008-10-28 2015-10-06 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
US8703006B2 (en) 2008-10-28 2014-04-22 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
US20110260095A1 (en) * 2008-12-02 2011-10-27 Mexichem Amanco Holdings S.A. De C.V. Heat Transfer Compositions
US20110309288A1 (en) * 2009-01-22 2011-12-22 Arkema Inc. Azeotrope and azeotrope-like compositions of e-1-chloro-3,3,3-trifluoropropene and isopropanol
US9815955B2 (en) * 2009-01-29 2017-11-14 Arkema Inc. Tetrafluoropropene based blowing agent compositions
DE102009028061A1 (de) 2009-07-29 2011-02-10 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyurethanschaum
KR20120068897A (ko) * 2009-09-09 2012-06-27 허니웰 인터내셔널 인코포레이티드 모노클로로트리플로오로프로펜 화합물과 조성물 및 이의 이용방법
JP5693585B2 (ja) 2009-09-16 2015-04-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company trans−1,1,1,4,4,4−ヘキサフルオロ−2−ブテンを含有する冷却装置およびその装置で冷却を行う方法
CA2775121C (en) * 2009-09-25 2018-02-27 Arkema Inc. Biodegradable foams with improved dimensional stability
US20110144216A1 (en) * 2009-12-16 2011-06-16 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
US8846754B2 (en) * 2009-12-16 2014-09-30 Honeywell International Inc. Azeotrope-like compositions of cis-1,1,1,4,4,4-hexafluoro-2-butene
KR20190058703A (ko) 2009-12-22 2019-05-29 더 케무어스 컴퍼니 에프씨, 엘엘씨 2,3,3,3-테트라플루오로프로펜, 1,1,2,3-테트라클로로프로펜, 2-클로로-3,3,3-트라이플루오로프로펜, 또는 2-클로로-1,1,1,2-테트라플루오로프로판을 포함하는 조성물
AU2015201437B2 (en) * 2009-12-22 2016-09-08 The Chemours Company Fc, Llc. Compositions comprising 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, or 2-chloro-1,1,1,2-tetrafluoropropane
GB201002622D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
US9045386B2 (en) * 2010-02-18 2015-06-02 Honeywell International Inc. Integrated process and methods of producing (E)-1-chloro-3,3,3-trifluoropropene
DE102010011966A1 (de) 2010-03-18 2011-09-22 Jacken Insulation Gmbh Kunststoffschaumplatten aus Polystyrol
US8821749B2 (en) * 2010-04-26 2014-09-02 E I Du Pont De Nemours And Company Azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene
WO2011144885A1 (en) 2010-05-20 2011-11-24 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US9309450B2 (en) 2010-05-20 2016-04-12 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
GB2481443B (en) 2010-06-25 2012-10-17 Mexichem Amanco Holding Sa Heat transfer compositions
US9145480B2 (en) * 2010-10-28 2015-09-29 Honeywell International Inc. Mixtures containing 1,1,1,3,3,3-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene
US8734671B2 (en) * 2010-11-19 2014-05-27 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
JP5881725B2 (ja) 2010-11-25 2016-03-09 アルケマ フランス クロロトリフルオロプロペンとヘキサフルオロブテンとの組成物
FR2968009B1 (fr) 2010-11-25 2012-11-16 Arkema France Fluides frigorigenes contenant du (e)-1,1,1,4,4,4-hexafluorobut-2-ene
FR2968310B1 (fr) 2010-12-03 2012-12-07 Arkema France Compositions a base de 1,1,1,4,4,4-hexafluorobut-2-ene et de 3,3,4,4,4-pentafluorobut-1-ene
FR2977256B1 (fr) 2011-07-01 2013-06-21 Arkema France Compositions de 2,4,4,4-tetrafluorobut-1-ene et de cis-1,1,1,4,4,4-hexafluorobut-2-ene
US9896558B2 (en) 2011-08-01 2018-02-20 Basf Se HFO/water-blown rigid foam systems
DK2739676T3 (da) 2011-08-01 2019-12-09 Basf Se Hfo/vanddrevne systemer af hårdt skum
US9485986B2 (en) * 2011-08-24 2016-11-08 Honeywell International Inc. Evaporation operative materials having low environmental impact
CN102504324B (zh) * 2011-10-13 2013-10-30 南京红宝丽股份有限公司 一种物理性发泡剂及采用该发泥泡剂制备的硬质聚氨酯泡沫塑料
US8772213B2 (en) * 2011-12-22 2014-07-08 Honeywell International Inc. Solvent compositions including trans-1-chloro-3,3,3-trifluoropropene and uses thereof
WO2013096727A1 (en) * 2011-12-22 2013-06-27 Honeywell International Inc. Azeotrope-like compositions including cis-1-chloro-3,3,3-trifluoropropene
FR2989084B1 (fr) 2012-04-04 2015-04-10 Arkema France Compositions a base de 2,3,3,4,4,4-hexafluorobut-1-ene
BR112014031783A2 (pt) * 2012-06-19 2017-06-27 Du Pont composição, método para substituição e de produção de resfriamento e aparelho de refrigeração
EP3312222B1 (en) * 2012-07-19 2023-02-15 Honeywell International Inc. Blowing agents for extruded polystyrene foam and extruded polystyrene foam
EP2706086A1 (de) 2012-09-05 2014-03-12 Basf Se Verfahren zur Herstellung von Schaumstoffplatten niedriger Dichte durch Extrusion von Styrolpolymeren unter Verwendung von Hydrofluorolefinen als Treibmittel
US9234123B2 (en) * 2013-03-21 2016-01-12 Hsi Fire & Safety Group, Llc Compositions for totally non-flammable aerosol dusters
US20160200889A1 (en) 2013-09-19 2016-07-14 Dow Global Technologies Llc Vacuum assisted process to make closed cell rigid polyurethane foams using mixed blowing agents
EP3243866A1 (en) * 2014-01-24 2017-11-15 Asahi Kasei Construction Materials Corporation Phenol resin foam body and method for producing same
US10330364B2 (en) 2014-06-26 2019-06-25 Hudson Technologies, Inc. System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant
CN104262670A (zh) * 2014-09-17 2015-01-07 合肥华凌股份有限公司 发泡剂组合物、聚氨酯泡沫及其制造方法
CN105647040A (zh) * 2014-11-10 2016-06-08 天津麦索节能科技有限公司 具有泡孔结构的xps板材配方及其制备工艺
WO2016082089A1 (zh) * 2014-11-25 2016-06-02 成长实业股份有限公司 一种动态防虹吸海绵及其制备方法和用途
EP4083164A1 (en) * 2015-02-06 2022-11-02 The Chemours Company FC, LLC Compositions comprising z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
CN106188615A (zh) * 2015-05-04 2016-12-07 青岛海尔特种电冰柜有限公司 三元组合发泡剂、聚氨酯硬质泡沫及其制造方法
WO2016196100A1 (en) * 2015-05-29 2016-12-08 Owens Corning Intellectual Capital, Llc Extruded polystyrene foam
CN105017553A (zh) * 2015-07-14 2015-11-04 关志强 一种保温聚氨酯塑料的发泡剂
JP6599749B2 (ja) * 2015-12-14 2019-10-30 三井・ケマーズ フロロプロダクツ株式会社 共沸混合物様組成物
JP6722753B2 (ja) * 2016-02-16 2020-07-15 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
EP3423541A1 (en) * 2016-02-29 2019-01-09 The Chemours Company FC, LLC Refrigerant mixtures comprising difluoromethane, pentafluoroethane, tetrafluoroethane, tetrafluoropropene, and carbon dioxide and uses thereof
DE102016004168A1 (de) 2016-04-11 2017-10-12 Jackson lnsulation GmbH Platten aus Kunststoffschaum mit Folienbeschichtung
JP2019515112A (ja) * 2016-05-06 2019-06-06 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ポリスチレンを含む熱可塑性ポリマーを発泡させるためのZ−HFO−1336mzz発泡剤
EP3452539B1 (en) * 2016-05-06 2020-07-08 The Chemours Company FC, LLC Blowing agents for foaming thermoplastic polymer comprising polystyrene
EP3528893A1 (en) * 2016-10-21 2019-08-28 The Procter and Gamble Company Concentrated shampoo comprising a hydrofluoroolefin or a hydrochlorofluoroolefin for delivering compositional and foam dosage property benefits
JP2018100352A (ja) * 2016-12-21 2018-06-28 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
EP3601394A1 (en) 2017-03-24 2020-02-05 INVISTA Textiles (U.K.) Limited Polyol compositions for foam insulation
KR102631613B1 (ko) * 2017-05-08 2024-02-01 허니웰 인터내셔날 인코포레이티드 소화 조성물, 시스템 및 방법
JP7241698B2 (ja) * 2017-05-10 2023-03-17 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ポリスチレンを含む熱可塑性ポリマーを発泡させるためのZ-HFO-1336mzz発泡剤配合物
EP3409438B1 (de) 2017-06-01 2020-04-01 Jackon Insulation GmbH Platten aus kunststoffschaum mit folienbeschichtung
WO2019036049A1 (en) * 2017-08-18 2019-02-21 The Chemours Company, Fc, Llc COMPOSITIONS AND USES OF Z-1-CHLORO-2,3,3,3-TETRAFLUOROPROP-1-ENE
WO2019088035A1 (ja) * 2017-11-01 2019-05-09 Agc株式会社 硬質発泡合成樹脂の製造方法
AU2018373915B2 (en) * 2017-11-27 2024-02-22 Rpl Holdings Limited Low GWP refrigerant blends
JP7211702B2 (ja) * 2017-12-15 2023-01-24 ダウ グローバル テクノロジーズ エルエルシー スチレン系樹脂押出発泡体およびその製造方法
JP7020979B2 (ja) * 2018-03-29 2022-02-16 株式会社ジェイエスピー ポリエチレン系樹脂発泡シートの製造方法およびポリエチレン系樹脂発泡シートとそのロール状物
US11447616B2 (en) * 2018-05-29 2022-09-20 Owens Coming Intellectual Capital, LLC Blowing agent compositions for insulating foams
US11414529B2 (en) * 2018-06-21 2022-08-16 Fina Technology, Inc. Polystyrene compositions for foam extrusion
EP3880726A1 (en) 2018-11-13 2021-09-22 INVISTA Textiles (U.K.) Limited Azeotropically-modified blowing agents for forming foams
KR102075164B1 (ko) 2019-08-29 2020-02-07 강대화 폴리우레탄 발포체 제조용 조성물 및 이를 이용하여 폴리우레탄 발포체를 제조하는 방법
KR20220092961A (ko) * 2019-11-06 2022-07-04 허니웰 인터내셔널 인코포레이티드 2-클로로-3,3,3-트리플루오로프로펜(hcfo-1233xf)과 물의 공비 또는 공비 유사 조성물
JPWO2021131810A1 (ja) * 2019-12-24 2021-07-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085073A (en) * 1975-11-04 1978-04-18 The Dow Chemical Company Styrene polymer foam and the preparation thereof
US4323528A (en) * 1980-08-07 1982-04-06 Valcour Imprinted Papers, Inc. Method and apparatus for making large size, low density, elongated thermoplastic cellular bodies
US20070010592A1 (en) * 2002-10-25 2007-01-11 Honeywell International Inc. Foaming agents and compositions containing fluorine substituted olefins and methods of foaming

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122697B (de) 1960-05-06 1962-01-25 Bayer Ag Verfahren zur Herstellung von Schaumstoffen auf Isocyanatbasis
US4101467A (en) * 1976-02-27 1978-07-18 The Dow Chemical Company Soft ethylenic polymer foams
DE4121161A1 (de) 1991-06-27 1993-01-07 Basf Ag Verfahren zur herstellung von urethan- oder urethan- und isocyanuratgruppen enthaltenden hartschaumstoffen und treibmittel enthaltende emulsionen hierfuer
US5710186A (en) * 1996-05-31 1998-01-20 The Dow Chemical Company Foams containing treated titanium dioxide and processes for making
US6300378B1 (en) * 1996-09-27 2001-10-09 University Of New Mexico Tropodegradable bromine-containing halocarbon additives to decrease flammability of refrigerants foam blowing agents solvents aerosol propellants and sterilants
US6174471B1 (en) * 1999-03-15 2001-01-16 The Dow Chemical Company Open-cell foam and method of making
JP4978979B2 (ja) * 2000-09-14 2012-07-18 株式会社ジェイエスピー 真空断熱材用芯材及び真空断熱材
US20050096246A1 (en) * 2003-11-04 2005-05-05 Johnson Robert C. Solvent compositions containing chlorofluoroolefins
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
ES2645949T3 (es) 2002-10-25 2017-12-11 Honeywell International Inc. Método de esterilización que utiliza composiciones que contienen olefinas sustituidas con flúor
US20040089839A1 (en) 2002-10-25 2004-05-13 Honeywell International, Inc. Fluorinated alkene refrigerant compositions
US7592494B2 (en) * 2003-07-25 2009-09-22 Honeywell International Inc. Process for the manufacture of 1,3,3,3-tetrafluoropropene
US20060052466A1 (en) * 2004-09-03 2006-03-09 Handa Yash P Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents
MX2007007457A (es) * 2004-12-21 2007-08-20 Honeywell Int Inc Compuestos estabilizados de yodocarbono.
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TW201815923A (zh) * 2005-06-24 2018-05-01 美商哈尼威爾國際公司 含有經氟取代之烯烴之發泡劑及組合物,及發泡方法
TWI482748B (zh) * 2005-06-24 2015-05-01 Honeywell Int Inc 含有經氟取代之烯烴之組合物
US20070100010A1 (en) * 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
US7272207B1 (en) * 2006-03-24 2007-09-18 Richard Aufrichtig Processes and apparatus for variable binning of data in non-destructive imaging
JP5109556B2 (ja) * 2006-11-01 2012-12-26 セントラル硝子株式会社 1,1,2,2−テトラフルオロ−1−メトキシエタンを含む共沸及び共沸様組成物
EP2132257B1 (en) * 2007-03-27 2017-10-25 Dow Global Technologies LLC Alkenyl aromatic polymer foam comprising fluorinated alkene blowing agents
EP2129710B1 (en) * 2007-03-29 2011-11-09 Arkema, Inc. Hydrofluoropropene blowing agents for polystyrene
WO2008121783A1 (en) * 2007-03-29 2008-10-09 Arkema Inc. Blowing agent composition of hydrochlorofluoroolefin
ES2380080T3 (es) * 2007-03-29 2012-05-08 Arkema, Inc. Composición de agente expansionante a base de hidroclorofluorolefina e hidrofluorolefina y procedimiento para la producción de espumas termoendurecibles
CN100488925C (zh) 2007-04-11 2009-05-20 西安近代化学研究所 1,3,3,3-四氟丙烯的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085073A (en) * 1975-11-04 1978-04-18 The Dow Chemical Company Styrene polymer foam and the preparation thereof
US4323528A (en) * 1980-08-07 1982-04-06 Valcour Imprinted Papers, Inc. Method and apparatus for making large size, low density, elongated thermoplastic cellular bodies
US20070010592A1 (en) * 2002-10-25 2007-01-11 Honeywell International Inc. Foaming agents and compositions containing fluorine substituted olefins and methods of foaming

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9254468B2 (en) 2008-03-07 2016-02-09 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
US10072192B2 (en) 2008-03-07 2018-09-11 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
US20110124758A1 (en) * 2008-08-13 2011-05-26 E.I. Du Pont De Nemours And Company Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and hydrocarbon and their uses in the preparation of polyisocyanate-based foams
US10858561B2 (en) 2008-10-16 2020-12-08 Arkema France Heat transfer method
US20110175015A1 (en) * 2008-10-28 2011-07-21 Honeywell International Inc. Azeotrope-Like Compositions Comprising Trans-1-Chloro-3,3,3-Trifluoropropene
US20120064014A1 (en) * 2008-10-28 2012-03-15 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
US8802743B2 (en) * 2008-10-28 2014-08-12 Honeywell International Inc. Azeotrope-like compositions comprising trans-1-chloro-3,3,3-trifluoropropene
US8946312B2 (en) * 2008-10-28 2015-02-03 Honeywell International Inc. Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene
US20100216904A1 (en) * 2009-02-24 2010-08-26 E. I. Du Pont De Nemours And Company Foam-forming compositions containing mixtures of 2-chloro-3,3,3-trifluoropropene and at least one hydrofluoroolefin and their uses in the preparation of polyisocyanate-based foams
US20120329893A1 (en) * 2010-03-09 2012-12-27 Arkema France Hydrochlorofluoroolefin blowing agent compositions
WO2012024252A3 (en) * 2010-08-17 2012-05-31 Honeywell International Inc. Compositions containing 1-chloro-3,3,3 trifluoropropene and 1-fluoro-1,1 dichloroethane
US8680168B2 (en) 2010-11-17 2014-03-25 Fomo Products, Inc. Method for filling wall cavities with expanding foam insulation
US10519290B2 (en) 2011-06-27 2019-12-31 Owens Corning Intellectual Capital, Llc Organic infrared attenuation agents
US10053549B2 (en) 2011-06-27 2018-08-21 Owens Corning Intellectual Capital, Llc Organic infrared attenuation agents
US10676581B2 (en) 2013-03-15 2020-06-09 Owens Corning Intellectual Capital, Llc Processing aids for use in manufacture extruded polystyrene foams using low global warming potential blowing agents
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10343963B2 (en) 2013-03-20 2019-07-09 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US20160017111A1 (en) * 2014-07-16 2016-01-21 Owens Corning Intellectual Capital, Llc Non-voc processing aids for use in manufacturing foams using low global warming potential blowing agents
US10301236B2 (en) 2015-05-21 2019-05-28 The Chemours Company Fc, Llc Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase
US10988422B2 (en) 2015-05-21 2021-04-27 The Chemours Company Fc, Llc Hydrofluoroalkane composition
US11008267B2 (en) 2015-05-21 2021-05-18 The Chemours Company Fc, Llc Hydrofluoroalkane composition
US11572326B2 (en) 2015-05-21 2023-02-07 The Chemours Company Fc, Llc Method for preparing 1,1,1,2,2-pentafluoropropane
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
EP2129711A1 (en) 2009-12-09
JP5763338B2 (ja) 2015-08-12
EP2129711B1 (en) 2011-12-14
JP2010522816A (ja) 2010-07-08
JP6030710B2 (ja) 2016-11-24
ES2388457T3 (es) 2012-10-15
ES2376290T5 (es) 2020-03-19
EP2129710A4 (en) 2010-03-24
EP2129711B2 (en) 2019-07-10
EP2129711A4 (en) 2010-03-24
CN101652411A (zh) 2010-02-17
CN101652411B (zh) 2013-01-23
ATE532818T1 (de) 2011-11-15
EP2129712A4 (en) 2010-03-24
CN101715468A (zh) 2010-05-26
CA2681602A1 (en) 2008-10-09
WO2008121779A1 (en) 2008-10-09
ES2376290T3 (es) 2012-03-12
JP5584114B2 (ja) 2014-09-03
US20120108688A1 (en) 2012-05-03
CA2681825C (en) 2015-05-12
EP2129710B1 (en) 2011-11-09
CA2681825A1 (en) 2008-10-09
PL2129711T5 (pl) 2020-09-21
PL2129711T3 (pl) 2012-07-31
JP5762737B2 (ja) 2015-08-12
PL2129710T3 (pl) 2012-06-29
JP2015165032A (ja) 2015-09-17
US20120101177A1 (en) 2012-04-26
CN101652414A (zh) 2010-02-17
PL2129712T3 (pl) 2013-03-29
CN105001440A (zh) 2015-10-28
WO2008121776A1 (en) 2008-10-09
CA2681602C (en) 2014-10-28
JP2010522818A (ja) 2010-07-08
US20100105789A1 (en) 2010-04-29
JP2010522817A (ja) 2010-07-08
JP2017071780A (ja) 2017-04-13
JP6034335B2 (ja) 2016-11-30
CN101652414B (zh) 2012-06-27
ATE537209T1 (de) 2011-12-15
EP2129712B1 (en) 2012-08-08
EP2129712A1 (en) 2009-12-09
JP2014196516A (ja) 2014-10-16
US8648123B2 (en) 2014-02-11
US20100112328A1 (en) 2010-05-06
JP6692734B2 (ja) 2020-05-13
ES2377420T3 (es) 2012-03-27
EP2129710A1 (en) 2009-12-09
CA2681605A1 (en) 2008-10-09
WO2008121778A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
EP2129712B1 (en) Blowing agent compositions of hydrochlorofluoroolefins for thermoplastic foams
US9815955B2 (en) Tetrafluoropropene based blowing agent compositions
US8772364B2 (en) Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
US8895635B2 (en) Blowing agent compositions of hydrochlorofluoroolefins
US11091602B2 (en) Blowing agent compositions of carbon dioxide and hydrochlorofluoroolefins
US9206297B2 (en) Blowing agent compositions of hydrochlorofluoroolefins
US11208536B2 (en) Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
US20190144629A1 (en) Blowing agent compositions of hydrofluoroolefins and hydrochlororfluoroolefins

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARKEMA INC.,PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN HORN, BRETT L.;ELSHEIKH, MAHER Y.;CHEN, BENJAMIN BIN;AND OTHERS;SIGNING DATES FROM 20090904 TO 20090916;REEL/FRAME:023284/0102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION