US20090311414A1 - Process for producing a solid dispersion of an active ingredient - Google Patents

Process for producing a solid dispersion of an active ingredient Download PDF

Info

Publication number
US20090311414A1
US20090311414A1 US12/279,415 US27941507A US2009311414A1 US 20090311414 A1 US20090311414 A1 US 20090311414A1 US 27941507 A US27941507 A US 27941507A US 2009311414 A1 US2009311414 A1 US 2009311414A1
Authority
US
United States
Prior art keywords
extruder
mixing
section
screw
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/279,415
Other languages
English (en)
Inventor
Thomas Kessler
Jörg Breitenbach
Christoph Schmidt
Matthias Degenhardt
Jörg Rosenberg
Harald Krull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Deutschland GmbH and Co KG
Original Assignee
Abbott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36754000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090311414(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Abbott GmbH and Co KG filed Critical Abbott GmbH and Co KG
Priority to US12/279,415 priority Critical patent/US20090311414A1/en
Assigned to ABBOTT GMBH & CO. KG reassignment ABBOTT GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRULL, HARALD, DEGENHARDT, MATTHIAS, BREITENBACH, JORG, KESSLER, THOMAS, ROSENBERG, JORG, SCHMIDT, CHRISTOPH
Publication of US20090311414A1 publication Critical patent/US20090311414A1/en
Assigned to ABBVIE DEUTSCHLAND GMBH & CO KG reassignment ABBVIE DEUTSCHLAND GMBH & CO KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT GMBH & CO KG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2893Tablet coating processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/65Screws with two or more threads neighbouring threads or channels having different configurations, e.g. one thread being lower than its neighbouring thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2564Screw parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/268Throttling of the flow, e.g. for cooperating with plasticising elements or for degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/404Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having non-intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/906Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using roller calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0035Medical or pharmaceutical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0038Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0064Latex, emulsion or dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers

Definitions

  • the present invention relates to a process for producing a solid dispersion of an active ingredient which comprises feeding the active ingredient and a matrix-forming agent to an extruder and forming a uniform extrudate.
  • a continuous process for producing solid pharmaceutical forms, including solid solution products, has been known for some time and entails converting a melt of polymeric binder which contains active ingredients into the required drug form by injection molding or extrusion and subsequent shaping (see, for example, EP-A-240 904, EP-A-240 906 and EP-A-337 256). Satisfactory results are obtained in this process when the active ingredient has a low melting point and/or a high solubility in the molten polymeric binder. Active ingredients having a low melting point are liquefied upon contact with the polymeric binder melt, and the liquefied active ingredient can be readily dispersed in the polymeric binder melt. Alternatively, active ingredients having a high solubility in the molten polymeric binder readily dissolve in the polymeric binder melt.
  • EP 0 580 860 B2 describes a process for producing a solid dispersion of a drug dissolved in a polymer, wherein a twin-screw extruder equipped with paddle means or kneading blocks is employed.
  • kneading blocks consist of, e.g. disk cams disposed offset in the manner of a spiral staircase. The substance is pressed through a narrow tapered gap between the disk cams and the extruder housing. During the passage through the extruder, the material is thus subjected to high local shear forces, which may lead to excessive degradation of the active ingredient and/or the polymer. Shearing may also cause excessive wear of the extrusion equipment.
  • the present invention provides a process for producing a solid dispersion of an active ingredient which comprises feeding the active ingredient and a matrix-forming agent to an extruder and forming a uniform extrudate.
  • the extruder comprises at least two rotating shafts, each of the shafts carrying a plurality of processing elements disposed axially one behind the other.
  • the processing elements define (i) a feeding and conveying section, (ii) at least one mixing section, and (iii) a discharging section.
  • the feeding and conveying section is positioned farthest upstream, close to the hopper of the extruder, the at least one mixing section is positioned downstream of the feeding and conveying section, and the discharging section is positioned farthest downstream, close to the discharge opening of the extruder.
  • downstream refers to direction in which the material is being conveyed in the extruder.
  • the processing elements may be formed separately. They may be strung, one behind the other, along the shaft of the extruder. However, it may also be possible that the processing elements are formed integrally. In this case, the surface structure of the element forms said processing elements.
  • the processing element(s) defining the mixing section comprise(s) a mixing element that is derived from a screw type element.
  • a mixing element “being derived from a screw type element” is intended to mean an element whose basic shape is that of a screw element, but which has been modified such that it exerts a compounding or mixing effect in addition to a conveying effect.
  • the underlying screw type element is a positive-feed (or “right-handed”) screw element. It is believed that the mode of mixing exerted by the inventive mixing elements is predominantly distributive rather than dispersive mixing.
  • paddle means or kneading blocks have conventionally been employed in kneading and plasticizing pharmaceutical mixtures.
  • These kneading blocks consist of cam disks mutually offset at an angle in a peripheral direction.
  • the cam disks have abutting faces that are perpendicular to the general conveying direction in the extruder.
  • these kneading blocks provide effective kneading and homogenization, high local shear occurs at the edges of the cam disks. This local shear is believed to be detrimental to the active ingredient or other components.
  • Preferred mixing elements do not have a plane surface area with a normal parallel and opposite to the general conveying direction.
  • the mixing elements may have no face that is perpendicular to the general conveying direction.
  • the mixing elements used in accordance with the invention do not have abutting faces that are perpendicular to the general conveying direction.
  • the mixing element used in accordance with the invention has recesses formed in the screw flight of a screw type element.
  • Mixing elements of this type are known as such and, for example, described in WO 2004/009326 A1, U.S. Pat. No. 5,318,358 and U.S. Pat. No. 6,106,142.
  • a preferred mixing element has a plurality of concentric ring portions formed by grooves turned into a screw type element. Therefore, the mixing element has a continuous screw flight, which is interrupted only by turned grooves with ring portions.
  • these mixing elements enable a sufficient degree of mixing or homogenization with less degradation of the active ingredient or formation of other ingredients, compared to a conventional process employing paddle means or kneading blocks. Furthermore, a lower temperature of the barrel of the extruder may be chosen while still obtaining an extrudate of the same quality. Additionally, it has been found, surprisingly, that the inventive mixing elements provide a better self-cleaning effect. This self-cleaning effect prevents that residues of the extruded material remain within the extruder over extended periods of time.
  • the extruder comprises at least two axis-parallel shafts and, in preferred embodiments, is a twin-screw extruder.
  • the shafts may be co-rotating or counter-rotating, but are preferably co-rotating.
  • the extruder may comprise more than two and, e.g., up to six shafts. Processing elements disposed on adjacent shafts closely intermesh.
  • the feeding and conveying section as well as the discharging section allow for a smooth passage of the material fed to the extruder from the feed end to the discharge end of the extruder.
  • the processing elements employed in the feeding and conveying section or the discharging section are typically in the form of an endless screw element, i.e. an element characterized by an essentially continuous screw flight.
  • the processing elements additionally comprise at least one backpressure element.
  • the backpressure element is positioned downstream of the mixing section.
  • Backpressure elements serve to create sufficient back-pressure to allow for a desired degree of mixing and/or homogenization.
  • the backpressure elements are designed to stow the material conveyed in the extruder. They may be derived from a screw type element having a reduced pitch flight, relative to the conveying elements. Alternatively, they may be derived from a reverse-flight screw, such that they convey the material in an opposite direction relative to the general conveying direction of the extruder.
  • the backpressure element may be formed separately from the mixing element or integrally with the mixing element.
  • the processing elements define
  • the processing elements additionally comprise a backpressure element positioned downstream of and adjacent to the second mixing section.
  • the length of the feeding and conveying section is suitably selected such that the material which is fed into the extruder has undergone significant softening or is nearly melting when the material enters the (first) mixing section.
  • the feeding and conveying section corresponds to from about 20 to about 40% of the entire length of the shaft.
  • the discharging section corresponds to from about 15 to about 30% of the entire length of the shaft.
  • a twin-screw extruder is used. It has at least two parallel co-rotating shafts. In the mixing section or in the mixing sections the shafts are equipped with intermeshing mixing elements. The face of the mixing elements is limited by circular arcs corresponding to the outside screw diameter, the screw core diameter and at most the centre distance of the mixing elements. The shafts are guided on circular segments of the extruder housing that are parallel to the shafts.
  • the mixing element comprises screw portions between the ring portions which first cause a pressure buildup that forces the substance through the annular gap between the extruder housing and the ring portions with shearing action and elongation; the pressure is then reduced again.
  • the recurring sequence of shear gap passage, pressure buildup, shear gap passage, etc., on the mixing elements causes a defined stress on the substance and thus a uniform stress, without unduly stressing in particular the active ingredient.
  • the screw portions between the ring portions of a mixing element may have the same pitch flight. However, the pitch flight of these screw portions may also be different. According to an advantageous embodiment of the present invention, the screw portions of at least one mixing element on each shaft have partly a positive screw flight and partly a reverse-screw flight.
  • the annular and/or shear gap between the ring portions and the concave circular segments of the extruder housing can have a different height to produce a sufficient mixing effect for the active ingredient in the matrix-forming agent.
  • the ring portion might correspond only to the core diameter of the screw shaft.
  • the annular gap may also have a height of from 10 percent to 90 percent of the flight depth of the screw.
  • the diameter of the ring portions may correspond approximately to the center distance of two adjacent shafts.
  • the screw portions located between two adjacent ring portions generally have a length of at least 1/10, preferably at least 1 ⁇ 5, of the screw diameter.
  • the turned grooves of the ring portions preferably have a depth of, for example, 1 ⁇ 2 or less of the flight depth.
  • the angle of the flanks of the turned grooves can be, for example, 30 to 90 degrees.
  • oblique grooves are turned, in particular at an angle of about 60 degrees, to the shaft axis.
  • the mixing element can be provided with further portions.
  • a mixing section with substantially neutral conveying action can be provided by stock removal.
  • the screw flight can continue at the same pitch angle. That is, the screw portions of the mixing element can form a continuous screw flight apart from the turned interruptions in the area of the ring portions.
  • the ring portions permit additional dispersing surfaces to be gained.
  • a substantial enlargement of the dispersing surface can moreover be obtained if the screw portions between the ring portions are disposed at a progressive angular offset from each other with the same direction of rotation, for example, at an angular offset by half the flight angle.
  • the angularly offset screw portions form faces angularly offset in step-like fashion as additional dispersing surfaces.
  • FIGS. 2 and 5 of WO 2004/009326 A1 show preferred mixing elements used in accordance with the invention. Further examples are described below with reference to the accompanied drawings.
  • the solid dispersions manufactured by the process of the present invention contain one or more active ingredient and, optionally, additives. Additives may be used to impart desirable properties to the solid dispersions or to facilitate the manufacture thereof. Although the actives and additives may be incorporated into the extruded mixture at any appropriate stage of the process, it may be preferred to introduce a part or all of the active ingredients or additives into the extruder separately from the matrix-forming agent and/or other components.
  • At least part of the matrix-forming agent is fed to the hopper of the extruder and at least one component selected from
  • the at least one component is introduced into the extruder at a position at or close to the junction of the feeding and conveying section and a mixing section.
  • the component may be solid, e.g. powdered, but preferably is liquid or liquefied.
  • the at least one component comprises a pharmaceutically acceptable surfactant.
  • Melting means transition into a liquid or rubbery state in which it is possible for one component to be homogeneously embedded in the other. Melting usually involves heating above the softening point of the polymer. Usually, the maximum melt temperature is in the range of 70 to 250° C., preferably 80 to 180° C., most preferably 100 to 140° C.
  • the extruder housing is heated in order to form a melt from the substances fed to the extruder. It will be appreciated that the working temperatures will also be determined by the kind of extruder or the kind of configuration within the extruder that is used. A part of the energy needed to melt, mix and dissolve the components in the extruder can be provided by heating elements, while the friction and shearing of the material in the extruder can also provide the mixture with a substantial amount of energy and aid in the formation of a homogeneous melt of the components.
  • the active ingredient-containing melt is kept in the heated barrel of the melt extruder for a sufficient length of time.
  • the extruder barrel comprises several heating zones.
  • the portion of the barrel upstream of the first mixing element is maintained at a lower temperature than the portion of the barrel downstream of the first mixing element. It has been found that this temperature distribution leads to a homogeneous, smooth and transparent extrudate which, in particular, has not been damaged by temperatures too high for the active ingredient.
  • one or more active ingredients are dispersed evenly throughout the polymer. This encompasses systems having small particles, typically of less than 1 ⁇ m in diameter, of active ingredient in the polymer phase. These systems do not contain any significant amounts of active ingredients in their crystalline or microcrystalline state, as evidenced by thermal analysis (DSC) or X-ray diffraction analysis (WAXS). Typically, at least 98% by weight of the total amount of active ingredients is present in an amorphous state.
  • Solid solutions of active ingredients are preferred physical systems.
  • the polymer does not contain significant amounts of volatile solvents.
  • volatile solvent is intended to encompass water and any compound that is liquid at ambient temperature and has a higher volatility than water.
  • the matrix contains less than 25%, preferably less than 6%, and most preferably less than 3% by weight of a volatile solvent.
  • Preferred extrudates formed by the process according to the invention comprise:
  • the matrix-forming agent may be any agent capable of setting or gelling from a liquified state, e.g. from a molten state, to form a continuous matrix. Mixtures of matrix-forming agents can, of course, be used.
  • Useful matrix-forming agents are selected from polyols (i.e. sugar alcohols, sugar alcohol derivatives, or maltodextrines), waxes and lipids.
  • Suitable sugar alcohols include mannitol, sorbitol, xylitol; sugar alcohol derivatives include isomalt, or hydrogenated condensed palatinose (as described in DE-A 10262005); further matrix-forming agents are maltodextrines.
  • the matrix-forming agent includes a pharmaceutically acceptable polymer or a mixture of pharmaceutically acceptable polymers.
  • pharmaceutically acceptable polymers are water-soluble or at least water-dispersible.
  • the pharmaceutically acceptable polymer employed in the invention has a Tg of at least about +10° C., preferably at least about +25° C., most preferably from about 40° to 180° C.
  • Tg means glass transition temperature.
  • Methods for determining the Tg values of organic polymers are described in “Introduction to Physical Polymer Science”, 2nd Edition by L. H. Sperling, published by John Wiley & Sons, Inc., 1992.
  • the Tg value can be calculated as the weighted sum of the Tg values for homopolymers derived from each of the individual monomers i that make up the polymer, i.e.
  • Tg ⁇ W i X i
  • W is the weight percent of monomer i in the organic polymer
  • X is the Tg value for the homopolymer derived from monomer i.
  • Tg values for the homopolymers are indicated in “Polymer Handbook”, 2nd Edition by J. Brandrup and E. H. Immergut, Editors, published by John Wiley & Sons, Inc., 1975.
  • compositions having a Tg as defined above allow the preparation of solid dispersions that are mechanically stable and, within ordinary temperature ranges, sufficiently temperature stable so that said solid dispersions may be used as dosage forms without further processing or can be compacted to tablets with only a small amount of tabletting aids.
  • Dosage forms are, e.g., tablets, capsules, implants, films, foams, suppositories.
  • the pharmaceutically acceptable polymer comprised in the composition is a polymer that, when dissolved at 20° C. in an aqueous solution at 2% (w/v), preferably has an apparent viscosity of 1 to 50 000 mPa ⁇ s, more preferably of 1 to 10 000 mPa ⁇ s, and most preferably of 5 to 100 mPa ⁇ s.
  • preferred pharmaceutically acceptable polymers can be selected from the group comprising:
  • N-vinyl lactams especially polyvinylpyrrolidone (PVP), copolymers of a N-vinyl lactam and one or more comonomers copolymerizable therewith, the comonomers being selected from nitrogen-containing monomers and oxygen-containing monomers; especially a copolymer of N-vinyl pyrrolidone and a vinyl carboxylate, preferred examples being a copolymer of N-vinyl pyrrolidone and vinyl acetate or a copolymer of N-vinyl pyrrolidone and vinyl propionate; cellulose esters and cellulose ethers, in particular methylcellulose and ethylcellulose, hydroxyalkylcelluloses, in particular hydroxypropylcellulose, hydroxyalkyl-alkylcelluloses, in particular hydroxypropylmethylcellulose, cellulose phthalates or succinates, in particular cellulose acetate phthalate and hydroxypropylmethylcellulose phthalate
  • homopolymers or copolymers of N-vinyl pyrrolidone in particular a copolymer of N-vinyl pyrrolidone and vinyl acetate, are preferred.
  • a particularly preferred polymer is a copolymer of 60% by weight of the copolymer N-vinyl pyrrolidone and 40% by weight of the copolymer vinyl acetate.
  • Hydroxypropylcellulose is another example of a particularly preferred polymer.
  • Active ingredients used in the process according to the present invention are biologically active agents and include those which exert a local physiological effect, as well as those which exert a systemic effect, after oral administration.
  • the invention is particularly useful for water-insoluble or poorly water-soluble (or “lipophilic”) compounds.
  • Compounds are considered water-insoluble or poorly water-soluble when their solubility in water at 25° C. is less than 1 g/100 ml.
  • suitable active substances include, but are not limited to:
  • analgesic and anti-inflammatory drugs such as fentanyl, indomethacin, ibuprofen, naproxene, diclofenac, diclofenac sodium, fenoprofen, acetylsalicylic acid, ketoprofen, nabumetone, paracetamol, piroxicam, meloxicam, tramadol, and COX-2 inhibitors such as celecoxib and rofecoxib; anti-arrhythmic drugs such as procainamide, quinidine and verapamil; antibacterial and antiprotozoal agents such as amoxicillin, ampicillin, benzathine penicillin, benzylpenicillin, cefaclor, cefadroxil, cefprozil, cefuroxime axetil, cephalexin, chloramphenicol, chloroquine, ciprofloxacin, clarithromycin, clavulanic acid, clindamycin, doxyxyc
  • cyclophosphamide chlorambucil, chiormethine, iphosphamide, melphalan, or the nitrosoureas, e.g. carmustine, lomustine, or other alkylating agents, e.g.
  • busulphan dacarbazine, procarbazine, thiotepa; antibiotics such as daunorubicin, doxorubicin, idarubicin, epirubicin, bleomycin, dactinomycin and mitomycin; HER 2 antibodies such as trastuzumab; podophyllotoxin derivatives such as etoposide and teniposide; farnesyl transferase inhibitors; anthrachinon derivatives such as mitoxantron; anti-migraine drugs such as alniditan, naratriptan and sumatriptan; anti-Parkinsonian drugs such as bromocryptine mesylate, levodopa and selegiline; antipsychotic, hypnotic and sedating agents such as alprazolam, buspirone, chlordiazepoxide, chlorpromazine, clozapine, diazepam, flupenthixol, fluphenazine, flu
  • Pharmaceutically acceptable acid addition salts comprise the acid addition salt forms which can be obtained conveniently by treating the base form of the active ingredient with appropriate organic and anorganic acids.
  • Active ingredients containing an acidic proton may be converted into their non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases.
  • addition salt also comprises the hydrates and solvent addition forms which the active ingredients are able to form. Examples of such forms are hydrates, alcoholates and the like.
  • the N-oxide forms of the active ingredients comprise those active ingredients in which one or several nitrogen atoms are oxidized to the so-called N-oxide.
  • stereochemically isomeric forms defines all possible stereoisomeric forms which the active ingredients may possess.
  • stereogenic centers may have the R- or S-configuration and active ingredients containing one or more double bonds may have the E- or Z-configuration.
  • pharmaceutically acceptable surfactant refers to a pharmaceutically acceptable ionic or non-ionic surfactant. Incorporation of surfactants is especially preferred for matrices containing poorly water-soluble active ingredients.
  • the surfactant may effectuate an instantaneous emulsification of the active ingredient released from the dosage form and/or prevent precipitation of the active ingredient in the aqueous fluids of the gastrointestinal tract.
  • Preferred surfactants are selected from:
  • polyoxyethylene alkyl ethers e.g. polyoxyethylene ( 3 ) lauryl ether, polyoxyethylene ( 5 ) cetyl ether, polyoxyethylene ( 2 ) stearyl ether, polyoxyethylene ( 5 ) stearyl ether; polyoxyethylene alkylaryl ethers, e.g. polyoxyethylene ( 2 ) nonylphenyl ether, polyoxyethylene ( 3 ) nonylphenyl ether, polyoxyethylene ( 4 ) nonylphenyl ether or polyoxyethylene ( 3 ) octylphenyl ether; polyethylene glycol fatty acid esters, e.g.
  • PEG-200 monolaurate, PEG-200 dilaurate, PEG-300 dilaurate, PEG-400 dilaurate, PEG-300 distearate or PEG-300 dioleate alkylene glycol fatty acid mono esters, e.g. propylene glycol monolaurate (Lauroglycol®); sucrose fatty acid esters, e.g.
  • sucrose monostearate sucrose distearate, sucrose monolaurate or sucrose dilaurate
  • sorbitan fatty acid mono esters such as sorbitan mono laurate (Span® 20), sorbitan monooleate, sorbitan monopalmitate (Span® 40), or sorbitan stearate
  • polyoxyethylene castor oil derivates e.g.
  • polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil (Cremophor® EL; BASF Corp.) or polyoxyethyleneglycerol oxystearate such as polyethylenglycol 40 hydrogenated castor oil (Cremophor® RH 40; BASF Corp.) or polyethylenglycol 60 hydrogenated castor oil (Cremophor® RH 60; BASF Corp.); or block copolymers of ethylene oxide and propylene oxide, also known as polyoxyethylene polyoxypropylene block copolymers or polyoxyethylene polypropyleneglycol such as Poloxamer® 124, Poloxamer® 188, Poloxamer® 237, Poloxamer® 388, or Poloxamer® 407 (BASF Corp.); or mono fatty acid esters of polyoxyethylene ( 20 ) sorbitan, e.g.
  • additives may be included in the melt, for example flow regulators such as colloidal silica; lubricants, fillers, disintegrants, or plasticizers, stabilizers or preservatives.
  • additives for example dyes such as azo dyes, organic or inorganic pigments such as iron oxides or titanium dioxide, or dyes of natural origin; stabilizers such as antioxidants, light stabilizers, radical scavengers and stabilizers against microbial attack.
  • dyes such as azo dyes, organic or inorganic pigments such as iron oxides or titanium dioxide, or dyes of natural origin
  • stabilizers such as antioxidants, light stabilizers, radical scavengers and stabilizers against microbial attack.
  • additives may be incorporated into the mixture of active ingredient and polymer at any appropriate stage of the process. For ease of handling it is, however, convenient to include such additives in a powdery mixture of the matrix-forming agent and the active ingredient that is being fed into the extruder.
  • the extrudate exiting from the extruder ranges from pasty to viscous.
  • the extrudate Before allowing the extrudate to solidify, the extrudate may be directly shaped into virtually any desired shape. Shaping of the extrudate may be conveniently carried out by a calender with two counter-rotating rollers with mutually matching depressions on their surface. A broad range of tablet forms can be attained by using rollers with different forms of depressions. If the rollers do not have depressions on their surface, films can be obtained.
  • the extrudate is moulded into the desired shape by injection-moulding.
  • the extrudate is subjected to profile extrusion and cut into pieces, either before (hot-cut) or after solidification (cold-cut).
  • foams can be formed if the extrudate contains a propellant such as a gas, e.g. carbon dioxide, or a volatile compound, e.g. a low molecular weight hydrocarbon, or a compound that is thermally decomposable to a gas.
  • a propellant such as a gas, e.g. carbon dioxide, or a volatile compound, e.g. a low molecular weight hydrocarbon, or a compound that is thermally decomposable to a gas.
  • the propellant is dissolved in the extrudate under the relatively high pressure conditions within the extruder and, when the extrudate emerges from the extruder die, the pressure is suddenly released. Thus the solvability of the propellant is decreased and/or the propellant vaporises so that a foam is formed.
  • the resulting solid dispersion product is milled or ground to granules.
  • the granules may then be compacted.
  • Compacting means a process whereby a powder mass comprising the granules is condensed under high pressure in order to obtain a compact with low porosity, e.g. a tablet. Compression of the powder mass is usually done in a tablet press, more specifically in a steel die between two moving punches.
  • At least one additive selected from flow regulators, disintegrants, bulking agents (fillers) and lubricants is used in compacting the granules.
  • Disintegrants promote a rapid disintegration of the compact in the stomach and keep the granules which are liberated separate from one another.
  • Suitable disintegrants are crosslinked polymers such as crosslinked polyvinyl pyrrolidone and crosslinked sodium carboxymethylcellulose.
  • Suitable bulking agents also referred to as “fillers” are selected from lactose, calcium hydrogenphosphate, microcrystalline cellulose (Avicel®), silicates, in particular silicium dioxide, talc, potato or corn starch, and isomalt.
  • Suitable flow regulators are selected from highly dispersed silica (Aerosil®), and animal or vegetable fats or waxes.
  • a lubricant is preferably used in compacting the granules.
  • Suitable lubricants are selected from polyethylene glycol (e.g., having a Mw of from 1000 to 6000), magnesium and calcium stearates, sodium stearyl fumarate, and the like.
  • FIG. 1 shows schematically a sectional view of the extruder comprising screws comprising paddle means or kneading blocks that was used for the comparative examples;
  • FIG. 2 shows schematically a sectional view of the extruder that was used for the examples in accordance with the process according to the present invention
  • FIG. 3 A and FIG. 3 B show one preferred embodiment of a mixing element in accordance with the present invention
  • FIG. 4 A and FIG. 4 B show another preferred embodiment of a mixing element in accordance with the present invention.
  • FIG. 5 A and FIG. 5 B show another preferred embodiment of a mixing element in accordance with the present invention.
  • FIGS. 1 and 2 are generally similar, the general arrangement of the extruder is described with reference to FIG. 2 .
  • the extruder is known per se. It has been used for producing a solid dispersion of an active ingredient in a matrix-forming agent.
  • the extruder comprises a housing or barrel 1 divided into several sections in a longitudinal direction.
  • an opening 8 is provided for feeding a powder P of the active ingredient and the matrix-forming agent.
  • a hopper is placed on this opening so that the powder P can be easily fed into the barrel 1 of the extruder.
  • a further opening 9 for dosing a further component L, such as a surfactant is provided in conveying direction X of the extruder.
  • the surfactant is pumped in liquid or liquefied form or dosed in solid form to the inside of barrel 1 .
  • another opening 10 is provided for sucking gas G from the inside of the barrel 1 to the outside of the barrel 1 .
  • the barrel 1 ends in conveying direction X in a die, where the dispersion is expelled.
  • the barrel 1 of the extruder is divided into three heating zones H 1 , H 2 and H 3 .
  • the temperature of the barrel 1 in these heating zones H 1 , H 2 and H 3 can be controlled in order to control the melting of the dispersion of the active ingredient and the matrix-forming agent.
  • two parallel shafts 2 are arranged, one of which is shown in the sectional views of FIGS. 1 and 2 .
  • the shafts 2 are co-rotating.
  • the shafts 2 are equipped with processing elements disposed axially one behind the other.
  • the processing elements are arranged within the extruder barrel 1 so that the radially outermost portions of the processing elements are adjacent to the inner wall of the barrel 1 . Only a very small gap is formed between the outermost portions of the processing element and the inner wall of the barrel 1 .
  • FIGS. 1 and 2 are only schematic representations to show the different zones of the extruder in a longitudinal direction, the shafts 2 with the processing elements and the extruder barrel 1 are shown apart from one another.
  • the shaft 2 with the processing elements is divided in several sections.
  • the section furthermost upstream is a feeding and conveying section A.
  • the upstream side of this section A is adjacent to opening 8 for feeding powder P into the barrel 1 .
  • the opening 9 of the barrel 1 is provided for feeding a surfactant to the inside of the barrel 1 .
  • the processing elements of the feeding and conveying section A are formed by screw-type elements 3 , which form an endless screw having the feed direction X and a uniform pitch flight. Therefore, in section A, the powder P is fed into the extruder 1 and conveyed in the downstream direction X.
  • the heating zones H 1 and H 2 of the extruder 1 are controlled so that the substances within the barrel 1 start to melt at the end of the feeding and conveying section A.
  • a mixing section B Downstream from section A, a mixing section B is arranged downstream from section A. It has been found that the selection of the processing elements in mixing section B is an essential factor for the subsequent quality of the extrudate.
  • the extruder of FIG. 1 showing a conventional arrangement, differs from the extruder of FIG. 2 , which was used in the process of the present invention.
  • the shaft 2 is equipped with so-called paddle means or kneading blocks 4 , which consist of disk cams.
  • the shaft 2 is equipped with a particular mixing element 11 which is described in greater detail below with reference to FIGS. 3 to 5 .
  • intermediate conveying section C On the downstream side of mixing section B, an intermediate conveying section C is formed.
  • the processing elements of intermediate section C are the same screw-type elements 3 used in the feeding and conveying section A. Therefore, intermediate conveying section C only conveys the melt from mixing section B to the next section.
  • a second mixing section D Downstream of the intermediate conveying section C, a second mixing section D is arranged downstream of the intermediate conveying section C.
  • the processing elements used in this second mixing section D of the conventional extruder, shown in FIG. 1 again differ from the processing element used in the extruder in accordance with the present invention, which is shown in FIG. 2 .
  • Intermediate conveying section C and second mixing section D are optional.
  • the shaft 2 is equipped with paddle means or kneading blocks 5 and 6 .
  • a backpressure element 7 is positioned on the downstream side of kneading block 6 .
  • the backpressure element 7 serves to create sufficient back-pressure to allow for a desired degree of mixing and/or homogenization. It accumulates the material into mixing sections B and D.
  • the backpressure element 7 is derived from a screw-type element having a reverse-pitch flight, such that it conveys the melt in an opposite direction relative to the general conveying direction X of the extruder.
  • the backpressure element 7 used in the conventional extruder shown in FIG. 1 corresponds to the backpressure element 14 used in the extruder according to the present invention as shown in FIG. 2 ,
  • the use of such a backpressure element 7 in connection with the arrangement of the extruder shown in FIG. 1 is not known per se.
  • the backpressure element 7 has been used in the conventional extruder so that the results of the process in which the conventional extruder has been used are comparable to the results of the process in which the extruder in accordance with the present invention has been used.
  • the shaft is equipped with particular mixing elements 12 , 13 , which are again described in greater detail below with reference to FIGS. 3 to 5 .
  • Mixing elements 12 , 13 may be identical to mixing element 11 of the first mixing section B. However, in the embodiment shown in FIG. 2 , the mixing element is divided into portions 12 and 13 , portion 12 having a positive feeding direction and portion 13 having a negative feeding direction or a reverse flight.
  • a backpressure element 14 is arranged, which corresponds to the backpressure element 7 described above.
  • the length of kneading blocks 4 corresponds to the length of the mixing element 11 and the length of kneading blocks 5 , 6 corresponds to the length of mixing elements 12 , 13 .
  • a discharging section E Downstream from the second mixing section D, a discharging section E is arranged.
  • the shaft 2 of the extruder according to the present invention as well as the shaft 2 of the conventional extruder is equipped with screw-type elements 3 , which are identical to the elements used in sections A and C.
  • discharging section E the melt is only fed to the die of the extruder.
  • a polymer and the matrix-forming agent are fed to the inside of barrel 1 of the extruder through opening 8 .
  • the matrix-forming agent and the active ingredient are conveyed by screw elements 3 to mixing element 11 .
  • Heating zones H 1 and H 2 are heated to a temperature so that the polymer and the matrix-forming agent start to melt just before mixing element 11 .
  • surfactants are fed through opening 9 to the inside of the barrel 1 .
  • the melt then passes mixing element 11 and is conveyed by screw elements 3 of the intermediate conveying section C to the second mixing section D comprising mixing elements 12 , 13 and thereafter backpressure element 14 .
  • the main mixing and melting effect is performed.
  • the uniform extrudate is conveyed by screw elements 3 of discharging section E to the die of the extruder.
  • mixing elements that may be used in mixing sections B and D are described with reference to FIGS. 3 to 5 .
  • the mixing elements 15 , 20 , and 24 shown in FIGS. 3 to 5 and which may be used as mixing elements 11 to 13 on the two shafts 2 have a transverse profile 23 composed of three circular arcs.
  • One circular arc has a diameter corresponding to the diameter of the outer screw
  • another circular arc has a diameter corresponding to the diameter of the screw core
  • a further circular arc has a diameter whose radius corresponds to the center distance of the two elements of the mixing element (cf. EP-B-0002 131).
  • the mixing elements 15 , 20 , and 24 comprise a bore 22 having projections for engagement with grooves of the shaft 2 so that the mixing elements 15 , 20 , and 24 can be rotated together with the shaft 2 .
  • the mixing element 15 has five ring portions 16 that are concentric with the shaft axis and disposed a distance apart from another.
  • the ring portions 16 are obtained by grooves turned into the mixing element 15 .
  • the angle of the flanks 18 of the grooves to the shaft axis is about 60 degrees.
  • the height of the annular gaps 19 between the ring portions 16 and the inner wall of the extruder barrel 1 is about the flight depth, i.e. the difference between the core diameter and the outside screw diameter.
  • the diameter of the ring portions 8 thus corresponds to the core diameter of the screw.
  • a continuous screw flight may be formed which is interrupted only by the turned grooves with ring portions 16 .
  • screw portions of the mixing element 15 between ring portions 16 may also be disposed at a progressive angular offset from each other with the same direction of rotation.
  • the screw sections 17 a , 17 b , 17 c , 17 d between the ring portion 16 of mixing element 15 in the embodiment shown in FIGS. 3A and 3B have the same screw pitch.
  • the mixing element 15 shown in FIGS. 3A and 3B may be used in particular as mixing element 11 in mixing section B as shown in FIG. 2 .
  • FIGS. 4A and 4B A further example of a mixing element 20 is shown in FIGS. 4A and 4B .
  • Mixing element 20 differs from mixing element 15 in screw sections 21 a , 21 b , 21 c , 21 d between ring portions 16 .
  • Screw sections 21 a and 21 b may correspond to 17 a and 17 b of mixing element 15 .
  • screw sections 21 c and 21 d of mixing element 20 differ from screw sections 17 c and 17 d of mixing element 15 .
  • screw sections 21 c and 21 d have a reverse-flight screw so that these sections 21 c and 21 d convey the melt in an opposite direction relative to the general conveying direction X of the extruder and the conveying direction of screw sections 21 a and 21 b.
  • Screw sections 21 a and 21 b may be formed integrally with screw sections 21 c and 21 d as shown in FIGS. 4A and 4B .
  • two mixing elements may also be provided, one comprising screw sections 21 a and 21 b and the other comprising screw sections 21 c and 21 d .
  • Mixing element 20 may correspond to mixing elements 12 , 13 of the second mixing section D shown in FIG. 2 .
  • FIGS. 5A and 5B A further example of a mixing element 24 is shown in FIGS. 5A and 5B .
  • the mixing element 24 is similar to mixing element 20 shown in FIGS. 4A and 4B .
  • Screw section 26 a and 26 b have a positive screw flight and screw section 26 c and 26 d have a negative screw flight or reverse-flight screw.
  • mixing element 24 differs from mixing elements 20 and 15 in the annular gap 27 between the ring portions 25 and the extruder barrel 1 .
  • the height of the annular gaps 27 is about half of the flight depth, i.e. half the difference between the core diameter and the outside screw diameter.
  • the diameter of the ring portions 8 thus corresponds approximately to the center distance of the two shafts from each other.
  • the larger diameter of ring portions 25 relative to the diameter of ring portions 16 of mixing elements 20 and 15 provides a barrier for the melt. It has been found that such a barrier is advantageous if the mixing element 24 is used as mixing elements 12 , 13 in the second mixing section D as shown in FIG. 2 .
  • the barrier provides a compacting zone within the extruder in which the pressure of the extrudate is raised on the substance supply side.
  • the following provides examples in which the same solid dispersion of an active ingredient in a polymer has been produced by, first, the extruder with the screw arrangement shown in FIG. 1 as a comparative example and, second, the extruder with the screw arrangement shown in FIG. 2 .
  • the active ingredients, the polymer and the glidant were thoroughly mixed and the resulting powder was fed into a twin-screw extruder (ZSK-40, manufactured by Werner & Pfleiderer, Germany).
  • the screw configuration comprised kneading blocks in addition to conveying elements and is shown in FIG. 1 .
  • the emulsifiers were fed into the extruder by means of a liquid dosing pump.
  • the emulsifiers were added at a position immediately before the material in the extruder reaches the first kneading block section.
  • the liquid emulsifiers were blended with the powder and the mixture was melted. Vacuum was applied to the mixture in the last third of the extruder.
  • the process parameters are detailed in Table 2. Subsequent to the extrusion step, the material was formed on a calendar and cooled to reveal a band of lentil-shaped extrudate.
  • Formulation 1 Feeding Rate Powder [g/h] 15.7 15.7 liquid [g/h] 1.0 1.36 Screw speed [rpm] 100 120 Vacuum [mbar] 350 200 Temperature barrel 1 [° C.] 20 20 barrel 2 + 3 [° C.] 80 80 barrel 4-6 [° C.] 100 100 die head [° C.] 125 125 die [° C.] 125 125 Torque 35 35 [% of engine power] Appearance of extrudate Smooth, transparent Smooth, transparent Temperature of extrudate 125 127-128 [° C.]
  • Example 1 was repeated. However, the screws were designed differently: instead of kneading blocks, it comprised mixing elements. The configuration of this screw is depicted in FIG. 2 . The kneading blocks in screw ZSK 40 - 54 ( FIG. 1 ) are replaced by mixing elements with both mixing zones being equivalent in length.
  • the process parameters are given in Table 4, the analytical results are given in Table 5.
  • Formulation 1 Feeding Rate Powder [g/h] 15.7 15.7 liquid [g/h] 1.0 1.36 Screw speed [rpm] 100 120 Vacuum [mbar] 350 200 Temperature barrel 1 [° C.] 20 20 barrel 2 + 3 [° C.] 80 80 barrel 4-6 [° C.] 100 100 die head [° C.] 125 125 die [° C.] 125 125 Torque 36 33 [% of engine power] Appearance of extrudate Smooth, transparent Smooth, transparent Temperature of extrudate 123-124 124 [° C.]
US12/279,415 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient Abandoned US20090311414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/279,415 US20090311414A1 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US78139806P 2006-03-10 2006-03-10
EP06004999A EP1832281A1 (en) 2006-03-10 2006-03-10 Process for producing a solid dispersion of an active ingredient
EP06004999.6 2006-03-10
US12/279,415 US20090311414A1 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient
PCT/EP2007/052314 WO2007104747A2 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052314 A-371-Of-International WO2007104747A2 (en) 2006-02-10 2007-03-12 Process for producing a solid dispersion of an active ingredient

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/094,563 Continuation US9205027B2 (en) 2006-03-10 2013-12-02 Process for producing a solid dispersion of an active ingredient

Publications (1)

Publication Number Publication Date
US20090311414A1 true US20090311414A1 (en) 2009-12-17

Family

ID=36754000

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/279,385 Abandoned US20090302493A1 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient
US12/279,415 Abandoned US20090311414A1 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient
US14/094,563 Expired - Fee Related US9205027B2 (en) 2006-03-10 2013-12-02 Process for producing a solid dispersion of an active ingredient
US14/094,533 Active US9414992B2 (en) 2006-03-10 2013-12-02 Process for producing a solid dispersion of an active ingredient

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/279,385 Abandoned US20090302493A1 (en) 2006-03-10 2007-03-12 Process for producing a solid dispersion of an active ingredient

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/094,563 Expired - Fee Related US9205027B2 (en) 2006-03-10 2013-12-02 Process for producing a solid dispersion of an active ingredient
US14/094,533 Active US9414992B2 (en) 2006-03-10 2013-12-02 Process for producing a solid dispersion of an active ingredient

Country Status (20)

Country Link
US (4) US20090302493A1 (ko)
EP (5) EP1832281A1 (ko)
JP (3) JP5670023B2 (ko)
KR (2) KR101453399B1 (ko)
CN (2) CN101400340B (ko)
AT (1) ATE531359T1 (ko)
AU (2) AU2007224487B2 (ko)
BR (2) BRPI0708734A2 (ko)
CA (2) CA2644372C (ko)
CY (1) CY1112273T1 (ko)
DK (2) DK1996164T3 (ko)
ES (2) ES2425176T3 (ko)
HK (3) HK1123729A1 (ko)
MX (2) MX2008011041A (ko)
PL (2) PL1996163T3 (ko)
PT (1) PT1996163E (ko)
RU (2) RU2442568C2 (ko)
SI (1) SI1996163T1 (ko)
WO (2) WO2007104748A2 (ko)
ZA (2) ZA200808563B (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080148A1 (en) * 2011-11-28 2013-06-06 Ranbaxy Laboratories Limited A process for the preparation of solid dispersion of lopinavir and ritonavir
US9757406B2 (en) 2013-08-27 2017-09-12 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832281A1 (en) 2006-03-10 2007-09-12 Abbott GmbH & Co. KG Process for producing a solid dispersion of an active ingredient
JP4746014B2 (ja) * 2007-07-09 2011-08-10 株式会社日本製鋼所 溶融混練脱揮押出機
TWI583405B (zh) * 2008-02-28 2017-05-21 艾伯維有限公司 錠劑及其製備
US20100069877A1 (en) * 2008-09-10 2010-03-18 Smith Gregory A Apparatus and method to dispense hpc-based viscous liquids into porous substrates, e.g., continuous web-based process
EP2332941A4 (en) * 2008-09-17 2012-08-08 Cj Cheiljedang Corp STABILIZED SOLIDS DISPERSION FROM ADEFOVIR-DIPIVOXIL AND PROCESS FOR THE PRODUCTION THEREOF
US20110034489A1 (en) * 2009-07-31 2011-02-10 Ranbaxy Laboratories Limited Solid dosage forms of hiv protease inhibitors
DE102009040047A1 (de) * 2009-09-04 2011-03-17 Bayer Materialscience Ag Verfahren zur Einarbeitung von Feststoffen in Polymere
US20130303628A1 (en) * 2010-10-14 2013-11-14 Abbott Laboratories Curcuminoid solid dispersion formulation
CN103260609B (zh) * 2010-12-23 2017-08-11 雅培股份有限两合公司 基于固体分散体的固体延缓制剂
US10968129B1 (en) * 2011-04-26 2021-04-06 Mansour S. Bader Minimizing wastes: method for de-oiling, de-scaling and distilling source water
US9096556B2 (en) 2011-05-27 2015-08-04 Hetero Research Foundation Amorphous ritonavir co-precipitated
US20130172375A1 (en) * 2011-12-13 2013-07-04 Hoffmann-La Roche Inc. Pharmaceutical composition
GB2503710A (en) * 2012-07-05 2014-01-08 Res Ct Pharmaceutical Engineering Gmbh System for producing a solid preparation from a suspension
RU2502599C1 (ru) * 2012-11-14 2013-12-27 Станислав Васильевич Володин Способ изготовления пластмассовых изделий
IN2013CH02295A (ko) 2013-05-27 2015-10-02 Steer Engineering Private Ltd
FR3007685B1 (fr) * 2013-06-27 2016-02-05 Clextral Element de vis pour une extrudeuse bivis corotative, ainsi qu'extrudeuse bivis corotative correspondante
GB201316023D0 (en) * 2013-09-09 2013-10-23 Res Ct Pharmaceutical Engineering Gmbh Continuous low dosing of an active ingredient
WO2015128853A1 (en) * 2014-02-28 2015-09-03 Sun Pharmaceutical Industries Limited Dapagliflozin compositions
FR3022823B1 (fr) * 2014-06-30 2017-03-10 Michelin & Cie Extrudeuse comportant un fourreau filete
US9586371B2 (en) * 2014-09-02 2017-03-07 Empire Technology Development Llc Method of bonding material layers in an additive manufacturing process
US10933572B2 (en) 2015-07-29 2021-03-02 The Boeing Company 2-stage extrusion apparatus and method of extrusion
US10195779B2 (en) 2015-07-29 2019-02-05 The Boeing Company Systems and methods for making composite structures
US10086548B2 (en) 2015-07-29 2018-10-02 The Boeing Company Extrusion apparatus and method using variable extrusion gate
US10105889B2 (en) * 2015-07-29 2018-10-23 The Boeing Company 2-stage extrusion apparatus and method of extrusion
US10792634B2 (en) * 2015-07-31 2020-10-06 Intel Corporation Process for continuous granulation of powder material
RU2619981C2 (ru) * 2015-08-24 2017-05-22 Федеральное Государственное Бюджетное Научное Учреждение "Аграрный Научный Центр "Донской" Способ производства экструдированного комбикорма с добавкой зеленой массы кормовых трав и экструдер-измельчитель
CN106539689B (zh) * 2015-09-18 2020-05-22 天士力医药集团股份有限公司 一种连续性的液体凝固的智能滴丸机
WO2017102808A1 (de) * 2015-12-16 2017-06-22 Covestro Deutschland Ag Vorrichtung und verfahren zur dispergierung von feststoffen, flüssigkeiten und gasen in einem extruder
US10327994B2 (en) * 2016-05-02 2019-06-25 Dose Pack Llc System and methods for customized medicine dosages in a capsule
DE102017114841B4 (de) * 2017-07-04 2022-09-15 Aim3D Gmbh Vorrichtung und Verfahren zur Extrusion von thermo-mechanisch verformbaren granulatförmigen Materialien
ES2938608T3 (es) 2017-09-20 2023-04-13 Tillotts Pharma Ag Método para preparar una forma farmacéutica sólida que comprende anticuerpos mediante granulación en húmedo, extrusión y esferonización
KR102104257B1 (ko) * 2018-05-18 2020-04-24 강원대학교산학협력단 열용융압출법을 이용하여 제조된 망간 나노콜로이드 분산체 및 이의 용도
DE102018004355A1 (de) * 2018-06-01 2019-12-05 Entex Rust & Mitschke Gmbh Mischen von extrudierbaren Kunststoffen mit geringen Mengen anderer Stoffe
JP2022502418A (ja) * 2018-09-26 2022-01-11 インベンティア ヘルスケア リミテッド クルクミノイドコンポジット
CN111941798A (zh) * 2020-06-08 2020-11-17 东南大学 一种双螺杆挤出机的双头-三头捏合块的组合
CN112931317B (zh) * 2021-03-23 2022-04-12 浙江省海洋水产研究所 一种提高刀鲚育苗成活率的方法
CN116330616B (zh) * 2023-05-30 2023-08-29 河北凯力华维包装科技有限公司 一种改性pet材料及其制备方法与应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801460A (en) * 1986-04-11 1989-01-31 Basf Aktiengesellschaft Preparation of solid pharmaceutical forms
US4880585A (en) * 1986-04-11 1989-11-14 Basf Aktiengesellschaft Continuous method of tableting
US4957681A (en) * 1988-04-15 1990-09-18 Basf Aktiengesellschaft Preparation of pharmaceutical mixtures
US5318358A (en) * 1991-10-15 1994-06-07 Werner & Pfleiderer Gmbh Screw kneader for plastic material having a controlling mixing section
US6106142A (en) * 1996-10-07 2000-08-22 Compex Gmbh Compundier-Und Extrusionsanlagen Pressure variable, multiscrew, continuous mixing machine for plasticizable compounds with variable height backfeed threads
US6221368B1 (en) * 1996-09-13 2001-04-24 Basf Aktiengesellschaft Process for producing solid dosage forms by extrusion
US6318650B1 (en) * 1997-05-22 2001-11-20 Basf Aktiengesellschaft Method for producing small-particle preparations of biologically active substances
US6365188B1 (en) * 1995-11-23 2002-04-02 Janssen Pharmaceutica, N.V. Solid mixtures of cyclodextrins prepared via meltextrusion
US20020044968A1 (en) * 1996-10-28 2002-04-18 General Mills, Inc. Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
US6499984B1 (en) * 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
US20040131725A1 (en) * 1993-09-24 2004-07-08 Song Joo H. Method for continuous gum base manufacturing
US20040219220A1 (en) * 2001-06-07 2004-11-04 Sherry Robert Arthur Therapeutic agents
US20050024986A1 (en) * 2003-07-30 2005-02-03 Mattingly Joseph E. Kneading element and related articles
US20060193896A1 (en) * 2005-02-25 2006-08-31 Cadbury Adams Usa Llc Process for manufacturing a delivery system for active components as part of an edible composition
US7270471B2 (en) * 2002-07-22 2007-09-18 Blach Verwaltungs Gmbh & Co. Kg Extruder

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829733B2 (ja) 1977-11-19 1983-06-24 積水化学工業株式会社 押出機
US5075291A (en) * 1989-11-22 1991-12-24 Ici Americas Inc. Crystalline sugar alcohol containing uniformly dispersed particulate pharmaceutical compound
KR0182801B1 (ko) 1991-04-16 1999-05-01 아만 히데아키 고체 분산체의 제조방법
DE4226753A1 (de) * 1992-08-13 1994-02-17 Basf Ag Wirkstoffe enthaltende Zubereitungen in Form fester Teilchen
US5266256A (en) * 1993-02-16 1993-11-30 Rohm And Haas Company Extruder and process modifying residence time distribution
DE4316537A1 (de) * 1993-05-18 1994-11-24 Basf Ag Zubereitungen in Form fester Lösungen
GB9415810D0 (en) * 1994-08-04 1994-09-28 Jerrow Mohammad A Z Composition
PT773781E (pt) 1994-08-04 2004-03-31 Elan Drug Delivery Ltd Sistemas solidos de entrega para libertacao controlada de moleculas incorporadas nos mesmos e metodos para a sua producao
US5472733A (en) * 1994-11-14 1995-12-05 Warner-Lambert Company Dry extrusion cooking of sugar or sugarless products
US5549920A (en) * 1994-12-22 1996-08-27 University Of Alaska Extrusion inactivation of protease enzyme in fish and fish food products
DE69730982T2 (de) * 1996-10-28 2005-09-01 General Mills, Inc., Minneapolis Einbettung und einkapselung von teilchen zur kontrollierten abgabe
US7374779B2 (en) * 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
DE19934610A1 (de) * 1999-07-23 2001-01-25 Bayer Ag Schnellfreisetzende Extrudate und Verfahren zu ihrer Herstellung sowie daraus erhältliche Zubereitungen
IT1308870B1 (it) * 1999-11-09 2002-01-11 L M P Impianti S R L Procedimento per la produzione di materiali polimerici espansi eestrusore per la sua attuazione.
JP2003011193A (ja) * 2001-07-03 2003-01-15 Ono Sangyo Kk 射出および押出成形用スクリュ
WO2003077827A1 (fr) * 2002-03-19 2003-09-25 Nippon Shinyaku Co., Ltd. Procede de production de medicament solide en dispersion
DE10242062B4 (de) 2002-09-11 2007-02-15 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Hydrierte kondensierte Palatinose, Verfahren zu deren Herstellung und deren Verwendung
DE10338180B3 (de) * 2003-08-17 2005-04-28 Erich Roos Verfahren zur Herstellung einer Extruderschnecke, sowie eine danach hergestellte Extruderschnecke
US20050048112A1 (en) * 2003-08-28 2005-03-03 Jorg Breitenbach Solid pharmaceutical dosage form
US20050186427A1 (en) * 2004-02-19 2005-08-25 The Procter & Gamble Company Lubricious coated applicator
WO2005115343A2 (de) * 2004-05-28 2005-12-08 Abbott Gmbh & Co. Kg Dosierungsform, erhältlich aus einer ein anorganisches pigment umfassenden pulvermischung
GB2418854B (en) * 2004-08-31 2009-12-23 Euro Celtique Sa Multiparticulates
DE102005005173A1 (de) * 2005-01-31 2006-09-14 Beiersdorf Ag Wirkstoffhaltige Selbstklebemassen und deren Herstellung
US7655728B2 (en) * 2005-06-27 2010-02-02 Exxonmobil Chemical Patents Inc. Preparation of thermoplastic elastomers by dynamic vulcanization in multi-screw extruders
EP1832281A1 (en) 2006-03-10 2007-09-12 Abbott GmbH & Co. KG Process for producing a solid dispersion of an active ingredient
WO2009054533A1 (en) 2007-10-26 2009-04-30 Nippon Steel Engineering Co., Ltd. Seismic isolation system for structures

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880585A (en) * 1986-04-11 1989-11-14 Basf Aktiengesellschaft Continuous method of tableting
US4801460A (en) * 1986-04-11 1989-01-31 Basf Aktiengesellschaft Preparation of solid pharmaceutical forms
US4957681A (en) * 1988-04-15 1990-09-18 Basf Aktiengesellschaft Preparation of pharmaceutical mixtures
US5318358A (en) * 1991-10-15 1994-06-07 Werner & Pfleiderer Gmbh Screw kneader for plastic material having a controlling mixing section
US20040131725A1 (en) * 1993-09-24 2004-07-08 Song Joo H. Method for continuous gum base manufacturing
US6365188B1 (en) * 1995-11-23 2002-04-02 Janssen Pharmaceutica, N.V. Solid mixtures of cyclodextrins prepared via meltextrusion
US6221368B1 (en) * 1996-09-13 2001-04-24 Basf Aktiengesellschaft Process for producing solid dosage forms by extrusion
US6106142A (en) * 1996-10-07 2000-08-22 Compex Gmbh Compundier-Und Extrusionsanlagen Pressure variable, multiscrew, continuous mixing machine for plasticizable compounds with variable height backfeed threads
US20020044968A1 (en) * 1996-10-28 2002-04-18 General Mills, Inc. Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
US6318650B1 (en) * 1997-05-22 2001-11-20 Basf Aktiengesellschaft Method for producing small-particle preparations of biologically active substances
US6499984B1 (en) * 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
US20040219220A1 (en) * 2001-06-07 2004-11-04 Sherry Robert Arthur Therapeutic agents
US7270471B2 (en) * 2002-07-22 2007-09-18 Blach Verwaltungs Gmbh & Co. Kg Extruder
US20050024986A1 (en) * 2003-07-30 2005-02-03 Mattingly Joseph E. Kneading element and related articles
US20060193896A1 (en) * 2005-02-25 2006-08-31 Cadbury Adams Usa Llc Process for manufacturing a delivery system for active components as part of an edible composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080148A1 (en) * 2011-11-28 2013-06-06 Ranbaxy Laboratories Limited A process for the preparation of solid dispersion of lopinavir and ritonavir
US20140288108A1 (en) * 2011-11-28 2014-09-25 Ranbaxy Laboratories Limited Process for the preparation of solid dispersion of lopinavir and ritonavir
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US9757406B2 (en) 2013-08-27 2017-09-12 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US10086011B2 (en) 2013-08-27 2018-10-02 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US11116783B2 (en) 2013-08-27 2021-09-14 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US11707479B2 (en) 2013-08-27 2023-07-25 Gilead Sciences, Inc. Combination formulation of two antiviral compounds

Also Published As

Publication number Publication date
EP1832281A1 (en) 2007-09-12
CA2644372A1 (en) 2007-09-20
WO2007104748A2 (en) 2007-09-20
RU2008140039A (ru) 2010-04-20
KR101453399B1 (ko) 2014-10-22
RU2448688C2 (ru) 2012-04-27
US9414992B2 (en) 2016-08-16
ES2425176T3 (es) 2013-10-11
JP2015038115A (ja) 2015-02-26
ZA200808563B (en) 2009-11-25
AU2007224487B2 (en) 2012-06-28
WO2007104748A3 (en) 2007-11-29
US20140094479A1 (en) 2014-04-03
ATE531359T1 (de) 2011-11-15
PL1996164T3 (pl) 2013-10-31
HK1215188A1 (zh) 2016-08-19
JP5861057B2 (ja) 2016-02-16
BRPI0708709A2 (pt) 2011-06-07
SI1996163T1 (sl) 2012-03-30
CA2644035C (en) 2013-12-24
PL1996163T3 (pl) 2012-03-30
BRPI0708734A2 (pt) 2011-06-14
RU2008140040A (ru) 2010-04-20
EP2386293A1 (en) 2011-11-16
EP2959890A1 (en) 2015-12-30
AU2007224486B2 (en) 2013-01-31
CN101400340B (zh) 2012-07-11
KR20090004947A (ko) 2009-01-12
ZA200808564B (en) 2009-11-25
CN101400341A (zh) 2009-04-01
HK1123729A1 (en) 2009-06-26
US9205027B2 (en) 2015-12-08
HK1125861A1 (en) 2009-08-21
CN101400340A (zh) 2009-04-01
WO2007104747A3 (en) 2007-11-29
PT1996163E (pt) 2012-02-06
CN101400341B (zh) 2012-04-25
JP2009529516A (ja) 2009-08-20
EP1996163B1 (en) 2011-11-02
CA2644372C (en) 2015-04-28
CA2644035A1 (en) 2007-09-20
JP5512134B2 (ja) 2014-06-04
US20090302493A1 (en) 2009-12-10
US20140087060A1 (en) 2014-03-27
MX2008010956A (es) 2008-09-08
DK1996164T3 (da) 2013-08-05
AU2007224487A1 (en) 2007-09-20
RU2442568C2 (ru) 2012-02-20
KR20090010955A (ko) 2009-01-30
KR101417892B1 (ko) 2014-07-16
JP2009533320A (ja) 2009-09-17
ES2376764T3 (es) 2012-03-16
EP1996164B1 (en) 2013-05-15
WO2007104747A2 (en) 2007-09-20
EP1996163A2 (en) 2008-12-03
AU2007224486A1 (en) 2007-09-20
EP1996164A2 (en) 2008-12-03
DK1996163T3 (da) 2012-02-13
CY1112273T1 (el) 2015-12-09
JP5670023B2 (ja) 2015-02-18
MX2008011041A (es) 2008-09-10

Similar Documents

Publication Publication Date Title
US9205027B2 (en) Process for producing a solid dispersion of an active ingredient
JP5903686B2 (ja) 固体分散物を基にした固体徐放製剤
EP1898954B1 (en) Composition and dosage form comprising a solid or semi-solid matrix

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KESSLER, THOMAS;BREITENBACH, JORG;SCHMIDT, CHRISTOPH;AND OTHERS;SIGNING DATES FROM 20081014 TO 20081026;REEL/FRAME:022001/0001

AS Assignment

Owner name: ABBVIE DEUTSCHLAND GMBH & CO KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT GMBH & CO KG;REEL/FRAME:030804/0836

Effective date: 20121101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION