US20090203778A1 - Fatty acid analogues, i.e. including dha derivatives for uses as a medicament - Google Patents

Fatty acid analogues, i.e. including dha derivatives for uses as a medicament Download PDF

Info

Publication number
US20090203778A1
US20090203778A1 US11/913,455 US91345506A US2009203778A1 US 20090203778 A1 US20090203778 A1 US 20090203778A1 US 91345506 A US91345506 A US 91345506A US 2009203778 A1 US2009203778 A1 US 2009203778A1
Authority
US
United States
Prior art keywords
compound
formula
chosen
group
carboxylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/913,455
Other languages
English (en)
Inventor
Morten Bryhn
Anne Kristin Holmeide
Jan Kopecky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pronova Biopharma Norge AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/913,455 priority Critical patent/US20090203778A1/en
Assigned to PRONOVA BIOPHARMA NORGE AS reassignment PRONOVA BIOPHARMA NORGE AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOPECKY, JAN, BRYHN, MORTEN, HOLMEIDE, ANNE KRISTIN
Publication of US20090203778A1 publication Critical patent/US20090203778A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/30Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/09Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/44Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/54Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/587Monocarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/24Oxygen atoms attached in position 2 with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom

Definitions

  • the present invention relates to compounds of the general formula (I):
  • a pharmaceutical composition comprising a compound of formula (I), as well as to a fatty acid composition comprising a compounds of formula (I).
  • type 2 diabetes mellitus worldwide poses an immense public health and medical challenge for the implementation of successful preventive and treatment strategies.
  • the pathophysiologic condition preluding the development of type 2 diabetes is related to reduced effects of insulin on peripheral tissues, called insulin resistance. These tissues are mainly muscle, fat and liver. Muscle tissue is the main tissue concerned by insulin resistance in type 2 diabetes.
  • the syndrome characterised by insulin resistance, hypertension, dyslipidemia and a systemic proinflammatory state, is referred to as metabolic syndrome.
  • the prevalence of metabolic syndrome in the adult population in developed countries is 22-39% (Meighs 2003)
  • EPA and DHA have effects on diverse physiological processes impacting normal health and chronic disease, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neural development and visual function.
  • Firm evidence exist for their beneficial role in the prevention and management of coronary heart disease, dyslipidemias, type 2 diabetes, insulin resistance, and hypertension (Simonopoulos 1999; Geleijnse 2002; Storlien 1998).
  • omega-3 fatty acids serve as important mediators of gene expression, working via nuclear receptors like the peroxisome proliferator-activated receptors (PPARs) controlling the expression of the genes involved in the lipid and glucose metabolism and adipogenesis (Jump 2002).
  • PPARs peroxisome proliferator-activated receptors
  • PPARs are nuclear fatty acid receptors that have been implicated to play an important role in obesity-related metabolic diseases such as hyperlipidemia, insulin resistance, and coronary heart disease.
  • PPAR ⁇ potentiates fatty acid catabolism in the liver and is the molecular target of the lipid-lowering fibrates.
  • PPAR ⁇ on the other hand is essential for adipocyte differentiation and mediates the activity of the insulin-sensitizing thiazolidinedions (the glitazones) through mechanisms not fully understood.
  • thiazolidinediones or glitazones are drugs that reverse insulin resistance which is the pathophysiologic basis for development of the metabolic syndrome and type 2 diabetes.
  • rosiglitazone and pioglitazone have been launched as pharmaceuticals, lower fasting and postprandial glucose concentrations (which is being manifest as a pathologic glucose tolerance test), plasma insulin as well as free fatty acid concentrations.
  • the glitazones act as insulin sensitizers.
  • PUFAs poly-unsaturated fatty acids
  • NEFA intracellular non-esterified fatty acids
  • omega-3 fatty acids are weak agonists of PPARs, when compared with pharmacological agonists like the thioglitazones, these fatty acids have demonstrated improvement in glucose uptake and insulin sensitivity (Storlien 1987). It has been reported that adipocytes were more insulin sensitive and transported more glucose when the polyunsaturated to saturated fatty acid ratio in the diet was increased (Field 1990). Collectively, these data indicate that the 20- and 22-carbon fatty acids, namely EPA and DHA could play a preventive role in the development of insulin resistance.
  • PUFAs Due to their limited stability in vivo and their lack of biological specificity, PUFAs have not achieved widespread use as therapeutic agents. Chemical modifications of the n-3 polyunsaturated fatty acids have been performed by several research groups in order to change or increase their metabolic effects.
  • hypolipidemic effects of EPA was potentiated by introducing methyl or ethyl in ⁇ - or ⁇ -position of EPA. (Vaagenes 1999). The compounds also reduced plasma free fatty acid while EPA EE had no effect.
  • Alpha-methyl EPA has been shown to be a stronger inhibitor of platelet aggregation than EPA, both in vitro (Larsen 1998) and in vivo (Willumsen 1998).
  • Patent Abstract of Japan publication number 05-00974 discloses DHA substituted in alpha-position with an OH-group, however only as an intermediate. No examination as to possible pharmaceutical effects of this compound is disclosed.
  • Laxdale Limited has also described the use of alpha substituted derivatives of EPA in the treatment of psychiatric or central nervous disorders (U.S. Pat. No. 6,689,812).
  • One aim of the present invention is to provide a useful medical application of DHA-derivatives. Accordingly, the present invention provides a compound of formula (I);
  • the carboxylate group may be selected from the group consisting of ethyl carboxylate, methyl carboxylate, n-propyl carboxylate, isopropyl carboxylate, n-butyl carboxylate, sec.-butyl carboxylate, and n-hexyl carboxylate.
  • the carboxylate group is ethyl carboxylate.
  • the carboxamide group may be selected from the group consisting of primary carboxamide, N-methyl carboxamide, N,N-dimethyl carboxamide, N-ethyl carboxamide, and N,N-diethyl carboxamide.
  • the compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all optical isomers of the compounds of formula (I) and mixtures thereof including racemates for use as a medicament.
  • the compound of formula (I) may also exist in the form of a phospholipid, a tri-, di- or monoglyceride, or in the form of a free acid.
  • a pharmaceutical composition comprising a compound of formula (I) as an active ingredient.
  • the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier.
  • a pharmaceutical composition according to the invention is formulated for oral administration, e.g. in the form of a capsule or a sachet.
  • a suitable daily dosage of a compound of formula (I) according to the present invention is 10 mg to 10 g, in particular 100 mg to 1 g of said compound per 24 hours.
  • the present invention relates to a fatty acid composition
  • a fatty acid composition comprising a compound of formula (I). At least 60%, or at least 90% by weight of the fatty acid composition may be comprised of said compound.
  • the fatty acid composition may further comprise (all-Z)-5,8,11,14,17-eicosapentaenoic acid (EPA), (all-Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA), (all-Z)-6,9,12,15,18-heneicosapentaenoic acid (HPA), and/or (all-Z)-7,10,13,16,19-docosapentaenoic acid (DPA).
  • the fatty acids may be present in the form of derivatives.
  • a fatty acid composition according to the present invention may further comprise a pharmaceutically acceptable antioxidant, e.g. tocopherol.
  • a pharmaceutically acceptable antioxidant e.g. tocopherol.
  • within the scope of the present invention is also a fatty acid composition described above, for use as a medicament.
  • the present invention relates to the use of a compound according to formula (I) for the manufacture of a medicament for controlling body weight reduction and/or for preventing body weight gain; for the manufacture of a medicament for the treatment and/or the prevention of obesity or an overweight condition; for the manufacture of a medicament for the prevention and/or treatment of diabetes in an animal, in particular type 2 diabetes; for the manufacture of a medicament for the treatment and/or prevention of amyloidos-related diseases; for the manufacture of a medicament for the treatment or prophylaxis of multiple risk factors for cardiovascular diseases, preferably for the treatment of elevated blood lipids for the manufacture of a medicament for prevention of stroke, cerebral or transient ischaemic attacks related to atherosclerosis of several arteries.
  • a compound according to formula (I) for the manufacture of a medicament for controlling body weight reduction and/or for preventing body weight gain; for the manufacture of a medicament for the treatment and/or the prevention of obesity or an overweight condition; for the manufacture of a medicament for the prevention and/or treatment of diabetes in an animal,
  • the present invention relates to a method for controlling body weight reduction and/or for preventing body weight gain; a method for the treatment and/or the prevention of obesity or an overweight condition; a method for the prevention and/or treatment of diabetes, in particular type 2 diabetes; a method for the treatment and/or prevention of amyloidos-related diseases; a method for the treatment or prophylaxis of multiple risk factors for cardiovascular diseases; a method for the prevention of stroke, cerebral or transient ischaemic attacks related to atherosclerosis of several arteries, wherein a pharmaceutically effective amount of a compound of formula (I) is administered to a human or an animal.
  • the compound of formula (I) is administered orally to a human or an animal.
  • FIG. 1 shows the structural formula of alpha-methyl DHA ethyl ester.
  • FIG. 2 is a schematic overview of the free fatty acid pool theory.
  • FIG. 3 depicts the release of luciferase from transfected cells treated with the compound according to the invention.
  • FABP Fatty acid binding proteins
  • Esterification of fatty acids into triglycerides, polar lipids, and cholesterol esters and their beta-oxidation requires conversion of fatty acids to acyl CoA thioesters.
  • Other pathways like microsomal NADPH-dependent mono-oxidation and eikosanoids synthesis, utilise non-esterified fatty acids as substrates. All these reactions are likely to influence cellular levels of free fatty acids (non-esterfified) and thereby the amount and type of fatty acids which could be used as ligands to nuclear receptors. Because PPARs are known to bind non-esterified fatty acids it is reasonable to expect that the composition of the free fatty acid pool is an important determinant in the control of PPAR activity.
  • composition of the free fatty acid pool is affected by the concentration of exogenous fatty acids entering the cells, and their rate of removal via pathways listed above. Since short and medium chain fatty acids are effectively recruited to these pathways, in practice only the long-chain polyunsaturated fatty acids will be available for liganding to nuclear receptors. In addition, fatty acid structure may also be an important determinant. Even if a series of mono and polyunsaturated fatty acids demonstrated affinity to the PPAR ⁇ receptor, EPA and DHA demonstrated the highest binding capacity in experiments with rat liver cells (Pawar & Jump 2003).
  • DHA which enter cells are rapidly converted to fatty acyl-CoA thioesters and incorporated into phospholipids and due to this, the intracellular DHA level is relatively low.
  • These DHA-CoA are also substrate for ⁇ -oxidation primarily in the peroxisomes that lead to retroconvertion of DHA to EPA, see FIG. 2 . Because of the rapid incorporation into neutral lipids and the oxidation pathway DHA will not stay long in the free fatty acid pool. Due to this the effect of DHA on gene expression is probably limited.
  • the present invention aims at achieving an accumulation of fatty acid derivatives in the free fatty acid pool, rather than incorporation into phosholipids.
  • the present inventors have surprisingly found that the introduction of a methyl substituent in the ⁇ -position of DHA will lead to a slower oxidation rate in addition to less incorporation into neutral lipids. This will lead to an increased effect on gene expression, since the DHA derivative will accumulate in the tissue particular within liver, muscle, and adipose cells and trigger local nuclear receptor activity to a greater extent than DHA.
  • EPA all-Z-5,8,11,14,17-eicosapentaenoic acid
  • DHA has earlier been alkylated in ⁇ - and ⁇ -position to inhibit mitochondrial ⁇ -oxidation.
  • DHA is not oxidised in the mitochondria, but rather incorporated into phospholipids. In the peroxisomes though some DHA is retroconverted to EPA.
  • a substituent in the ⁇ -position of EPA and DHA will due to this affect different metabolic pathways. It has earlier been shown that ⁇ -methyl EPA and ⁇ -methyl EPA is incorporated into phospholipids and triglycerids while ⁇ -ethyl EPA is not (Larsen 1998).
  • this invention aims at providing a derivative that will not incorporate into lipids, but rather accumulate in the NEFA pool.
  • Prodrugs are entities which may or may not possess pharmacological activity as such, but may be administered (such as orally or parenterally) and thereafter subjected to bioactivation (for example metabolized) in the body to form the agent of the present invention which is pharmacologically active.
  • X is a carboxylic acid
  • the present invention also includes salts of the carboxylic acids.
  • Suitable pharmaceutically acceptable salts of carboxy groups includes metal salts, such as for example aluminium, alkali metal salts such as lithium, sodium or potassium, alkaline metal salts such as calcium or magnesium and ammonium or substituted ammonium salts.
  • a “therapeutically effective amount” refers to the amount of the therapeutic agent which is effective to achieve its intended purpose. While individual patient needs may vary, determination of optimal ranges for effective amounts of each nitric oxide adduct is within the skill of the art. Generally the dosage regimen for treating a condition with the compounds and/or compositions of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex, diet and medical condition of the patient.
  • a medicament is meant a compound according to formula (I), in any form suitable to be used for a medical purpose, e.g. in the form of a medicinal product, a pharmaceutical preparation or product, a dietary product, a food stuff or a food supplement.
  • the term “therapy” also includes “prophylaxis” unless there are specific indications to the contrary.
  • the terms “therapeutic” and “therapeutically” should be constructed accordingly.
  • Treatment includes any therapeutic application that can benefit a human or non-human animal.
  • the treatment of mammals is particularly preferred. Both human and veterinary treatments are within the scope of the present invention.
  • Treatment may be in respect of an existing condition or it may be prophylactic. It may be of an adult, a juvenile, an infant, a foetus, or a part of any of the aforesaid (e.g. an organ, tissue, cell, or nucleic acid molecule).
  • chronic treatment is meant treatment that continues for some weeks or years.
  • a therapeutically or a pharmaceutically active amount relates to an amount that w ⁇ 1 lead to the desired pharmacological and/or therapeutic effects.
  • a compound according to the present invention may for example be included in a food stuff, a food supplement, a nutritional supplement, or a dietary product
  • Alpha-substituted DHA derivatives and EPA can be bound together and combined on triglyceride form by an esterification process between a mixture of alpha-derivatives, EPA and glycerol catalysed by Novozym 435 (a commersially available lipase from Candida antarctica on immobilised form).
  • the compound of formula (I) has activity as pharmaceuticals, in particular as triggers of nuclear receptor activity.
  • the present invention also relates to the compound of formula (I), pharmaceutically acceptable salts, solvates, complexes or pro-drugs thereof, as hereinbefore defined, for use as a medicament and/or for use in therapy.
  • the compound of formula (I), or pharmaceutically acceptable salts, solvates, complexes or pro-drugs thereof, of the invention may be used:
  • Type 1 diabetes which is known as insulin-dependent diabetes mellitus (IDDM)
  • type 2 diabetes which is also known as non-insulin-dependent diabetes mellitus (NIDDM).
  • IDDM insulin-dependent diabetes mellitus
  • NIDDM non-insulin-dependent diabetes mellitus
  • Type 2 diabetes is related to obesity/overweight and lack of exercise, often of gradual onset, usually in adults, and caused by reduced insulin sensitivity, so called periferral insulin resistance. This leads to a compensatory increase in insulin production.
  • This stage before developing full fetched type 2 diabetes is called the metabolic syndrome and characterized by hyperinsulinemia, insulin resistance, obesity, glucose intolerance, hypertension, abnormal blood lipids, hypercoagulopathia, dyslipidemia and inflammation, often leading to atherosclerosis of the arteries. Later when insulin production seizes, type 2 diabetes mellitus develops.
  • the compound according to formula (I) may be used for the treatment of type 2 diabetes.
  • the compound according to formula (I) may also be used for the treatment of other types of diabetes selected from the group consisting of metabolic syndrome, secondary diabetes, such as pancreatic, extrapancreatic/endocrine or drug-induced diabetes, or exceptional forms of diabetes, such as lipoatrophic, myatonic or a disease caused by disturbance of the insulin receptors.
  • the invention also includes treatment of type 2 diabetes.
  • the compound of formula (I), as hereinbefore defined may activate nuclear receptors, preferably PPAR (peroxisome proliferator-activated receptor) ⁇ and/or ⁇ .
  • PPAR peroxisome proliferator-activated receptor
  • the compound of formula (I) may also be used for the treatment and/or prevention of obesity.
  • Obesity is usually linked to an increased insulin resistance and obese people run a high risk of developing type 2 diabetes which is a major risk factor for development of cardiovascular diseases.
  • Obesity is a chronic disease that afflict an increasing proportion of the population in Western societies and is associated, not only with a social stigma, but also with decreasing life span and numerous problems, for instance diabetes mellitus, insulin resistance and hypertension.
  • the present invention thus fulfils a long-felt need for a drug that will reduce total body weight, or the amount of adipose tissue, of preferably obese humans, towards their ideal body weight without significant adverse side effects.
  • the compound according to formula (I) may also be used for the prevention and/or treatment of amyloidos-related diseases.
  • Amyloidos-related conditions or diseases associated with deposition of amyloid preferably as a consequence of fibril or plaque formation, includes Alzheimer's disease or dementia, Parkinson's disease, amyotropic lateral sclerosis, the spongiform encephalopathies, such as Creutzfeld-jacob disease, cystic fibrosis, primary or secondary renal amyloidoses, IgA nephropathy, and amyloid depostion in arteries, myocardium and neutral tissue.
  • amyloidos-related diseases can be sporadic, inherited or even related to infections such as TBC or HIV, and are often manifested only late in life even if inherited forms may appear much earlier.
  • Each disease is associated with a particular protein or aggregates of these proteins are thought to be the direct origin of the pathological conditions associated with the disease.
  • the treatment of a amyloidos-related disease can be made either acutely or chronically.
  • the compound of formula (I) may also be used for the treatment due to reduction of amyloid aggregates, prevention of misfolding of proteins that may lead to formation of so called fibrils or plaque, treatment due to decreasing of the production of precursor protein such as A ⁇ -protein (amyloid beta protein), and prevention and/or treatment due to inhibiting or slow down the formation of protein fibrils, aggregates, or plaque.
  • Prevention of fibril accumulation, or formation, by administering a compound of formula (I), as hereinbefore defined is also included herein.
  • the compound of formula (I), pharmaceutically acceptable salts, solvates, complexes or pro-drugs thereof, as hereinbefore defined are used for the treatment of TBC (tuberculosis) or HIV (human immunodeficiency virus).
  • the compound of formula (I) may be administered to patients with symptoms of atherosclerosis of arteries supplying the brain, for instance a stroke or transient ischaemic attack, in order to reduce the risk of a further, possible fatal, attack.
  • the compound of formula (I) may also be used for the treatment of elevated blood lipids in humans.
  • the compound of formula (I), as hereinbefore defined are valuable for the treatment and prophylaxis of multiple risk factors known for cardiovascular diseases, such as hypertension, hypertriglyceridemia and high coagulation factor VII phospholipid complex activity.
  • cardiovascular diseases such as hypertension, hypertriglyceridemia and high coagulation factor VII phospholipid complex activity.
  • the compound of formula (I) is used for the treatment of elevated blood lipids in humans.
  • the compound of formula (I) and pharmaceutically acceptable salts, solvates, pro-drugs or complexes thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the compound of formula (I) (the active ingredient) are in association with a pharmaceutically acceptable adjuvant, diluent or carrier.
  • the present invention thus also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the compound of formula (I) of the present invention and a pharmaceutically acceptable carrier, diluent or excipients (including combinations thereof).
  • compositions that comprises or consists of a therapeutically effective amount of a pharmaceutically active agent. It preferably includes a pharmaceutically acceptable carrier, diluent or excipients (including combinations thereof). Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice.
  • the pharmaceutical compositions may comprise as—or in addition to—the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).
  • compositions within the scope of the present invention may include one or more of the following: preserving agents, solubilising agents, stabilising agents, s wetting agents, emulsifiers, sweeteners, colourants, flavouring agents, odourants, salts compounds of the present invention may themselves be provided in the form of a pharmaceutically acceptable salt), buffers, coating agents, antioxidants, suspending agents, adjuvants, excipients and diluents.
  • a pharmaceutical composition according to the invention is preferably formulated for oral administration to a human or an animal.
  • the pharmaceutical composition may also be formulated for administration through any other route where the active ingredients may be efficiently absorbed and utilized, e.g. intravenously, subcutaneously, intramuscularly, intranasally, rectally, vaginally or topically.
  • the pharmaceutical composition is shaped in form of a capsule, which could also be microcapsules generating a powder or a sachet.
  • the capsule may be flavoured.
  • This embodiment also includes a capsule wherein both the capsule and the encapsulated fatty acid composition according to the invention is flavoured. By flavouring the capsule it becomes more attractive to the user.
  • the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.
  • the pharmaceutical composition may be formulated to provide a daily dosage of 10 mg to 10 g.
  • the pharmaceutical composition is formulated to provide a daily dosage between 50 mg and 5 g of said composition.
  • the pharmaceutical composition is formulated to provide a daily dosage between 100 mg and 1 g of said composition.
  • a daily dosage is meant the dosage per 24 hours.
  • the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject.
  • the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy.
  • the agent and/or the pharmaceutical composition of the present invention may be administered in accordance with a regimen of from 1 to 10 times per day, such as once or twice per day.
  • the daily dosage level of the agent may be in single or divided doses.
  • a further aspect of the present invention relates to a fatty acid composition comprising a compound of formula (I).
  • a fatty acid composition comprising a compound of formula (I) increases the natural biological effects of DHA that are a result of regulation of gene expression, and the derivatives according to the present invention will accumulate in the free fatty acid pool.
  • the fatty acid composition may comprise in the range of 60 to 100% by weight of the compound of formula (I), all percentages by weight being based on the total weight of the fatty acid composition.
  • at least 80% by weight of the fatty acid composition is comprised of a compound of formula (I). More preferably, the compound of formula (I) constitute at least 90% by weight of the fatty acid composition. Most preferably, the compound of formula (I) constitutes more than 95% by weight of the fatty acid composition.
  • the fatty acid composition may further comprise at least one of the fatty acids (all-Z)-5,8,11,14,17-eicosapentaenoic acid (EPA), (all-Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA), (all-Z)-6,9,12,15,18-heneicosapentaenoic acid (HPA), and (all-Z)-7,10,13,16,19-docosapentaenoic acid (DPAn-3), (all-Z)-8,11,14,17-eicosatetraenoic acid (ETAn-3), or combinations thereof.
  • the fatty acid composition may comprise (all-Z)-4,7,10,13,16-Docosapentaenoic acid (DPAn-6) and/or (all-Z)-5,8,11,14-eicosatetraenoic acid (ARA), or derivatives thereof.
  • DPAn-6 docosapentaenoic acid
  • ARA arachidoic acid
  • the fatty acid composition may also comprise at least these fatty acids, or combinations thereof, in the form of derivatives.
  • the derivatives are suitably substituted in the same way as the DHA derivative of formula (I), as hereinbefore defined.
  • the fatty acid composition according to the invention may comprise (all-Z omega-3)-6,9,12,15,18-heneicosapentaenoic acid (HPA), or derivatives thereof, in an amount of at least 1% by weight, or in an amount of 1 to 4% by weight.
  • HPA all-Z omega-3-6,9,12,15,18-heneicosapentaenoic acid
  • the fatty acid composition according to the invention may comprise omega-3 fatty acids other than EPA and DHA that have 20, 21, or 22 carbon atoms, or derivatives thereof, in an amount of at least 1.5% by weight, or in an amount of at least 3% by weight.
  • the fatty acid composition is a pharmaceutical composition, a nutritional composition or a dietary composition.
  • the fatty acid composition may further comprise an effective amount of a pharmaceutically acceptable antioxidant.
  • the antioxidant is tocopherol or a mixture of tocopherlos.
  • the fatty acid composition further comprises tocopherol, or a mixture of tocopherols, in an amount of up to 4 mg per g of the total weight of the fatty acid composition.
  • the fatty acid composition comprises an amount of 0.2 to 0.4 mg per g of tocopherols, based on the total weight of the composition.
  • Another aspect of the invention provides a fatty acid composition, or any pharmaceutically acceptable salt, solvate, pro-drug or complex thereof, comprising a compound of formula (I), as hereinbefore defined, for use as a medicament and/or in therapy.
  • a fatty acid composition may be used to prevent and/or treat the same conditions as outlined for the compound of formula (I) above.
  • the fatty acid composition When used as a medicament, it will be administered in a therapeutically or a pharmaceutically active amount.
  • the fatty acid composition is administered orally to a human or an animal.
  • the present invention also provides the use of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, pro-drug or complex thereof, as hereinbefore defined, for the manufacture of a medicament for controlling body weight reduction and/or for preventing body weight gain; for the manufacture of a medicament for the treatment and/or the prevention of obesity or an overweight condition; for the manufacture of a medicament for the prevention and/or treatment of diabetes in a human or animal; for the manufacture of a medicament for the treatment and/or prevention of amyloidos-related diseases; for the manufacture of a medicament for the treatment and prophylaxis of multiple risk factors known for cardiovascular diseases, such as hypertension, hypertriglyceridemia and high coagulation factor VII phospholipid complex activity; for the manufacture of a medicament for the treatment of TBC or HIV; for the manufacture of a medicament for prevention of stroke, cerebral or transient ischaemic attacks related to atherosclerosis of several arteries; for the manufacturing of a medicament for lowering triglycerides in the blood of mammals and/
  • the present invention also relates to a method for controlling body weight reduction and for preventing body weight gain, wherein a fatty acid composition comprising at least a compound of formula (I), as hereinbefore defined, is administered to a human or an animal.
  • the invention relates to a method for the treatment and/or the prevention of obesity or an overweight condition, wherein a fatty acid composition comprising at least a compound of formula (I), as hereinbefore defined, is administered to a human or an animal.
  • the present invention relates to a method for the prevention and/or treatment of diabetes mellitus, wherein a fatty acid composition comprising at least a compound of formula (I), as hereinbefore defined, is administered to a human or an animal.
  • a fatty acid composition comprising at least a compound of formula (I), as hereinbefore defined
  • diabetes mellitus is a type 2 diabetes.
  • the fatty acid derivative of formula (I) may be prepared most effectively from DHA. If the start material is not pure DHA (i.e. not 100% DHA) the final fatty acid composition will contain a mixture of DHA derivatives, as hereinbefore defined, and an amount of other fatty acids than DHA, wherein these fatty acids are substituted in the same way as the novel fatty acid analogue of formula (I). Such embodiments are also included herein.
  • the compound of formula (I) is prepared from (all-Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA), wherein said DHA is obtained from a vegetable, a microbial and/or an animal source, or combinations thereof.
  • said DHA is obtained from a marine oil, such as a fish oil.
  • the fatty acids in the composition may also be obtained from a vegetable, a microbial or an animal source, or combinations thereof.
  • the invention also includes a fatty acid composition prepared from a microbial oil.
  • DHA is produced from biological sources like marine, microbial or vegetable fats. All possible raw materials are mixtures of fatty acids on triglyceride form where DHA constitutes only a fraction of the fatty acids. Typical DHA concetrations are 40% in microbial fats and 10-25% in marine fats. DHA-containing vegetable fats are during development and fats with high DHA concentrations are expected in the future.
  • the first process step will always be conversion of the triglycerides to free fatty acids or monoesters.
  • Preferable esters are methyl or ethyl esters, but other esters are possible.
  • the fatty acids bound together three by three on triglycerides are separated from each other and thereby making separation possible.
  • Several methods of separating DHA from other fatty acids are available, the most common ones being short path distillation separating the fatty acids by volatility, and urea precipitation separating the fatty acids by degree of unsaturation.
  • Other methods reported are silver nitrate complexation also separating the fatty acids on degree on unsaturation, esterification reactions catalysed by fatty acid selective lipases in combination with short path distillation and countercurrent extraction with supercritical carbon dioxide.
  • DHA containing fats also contain considerable amounts of C20-22 highly unsaturated fatty acids, e.g. EPA (20:5n-3), n-3DPA (22:5n-3), HPA (21:5n-3) and others.
  • the only available method for separating DHA from such fatty acids is preparative High Performance Liquid Chromatography, the stationary phase being silica gel or silver nitrate impregnated silica gel, the moblie phase being selected organic solvents or supercritical carbon dioxide. With this method DHA with more than 97% purity is available.
  • concentration as an example is production cost for 97% DHA more 5 times higher than for 90% DHA.
  • DHA having a purity of 90, 95 eller 97% contains small amounts of other fatty acids.
  • DHA having a purity of 97% contains n-3DPA (22:5n-3), but also long chain fatty acids, e.g. EPA (20:5n-3), HPA (21:5n-3), and others.
  • the other fatty acids will react in a way similar to DHA and provide alpha-substituted derivatives.
  • Organic synthesis may provide a purification method since DHA and n-6DPA (and 22:5n-6 which normally is present in very low concentrations) are the only known fatty acids that can provide gamma-lactones by cyclisation with the first double bond. Lactonisation followed by purification and hydrolysis back to DHA may be a possibility, but it is expected that this pathway is even more expensive than HPLC.
  • Butyllithium (228 ml, 0.37 mol, 1.6 M in hexane) was added dropwise to a stirred solution of diisopropylamine (59.5 ml, 0.42 mol) in dry THF (800 ml) under N 2 at 0° C.
  • the resulting solution was stirred at 0° C. for 30 min., cooled to ⁇ 78° C. and stirred an additional 30 min. before dropwise addition of DHA EE (100 g, 0.28 mol) in dry THF (500 ml) during 2 h.
  • the dark-green solution was stirred at ⁇ 78° C. for 30 min. before MeI (28 ml, 0.45 mol) was added.
  • the solution was allowed to reach ⁇ 20° C.
  • the enantiomeric pure compounds can be prepared by resolving a racemic compound of formula (I), as hereinbefore defined.
  • the resolution of a compound of formula (I) may be carried out using known resolution procedures, for example by reacting the compound of formula (I) with an enantiomerically pure auxiliary to provide a mixture of diastereomers that can be separated by chromatography. Thereafter the two enantiomers of compound (I) may be regenerated from the separated diastereomers by conventional means, such as hydrolysis.
  • alpha-methyl-DHA EE is denoted “PRB-1”.
  • Liver tissue from animals fed PRB-1 was analysed with respect to free unesterified fatty acids.
  • the animals were recruited from Experiment 4 (pharmacodynamic effects of DHA derivatives in an animal model of metabolic syndrome).
  • the animals had been given DHA (15% of fat content of the diet) or the DHA-derivative (1.5% of the fat content in their diet) for 8 weeks and were supposed to be in a steady-state situation with stable levels of DHA and the DHA-derivative intracellularly.
  • Liver tissue was chosen due to the fact that the metabolisation rate is very high in liver.
  • liver samples were homogenized in cold PBS buffer, and extracted immediately with chloroform:methanol (2:1) containing 0.2 mM butylated hydroxytoluene (BHT) using cis-10-heptadecenoic acid as internal standard.
  • BHT butylated hydroxytoluene
  • the organic phases were dried under nitrogen, re-dissolved in acetonitrile with 0.1% acetic acid and 10 ⁇ M BHT for RP-HPLC MS/MS analysis. Total protein content was measured using Bio-Rad method after homogenization.
  • Agilent 1100 system was used for reverse phase column (Supelco Ascentis C 18 column, 25 cm ⁇ 4.6 mm, i.d. 5 ⁇ m) separation within 22 min.
  • the flow phase was iso-gradient acetonitrile-H 2 O (87+13, v/v) containing 0.1% acetic acid.
  • the column oven temperature was set at 35° C.
  • the column elute was identified and quantified in the negative electrospray ionisation applying multiple reaction monitoring mode by triple tandem quadrapole mass/mass (ABI Qtrap-4000).
  • the parent-daughter ion pairs were 341.3/341.3 (PRB-1), under unit resolution.
  • the signal collection dwell time was all 100 msec except for FA 17:1 which was set at 200 msec.
  • Accurate verification of isomeric PRB compounds was done by combination of the retention time and characteristic mass/charge ratio.
  • the quadratic regression standard curve was used for quantification after internal standard calibration.
  • the concentration of the DHA-derivative according to the invention was about 10 ⁇ g per g of total amount of protein in the liver cells. This means that PRB-1 will be available as a ligand to nuclear receptors, a pattern which could be translated into therapeutic effects in handling of blood glucose and blood lipids.
  • Nuclear receptors have been sequenced and the amino acid sequence is known for the PPARs and other relevant receptors engaged in the genetic control of glucose and fat.
  • X-ray crystallography and NMR spectroscopy of the PPAR receptors are available and computerised affinity testing of fatty acids liganding to the receptors can be used to estimate binding kinetics.
  • the binding geometrics, often called binding modes or poses, include both positioning of the ligand relative to the receptor and the conformational state of the ligand and the receptor. Effective ligand docking can therefore be analysed.
  • Affinity of the ligand to the receptor is defined by two different parameters: docking of the ligand (DHA derivative) into the binding site of the receptor and electrostatic bonding between certain amino acids of the receptor and the carboxyl group or side chains in the head of the fatty acid. (Krumrine).
  • the PPAR ⁇ receptor is more promiscuous compared to PPAR ⁇ , meaning that PPAR ⁇ will accept more fatty acids as ligands compared to PPAR ⁇ .
  • patients with metabolic syndrome or type 2 diabetes are usually obese or overweight and have pathologic blood lipids, mainly elevated triglycerides and low High-Density Cholesterol (HDL-chol) activation of the PPAR ⁇ receptor is important.
  • An ideal drug for treatment of metabolic syndrome or type 2 diabetes should act as ligand to both these receptors, preferably with the highest affinity to the PPAR ⁇ receptor.
  • PRB-1 was tested with the computerized docking method (both r and s enantiomers).
  • PRB-1 has a high LBE and ABE score for the PPAR ⁇ and PPAR ⁇ receptors compared to the mother compound DHA but also to the PPAR ⁇ ligands rosiglitazone and pioglitazone, both in the r and s form. This is an interesting observation indicating that PRB-1 could be promising competitors to the established anti-diabetics rosiglitazone and pioglitazone.
  • the DHA-derivative according to the invention demonstrated interesting affinities to the PPAR ⁇ and PPAR ⁇ receptors with binding affinities better than rosiglitazone and pioglitazone.
  • luciferase Release of luciferase is correlated to transcription of genes. Binding of a ligand to a nuclear receptor such as PPAR ⁇ induces transcription of the respective gene thereby releasing luciferase. This technique therefore provides a measure of ligand affinity to the receptor as well as activation of the responsible gene.
  • Transient transfection of COS-1 cells was performed in 6-well plates as described by Graham and van der Eb (Graham).
  • each well received 5 ⁇ g reporter construct, 2.5 ⁇ g pSV- ⁇ -galactosidase as an internal control, 0.4 ⁇ g pSG5-PPAR ⁇ 2.
  • the cells were harvested after 72 h, and the luciferase activity was measured according to the protocol (Promega). The luciferase activity was normalised against ⁇ -galactosidase activity.
  • the adipocytes were transfected at D11 of differentiation using 16 ⁇ L LipofectaminPlus reagent, 4 ⁇ l Lipofectamine (Life Technologies Inc.), 0.2 ⁇ g pSG5-PPAR ⁇ , and 100 ng pTK Renilla luciferase as control of transfection afficiency.
  • 16 ⁇ L LipofectaminPlus reagent 4 ⁇ l Lipofectamine (Life Technologies Inc.)
  • 0.2 ⁇ g pSG5-PPAR ⁇ 0.2 ⁇ g pSG5-PPAR ⁇
  • 100 ng pTK Renilla luciferase as control of transfection afficiency.
  • Three hours after transfection cells were cultured in serum containing medium and incubated for 48 hours in the same medium containing appropriate agents.
  • the luciferase activities were measured as recommended by the manufacturer (Dual Luciferase assay, Promega). All transfections were performed in triplicate.
  • Fatty acids (BRL or DHA) and PRB-1 (stock solutions) were solubilized to 0.1 M final concentration in DMSO. Then, Fatty solubilized to 10 mM in DMSO and stored in 1.5 ml tubes (homopolymer, plastic tubes) flushed with argon and stored at ⁇ 20° C. 10 ⁇ M of PRB-1 or fatty acids and DMSO (control) was added to the media 5 h after transfection. Transfected cells were maintained for 24 h before lysis by reporter lysis buffer. Binding of PRB-1 or fatty acids to the LBD of PPAR activates GAL4 binding to UAS, which in turn stimulates the tk promoter to drive luciferase expression. Luciferase activity was measured using a luminometer (TD-20/20 luminometer; Turner Designs, Sunnycvale, Calif.) and normalized against protein content.
  • TD-20/20 luminometer Turner Designs, Sunnycvale, Calif.
  • FIG. 3 depicts the release of luciferase from transfected cells treated with PRB-1. The results indicate that PRB-1 has a high release of luciferase.
  • the PRB-compound were stored in a refrigerator in original containers.
  • the containers were opened just before preparation of the experimental diets. Diets were kept in plastic bags flushed by nitrogen and stored at ⁇ 70° C. in small aliquots sufficient for feeding animals for one week. Fresh ratios were given in 2-day intervals or daily.
  • the study was based on 4 individual experiments. In each of the experiments, PRB-1 (or DHA, respectively) admixed to cHF diet in three different concentrations (0.15, 0.5, and 1.5% of the fat content) were tested. In each experiment, a subgroup of plain cHF diet-fed mice was included and served as a control. Mice were caged in groups of 4 and fed standard chow diet until 3 mo of age, when animals (n 8-13) were randomly assigned to the different test diets. After 2 mo on this new diet (at 5 mo of age), animals were fasted overnight and in the morning, intraperitoneal Glucose Tolerance Test (GTT) was performed. Animals were sacrificed after 4 months on the experimental diets, at 7 mo of age, and the end-point analysis were performed.
  • GTT intraperitoneal Glucose Tolerance Test
  • the parameters in the study were: Body weight gain (grams), area under the curve (AUC) from intraperitoneal glucose tolerance tests (mMol ⁇ 180 min), plasma insulin (ng/ml), serum triglycerides (TAGs, mmol/l), and non-esterified fatty acids (NEFA, mmol/l).
  • Table 2 shows the effects in animals given 1.5% concentration of the PRB test compounds compared to animals given standard chow (STD), composite high fat diet (cHF) or 97% DHA. A pronounced reduction in AUC from glucose tolerance tests was seen in the animals given PRB-1. Plasma insulin was low in the PRB-1 treated animals.
  • Table 3 shows the effects in animals given a lower concentration, 0.5%, of the PRB test compounds compared to animals given standard chow (STD), composite high fat diet (cHF) or 97% DHA.
  • Table 4 shows the results from the lowest PRB concentration given, 0.15%. Here, the differences were small. Weight gain was somewhat lower in the PRB-1 group. Plasma insulin was lower in PRB-1.
  • Tissue samples from animals in the experiments with DHA derivatives was histologically analysed. After paraffination, tissue samples from liver, adipose tissue, skeletal muscle, pancreas, and kidney were stained with eosin-hematoxylin.
  • Liver steatosis is a common finding in these patients which is usually related to an overload of fatty acids and triglycerides, biological markers present in the development of insulin resistance and the metabolic syndrome. DHA-derivatives reduce liver steatosis.
  • alpha-methyl-DHA activatesu nuclear receptors, especially PPAR ⁇ and PPAR ⁇ , thereby offering a series of therapeutic effects in the treatment of insulin resistance, the metabolic syndrome, type 2 diabetes, cardiovascular disease and other atherosclerotic related diseases.
  • the DHA-derivative according to the present invention showed affinities to both receptors, not least PPAR ⁇ which probably is the most important nuclear receptor engaged in the activation of genes responsible for metabolisation of blood glucose.
  • Alpha-methyl DHA has two stereoisomers, the r and the s form.
  • both stereoisomers possessed about the same affinity to PPAR ⁇ and PPAR ⁇ meaning that neither the r or the s form should have advantages compared to the racemic form. In fact the racemic form may have advantages over each one of the stereoisomers.
  • the compound according to the invention demonstrated good affinity measured as release of luciferase.
  • the DHA derivative according to the invention has been tested in the C57BL/6 mouse model developing insulin resistance and the metabolic syndrome when fed high fat diet. The derivative demonstrated significant biological effects.
  • alfa-methyl DHA (PRB-1) seems to be more potent than DHA.
  • alfa-methyl DHA (PRB-1) seems to work by simultaneous liganding to the nuclear receptors PPAR ⁇ and PPAR ⁇ the compound would not only possess therapeutic interesting effects on glucose and lipid metabolism, not least in patients with insulin resistance, metabolic syndrome and type 2 diabetes but also have weight reduction as well as a general anti-inflammatory effect. Directly or through positive intervention on risk factors alfa-methyl DHA (PRB-1) would have a preventive effect on the development of cardiovascular disease such as myocardial infarction and cerebral stroke as well as having a preventive effect on cardio-vascular mortality.
  • PPAR ⁇ ligands Pharmaceuticals acting as PPAR ⁇ ligands are already on the market but even if these compounds are having positive effects on glucose metabolism, they are hampered by adverse effects such as elevated triglycerides, weight increase and oedema.
  • the alfa-substituted DHA derivative presented in this application has a combined PPAR ⁇ and PPAR ⁇ effect which is probably both relevant and advantageous for patients with insulin resistance, metabolic syndrome and type 2 diabetes. Furthermore, these combinative actions should have important effects also on blood lipids, inflammatory events, atherosclerosis, and thereby cardiovascular disease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Emergency Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Endocrinology (AREA)
  • Vascular Medicine (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US11/913,455 2005-05-04 2006-05-04 Fatty acid analogues, i.e. including dha derivatives for uses as a medicament Abandoned US20090203778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/913,455 US20090203778A1 (en) 2005-05-04 2006-05-04 Fatty acid analogues, i.e. including dha derivatives for uses as a medicament

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US67735005P 2005-05-04 2005-05-04
US67735105P 2005-05-04 2005-05-04
SE0501044-2 2005-05-04
SE0501044 2005-05-04
SE0501045-9 2005-05-04
SE0501045 2005-05-04
PCT/IB2006/001164 WO2006117668A1 (en) 2005-05-04 2006-05-04 Fatty acid analogues, i.e. dha derivatives for uses as a medicament
US11/913,455 US20090203778A1 (en) 2005-05-04 2006-05-04 Fatty acid analogues, i.e. including dha derivatives for uses as a medicament

Publications (1)

Publication Number Publication Date
US20090203778A1 true US20090203778A1 (en) 2009-08-13

Family

ID=43955576

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/913,455 Abandoned US20090203778A1 (en) 2005-05-04 2006-05-04 Fatty acid analogues, i.e. including dha derivatives for uses as a medicament
US11/417,252 Expired - Fee Related US7550613B2 (en) 2005-05-04 2006-05-04 Compounds
US12/111,589 Expired - Fee Related US8034842B2 (en) 2005-05-04 2008-04-29 Compounds
US13/225,855 Expired - Fee Related US8618165B2 (en) 2005-05-04 2011-09-06 Compounds

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/417,252 Expired - Fee Related US7550613B2 (en) 2005-05-04 2006-05-04 Compounds
US12/111,589 Expired - Fee Related US8034842B2 (en) 2005-05-04 2008-04-29 Compounds
US13/225,855 Expired - Fee Related US8618165B2 (en) 2005-05-04 2011-09-06 Compounds

Country Status (9)

Country Link
US (4) US20090203778A1 (ru)
EP (2) EP1888727B1 (ru)
JP (2) JP2008540394A (ru)
CN (2) CN103058867B (ru)
AU (1) AU2006242914B2 (ru)
BR (1) BRPI0611159A2 (ru)
CA (1) CA2607247C (ru)
IN (1) IN2007CH04959A (ru)
WO (2) WO2006117668A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149766A2 (en) * 2010-05-23 2011-12-01 Jingxuan Kang Lipid-tailored pharmaceutical agents
US8906964B2 (en) 2012-06-17 2014-12-09 Matinas Biopharma, Inc. Methods of administering compositions comprising docosapentaenoic acid

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252742B2 (en) * 2004-12-30 2012-08-28 Hill's Pet Nutrition, Inc. Methods for enhancing the quality of life of a senior animal
CN103058867B (zh) 2005-05-04 2015-03-25 普罗诺瓦生物医药挪威公司 新的dha衍生物及其作为药物的用途
RU2444356C2 (ru) * 2005-07-08 2012-03-10 Мартек Байосайенсиз Корпорейшн Полиненасыщенные жирные кислоты для лечения деменции и состояний, связанных с преддеменцией
WO2008063772A2 (en) * 2006-10-13 2008-05-29 The Brigham And Women's Hospital Inc. Resolvin d series and protectin d1 mitigate acute kidney injury
KR101544584B1 (ko) * 2006-11-01 2015-08-13 프로노바 바이오파마 너지 에이에스 오메가-3 지질 화합물
CN101535238A (zh) 2006-11-01 2009-09-16 普罗诺瓦生物医药挪威公司 作为过氧化物酶体增生物激活受体(PPAR)的活化剂或调节剂的α-取代的ω-3脂质
US8816110B2 (en) 2007-02-15 2014-08-26 Scf Pharma Inc. Polyunsaturated fatty acid monoglycerides, derivatives, and uses thereof
CA2672513C (en) 2007-02-15 2010-05-25 Centre De Recherche Sur Les Biotechnologies Marines Polyunsaturated fatty acid monoglycerides, derivatives, and uses thereof
EP2136844B1 (en) 2007-03-20 2018-10-31 SCF Pharma Inc. Compositions comprising polyunsaturated fatty acid monoglycerides or derivatives thereof and uses thereof
EP2217558A1 (en) * 2007-10-31 2010-08-18 Pronova Biopharma Norge AS New dha derivatives and their use as medicaments
WO2009061208A1 (en) 2007-11-09 2009-05-14 Pronova Biopharma Norge As Lipid compounds for use in cosmetic products, as food supplement or as a medicament
WO2009134147A1 (en) * 2008-05-02 2009-11-05 Pronova Biopharma Norge As Lipid compositions containing derivatives of epa and dha an their use thereof
WO2009149496A1 (en) * 2008-06-10 2009-12-17 Central Northern Adelaide Health Service Treatment of diabetes and complications thereof and related disorders
EP2147910A1 (en) * 2008-07-15 2010-01-27 Pronova BioPharma Norge AS Novel lipid compounds
US8236786B2 (en) 2008-08-07 2012-08-07 Pulmagen Therapeutics (Inflammation) Limited Respiratory disease treatment
ES2345241B1 (es) * 2009-03-16 2011-09-08 Lipopharma Therapeutics Uso de 2-hidroxiderivados de acidos grasos poliinsaturados como medicamentos.
MY198422A (en) 2009-04-29 2023-08-29 Amarin Pharmaceuticals Ie Ltd Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same
EP2248798A1 (en) 2009-05-08 2010-11-10 Pronova BioPharma Norge AS Novel lipid compounds
TWI558395B (zh) 2009-05-08 2016-11-21 普諾華生物製藥諾治股份有限公司 新穎的脂質化合物
MY172372A (en) 2009-06-15 2019-11-21 Amarin Pharmaceuticals Ie Ltd Compositions and methods for lowering triglycerides
EA028535B1 (ru) 2010-11-05 2017-11-30 Пронова Биофарма Норге Ас Способы лечения с применением липидных соединений
US20140127289A1 (en) 2010-11-29 2014-05-08 Armarin Pharmaceuticals Ireland Limited Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
US11712429B2 (en) 2010-11-29 2023-08-01 Amarin Pharmaceuticals Ireland Limited Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
US8715648B2 (en) 2011-02-16 2014-05-06 Pivotal Therapeutics Inc. Method for treating obesity with anti-obesity formulations and omega 3 fatty acids for the reduction of body weight in cardiovascular disease patients (CVD) and diabetics
CA2827577A1 (en) * 2011-02-16 2012-08-23 Pivotal Therapeutics, Inc. A formulations comprising omega 3 fatty acids and an anti obesity agent for the reduction of body weight in cardiovascular disease patients (cvd) and diabetics
US8951514B2 (en) 2011-02-16 2015-02-10 Pivotal Therapeutics Inc. Statin and omega 3 fatty acids for reduction of apolipoprotein-B levels
US8952000B2 (en) 2011-02-16 2015-02-10 Pivotal Therapeutics Inc. Cholesterol absorption inhibitor and omega 3 fatty acids for the reduction of cholesterol and for the prevention or reduction of cardiovascular, cardiac and vascular events
US9119826B2 (en) 2011-02-16 2015-09-01 Pivotal Therapeutics, Inc. Omega 3 fatty acid for use as a prescription medical food and omega 3 fatty acid diagniostic assay for the dietary management of cardiovascular patients with cardiovascular disease (CVD) who are deficient in blood EPA and DHA levels
ES2685703T3 (es) 2012-01-06 2018-10-10 Omthera Pharmaceuticals Inc. Composiciones enriquecidas en DPA de ácidos grasos omega-3 poliinsaturados en forma de ácido libre
US20150133551A1 (en) 2012-05-03 2015-05-14 Beth Israel Deaconess Medical Center, Inc. Lipids That Increase Insulin Sensitivity And Methods Of Using The Same
WO2013169797A1 (en) 2012-05-07 2013-11-14 Omthera Pharmaceuticals, Inc. Compositions of statins and omega-3 fatty acids
US9629820B2 (en) 2012-12-24 2017-04-25 Qualitas Health, Ltd. Eicosapentaenoic acid (EPA) formulations
US10123986B2 (en) 2012-12-24 2018-11-13 Qualitas Health, Ltd. Eicosapentaenoic acid (EPA) formulations
ES2875975T3 (es) * 2012-12-24 2021-11-11 Qualitas Health Inc Formulaciones de ácido eicosapentaenoico (EPA)
EP3578170A1 (en) 2013-02-28 2019-12-11 Basf As A composition comprising a lipid compound, a triglyceride, and a surfactant, and methods of using the same
EP2972399B1 (en) * 2013-03-15 2020-09-02 Beth Israel Deaconess Medical Center, Inc. Lipids that increase insulin sensitivity and methods of using the same
US20140271841A1 (en) 2013-03-15 2014-09-18 Amarin Pharmaceuticals Ireland Limited Pharmaceutical composition comprising eicosapentaenoic acid and derivatives thereof and a statin
JP5870952B2 (ja) * 2013-03-25 2016-03-01 富士ゼロックス株式会社 データ処理装置およびプログラム
US9447020B2 (en) 2013-10-31 2016-09-20 Scf Pharma Inc. Polyunsaturated fatty acid monoglycerides, derivatives, and uses thereof
CA2947741A1 (en) 2014-05-05 2015-11-12 Thetis Pharmaceuticals Llc Compositions and methods relating to ionic salts of peptides
US10172818B2 (en) 2014-06-16 2019-01-08 Amarin Pharmaceuticals Ireland Limited Methods of reducing or preventing oxidation of small dense LDL or membrane polyunsaturated fatty acids
US9242008B2 (en) 2014-06-18 2016-01-26 Thetis Pharmaceuticals Llc Mineral amino-acid complexes of fatty acids
ES2706493T3 (es) 2014-06-18 2019-03-29 Thetis Pharmaceuticals Llc Complejos de aminoácidos minerales de agentes activos
ES2980790T3 (es) 2015-04-28 2024-10-03 Basf As Acidos grasos estructuralmente mejorados que contienen azufre para su uso en el tratamiento de la esteatohepatitis no alcohólica
GB201521085D0 (en) * 2015-11-30 2016-01-13 Biozep As Use
JP6906047B2 (ja) 2016-06-03 2021-07-21 テティス・ファーマシューティカルズ・エルエルシー 特異的炎症収束性メディエーターの塩に関連する組成物及び方法
WO2017214527A1 (en) 2016-06-10 2017-12-14 Beth Israel Deaconess Medical Center, Inc. Fatty acid esters of hydroxy fatty acids (fahfas) for use in the treatment of type 1 diabetes
WO2019010414A1 (en) 2017-07-07 2019-01-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services FATTY ACID DERIVATIVES AND USE THEREOF
US10792266B2 (en) 2017-10-23 2020-10-06 Epitracker, Inc. Fatty acid analogs and their use in the treatment of conditions related to metabolic syndrome
CN111712240A (zh) 2017-12-06 2020-09-25 巴斯夫股份公司 用于治疗非酒精性脂肪性肝炎的脂肪酸衍生物
AU2019217673A1 (en) 2018-02-07 2020-09-24 Scf Pharma Inc. Polyunsaturated fatty acid monoglycerides, compositions, methods and uses thereof
AU2019264159A1 (en) 2018-05-03 2020-12-24 Scf Pharma Inc. Polyunsaturated fatty acid monoglycerides, compositions, methods and uses thereof
WO2019226572A1 (en) 2018-05-23 2019-11-28 Epitracker, Inc. Compositions and methods for diagnosis and treatment of conditions related to the quality of aging and longevity
AU2019349563B2 (en) 2018-09-24 2023-06-08 Amarin Pharmaceuticals Ireland Limited Methods of reducing the risk of cardiovascular events in a subject
EP3877336A1 (en) * 2018-11-05 2021-09-15 Pacific Industrial Development Corporation Method of making aei-type zeolites having a high silica to alumina molar ratio (sar)
CN111233694B (zh) * 2020-03-05 2021-05-11 浙江大学 具有降血脂作用的线性聚酮类化合物及其制备方法和应用
AU2022263358A1 (en) 2021-04-21 2023-11-30 Amarin Pharmaceuticals Ireland Limited Methods of reducing the risk of heart failure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656667A (en) * 1988-08-11 1997-08-12 Norsk Hydro As Fatty acid composition
US20040162348A1 (en) * 1999-01-27 2004-08-19 Laxdale Limited Highly purified ethyl EPA and other EPA derivatives for psychiatric and neurological disorders

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836628A (en) 1955-10-17 1958-05-27 Monsanto Chemicals Unsaturated branched-chain alcohols and methods of preparing same
US4132719A (en) 1978-04-20 1979-01-02 Mcneilab Inc. Dibromoalkylglycidic acid derivatives
US4264517A (en) 1978-12-11 1981-04-28 G.D. Searle & Co. Alkylphenyl 5Z,8Z,11Z,14Z,17Z-eicosapentaenoates
JPS56108721A (en) 1980-01-30 1981-08-28 Maruzen Sekiyu Kagaku Kk Liquid branched-chain higher aliphatic 1-ol and its preparation
JPS5810079B2 (ja) 1981-03-09 1983-02-24 工業技術院長 微生物による混合イソプレノイド炭化水素のアルコ−ル誘導体の製造方法
JPS57149400A (en) * 1981-03-12 1982-09-14 Kureha Chemical Ind Co Ltd Manufacture of high purity long chain highly unsaturated fatty acid ester
JPS59204175A (ja) * 1983-04-28 1984-11-19 Terumo Corp 5―フルオロウラシル誘導体を有効成分とする血小板凝集抑制剤
JPS61103826A (ja) 1984-10-25 1986-05-22 Kao Corp 抗炎症剤
US4647685A (en) 1985-04-25 1987-03-03 Eli Lilly And Company 2-alkoxy-1-((2-trialkylaminoethoxy)phosphinyloxy)-alkenes and alkynes, hydroxy inner salts
JPS6388159A (ja) * 1986-09-30 1988-04-19 Nippon Oil & Fats Co Ltd ドコサヘキサエン酸エステルの製造法
JPS6483031A (en) 1987-09-22 1989-03-28 Rikagaku Kenkyusho Synthesis of fluorohydrin
JPH05974A (ja) * 1991-06-21 1993-01-08 Sagami Chem Res Center ハロゲン化不飽和アルキル化合物及びその前駆体
US5422371A (en) 1992-05-27 1995-06-06 Arch Development Corp. Methods and compositions for inhibiting 5α-reductase activity
JPH06240289A (ja) 1992-06-09 1994-08-30 Bizen Kasei Kk ドコサヘキサエン酸エチルエステルを含有する脂肪酸エチルエステル混合物の製造方法
CN1082909A (zh) * 1993-01-03 1994-03-02 潘玉珍 精制二十二碳六烯酸乙酯复合溶栓、抗痴呆药剂
JPH06293789A (ja) * 1993-04-08 1994-10-21 Teijin Ltd 多価不飽和脂肪酸類配糖体およびその製造方法
JPH0753488A (ja) * 1993-08-10 1995-02-28 Aiwa:Kk ドコサヘキサエン酸誘導体
US5795909A (en) 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
JPH10195023A (ja) 1997-01-13 1998-07-28 Shiseido Co Ltd 新規高度不飽和脂肪酸エチルエステル
GB2323594A (en) 1997-03-25 1998-09-30 Victor Martin 2-amino-alkanoic acid derivatives, 2-amino alcohols and diamines
US6153653A (en) * 1997-11-26 2000-11-28 Protarga, Inc. Choline compositions and uses thereof
US6197764B1 (en) * 1997-11-26 2001-03-06 Protarga, Inc. Clozapine compositions and uses thereof
WO1999058120A1 (en) 1998-05-08 1999-11-18 Rolf Berge USE OF NON-β-OXIDIZABLE FATTY ACID ANALOGUES FOR TREATMENT OF SYNDROME-X CONDITIONS
JP4530311B2 (ja) 2000-07-13 2010-08-25 日本水産株式会社 リパーゼを用いたグリセライドの製造方法
JP2002180082A (ja) 2000-12-11 2002-06-26 Maruha Corp 摂取物
IT1320180B1 (it) * 2000-12-29 2003-11-26 Hunza Di Marazzita Maria Carme Preparazioni nutrizionali e terapeutiche dotate di attivita'antiossidante ed in grado di controllare gli eccessi ponderali e
IL142535A0 (en) 2001-04-11 2002-03-10 Yeda Res & Dev Pharmaceutical compositions for the treatment of inflammation
ITMI20012384A1 (it) * 2001-11-12 2003-05-12 Quatex Nv Uso di acidi grassi poliinsaturi per la prevenzione primaria di eventi cardiovascolari maggiori
JP3934968B2 (ja) 2002-03-25 2007-06-20 富士フイルム株式会社 色変換定義作成方法、色変換定義作成装置、および色変換定義作成プログラム
EP1501493B1 (en) 2002-05-03 2009-10-07 Pronova BioPharma Norge AS Use of epa and dha in secondary prevention of strokes
TW200412942A (en) 2002-08-06 2004-08-01 Abbott Lab Appetite control method
KR100951758B1 (ko) 2002-08-07 2010-04-08 가오 가부시키가이샤 유지 조성물
NO319194B1 (no) * 2002-11-14 2005-06-27 Pronova Biocare As Lipase-katalysert forestringsfremgangsmate av marine oljer
JP2004182674A (ja) * 2002-12-05 2004-07-02 Kureha Chem Ind Co Ltd バニリル脂肪酸アミドを含む抗腫瘍医薬組成物
EP1596853A1 (en) 2003-02-12 2005-11-23 Galderma Research & Development, S.N.C. Compounds which are modulators of the ppar-type receptors and their use in cosmetic or pharmaceutical compositions
WO2004078166A2 (en) * 2003-03-05 2004-09-16 Solvay Pharmaceuticals Gmbh Use of omega-3-fatty acids in the treatment of diabetic patients
KR101199599B1 (ko) 2003-03-27 2012-11-12 산토리 홀딩스 가부시키가이샤 지질 개선제 및 지질 개선제를 함유하는 조성물
EP1466597A1 (en) 2003-04-07 2004-10-13 Clinigenetics Use of dha esters to control or prevent cardiovascular diseases
SE0303513D0 (sv) 2003-12-19 2003-12-19 Pronova Biocare As Use of a fatty acid composition comprising at least one of epa and dha or any combinations thereof
US20060135610A1 (en) 2004-12-22 2006-06-22 Bortz Jonathan D Cardiovascular compositions
CN103058867B (zh) * 2005-05-04 2015-03-25 普罗诺瓦生物医药挪威公司 新的dha衍生物及其作为药物的用途
GB0605900D0 (en) 2006-03-23 2006-05-03 Lipigen As Modulators of nuclear receptors
ES2391305T3 (es) 2006-04-12 2012-11-23 Unilever N.V. Composición oral que comprende un ácido graso poliinsaturado y ácido salicílico para obtener un efecto antiinflamatorio en la piel
CN101535238A (zh) 2006-11-01 2009-09-16 普罗诺瓦生物医药挪威公司 作为过氧化物酶体增生物激活受体(PPAR)的活化剂或调节剂的α-取代的ω-3脂质
US20110166228A1 (en) 2006-11-01 2011-07-07 Anne Kristin Holmeide Composition
MX2011000273A (es) 2008-07-08 2011-05-23 Catabasis Pharmaceuticals Inc Salicilatos acetilados con acidos grasos y sus usos.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656667A (en) * 1988-08-11 1997-08-12 Norsk Hydro As Fatty acid composition
US20040162348A1 (en) * 1999-01-27 2004-08-19 Laxdale Limited Highly purified ethyl EPA and other EPA derivatives for psychiatric and neurological disorders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149766A2 (en) * 2010-05-23 2011-12-01 Jingxuan Kang Lipid-tailored pharmaceutical agents
WO2011149766A3 (en) * 2010-05-23 2012-04-19 Jingxuan Kang Lipid-tailored pharmaceutical agents
US8906964B2 (en) 2012-06-17 2014-12-09 Matinas Biopharma, Inc. Methods of administering compositions comprising docosapentaenoic acid
US10058521B2 (en) 2012-06-17 2018-08-28 Matinas Biopharma Inc. Omega-3 pentaenoic acid compositions and methods of use

Also Published As

Publication number Publication date
US8034842B2 (en) 2011-10-11
CN103058867A (zh) 2013-04-24
AU2006242914B2 (en) 2012-02-02
JP2008540394A (ja) 2008-11-20
JP5337479B2 (ja) 2013-11-06
JP2008540393A (ja) 2008-11-20
EP1888727B1 (en) 2015-04-15
CA2607247C (en) 2015-10-06
WO2006117664A1 (en) 2006-11-09
US20120065260A1 (en) 2012-03-15
CN102050720B (zh) 2013-03-13
BRPI0611159A2 (pt) 2012-07-31
US20080300306A1 (en) 2008-12-04
US7550613B2 (en) 2009-06-23
EP1888728A4 (en) 2010-07-14
CA2607247A1 (en) 2006-11-09
EP1888727A4 (en) 2010-07-14
EP1888727A1 (en) 2008-02-20
EP1888728A1 (en) 2008-02-20
WO2006117668A1 (en) 2006-11-09
AU2006242914A1 (en) 2006-11-09
CN103058867B (zh) 2015-03-25
CN102050720A (zh) 2011-05-11
US20070088170A1 (en) 2007-04-19
US8618165B2 (en) 2013-12-31
IN2007CH04959A (ru) 2008-01-11

Similar Documents

Publication Publication Date Title
US20090203778A1 (en) Fatty acid analogues, i.e. including dha derivatives for uses as a medicament
EP2427415B1 (en) Polyunsaturated fatty acids for the treatment of diseases related to cardiovascular, metabolic and inflammatory disease areas
JP6506206B2 (ja) Pufa誘導体による酸化ストレス障害の緩和
JP6106157B2 (ja) 神経変性障害および筋疾患に関与するpufa
US20100105773A1 (en) Use of resolvins and docosatrienes and analogues thereof for the treatment of angiogenesis and ocular neovascularization
JP2017071633A (ja) 損なわれたエネルギー処理障害およびミトコンドリア欠損症
US20100267828A1 (en) dha derivatives and their use as medicaments
AU2024219827A1 (en) Structurally enhanced fatty acids containing oxygen for treatment of non-alcoholic steatohepatitis
JP5746730B2 (ja) 新規化合物
KR20180010181A (ko) Apo c3 의 저하를 위한 티아 옥소 화합물의 용도
RU2441061C2 (ru) Производные докозагексаеновой кислоты и их применение в качестве лекарственных средств
JP2019501890A (ja) 脂質化合物及び脂質組成物並びにそれらの眼科使用
WO2003004484A1 (fr) Nouveaux composes aliphatiques, procede de synthese et leur procede d'utilisation
WO2024145502A1 (en) Synthetic triterpenoids and compositions thereof in weight management, skeletal muscle function, and appetite suppression
US6908946B2 (en) Conjugated nonadecadienoic acid compositions
RU2507193C2 (ru) Альфа-замещенные омега-3 липиды, которые являются активаторами или модуляторами рецептора, активируемого пролифераторами пероксисом (ppar)

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRONOVA BIOPHARMA NORGE AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRYHN, MORTEN;HOLMEIDE, ANNE KRISTIN;KOPECKY, JAN;REEL/FRAME:021389/0172;SIGNING DATES FROM 20080704 TO 20080802

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE