US20090143371A1 - Isoxazole-pyridine derivatives - Google Patents

Isoxazole-pyridine derivatives Download PDF

Info

Publication number
US20090143371A1
US20090143371A1 US12/325,293 US32529308A US2009143371A1 US 20090143371 A1 US20090143371 A1 US 20090143371A1 US 32529308 A US32529308 A US 32529308A US 2009143371 A1 US2009143371 A1 US 2009143371A1
Authority
US
United States
Prior art keywords
methyl
isoxazol
ylmethoxy
phenyl
nicotinamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/325,293
Other languages
English (en)
Inventor
Bernd Buettelmann
Roland Jakob-Roetne
Henner Knust
Matthew C. Lucas
Andrew Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Palo Alto LLC
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Assigned to F. HOFFMANN-LA ROCHE AG reassignment F. HOFFMANN-LA ROCHE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUETTELMANN, BERND, JAKOB-ROETNE, ROLAND, KNUST, HENNER, THOMAS, ANDREW, LUCAS, MATTHEW C.
Assigned to HOFFMANN-LA ROCHE, INC. reassignment HOFFMANN-LA ROCHE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMANN-LA ROCHE AG
Publication of US20090143371A1 publication Critical patent/US20090143371A1/en
Priority to US13/370,444 priority Critical patent/US8518974B2/en
Assigned to ROCHE PALO ALTO LLC reassignment ROCHE PALO ALTO LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMANN-LA ROCHE AG
Priority to US13/916,191 priority patent/US8877782B2/en
Priority to US13/916,317 priority patent/US9073908B2/en
Priority to US13/916,068 priority patent/US8846719B2/en
Priority to US13/916,264 priority patent/US8877783B2/en
Assigned to ROCHE PALO ALTO LLC reassignment ROCHE PALO ALTO LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOFFMANN-LA ROCHE INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems

Definitions

  • GABA gamma-aminobutyric acid
  • GABA A receptors which are members of the ligand-gated ion channel superfamily
  • GABA B receptors which are members of the G-protein linked receptor family.
  • the GABA A receptor complex which is a membrane-bound heteropentameric protein polymer is composed principally of ⁇ , ⁇ and ⁇ subunits.
  • ⁇ 1 ⁇ 2 ⁇ 2 mimics many effects of the classical type-I BzR subtypes, whereas ⁇ 2 ⁇ 2 ⁇ 2, ⁇ 3 ⁇ 2 ⁇ 2 and ⁇ 5 ⁇ 2 ⁇ 2 ion channels are termed type-II BzR.
  • ⁇ -CCM benzodiazepine receptor inverse agonist
  • ⁇ -CCM and other conventional benzodiazepine receptor inverse agonists are proconvulsant or convulsant which prevents their use as cognition enhancing agents in humans.
  • GABA A ⁇ 5 receptor partial or full inverse agonist which is relatively free of activity at GABA A ⁇ 1 and/or ⁇ 2 and/or ⁇ 3 receptor binding sites can be used to provide a medicament which is useful for enhancing cognition with reduced or without proconvulsant activity.
  • GABA A ⁇ 5 inverse agonists which are not free of activity at GABA A ⁇ 1 and/or ⁇ 2 and/or ⁇ 3 receptor binding sites but which are functionally selective for ⁇ 5 containing subunits.
  • inverse agonists which are selective for GABA A ⁇ 5 subunits and are relatively free of activity at GABA A ⁇ 1, ⁇ 2 and ⁇ 3 receptor binding sites are preferred.
  • the present invention provides isoxazole-pyridine derivatives having affinity and selectivity for GABA A ⁇ 5 receptor binding site, their manufacture, pharmaceutical compositions containing them and their use as cognitive enhancer or for the treatment of cognitive disorders like Alzheimer's disease.
  • the present invention provides isoxazole-pyridine derivatives of formula I
  • the most preferred indication in accordance with the present invention is Alzheimer's disease.
  • alkyl denotes a saturated straight- or branched-chain hydrocarbon group containing from 1 to 7 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl and the like.
  • Preferred alkyl groups are groups with 1 to 4 carbon atoms.
  • halo or “halogen” denotes chloro, iodo, fluoro and bromo.
  • halo-C 1-7 -alkyl denotes a C 1-7 -alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a halogen atom, preferably fluoro or chloro, most preferably fluoro.
  • halo-C 1-7 -alkyl examples include but are not limited to methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl or n-hexyl substituted by one or more Cl, F, Br or I atom(s), in particular one, two or three fluoro or chloro, as well as those groups specifically illustrated by the examples herein below.
  • the preferred halo-C 1-7 -alkyl groups are difluoro- or trifluoro-methyl or -ethyl.
  • hydroxy-C 1-7 -alkyl denotes a C 1-7 -alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a hydroxy group.
  • hydroxy-C 1-7 -alkyl examples include but are not limited to methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl or n-hexyl substituted by one or more hydroxy group(s), in particular with one, two or three hydroxy groups, preferably with one hydroxy group, as well as those groups specifically illustrated by the examples herein below.
  • cyano-C 1-7 -alkyl denotes a C 1-7 -alkyl group as defined above wherein at least one of the hydrogen atoms of the alkyl group is replaced by a cyano group.
  • hydroxy-C 1-7 -alkyl examples include but are not limited to methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl or n-hexyl substituted by one or more cyano group(s), preferably by one, two or three, and more preferably by one cyano group, as well as those groups specifically illustrated by the examples herein below.
  • alkoxy denotes a group —O-R wherein R is alkyl as defined above.
  • aryl refers to a monovalent aromatic carbocyclic ring system, preferably to phenyl or naphthyl, and more preferably to phenyl.
  • Aryl is optionally substituted as described herein. If not further indicated, phenyl may optionally be substituted with one or more, in particular with 1, 2, or 3, and more preferably with 1 or 2 substituents selected from halo, CN, NO 2 , hydroxy, C 1-7 alkyl, C 1-7 alkoxy, C 1-7 haloalkyl, C 1-7 hydroxyalkyl, C 1-7 cyanoalkyl, C 1-7 and C 3-7 cycloalkyl.
  • aromatic means aromatic according to Hückel's rule.
  • a cyclic molecule follows
  • halo-C 1-7 -alkoxy examples include but are not limited to methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl or n-hexyl substituted by one or more Cl, F, Br or I atom(s), in particular one, two or three fluoro or chloro atoms, as well as those groups specifically illustrated by the examples herein below.
  • the preferred halo-C 1-7 -alkoxy groups are difluoro- or trifluoro-methoxy or -ethoxy substituted as described above, preferably —OCF 3 .
  • cycloalkyl refers to a monovalent saturated cyclic hydrocarbon radical of 3 to 7 ring carbon atoms, preferably 3 to 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • heterocycloalkyl refers to a monovalent 3 to 7 membered saturated monocyclic ring containing one, two or three ring heteroatoms selected from N, O and S. One or two ring heteroatoms are preferred. Preferred are 4 to 6 membered heterocycloalkyl or 5 to 6 membered heterocycloalkyl, each containing one or two ring heteroatoms selected from N, O and S. Examples for heterocycloalkyl moieties are tetrahydrofuranyl, tetrahydropyranyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, or piperazinyl. “Heterocycloalkyl” is hence a subgroup of “heterocyclyl” as defined below. Heterocycloalkyl is optionally substituted as described herein.
  • heteroaryl refers to a monovalent aromatic 5- or 6-membered monocyclic ring containing one, two, or three ring heteroatoms selected from N, O, and S, the remaining ring atoms being C.
  • the 5- or 6-membered heteroaryl ring contains one or two ring heteroatoms. 6-membered heteroaryl are preferred.
  • heteroaryl moieties include but are not limited to furanyl, thiophenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, 1,2,4-oxadiazolyl, or 1,3,4-oxadiazolyl.
  • Preferred heteroaryl groups are pyridinyl, pyrazolyl, isoxazolyl, thiazolyl, or 1,2,4-oxadiazolyl.
  • heterocyclyl or “heterocyclyl moiety” refers to a monovalent saturated or partially saturated 3- to 7-membered monocyclic or 9- to 10-membered bicyclic ring system wherein one, two, three or four ring carbon atoms have been replaced by N, O or S, and with the attachment point on the saturated or partially unsaturated ring of said ring system.
  • Such bicyclic heterocyclyl moieties hence include aromatic rings annelated to saturated rings.
  • heterocyclyl moiety further includes cases where two residues R′ and R′′ together with the nitrogen to which they are bound form such a heterocyclyl moiety.
  • heterocyclyl examples include but are not limited to tetrahydropyridinyl, isochromanyl, chromanyl, oxethanyl, isoxazolidinyl, dihydropyridazinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, piperidinyl, piperazinyl, pyrrolidinyl, as well as morpholinyl, thiomorpholinyl, 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazinyl, 4,5,6,7-tetrahydro-pyrazolo[1,5-a]pyrimidinyl, hexahydrothiopyranyl, or 6-oxa-3-aza-bicyclo[3.1.1]heptanyl.
  • substituted heterocyclyl examples include, but are not limited to oxetan-3-ol, 3-oxoisazolidinyl, 3-oxo-dihydropyridazinyl, 6-methyl-3-oxo-dihydropyridazinyl, 2,2-dimethyl-tetrahydropyranyl, tetrahydrothiopyranyl dioxide, N-methyl-piperidinyl, N-ethyl-piperidinyl, N-isopropyl-piperidinyl, N-benzyl-piperidinyl, piperidin-1-yl-acetic t-butyl ester, piperidin-1-yl-acetic acid ethyl ester, piperidin-1-yl-acetic acid, N-(1-ethylcarbamoylmethyl-piperidinyl), N-(1-cyclopropylcarbamoylmethylpiperidinyl), N- ⁇ 1[(2,2,
  • spirocyclic heterocycle denotes a saturated bicyclic ring system wherein the two rings have one carbon atom in common.
  • the spirocyclic heterocycle may be from 7- to 12-membered, preferably from 7- to 11-membered.
  • 2-oxa-6-aza-spiro[3.3]heptyl may be mentioned.
  • the spirocyclic heterocycle may be optionally substituted as described herein.
  • oxo when referring to substituents on heterocycloalkyl, heterocyclyl or on a heterocycle means that an oxygen atom is attached to the ring. Thereby, the “oxo” may either replace two hydrogen atoms on a carbon atom, or it may simply be attached to sulfur, so that the sulfur exists in oxidized form, i.e. bearing one or two oxygens.
  • one or more means from one substituent to the highest possible number of substitution, i.e. replacement of one hydrogen up to replacement of all hydrogens by substituents. Thereby, one, two or three substituents are preferred.
  • “Pharmaceutically acceptable,” such as pharmaceutically acceptable carrier, excipient, etc., means pharmacologically acceptable and substantially non-toxic to the subject to which the particular compound is administered.
  • pharmaceutically acceptable salt or “pharmaceutically acceptable acid addition salt” embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like.
  • “Therapeutically effective amount” means an amount that is effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated.
  • X is O or NH.
  • R 1 is phenyl, pyridinyl, or pyrimidinyl, each optionally substituted with one, two or three halo.
  • Preferred halo substituents are chloro and fluoro.
  • phenyl is optionally substituted with one, two or three, more preferably with one or two halo substituents selected from chloro and fluoro.
  • the halo substituents are located at the ortho, meta or para-position or at the meta and para position of the phenyl ring in respect to the attachment to the isoxazole.
  • R 2 is methyl or trifluoromethyl.
  • R 3 , R 4 , R 5 , and R 6 are as defined above.
  • R 3 is H, halo, CN or C 1-7 alkyl.
  • R 3 is H, CN or C 1-4 alkyl. More preferably, R 3 is H, CN or methyl.
  • R 6 is H, halo, CN or C 1-7 alkyl.
  • R 6 is H, halo or C 1-4 alkyl, more preferably, R 6 is H, Br or C 1-4 alkyl. Even more ore preferably, R 6 is H, Br or methyl.
  • R 4 and R 5 are each independently as defined above.
  • R 4 and R 5 are each independently as defined above and R 3 and R 6 are each independently H, halo, CN or C 1-7 alkyl.
  • R 4 or R 5 are
  • R 4 is H
  • R 4 is H.
  • R 4 is C 1-7 alkyl, optionally substituted with one or more halo, cyano, or hydroxy.
  • R 4 is CN
  • R 4 is NO 2 .
  • R 4 is —C(O)—R a , wherein R a is hydroxy, C 1-7 alkoxy, C 1-7 alkyl, phenoxy or phenyl.
  • R 4 is benzyloxy, optionally substituted with one or more E, wherein E is as described as above.
  • R 4 is 3- to 7-membered heterocyclyl, optionally substituted with one or more A.
  • R 4 in such an embodiment is a 3- to 7-membered heterocycloalkyl, optionally substituted with one or more A.
  • A is as described above.
  • R 4 is oxethanyl, substituted with one OH.
  • R 4 is —C(O)—NR b R c , wherein R b is H or C 1-7 alkyl and R c is
  • heteroaryl in this embodiment comprise pyridinyl, pyrazolyl, isoxazolyl, thiazolyl, or 1,2,4-oxadiazolyl, each optionally substituted by one or more E as defined herein.
  • heterocyclyl in -(CH 2 ),-heterocyclyl comprise tetrahydropyridinyl, isochromanyl, oxethanyl, isoxazolidinyl, dihydropyridazinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, piperidinyl, or pyrrolidinyl, each optionally substituted as described above.
  • R 4 is —C(O)—NR b R c , wherein R b and R c together with the nitrogen to which they are bound form a heterocyclyl moiety, optionally substituted with one or more A as defined herein.
  • heterocyclyl moiety in this embodiment examples include morpholinyl, thiomorpholinyl, 5,6,7,8-tetrahydro-[1,2,4]triazolo-[4,3-a]pyrazinyl, or 4,5,6,7-tetrahydro-pyrazolo[1,5-a]pyrimidinyl, each optionally substituted with one or more A as defined herein.
  • R 4 is —C(O)—NR b R c , wherein R b and R c together with the nitrogen to which they are bound form a 7- to 12-membered spirocyclic heterocycle, optionally substituted with one or more A as defined herein.
  • Examples for a 7-membered spirocyclic heterocycle comprise 2-oxa-6-aza-spiro[3.3]heptyl, optionally substituted with one or more A as defined herein.
  • R 5 is
  • R 5 is
  • R 4 is as described in any of the embodiments above, R 5 is H or CF 3 , R 3 and R 6 are H, halo, CN or C 1-7 alkyl.
  • R 3 , R 4 , R 5 and R 6 are not simultaneously hydrogen.
  • Preferred compounds of formula I of present invention are those exemplified in examples given below. Particularly preferred are:
  • the compounds of formula I and their pharmaceutically usable salts possess valuable pharmacological properties.
  • Compounds of the present invention are ligands for GABA A receptors containing the ⁇ 5 subunit and are therefore useful in the therapy where cognition enhancement is required.
  • the affinity of compounds at GABA A receptor subtypes was measured by competition for [3H]flumazenil (85 Ci/mmol; Roche) binding to HEK293 cells expressing rat (stably transfected) or human (transiently transfected) receptors of composition ⁇ 1 ⁇ 3 ⁇ 2, ⁇ 2 ⁇ 3 ⁇ 2, ⁇ 3 ⁇ 3 ⁇ 2 and ⁇ 5 ⁇ 3 ⁇ 2.
  • Radioligand binding assays were carried out in a volume of 200 mL (96-well plates) which contained 100 mL of cell memebranes, [3H]flumazenil at a concentration of 1 nM for ⁇ 1, ⁇ 2, ⁇ 3 subunits and 0.5 nM for ⁇ 5 subunits and the test compound in the range of 10-10 ⁇ 3 ⁇ 10 ⁇ 6 M.
  • Nonspecific binding was defined by 10 ⁇ 5 M diazepam and typically represented less than 5% of the total binding.
  • Assays were incubated to equilibrium for 1 hour at 4° C.
  • the compounds of the accompanying examples were tested in the above described assay, and the preferred compounds were found to possess a Ki value for displacement of [ 3 H]flumazenil from ⁇ 5 subunits of the rat GABA A receptor of 100 nM or less. Most preferred are compounds with a Ki (nM) ⁇ 35.
  • the compounds of the invention are binding selective for the ⁇ 5 subunit relative to the ⁇ 1, ⁇ 2 and ⁇ 3 subunit.
  • the present invention also provides pharmaceutical compositions containing compounds of the invention, for example, compounds of formula I or pharmaceutically acceptable salts thereof and a pharmaceutically acceptable carrier.
  • Such pharmaceutical compositions can be in the form of tablets, coated tablets, dragées, hard and soft gelatin capsules, solutions, emulsions or suspensions.
  • the pharmaceutical compositions also can be in the form of suppositories or injectable solutions.
  • compositions of the invention in addition to one or more compounds of the invention, contain a pharmaceutically acceptable carrier.
  • suitable pharmaceutically acceptable carriers include pharmaceutically inert, inorganic or organic carriers. Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts etc can be used as such excipients e.g. for tablets, dragees and hard gelatine capsules.
  • Suitable excipients for soft gelatine capsules are e.g. vegetable oils, waxes, fats, semisolid and liquid polyols etc.
  • Suitable excipients for the manufacture of solutions and syrups are e.g. water, polyols, saccharose, invert sugar, glucose etc.
  • Suitable excipients for injection solutions are e.g. water, alcohols, polyols, glycerol, vegetable oils etc.
  • Suitable excipients for suppositories are e.g. natural or hardened oils, waxes, fats, semi-liquid or liquid polyols etc.
  • compositions can contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.
  • the dosage at which compounds of the invention can be administered can vary within wide limits and will, of course, be fitted to the individual requirements in each particular case. In general, in the case of oral administration a daily dosage of about 0.1 to 1000 mg per person of a compound of general formula I should be appropriate, although the above upper limit can also be exceeded when necessary.
  • Capsules of the following composition can be manufactured:
  • the active substance, lactose and corn starch firstly can be mixed in a mixer and then in a comminuting machine.
  • the mixture can be returned to the mixer; the talc then can be added thereto and mixed thoroughly.
  • the mixture can be filled by machine into hard gelatine capsules.
  • the suppository mass can melted in a glass or steel vessel, mixed thoroughly and cooled to 45° C. Thereupon, the finely powdered active substance can be added thereto and stirred until it has dispersed completely. The mixture then can be poured into suppository moulds of suitable size and left to cool; the suppositories then can be removed from the moulds and packed individually in wax paper or metal foil.
  • triphenylphosphine 208 mg, 0.79 mmol
  • 2-hydroxypyridine 50 mg, 0.53 mmol
  • diethyl azodicarboxylate 127 ⁇ L, 0.79 mmol
  • MS: m/e 267.2 [M+H] + .
  • 6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-4-trifluoromethyl-nicotinic acid 200 mg, 0.53 mmol
  • MS: m/e 420.1 [M+H] + .
  • 6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-4-trifluoromethyl-nicotinic acid 200 mg, 0.53 mmol
  • MS: m/e 462.2 [M+H] + .
  • N-isopropyl-6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-nicotinamide 200 mg, 0.6 mmol
  • 6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-N-(tetrahydro-pyran-4-yl)-nicotinamide was converted to the title compound (69 mg, 33%) which was obtained as a colourless gum.
  • MS: m/e 408.1 [M+H] + .
  • 6-(3-phenyl-5-trifluoromethyl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 100 mg, 0.26 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester was converted, using methylamine (2 M in THF) instead of cyclopropylmethylamine, to the title compound (71 mg, 72%) which was obtained as a white solid.
  • MS: m/e 378.4 [M+H] + .
  • 6-(3-phenyl-5-trifluoromethyl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 100 mg, 0.26 mmol
  • 6-[3-(4-chloro-phenyl)-5-methyl-isoxazol-4ylmethoxy]-nicotinic acid methyl ester 144 mg, 0.4 mmol
  • ethylamine (2 M in THF) instead of 2,2,2-trifluoroethylamine
  • 6-(3-phenyl-5-trifluoromethyl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 100 mg, 0.26 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester was converted, using 4-aminotetrahydropyran instead of cyclopropylmethylamine, to the title compound (111 mg, 94%) which was obtained as a white solid.
  • MS: m/e 448.3 [M+H] + .
  • the reaction mixture was treated with a aqueous sodium hydroxide (1 N, 15.8 mL, 15.8 mmol) and stirred for 0.5 h at 70° C.
  • the solution was cooled to ambient temperature, diluted with water (15 mL) and washed with tert-butylmethylether (15 mL).
  • 6-(5-methyl-3-pyridin-4-yl-isoxazol-4-ylmethoxy)-nicotinic acid 200 mg, 0.64 mol
  • 6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-nicotinic acid was converted using isopropylamine instead of 2,2,2-trifluoroethylamine to the title compound (trituration with tert-butylmethylether, 158 mg, 70%) which was obtained as a white solid.
  • MS: m/e 353.3 [M+H] + .
  • 6-(5-methyl-3-pyridin-4-yl-isoxazol-4-ylmethoxy)-nicotinic acid 200 mg, 0.64 mol
  • 6-(5-methyl-3-phenyl-isoxazol-4-ylmethoxy)-nicotinic acid was converted using 4-aminotetrahydropyran instead of 2,2,2-trifluoroethylamine to the title compound (trituration with tert-butylmethylether, 178 mg, 70%) which was obtained as a white solid.
  • MS: m/e 395.2 [M+H] + .
  • 6-(5-methyl-3-pyridin-3-yl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 130 mg, 0.4 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester was converted, using 2,2,2-trifluoroethylamine instead of cyclopropylamine, to the title compound (139 mg, 89%) which was obtained as an off white solid.
  • MS: m/e 393.1 [M+H] + .
  • 6-(5-methyl-3-pyridin-3-yl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 130 mg, 0.4 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester was converted to the title compound (98 mg, 67%) which was obtained as a light yellow solid.
  • MS: m/e 365.1 [M+H] + .
  • 6-(5-methyl-3-pyridin-3-yl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 130 mg, 0.4 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester using cyclopropylamine instead of 2,2,2-trifluoroethylamine, was converted to the title compound (117 mg, 83%) which was obtained as an off white solid.
  • MS: m/e 351.4 [M+H] + .
  • 6-(5-methyl-3-pyridin-3-yl-isoxazol-4-ylmethoxy)-nicotinic acid methyl ester 130 mg, 0.4 mmol
  • 6-[3-(3-fluoro-phenyl)-5-methyl-isoxazol-4-ylmethoxy]-nicotinic acid methyl ester using 4-aminotetrahydropyran instead of 2,2,2-trifluoroethylamine, was converted to the title compound (117 mg, 83%) which was obtained as an off white solid.
  • MS: m/e 395.1 [M+H] + .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
US12/325,293 2007-12-04 2008-12-01 Isoxazole-pyridine derivatives Abandoned US20090143371A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/370,444 US8518974B2 (en) 2007-12-04 2012-02-10 Isoxazolo-pyridine derivatives
US13/916,191 US8877782B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,317 US9073908B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,068 US8846719B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,264 US8877783B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07122240 2007-12-04
EP07122240.0 2007-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/370,444 Continuation US8518974B2 (en) 2007-12-04 2012-02-10 Isoxazolo-pyridine derivatives

Publications (1)

Publication Number Publication Date
US20090143371A1 true US20090143371A1 (en) 2009-06-04

Family

ID=40329314

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/325,293 Abandoned US20090143371A1 (en) 2007-12-04 2008-12-01 Isoxazole-pyridine derivatives
US13/370,444 Active US8518974B2 (en) 2007-12-04 2012-02-10 Isoxazolo-pyridine derivatives
US13/916,068 Active US8846719B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,317 Active 2028-12-08 US9073908B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,191 Active US8877782B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,264 Active US8877783B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/370,444 Active US8518974B2 (en) 2007-12-04 2012-02-10 Isoxazolo-pyridine derivatives
US13/916,068 Active US8846719B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,317 Active 2028-12-08 US9073908B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,191 Active US8877782B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives
US13/916,264 Active US8877783B2 (en) 2007-12-04 2013-06-12 Isoxazolo-pyridine derivatives

Country Status (34)

Country Link
US (6) US20090143371A1 (sl)
EP (2) EP2767536B1 (sl)
JP (1) JP5301557B2 (sl)
KR (2) KR101237576B1 (sl)
CN (1) CN101889010B (sl)
AR (1) AR069523A1 (sl)
AU (1) AU2008333326B2 (sl)
BR (1) BRPI0820112B8 (sl)
CA (1) CA2707648C (sl)
CL (1) CL2008003591A1 (sl)
CO (1) CO6351788A2 (sl)
CR (1) CR11454A (sl)
CY (2) CY1116119T1 (sl)
DK (2) DK2227467T3 (sl)
EC (1) ECSP10010230A (sl)
ES (2) ES2550994T3 (sl)
HK (1) HK1149756A1 (sl)
HR (2) HRP20150348T1 (sl)
HU (1) HUE025545T2 (sl)
IL (1) IL205759A (sl)
MA (1) MA31865B1 (sl)
MX (1) MX2010005717A (sl)
MY (1) MY156747A (sl)
NZ (1) NZ585308A (sl)
PE (2) PE20091073A1 (sl)
PL (2) PL2227467T3 (sl)
PT (2) PT2767536E (sl)
RS (2) RS53877B1 (sl)
RU (1) RU2484091C2 (sl)
SI (2) SI2227467T1 (sl)
TW (1) TWI363624B (sl)
UA (1) UA100132C2 (sl)
WO (1) WO2009071476A1 (sl)
ZA (1) ZA201003631B (sl)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280020A1 (en) * 2009-04-30 2010-11-04 Roland Jakob-Roetne Isoxazoles
US20100286116A1 (en) * 2009-05-05 2010-11-11 Roland Jakob-Roetne Thiazoles
WO2012010568A1 (en) 2010-07-19 2012-01-26 Syngenta Participations Ag Microbicides
WO2012010567A1 (en) 2010-07-19 2012-01-26 Syngenta Participations Ag Isoxazole, isothiazole, furane and thiophene compounds as microbicides
CN102414206A (zh) * 2009-05-05 2012-04-11 霍夫曼-拉罗奇有限公司 异噁唑-吡啶衍生物
WO2012059482A1 (en) * 2010-11-05 2012-05-10 F. Hoffmann-La Roche Ag Use of active pharmaceutical compounds for the treatment of central nervous system conditions
EP2457569A1 (en) * 2010-11-05 2012-05-30 F. Hoffmann-La Roche AG Use of active pharmaceutical compounds for the treatment of central nervous system conditions
WO2013102145A1 (en) * 2011-12-28 2013-07-04 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
WO2014001279A1 (en) * 2012-06-26 2014-01-03 Aniona Aps A phenyl triazole derivative and its use for modulating the gabaa receptor complex
US8785435B2 (en) 2011-10-20 2014-07-22 Hoffmann-La Roche Inc. Solid forms
WO2014150276A1 (en) * 2013-03-15 2014-09-25 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US8952171B2 (en) 2013-03-15 2015-02-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9018210B2 (en) 2011-12-28 2015-04-28 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US9422279B2 (en) 2013-03-15 2016-08-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9447071B2 (en) 2014-02-07 2016-09-20 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US9458139B2 (en) 2013-03-15 2016-10-04 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9556166B2 (en) 2011-05-12 2017-01-31 Proteostasis Therapeutics, Inc. Proteostasis regulators
US9604999B2 (en) 2013-03-15 2017-03-28 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9802900B2 (en) 2013-03-15 2017-10-31 Global Blood Therapeutics, Inc. Bicyclic heteroaryl compounds and uses thereof for the modulation of hemoglobin
US9849135B2 (en) 2013-01-25 2017-12-26 President And Fellows Of Harvard College USP14 inhibitors for treating or preventing viral infections
US9850262B2 (en) 2013-11-12 2017-12-26 Proteostasis Therapeutics, Inc. Proteasome activity enhancing compounds
US9957250B2 (en) 2013-03-15 2018-05-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10004725B2 (en) 2015-03-30 2018-06-26 Global Blood Therapeutics, Inc. Methods of treatment
US10077249B2 (en) 2016-05-12 2018-09-18 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10100043B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation
US10266551B2 (en) 2013-03-15 2019-04-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
WO2019122393A1 (en) * 2017-12-22 2019-06-27 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
US10351568B2 (en) 2010-01-28 2019-07-16 President And Fellows Of Harvard College Compositions and methods for enhancing proteasome activity
US20190300516A1 (en) * 2016-12-08 2019-10-03 Hoffmann-La Roche Inc. Isoxazolyl ether derivatives as gaba a alpha5 pam
US10450269B1 (en) 2013-11-18 2019-10-22 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10493035B2 (en) 2016-10-12 2019-12-03 Global Blood Therapeutics, Inc. Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
WO2019238633A1 (en) 2018-06-13 2019-12-19 F. Hoffmann-La Roche Ag New isoxazolyl ether derivatives as gaba a alpha5 pam
US11014884B2 (en) 2018-10-01 2021-05-25 Global Blood Therapeutics, Inc. Modulators of hemoglobin
US11020382B2 (en) 2015-12-04 2021-06-01 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11053195B2 (en) 2013-03-15 2021-07-06 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11236109B2 (en) 2013-03-15 2022-02-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11897875B2 (en) 2017-08-28 2024-02-13 University Of Maryland, Baltimore Deuterated Alpha5 subunit-selective negative allosteric modulators of gamma-aminobutyric acid type a receptors as fast acting treatment for depression and mood disorders

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767536B1 (en) 2007-12-04 2015-09-02 F. Hoffmann-La Roche AG Isoxazolo-pyridine derivatives
MX2011004125A (es) * 2008-10-21 2011-05-19 Metabolex Inc Agonistas del receptor gpr120 de arilo y usos de los mismos.
EP2942346B1 (en) 2009-02-17 2020-05-06 Syntrix Biosystems, Inc. Pyridinecarboxamides as cxcr2 modulators
US8389550B2 (en) * 2009-02-25 2013-03-05 Hoffmann-La Roche Inc. Isoxazoles / O-pyridines with ethyl and ethenyl linker
US8222246B2 (en) * 2009-04-02 2012-07-17 Hoffmann-La Roche Inc. Substituted isoxazoles
US8163728B2 (en) * 2009-05-05 2012-04-24 Hoffmann-La Roche Inc. Pyrazoles
WO2010127978A1 (en) 2009-05-07 2010-11-11 F. Hoffmann-La Roche Ag Isoxazole-pyridine derivatives as gaba modulators
US20110183980A1 (en) * 2009-09-21 2011-07-28 Conn P Jeffrey O-benzyl nicotinamide analogs as mglur5 positive allosteric modulators
CA2811990C (en) * 2010-08-23 2023-03-21 Dean Y. Maeda Aminopyridine- and aminopyrimidinecarboxamides as cxcr2 modulators
US8604062B2 (en) * 2011-10-20 2013-12-10 Hoffman-La Roche Inc. Process for the preparation of isoxazolyl-methoxy nicotinic acids
US20150374705A1 (en) 2012-02-14 2015-12-31 Shanghai Institues for Biological Sciences Substances for treatment or relief of pain
WO2014001278A1 (en) 2012-06-26 2014-01-03 Aniona Aps A phenyl triazole derivative and its use for modulating the gabaa receptor complex
EP2885290B1 (en) 2012-06-26 2017-10-18 Saniona A/S A phenyl triazole derivative and its use for modulating the gabaa receptor complex
JP6224097B2 (ja) * 2012-06-26 2017-11-01 サニオナ・エイピイエス フェニルトリアゾール誘導体及びgabaa受受容体複合体を調節するための該フェニルトリアゾール誘導体の使用
WO2014001280A1 (en) 2012-06-26 2014-01-03 Aniona Aps A phenyl triazole derivative and its use for modulating the gabaa receptor complex
EP2792360A1 (en) 2013-04-18 2014-10-22 IP Gesellschaft für Management mbH (1aR,12bS)-8-cyclohexyl-11-fluoro-N-((1-methylcyclopropyl)sulfonyl)-1a-((3-methyl-3,8-diazabicyclo[3.2.1]oct-8-yl)carbonyl)-1,1a,2,2b-tetrahydrocyclopropa[d]indolo[2,1-a][2]benzazepine-5-carboxamide for use in treating HCV
US10561676B2 (en) 2013-08-02 2020-02-18 Syntrix Biosystems Inc. Method for treating cancer using dual antagonists of CXCR1 and CXCR2
US8969365B2 (en) 2013-08-02 2015-03-03 Syntrix Biosystems, Inc. Thiopyrimidinecarboxamides as CXCR1/2 modulators
US10046002B2 (en) 2013-08-02 2018-08-14 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists
JP2017071553A (ja) * 2014-02-25 2017-04-13 味の素株式会社 ヘテロ原子−メチレン−ヘテロ環構造を有する新規化合物
CN106810542B (zh) * 2015-11-30 2021-03-09 苏州开拓药业股份有限公司 一种硫代咪唑烷酮化合物的晶型、盐型及其制备方法
US10660909B2 (en) 2016-11-17 2020-05-26 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists
BR102019014802A2 (pt) 2018-07-20 2020-02-04 Boehringer Ingelheim Int difluorometil-fenil triazóis
HU231223B1 (hu) * 2018-09-28 2022-01-28 Richter Gedeon Nyrt. GABAA A5 receptor modulátor hatású biciklusos vegyületek
US20240043418A1 (en) 2020-03-26 2024-02-08 Richter Gedeon Nyrt. 1,3-dihydro-2h-pyrrolo[3,4-c]pyridine derivatives as gabaa a5 receptor modulators
CA3216863A1 (en) 2021-05-05 2022-11-10 University College Cardiff Consultants Limited Heteroaryl compounds useful in the treatment of cognitive disorders
CN116854680A (zh) * 2022-03-28 2023-10-10 上海赛默罗生物科技有限公司 异噁唑-杂环类衍生物、药物组合物和用途
CN115286636A (zh) * 2022-10-08 2022-11-04 上海赛默罗生物科技有限公司 烟酰胺晶型及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066668A1 (en) * 2005-09-19 2007-03-22 Bernd Buettelmann Isoxazolo derivatives
US20070082936A1 (en) * 2005-10-11 2007-04-12 Bernd Buettelmann Aryl-isoxazole-4-carbonyl-indole-carboxylic acid amide derivatives
US20070161686A1 (en) * 2005-12-23 2007-07-12 Bernd Buettelmann Aryl-isoxazolo-4-yl-oxadiazole derivatives

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812225A1 (de) * 1988-04-13 1989-10-26 Basf Ag Isoxazol(isothiazol)-5-carbonsaeureamide
WO2000008001A1 (en) 1998-08-07 2000-02-17 Chiron Corporation Substituted isoxazole as estrogen receptor modulators
DE19920791A1 (de) * 1999-05-06 2000-11-09 Bayer Ag Substituierte Benzoylisoxazole
GB0125086D0 (en) 2001-10-18 2001-12-12 Merck Sharp & Dohme Novel compounds
EP1513817A1 (en) 2002-05-24 2005-03-16 Takeda Pharmaceutical Company Limited 1, 2-azole derivatives with hypoglycemic and hypolipidemic activity
GB0221443D0 (en) * 2002-09-16 2002-10-23 Glaxo Group Ltd Pyridine derivates
AU2005245411B2 (en) * 2004-05-14 2009-04-23 Irm Llc Compounds and compositions as PPAR modulators
KR100876784B1 (ko) * 2004-10-01 2009-01-07 에프. 호프만-라 로슈 아게 헥사플루오로아이소프로판올 치환된 에터 유도체
WO2007002635A2 (en) * 2005-06-27 2007-01-04 Bristol-Myers Squibb Company C-linked cyclic antagonists of p2y1 receptor useful in the treatment of thrombotic conditions
ES2376357T3 (es) 2005-12-27 2012-03-13 F. Hoffmann-La Roche Ag Derivados de aril-isoxazol-4-il-imidazo[1,5-a]piridina.
PT1968973E (pt) 2005-12-27 2011-12-09 Hoffmann La Roche Derivados de aril-isoxazol-4-il-imidazol
CN101370807B (zh) 2006-01-17 2011-08-31 弗·哈夫曼-拉罗切有限公司 可用于经由gaba受体治疗阿尔茨海默病的芳基-异唑-4-基-咪唑并[1,2-a]吡啶
EP2767536B1 (en) * 2007-12-04 2015-09-02 F. Hoffmann-La Roche AG Isoxazolo-pyridine derivatives
US7943619B2 (en) 2007-12-04 2011-05-17 Hoffmann-La Roche Inc. Isoxazolo-pyridazine derivatives
BRPI0820649A2 (pt) 2007-12-04 2015-06-16 Hoffmann La Roche Derivados de isoxazalo-pirazina
US20100280019A1 (en) * 2009-04-30 2010-11-04 Roland Jakob-Roetne Isoxazoles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066668A1 (en) * 2005-09-19 2007-03-22 Bernd Buettelmann Isoxazolo derivatives
US20070082936A1 (en) * 2005-10-11 2007-04-12 Bernd Buettelmann Aryl-isoxazole-4-carbonyl-indole-carboxylic acid amide derivatives
US20070161686A1 (en) * 2005-12-23 2007-07-12 Bernd Buettelmann Aryl-isoxazolo-4-yl-oxadiazole derivatives

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227461B2 (en) * 2009-04-30 2012-07-24 Hoffmann-La Roche Inc. Isoxazoles
US20100280020A1 (en) * 2009-04-30 2010-11-04 Roland Jakob-Roetne Isoxazoles
CN102414208A (zh) * 2009-05-05 2012-04-11 霍夫曼-拉罗奇有限公司 作为用于认知性障碍的治疗中的gabaa受体逆激动剂的异*唑-噻唑衍生物
US20100286116A1 (en) * 2009-05-05 2010-11-11 Roland Jakob-Roetne Thiazoles
CN102414206B (zh) * 2009-05-05 2014-11-05 霍夫曼-拉罗奇有限公司 异*唑-吡啶衍生物
CN102414206A (zh) * 2009-05-05 2012-04-11 霍夫曼-拉罗奇有限公司 异噁唑-吡啶衍生物
CN102414208B (zh) * 2009-05-05 2014-11-05 霍夫曼-拉罗奇有限公司 作为用于认知性障碍的治疗中的gaba a受体逆激动剂的异*唑-噻唑衍生物
US8178522B2 (en) 2009-05-05 2012-05-15 Hoffmann-La Roche Inc. Thiazoles
WO2010127974A1 (en) * 2009-05-05 2010-11-11 F. Hoffmann-La Roche Ag Isoxazole-thiazole derivatives as gaba a receptor inverse agonists for use in the treatment of cognitive disorders
US10351568B2 (en) 2010-01-28 2019-07-16 President And Fellows Of Harvard College Compositions and methods for enhancing proteasome activity
WO2012010567A1 (en) 2010-07-19 2012-01-26 Syngenta Participations Ag Isoxazole, isothiazole, furane and thiophene compounds as microbicides
WO2012010568A1 (en) 2010-07-19 2012-01-26 Syngenta Participations Ag Microbicides
CN103189062A (zh) * 2010-11-05 2013-07-03 霍夫曼-拉罗奇有限公司 活性药物化合物用于治疗中枢神经系统病症的用途
EP2457569A1 (en) * 2010-11-05 2012-05-30 F. Hoffmann-La Roche AG Use of active pharmaceutical compounds for the treatment of central nervous system conditions
US8835425B2 (en) 2010-11-05 2014-09-16 Hoffmann-La Roche Inc. Use of selective GABA A α5 negative allosteric modulators for the treatment of central nervous system conditions
WO2012059482A1 (en) * 2010-11-05 2012-05-10 F. Hoffmann-La Roche Ag Use of active pharmaceutical compounds for the treatment of central nervous system conditions
AU2011325190B2 (en) * 2010-11-05 2015-05-14 F. Hoffmann-La Roche Ag Use of active pharmaceutical compounds for the treatment of central nervous system conditions
US20140343046A1 (en) * 2010-11-05 2014-11-20 Hoffmann-La Roche Inc. Use of selective gaba a alpha 5 negative allosteric modulators for the treatment of central nervous system conditions
US9556166B2 (en) 2011-05-12 2017-01-31 Proteostasis Therapeutics, Inc. Proteostasis regulators
US10532996B2 (en) 2011-05-12 2020-01-14 Proteostasis Therapeutics, Inc. Proteostasis regulators
US8785435B2 (en) 2011-10-20 2014-07-22 Hoffmann-La Roche Inc. Solid forms
US9012450B2 (en) 2011-12-28 2015-04-21 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US9018210B2 (en) 2011-12-28 2015-04-28 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US10806733B2 (en) 2011-12-28 2020-10-20 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US10822326B2 (en) 2011-12-28 2020-11-03 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US10377741B2 (en) 2011-12-28 2019-08-13 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
WO2013102145A1 (en) * 2011-12-28 2013-07-04 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US10034879B2 (en) 2011-12-28 2018-07-31 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
WO2014001279A1 (en) * 2012-06-26 2014-01-03 Aniona Aps A phenyl triazole derivative and its use for modulating the gabaa receptor complex
US9849135B2 (en) 2013-01-25 2017-12-26 President And Fellows Of Harvard College USP14 inhibitors for treating or preventing viral infections
US10100043B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation
US9422279B2 (en) 2013-03-15 2016-08-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
EA037091B1 (ru) * 2013-03-15 2021-02-04 Глобал Блад Терапьютикс, Инк. Соединения и их применения для модуляции гемоглобина
US9957250B2 (en) 2013-03-15 2018-05-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9981939B2 (en) 2013-03-15 2018-05-29 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10858317B2 (en) 2013-03-15 2020-12-08 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10017491B2 (en) 2013-03-15 2018-07-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9776960B2 (en) 2013-03-15 2017-10-03 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
AU2014237348B2 (en) * 2013-03-15 2018-08-09 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10829470B2 (en) 2013-03-15 2020-11-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10100040B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9604999B2 (en) 2013-03-15 2017-03-28 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
WO2014150276A1 (en) * 2013-03-15 2014-09-25 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
AU2014237348C1 (en) * 2013-03-15 2019-02-07 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10266551B2 (en) 2013-03-15 2019-04-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10315991B2 (en) 2013-03-15 2019-06-11 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11530191B2 (en) 2013-03-15 2022-12-20 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9458139B2 (en) 2013-03-15 2016-10-04 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US8952171B2 (en) 2013-03-15 2015-02-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
AU2018260809C1 (en) * 2013-03-15 2020-09-17 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10435393B2 (en) 2013-03-15 2019-10-08 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
AU2018260809B2 (en) * 2013-03-15 2020-03-19 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
EA033555B1 (ru) * 2013-03-15 2019-10-31 Global Blood Therapeutics Inc Фармацевтические композиции для лечения серповидно-клеточного нарушения
US11053195B2 (en) 2013-03-15 2021-07-06 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11236109B2 (en) 2013-03-15 2022-02-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9802900B2 (en) 2013-03-15 2017-10-31 Global Blood Therapeutics, Inc. Bicyclic heteroaryl compounds and uses thereof for the modulation of hemoglobin
US11242361B2 (en) 2013-11-12 2022-02-08 Proteostasis Therapeutics, Inc. Proteasome activity enhancing compounds
US11958873B2 (en) 2013-11-12 2024-04-16 Kineta, Inc. Proteasome activity enhancing compounds
US9850262B2 (en) 2013-11-12 2017-12-26 Proteostasis Therapeutics, Inc. Proteasome activity enhancing compounds
US10450269B1 (en) 2013-11-18 2019-10-22 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10722502B2 (en) 2014-02-07 2020-07-28 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11452720B2 (en) 2014-02-07 2022-09-27 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US9447071B2 (en) 2014-02-07 2016-09-20 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10137118B2 (en) 2014-02-07 2018-11-27 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10695330B2 (en) 2015-03-30 2020-06-30 Global Blood Therapeutics, Inc. Methods of treatment
US10004725B2 (en) 2015-03-30 2018-06-26 Global Blood Therapeutics, Inc. Methods of treatment
US11020382B2 (en) 2015-12-04 2021-06-01 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11944612B2 (en) 2015-12-04 2024-04-02 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10577345B2 (en) 2016-05-12 2020-03-03 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10077249B2 (en) 2016-05-12 2018-09-18 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10493035B2 (en) 2016-10-12 2019-12-03 Global Blood Therapeutics, Inc. Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11091471B2 (en) * 2016-12-08 2021-08-17 Hoffmann-La Roche Inc. Isoxazolyl ether derivatives as GABAA α5 PAM
US20190300516A1 (en) * 2016-12-08 2019-10-03 Hoffmann-La Roche Inc. Isoxazolyl ether derivatives as gaba a alpha5 pam
US20220411415A1 (en) * 2016-12-08 2022-12-29 Hoffmann-La Roche Inc. Isoxazolyl ether derivatives as gaba a alpha5 pam
US11897875B2 (en) 2017-08-28 2024-02-13 University Of Maryland, Baltimore Deuterated Alpha5 subunit-selective negative allosteric modulators of gamma-aminobutyric acid type a receptors as fast acting treatment for depression and mood disorders
WO2019122393A1 (en) * 2017-12-22 2019-06-27 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2019238633A1 (en) 2018-06-13 2019-12-19 F. Hoffmann-La Roche Ag New isoxazolyl ether derivatives as gaba a alpha5 pam
US11840528B2 (en) 2018-06-13 2023-12-12 Hoffmann-La Roche Inc. Isoxazolyl ether derivatives as GABAA α5 PAM
IL279266B1 (en) * 2018-06-13 2023-11-01 Hoffmann La Roche New Isoxazolyl Ether History as GABA A ALPHA5 PAM
IL279266B2 (en) * 2018-06-13 2024-03-01 Hoffmann La Roche New Isoxazolyl Ether History as GABA A ALPHA5 PAM
AU2019286312B2 (en) * 2018-06-13 2023-08-17 F. Hoffmann-La Roche Ag New isoxazolyl ether derivatives as GABA A alpha5 PAM
US11014884B2 (en) 2018-10-01 2021-05-25 Global Blood Therapeutics, Inc. Modulators of hemoglobin

Also Published As

Publication number Publication date
IL205759A (en) 2014-07-31
MY156747A (en) 2016-03-31
HUE025545T2 (en) 2016-03-29
RS54355B1 (en) 2016-04-28
CA2707648C (en) 2014-08-12
AR069523A1 (es) 2010-01-27
CL2008003591A1 (es) 2010-01-04
KR101237576B1 (ko) 2013-03-04
KR20120102117A (ko) 2012-09-17
US8518974B2 (en) 2013-08-27
US8877782B2 (en) 2014-11-04
SI2227467T1 (sl) 2015-03-31
CO6351788A2 (es) 2011-12-20
US20130274467A1 (en) 2013-10-17
EP2227467A1 (en) 2010-09-15
AU2008333326B2 (en) 2013-05-30
EP2227467B1 (en) 2014-12-31
DK2767536T3 (en) 2015-10-19
HRP20151250T1 (hr) 2015-12-18
DK2227467T3 (en) 2015-01-19
PL2767536T3 (pl) 2016-01-29
ZA201003631B (en) 2013-10-30
RU2010123923A (ru) 2012-01-10
RU2484091C2 (ru) 2013-06-10
MX2010005717A (es) 2010-06-02
CA2707648A1 (en) 2009-06-11
US20130274469A1 (en) 2013-10-17
ECSP10010230A (es) 2010-07-30
HK1149756A1 (en) 2011-10-14
JP5301557B2 (ja) 2013-09-25
US20120184538A1 (en) 2012-07-19
US8846719B2 (en) 2014-09-30
TWI363624B (en) 2012-05-11
TW200924763A (en) 2009-06-16
SI2767536T1 (sl) 2015-12-31
WO2009071476A1 (en) 2009-06-11
US20130274468A1 (en) 2013-10-17
PL2227467T3 (pl) 2015-05-29
NZ585308A (en) 2012-03-30
PE20130242A1 (es) 2013-03-04
HRP20150348T1 (hr) 2015-05-08
PT2767536E (pt) 2015-11-17
RS53877B1 (en) 2015-08-31
IL205759A0 (en) 2010-11-30
CY1116119T1 (el) 2017-02-08
CN101889010B (zh) 2012-12-05
ES2550994T3 (es) 2015-11-13
PE20091073A1 (es) 2009-07-23
EP2767536A1 (en) 2014-08-20
BRPI0820112B8 (pt) 2021-05-25
JP2011505401A (ja) 2011-02-24
AU2008333326A1 (en) 2009-06-11
ES2531023T3 (es) 2015-03-09
US9073908B2 (en) 2015-07-07
BRPI0820112B1 (pt) 2019-01-15
MA31865B1 (fr) 2010-11-01
KR20100075669A (ko) 2010-07-02
PT2227467E (pt) 2015-03-02
CY1116902T1 (el) 2017-04-05
US8877783B2 (en) 2014-11-04
EP2767536B1 (en) 2015-09-02
CN101889010A (zh) 2010-11-17
US20130281690A1 (en) 2013-10-24
BRPI0820112A2 (pt) 2015-05-05
CR11454A (es) 2010-06-28
UA100132C2 (en) 2012-11-26

Similar Documents

Publication Publication Date Title
US8877783B2 (en) Isoxazolo-pyridine derivatives
CA2707821C (en) Isoxazolo-pyridazine derivatives
EP2427456B1 (en) Isoxazole-pyridine derivatives
EP2414354B1 (en) Hydroxy-methyl isoxazole derivatives as gaba a modulators
AU2013203735A1 (en) Isoxazolo-pyridine derivatives
US7902201B2 (en) Isoxazolo-pyrazine derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOFFMANN-LA ROCHE, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMANN-LA ROCHE AG;REEL/FRAME:022361/0664

Effective date: 20081121

Owner name: F. HOFFMANN-LA ROCHE AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUETTELMANN, BERND;JAKOB-ROETNE, ROLAND;KNUST, HENNER;AND OTHERS;REEL/FRAME:022361/0618;SIGNING DATES FROM 20081113 TO 20081120

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ROCHE PALO ALTO LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMANN-LA ROCHE AG;REEL/FRAME:029559/0075

Effective date: 20121119

AS Assignment

Owner name: ROCHE PALO ALTO LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOFFMANN-LA ROCHE INC.;REEL/FRAME:031622/0820

Effective date: 20131118