US20080063823A1 - Resin Container, Manufacturing Method of Resin Container, and Manufacturing Apparatus of Resin container - Google Patents

Resin Container, Manufacturing Method of Resin Container, and Manufacturing Apparatus of Resin container Download PDF

Info

Publication number
US20080063823A1
US20080063823A1 US11/629,621 US62962105A US2008063823A1 US 20080063823 A1 US20080063823 A1 US 20080063823A1 US 62962105 A US62962105 A US 62962105A US 2008063823 A1 US2008063823 A1 US 2008063823A1
Authority
US
United States
Prior art keywords
resin
sub
coating layer
resin container
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/629,621
Other languages
English (en)
Inventor
Kenjiro Tanaka
Isamu Takeda
Atsushi Yoneda
Eriko Kimotsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Assigned to TOYO SEIKAN KAISHA LTD. reassignment TOYO SEIKAN KAISHA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIMOTSUKI, ERIKO, TAKEDA, ISAMU, TANAKA, KENJIRO, YONEDA, ATSUSHI
Publication of US20080063823A1 publication Critical patent/US20080063823A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/09Ampoules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • B29C2049/222Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons only parts of the preforms or parisons are layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2795/00Printing on articles made from plastics or substances in a plastic state
    • B29C2795/007Printing on articles made from plastics or substances in a plastic state after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3004Preforms or parisons made of several components having longitudinally different components within one layer, e.g. tubes with longitudinal stratified layering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3006Preforms or parisons made of several components having tangentially different components within one layer, e.g. longitudinal stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • B29C49/041Extrusion blow-moulding using an accumulator head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • B29C49/04116Extrusion blow-moulding characterised by the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a resin container, a manufacturing method of the resin container, and a manufacturing apparatus of the resin container to which a decorative design having a higher sense of togetherness can be applied by changing a thickness of a coating layer partially formed in a container body at a boundary portion between the coating layer and a part where the coating layer is not formed.
  • blow molding a molding method in which the above-described commercial product is accommodated.
  • a molten material (a parison) extruded in a cylindrical shape from an extruder is held by a metal mold and air is blown into this material, thereby obtaining a hollow molded piece.
  • Patent Reference 1 and Patent Reference 2 discloses a multi-layer thin container which is provided with desired functional characteristics by adjusting an extruding quantity of a resin forming one layer when extruding a parison having a double-layered structure.
  • a geometric design is applied and, on the other hand, a label sticker on which a commercial product name or the like is printed is put, or a film material such as a shrink label or a stretch label is attached so that commercial goods are discriminated.
  • a film material such as a shrink label or a stretch label is attached so that commercial goods are discriminated.
  • direct printing on a container surface by appropriate printing means such as screen printing, uniform coloring of an entire container by adding a pigment or the like to a material resin forming the container, and others.
  • Patent Reference 1 Japanese Patent Application Laid-open No. 2000-142662 (a paragraph number [0010] and others)
  • Patent Reference 2 Japanese Patent Application Laid-open No. 2000-238116 (a paragraph number [0012] and others)
  • the present invention is proposed in order to solve the above-described problems of a prior art, and it is an object of the present invention to provide a novel resin container which further appeals to consumer, a manufacturing method of the resin container, and a manufacturing apparatus of the resin container, which can add a high value to the container by, e.g., applying a decorative design having a high sense of togetherness to the container itself with a high degree of freedom.
  • the present invention is directed to a resin container manufactured by blow molding a parison extruded from an extruder, the resin container comprising at least a container body and a coating layer which covers the whole or a part of the container body, the coating layer having a thickness reducing portion in which a thickness of the coating layer is successively reduced in a reduction rate of 0.1 to 1.5 ⁇ m/mm in a height direction of, the container.
  • a high value can be added to the container by an excellent design effect or functional effect, thereby providing the resin container which greatly appeals to consumers.
  • the resin container according to the present invention can be configured in such a manner that the thickness reducing portion is formed in a range which occupies 1 ⁇ 4 or more of a length of a container base portion in a height direction.
  • Adopting such a configuration can form a continuous gradation change in a wide range, thus improving design properties of the resin container.
  • the resin container according to the present invention can be configured in such a manner that the coating layer disappears while reducing a thickness thereof, and a thickness reduction rate of the coating layer is 0.1 to 0.5 ⁇ m/mm at least in a range of 30 mm in the height direction immediately before a part at which the coating layer disappears.
  • Adopting such a configuration can provide directionality to a change in design or function realized by a change in thickness of the coating layer.
  • the thickness reduction rate in the range immediate before the coating layer disappearing part is set to the above-described range so that the change in gradation can be effectively prevented from being discontinued, thereby achieving the continuous and smooth change in gradation in the vicinity of the coating layer disappearing part.
  • the resin container according to the present invention is configured in such a manner that a color tone adjusting layer is provided on an outer surface side of the container body and the coating layer is formed on an outer surface side of the color tone adjusting layer.
  • forming the color tone adjusting layer which is used to adjust color tones of the container body and the coating layer can further improve design properties of the resin container.
  • the resin container according to the present invention can be configured in such a manner that a direction of a change in thickness of the coating layer along the height direction is opposite to a direction of a change in thickness of the color tone adjusting layer along the height direction at a part where the thickness reducing portion is formed.
  • the coating layer and the color tone adjusting layer are formed of the same resin while considering printability at the time of printing a surface of the resin container.
  • the coating layer and the color tone adjusting layer can be configured to contain a pearl pigment in order to give a pearly sense to the resin container.
  • the resin container according to the present invention may be configured to include an inner layer on an innermost surface of the container, or may be configured to include an outer layer on an outermost surface of the container. Additionally, it is preferable for the resin container according to the present invention that MI of each of a base material resin forming the container body and a sub-material forming the coating layer is 0.1 to 30 g/10 min considering moldability.
  • a color which is similar to the color given to the container body but has a different color tone may be given to the coating layer, or a color whose hue is different from the color given to the container body may be given to the coating layer.
  • a color itself of the resin container can be changed, thereby providing a decorative design having a high sense of togetherness. Demonstrating such a design effect can add a high value to the container, thus providing the resin container which further appeals to consumers.
  • the resin container according to the present invention can be configured to contain an antibacterial agent in the coating layer.
  • the coating layer which demonstrates an antibacterial function or a mildew resisting function is partially formed, an increase in cost can be suppressed, thus demonstrating a further effective antibacterial function or mildew resisting function with a small quantity of an antibacterial agent. Demonstrating such a functional effect can add a high value to the container, thus providing the resin container which further appeals to consumers.
  • a manufacturing method of a resin container is a method comprising: continuously supplying a base material resin forming a container body from a main extruder; discharging from a discharge portion provided in a die head a sub-material supplied from a sub-extruder so that the sub-material joins the base material resin; and extruding a parison from a slit portion opened on an end side of the die head; and blow-molding the parison, thereby forming a coating layer which covers the whole or a part of the container body by using the sub-material, wherein a thickness reducing portion in which a thickness is continuously reduced is formed in the coating layer while adjusting a resin pressure in a supply path of the sub-material fed from the sub-extruder by performing suck-back control which pulls back the sub-material from the discharge portion at an arbitrary timing when joining the sub-material with the base material resin.
  • a supply speed of the sub-material can be finely adjusted, a thickness of the coating layer can be continuously reduced at a small reduction rate, and a gradation change can be effectively prevented from being discontinued when producing the continuous gradation change in the thickness reducing portion to obtain a design effect in particular.
  • the suck-back control is performed at least once before the resin pressure in the supply path of the sub-material is reduced to 70 to 15% of a maximum resin pressure when joining the sub-material with the base material resin, in order to effectively obtain an effect of the suck-back control, and it is also preferable that the suck-back control is performed before a reduction rate per unit time of the resin pressure in the supply path of the sub-material becomes 10% or below of a maximum reduction rate.
  • the reduction rate of the resin pressure in the supply path of the sub-material after the suck-back control is preferable for the reduction rate of the resin pressure in the supply path of the sub-material after the suck-back control to be five times or below the reduction rate before the suck-back control.
  • a direction of changing a thickness of the coating layer can be reversed by inverting a top side and a bottom side of a forming mold with respect to an extruding direction of a parison. Adopting such a method can express a symmetrical opposite change in color.
  • a manufacturing apparatus of a resin container is an apparatus comprising: a main extruder which supplies a base material resin; and a sub-extruder which supplies a sub-material, the sub-material supplied from the sub-extruder being discharged from a discharge portion provided in a die head so that the sub-material joins the base material resin continuously supplied from the main extruder, a parison being then extruded from a slit portion opened on an end side of the die head, the parison being subjected to blow molding, thereby forming a coating layer which covers the whole or a part of a container body formed of the base material resin by using the sub-material, wherein a suck-back mechanism which pulls back the sub-material from the discharge portion is provided between the sub-extruder and the die head, and the discharge portion is provided in the vicinity of the slit portion in the die head.
  • the manufacturing apparatus of a resin container according to the present invention can have a configuration in which the die head is provided with a flow path of the sub-material, the flow path being constituted of: an annular portion which is formed to relatively approximate the discharge portion as distanced from a side on which the sub-material is supplied; and a cone-shaped portion which is continuous with the discharge portion from the annular portion, and a second suck-back mechanism can be provided at a position close to the die head.
  • the excellent design effect or functional effect can add a high value to the container, thus providing the resin container which greatly appeals to consumers.
  • FIG. 1 is a partially cutaway cross-sectional view showing an outline of a resin container according to a first embodiment of the present invention
  • FIG. 2 is a front view and a primary part cross-sectional view showing an outline of a first modification of the first embodiment according to the present invention
  • FIG. 3 is a partially cutaway cross-sectional view showing an outline of a second modification of the first embodiment according to the present invention
  • FIG. 4 is a front view and a primary part cross-sectional view showing an outline of a third modification of the first embodiment according to the present invention
  • FIG. 5 is a partially cutaway cross-sectional view showing an outline of a fourth modification of the first embodiment according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view of a part corresponding to a part surrounded by a chain line in FIG. 1 , showing an outline of a fifth modification of the first embodiment according to the present invention
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of a manufacturing apparatus of a resin container according to the present invention.
  • FIG. 8 is graphs showing an example in which a resin pressure in a supply path for a sub-material changes by suck-back control
  • FIG. 9 is a graph in which the graphs depicted in FIGS. 8 ( a ) to ( d ) are superimposed;
  • FIG. 10 is a schematic cross-sectional view showing a modification of a die head in an embodiment of a manufacturing apparatus of a resin container according to the present invention.
  • FIG. 11 is a schematic cross-sectional view showing another modification of the die head in the embodiment of the manufacturing apparatus of a resin container according to the present invention.
  • FIG. 12 is a cross-sectional view taken along a line C-C depicted in FIG. 11 ;
  • FIG. 13 is a schematic cross-sectional view showing a blow molding process in the embodiment of the manufacturing apparatus of a resin container according to the present invention.
  • FIG. 14 is a schematic cross-sectional view showing another embodiment of the manufacturing apparatus of a resin container according to the present invention.
  • FIG. 15 is a partially cutaway cross-sectional view showing an outline of a resin container according to a second embodiment of the present invention.
  • FIG. 16 is a partially cutaway cross-sectional view showing an outline of a resin container according to a third embodiment of the present invention.
  • FIG. 17 is a graph showing an example of a thickness distribution of a coating layer.
  • FIG. 1 shows an outline of a resin container according to a first embodiment of the present invention, and is a partially cutaway cross-sectional view in which a part of a resin container 1 is cut away.
  • the drawing shows an example in which the illustrated resin container 1 is applied to a container for a shampoo.
  • a coating layer 3 which partially covers a container body 2 is formed by using a resin having a different coloring state from that of the container body 2 in the resin container 1 .
  • the container body 2 is provided with an opening portion 2 a , a base portion 2 b , and a bottom portion 2 c , a part below a substantially central part of the base portion 2 b in a height direction and the bottom portion 2 c are covered with the coating layer 3 in this embodiment.
  • the height direction is a direction along a direction perpendicular to a level plane when the container is placed on the level plane with the opening portion 2 a facing the top side.
  • the resin container 1 is divided into two regions, i.e., a coating layer forming part 4 and a coating layer non-forming part 5 depending on whether the coating layer 3 is formed.
  • a thickness reducing portion 6 in which a thickness of the coating layer 3 is continuously reduced is formed from the coating layer forming part 4 toward the coating layer non-forming part 5 on a boundary side between these parts 4 and 5 of the coating layer 3 .
  • the coating layer 3 disappears while continuously and gradually reducing its thickness from the coating layer forming part 4 toward the coating layer non-forming part 5 in a reduction rate of 0.1 to 1.5 ⁇ m/mm, and the coating layer 3 is formed in such a manner that a thickness reduction rate becomes 0.1 to 0.5 ⁇ m/mm in a range of at least 30 mm, preferably 50 mm, or more preferably 90 mm from at least a position immediate before a position where the coating layer 30 disappears in the height direction.
  • a surface of the container body 2 can be gradually seen through as the coating layer 3 which covers the surface of the container body 2 becomes thinner. Further, the container body 2 is exposed when the coating layer 3 which covers the surface of the container body 2 disappears, and hence the surface of the container body 2 can be directly seen.
  • developing such a phenomenon in the thickness reducing portion 6 formed in the coating layer 3 produces a change in a color (a gradation change) and applies a decorative design having a higher sense of togetherness to the container itself with a high degree of freedom.
  • a continuous gradation change is enabled by successively reducing the thickness of the coating layer 3 in the above-described reduction rate, and it is possible to effectively avoid discontinuation of the gradation change, e.g., continuation of a range having fixed darkness at a part immediately before disappearance of the coating layer 3 , or loss of continuity of the gradation change between the coating layer forming part 4 and the coating layer non-forming part 5 because of discontinuity of a change in color of the coating layer 3 to a color of the container body 2 .
  • such a thickness reducing portion 6 can be formed over the entire coating layer forming part 4 . That is, the above-described phenomenon can be developed over the entire coating layer forming part 4 . In terms of actual manufacture, production can be facilitated by changing the thickness of the coating layer 3 over the entire coating layer 3 as will be explained later in a description of a resin pressure. Incidentally, in this case, even if the thickness of the coating layer 3 is changed at a part where the coating layer 3 has a thickness which is not thinner than a fixed value, this change cannot be recognized as a change in color tone in some cases.
  • the thickness reducing portion 6 is formed in a range occupying 1 ⁇ 4 or above of a length of the container base portion in the height direction, and a continuous gradation change can be thereby formed in a wide range, thus providing further excellent design properties of the resin container 1 .
  • the thickness of the coating layer 3 may be substantially constant or may slightly vary. A change in thickness of the coating layer 3 at a part other than the thickness reducing portion 6 does not affect an appearance of the resin container 1 . A part where a change in thickness of the coating layer 3 affects the appearance of the resin container 1 is the thickness reducing portion 6 .
  • the coating layer 3 may have a certain degree of transparency.
  • FIG. 17 shows examples (measurement examples 1 to 5) of a thickness distribution of the coating layer 3 when measuring the thickness of the coating layer 3 along the height direction from the bottom portion 2 c side of the base portion 2 b with respect to five resin containers 1 which have different color tones or changes in thickness of the coating layer 3 , each resin container 1 being a target polypropylene resin multi-layered blow bottle (an interior content: 600 ml, a height: 180 mm, a shell diameter: 70 mm, and an average thickness of a base portion: 1.0 mm).
  • a color tone is uniform in a circumferential direction, and the color tone is gradually changed from a dark color to a light color from the bottom portion 2 c side of the base portion 2 b toward an upper side (a direction of the opening portion 2 a ).
  • a horizontal axis of the graph shown in FIG. 17 represents a height position from the bottom portion 2 c side of the base portion 2 b
  • a vertical axis of the same represents an average thickness in the circumferential direction of the coating layer 3 .
  • the coating layer 3 completely disappears at an upper part of the resin container 1 and the container body 2 is exposed on the surface.
  • the coating layer 3 becomes thinner toward the upper side but it does not completely disappear.
  • each of the resin containers 1 in the measurement examples 1 to 5 a gradation change in color tone can be obtained. Moreover, the color tone change is continuous, and the color tone is not suddenly discontinued.
  • the coating layer 3 remains even in the upper part in each of the resin containers in the measurement examples 4 and 5, and a pure color tone of the container body 2 does not appear, and hence a desired color tone change cannot be necessarily obtained in some cases depending on combinations of colors of the coating layer 3 and the container body 2 .
  • the thickness reduction rate of the coating layer 3 is set to 0.1 to 0.5 ⁇ m/mm in a range of at least 30 mm, preferably 50 mm, or more preferably 90 mm from a position immediately before the part where the coating layer 3 disappears in the height direction, thereby realizing a continuous and smooth gradation change of the coating layer 3 which is continuous with the color tone of the container body 2 .
  • the thickness of the coating layer 3 is reduced in the reduction rate of 0.1 to 1.5 ⁇ m/mm along the height direction of the resin container 1 in the measurement examples 1 to 5, and the thickness of the coating layer 3 varies in the reduction rate of 0.1 to 0.5 ⁇ m/mm in the measurement examples 1, 2 and 3.
  • the thickness of the coating layer 3 greatly differs between the measurement examples 1, 2 and 3 and the measurement examples 4 and 5 even in the same color tone change.
  • a color can be changed in the following manner. That is, in the example shown in FIG. 1 , the container body 2 is formed of a base material resin in which a coloring material such as an arbitrarily selected pigment is added. As a result, the arbitrary color is given to the container body 2 .
  • the coating layer 3 is formed of a sub-material in which a coloring material different from that added in the base material resin, e.g., a coloring material which has a similar color but a darker color tone is added. That is, a color which has a similar color and a relatively fair color tone is given to the container body 2 , and a color which has a similar color and a relatively dark color tone is given to the coating layer 3 .
  • a coloring material different from that added in the base material resin e.g., a coloring material which has a similar color but a darker color tone is added. That is, a color which has a similar color and a relatively fair color tone is given to the container body 2 , and a color which has a similar color and a relatively dark color tone is given to the coating layer 3 .
  • the thickness reducing portion 6 in which the thickness is gradually reduced toward the coating layer non-forming part 5 is formed in the coating layer 3 .
  • the thickness of the coating layer 3 is reduced, the surface of the container body 2 can be seen through the coating layer 3 . Therefore, as the coating layer 3 becomes thinner, the color tone of the container body 2 demonstrably appears and, on the other hand, the dark color tone of the coating layer 3 is gradually weakened. Further, when the coating layer 3 disappears, at this position, i.e., the coating layer non-forming part 5 , the color of the container body 2 itself is observed on the surface of the resin container 1 .
  • a color can be changed by using coloring materials having different colors as well as using coloring materials of similar colors having different color tones.
  • a bluish coloring material is added to the base material resin forming the container body 2
  • a reddish coloring material is added to the sub-material forming the coating layer 3 .
  • the container body 2 may be formed without adding a coloring agent to the base material resin in this embodiment.
  • both the lower portion and the upper portion of the container body 2 may be covered with the coating layer 3 except a substantially central portion of the container body 2 in the height direction.
  • both the upper and lower coating layers 3 may have the same color or different colors.
  • the total thickness of the container itself including the part where the thickness reducing portion 6 is formed is maintained substantially constant, but the total thickness of the part where the thickness reducing portion 6 is formed may be changed.
  • the thickness of the base material resin layer of the container body 2 may be maintained constant, and the coating layer 3 may be formed on the container body 2 .
  • the above-described change in color can be generated as long as the coating layer 3 is formed in such a manner that it disappears while gradually reducing its thickness toward the coating layer non-forming part 5 .
  • the thickness of the container itself is maintained substantially constant at the part where the thickness reducing portion 6 which generates a change in color is formed. More preferably, the total thickness of at least the base portion 2 b of the container body 2 is maintained substantially constant irrespective of the coating layer forming part 4 or the coating layer non-forming part 5 . As a result, a container shape itself can be equal to that of a similar container which is usually utilized.
  • a boundary between the container body 2 and the coating layer 3 is clearly expressed in the cross section for the convenience's sake. However, actually, the boundary between them is not clearly formed in some cases. That is, the base material resin forming the container body 2 and the sub-material forming the coating layer 3 are partially mixed with each other.
  • the base material resin and the sub-material join together in a molten state in a die head. Therefore, by adjusting solubility of both materials, various conditions for forming a parison (e.g., a degree of surface solidification of the base material resin at the time of joining) and others, the base material resin and the sub-material can be mixed and molten at a contact interface between the base material resin and the sub-material when forming a parison.
  • Performing blow molding with respect to the parison which is in a state where the base material resin and the sub-material are mixed at their contact interface can prevent the boundary between the container body 2 and the coating layer 3 from being clearly formed.
  • the position where the coating layer 3 disappears when the position where the coating layer 3 disappears is microscopically observed, it is preferable to form the position where the coating layer 3 disappears in such a manner that this position appears randomly but not continuously (e.g., not linearly). That is, when a part immediately before the position where the coating layer 3 disappears is linearly traced and observed, it can be confirmed that the coating layer 3 remains at some positions, but it is preferable that both such a state and another state in which the coating layer 3 has already disappeared exist at some positions. As a result, a further continuous gradation change in color can be expressed.
  • the resin container 1 according to this embodiment can be manufactured by blow-molding a parison extruded from an extruder, immediately subjecting the parison extruded from the extruder to melt-blow molding is preferable in terms of thermal profitability.
  • the resin used to manufacture the resin container 1 it is possible to use a thermoplastic resin which is usually utilized for this type of resin containers, e.g., polyethylene terephthalate, polyethylene, polypropylene, polystyrene and others or a combination of these materials and ethylene-vinylalcohol copolymer, polyamide, cyclic olefin, polyester, modified polyethylene and others, but it is preferable for the base material resin forming the container body 2 or the sub-material forming the coating layer 3 to have MI which falls within a range of 0.1 to 30 g/10 min considering moldability. In particular, when MI of the sub-material is set to this range, control over a change in thickness of the coating layer 3 can be facilitated.
  • the coloring material it is possible to utilize various kinds of organic, inorganic or photoluminescent pigments, various kinds of dyes and others.
  • the base material resin and the sub-material can have different properties by adding the different coloring materials to the base material resin and the sub-material in this embodiment, the base material resin and the sub-material may appropriately have different types or grades of resins as well.
  • various physical properties, e.g., mechanical strength of the container body 2 may be different from those of the coating layer 3 .
  • a resin whose properties are different from those of the base material resin is used as the sub-material forming the coating layer 3 in the present invention, but it is good enough for such a sub-material to have any property different from that of the base material resin in accordance with a purpose of forming the coating layer 3 , and it is possible to use, e.g., a resin which is of the same type as the base material resin but has a different coloring state, or a resin which is of a different type from the base material resin and has a different coloring state, a resin having a composition, physical properties, an additive and others which are different from those of the base material resin.
  • FIG. 2 shows an outline of a first modification, in which FIG. 2 ( b ) is a cross-sectional view taken along a line A-A depicted in FIG. 2 ( a ).
  • FIG. 3 shows an outline of a second modification and is a partially cutaway cross-sectional view in which a resin container 1 is partially cut away.
  • FIG. 4 shows an outline of a third modification, in which FIG. 4 ( b ) is a cross-sectional view taken along a line B-B depicted in FIG. 4 ( a ).
  • FIG. 5 shows an outline of a fourth modification and is a partially cutaway cross-sectional view in which a resin container 1 is partially cut away.
  • FIG. 6 shows an outline of a fifth modification and is an enlarged cross-sectional view of a part corresponding to a portion surrounded by the chain line depicted in FIG. 1 .
  • the coating layer 3 is formed on the part extending from a part below the substantially central portion of the base portion 2 b in the height direction and the bottom portion 2 c in the example shown in FIG. 1 , the coating layer 3 is not restricted to one formed in such a conformation.
  • a rectangular coating layer 3 may be formed at an arbitrary position on a side surface (a base portion 2 b ) of a resin container 1 .
  • a shape of the coating layer 3 it is possible to adopt an arbitrary shape, e.g., any other polygonal shape such as a triangular shape, a circular shape, a star shape, a stripe shape and others besides the illustrated shape.
  • a position, a size and a range of the coating layer 3 formed on the resin container 1 can be appropriately selected as required. If a coating layer non-forming part 5 exists, a substantially entire surface of the container body 2 may be covered with the coating layer 3 . That is, the modification is within the scope of this embodiment as long as a thickness reducing portion 6 in which the coating layer 3 disappears while gradually reducing its thickness in the above-described rate exists.
  • the coating layer 3 is not restricted to the conformation in which its thickness is monotonously reduced in the thickness reducing portion 6 .
  • a change in thickness may be repeated in such a manner that the thickness is reduced, then the thickness is increased and the thickness is again reduced, for example. As a result, how a color is repeatedly changed can be expressed.
  • a coating layer 3 not only one type but also a plurality of coating layers having different shapes, sizes, colors and others may be formed, and a color pattern may be constituted by using combinations of such coating layers.
  • the coating layer 3 is not restricted to the case where it appears on the surface side of the resin container 1 . Like the third modification shown in FIG. 4 , it can be formed on an inner surface side of a resin container 1 . In this case, the coating layer 3 does not affect an appearance of the resin container 1 at a part where a thickness of the coating layer 3 is small and a thickness of a container body 2 is relatively large. On the other hand, the coating layer 3 can be seen through the container body 2 at a part where the thickness of the coating layer 3 is large and the thickness of the container body 2 is relatively small. Therefore, when the coating layer 3 is formed in such a conformation, a color or the like of the coating layer 3 can be lightly observed on the surface of the resin container 1 as the thickness of the coating layer 3 is increased.
  • the container body 2 can be provided with a certain degree of transparency like the coating layer 3 formed on the surface side of the resin container 1 .
  • the thus configured color pattern can be combined with transfer of an irregular shape on an inner surface of a metal mold, appropriate irregular shape enlargement processing such as embossing, or printing such as screen printing.
  • an outer layer 7 such as a clear layer can be appropriately formed on a surface of a resin container 1 .
  • an inner layer 8 such as a gas barrier layer can be formed on an inner surface of the same as required.
  • a resin container 1 may be provided with a color tone adjusting layer 9 on an outer surface side of a container body 2 , and a coating layer 3 may be formed on an outer surface side of this color tone adjusting layer 9 .
  • a coating layer 3 may be formed on an outer surface side of this color tone adjusting layer 9 .
  • an innermost surface of the resin container 1 may be provided with an inner layer 8 .
  • the color tone adjusting layer 9 is covered with the coating layer 3 at a coating layer forming part 4 , it is exposed to the outside at a coating layer non-forming part 5 and appears on an appearance of the resin container 1 together with the coating layer 3 . Therefore, the color tone adjusting layer 9 can be used to adjust color tones of the container body 2 and the coating layer 3 .
  • a pearl pigment can be contained in the coating layer 3 and the color tone adjusting layer 9 .
  • each of the coating layer 3 and the color tone adjusting layer 9 can be formed of a material having the shiny sense.
  • a pigment contained in the color tone adjusting layer 9 or a material to be used can be appropriately selected to adjust a color tone of the container body 2 .
  • the resin forming the color tone adjusting layer 9 is not restricted, it is preferable to form the color tone adjusting layer 9 by using the same resin as that of the coating layer 3 considering printability when printing the surface of the resin container 1 .
  • a change in color can be expressed on the surface of the resin container 1 by using only a change in thickness of the coating layer 3 integrally formed with the container body 2 .
  • the obtained decorative design is realized by the coating layer 3 which is integrally formed with the container body 2 , the decorative design with a high sense of togetherness with the container can be provided. As a result, a high value can be added to the container, thereby obtaining the resin container which greatly appeals to consumers.
  • a manufacturing apparatus of a resin container according to the present invention which is preferable for producing such a resin container will now be described with reference to the accompanying drawings, and a manufacturing method of a resin container according to the present invention will be also explained.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of a manufacturing apparatus of a resin container according to the present invention.
  • a main extruder 10 heats, fuses and extrudes a base material resin forming a container body 2 , and continuously supplies this resin to a die head 20 in accordance with a molding cycle.
  • the die head 20 adjusts a gap between a shell 21 and a core 22 as required in accordance with a command based on a parison control program from a non-illustrated control portion. As a result, a parison is extruded with a predetermined thickness from a slit portion 28 opened between the shell 21 and the core 22 .
  • a discharge portion 23 which supplies a sub-material forming a coating layer 3 into the die head 20 is provided to the shell 21 .
  • the discharge portion 23 is provided in the vicinity of the slit portion 28 opened between the shell 21 and the core 22 on an end side of the die head 20 , preferably within a range of 5 mm or below from the end of the die head 20 in such a manner that the sub-material joins a base material resin supplied from the main extruder 10 immediately before the parison is extruded.
  • the parison can be extruded with a substantially fixed thickness irrespective of whether the sub-material is added to the parison.
  • the discharge portion 23 may be opened along an entire circumference of the core 22 so that the sub-material is added to an entire circumference of the parison.
  • the coating layer 3 can be formed in such a conformation as the resin container 1 shown in FIG. 1 .
  • the sub-material may be added from a part (one position or a plurality of positions) of the entire circumference surrounding the core 22 . Specifically, it is good enough to partially close the discharge portion 23 which is opened on the entire circumference of the core 22 by using an appropriate closing member. As a result, the rectangular or strip-shaped coating layer 3 can be formed.
  • discharge portions 23 a and 23 b can be provided on two stages in a direction of extruding the parison.
  • two types of sub-materials having different properties may be supplied from the discharge portions 23 a and 23 b , or the sub-materials having the same properties may be supplied from the same.
  • a later-described sub-extruder 30 can be provided in accordance with each of the discharge portions 23 a and 23 b.
  • the sub-material forming the coating layer 3 may be supplied from the discharge portion 23 a , and a material forming the above-described clear layer 7 or the like may be supplied from the discharge portion 23 b .
  • the die head 20 can be configured in such a manner that the material forming the clear layer 7 or the like on the surface of the parison is supplied immediately after or after extruding the parison.
  • providing the plurality of sub-extruders 30 in accordance with the plurality of discharge portions 23 can supply more types of the sub-materials.
  • the specific configuration of the die head 20 is not particularly restricted as long as the discharge portion 23 is provided in such a manner that the base material resin and the sub-material join in the die head 20 as described above.
  • a rotary die head 20 such as shown in FIG. 11 can be adopted. This has a configuration in which the slit-shaped discharge portion 23 (a slit 24 ) rotates around the core 22 .
  • the die head 20 is configured as follows.
  • a fixed die portion 21 a and a rotary die portion 21 b constitute the die head 20 , and the discharge portion 23 is formed by utilizing a gap between these portions.
  • FIG. 12 (a cross-sectional view taken along a line C-C in FIG. 11 )
  • a part of the discharge portion 23 is closed by a closing member 21 c .
  • the closing member 21 is integrally provided to the rotary die portion 21 b .
  • the slit 24 is formed.
  • the plurality of slits 24 may be provided.
  • the rotary die portion 21 b rotates around the core 22 by a gear 25 which rotates by a non-illustrated driving source. According to this rotation, the slit 24 rotates around the core 22 .
  • controlling its rotation can form the coating layer 3 in a more complicated shape.
  • the sub-material supplied to the die head 20 reaches the discharge portion 23 through an annular portion 26 formed to surround the entire circumference of the core 22 and a cone-shaped portion 27 constituted of a gap formed into a substantially conical shape which is continuous with the discharge portion 23 from this annular portion 26 (see FIG. 7 ). More specifically, the sub-material flows into the cone-shaped portion 27 while filling the annular portion 26 , and is supplied to the discharge portion 23 .
  • a timing at which the sub-material is discharged may deviate in some cases depending on a part which is opened on the right-hand side of the core 22 in FIG. 7 and close to a later-described communicating path 44 through which the sub-material is supplied to the die head 20 and a part which is opened on the left-hand side apart from the communicating path 44 . That is, discharge of the sub-material from the part which is opened on the left-hand side is delayed as compared with the part which is opened on the right-hand side.
  • Such a timing deviation can be eliminated by inclining the annular portion 26 toward the lower left side in FIG. 7 with respect to a level plane in such a manner that the annular portion 26 relatively approximates the discharge portion 23 as distanced from the side where the sub-material is supplied, but the following means can be adopted to solve this problem in place of or in addition to the former method.
  • the sub-material can be set to evenly flow to the cone-shaped portion 27 on the entire circumference of the annular portion 26 after the annular portion 26 is filled with the sub-material by, e.g., increasing a diameter of the annular portion 26 , or an appropriate part of the annular portion 26 and/or the cone-shaped portion 27 can be narrowed so that a flow rate of the sub-material is adjusted in accordance with the narrowed part.
  • Eliminating the sub-material discharge timing deviation in this manner can maintain a boundary between a coating layer forming part 4 and a coating layer non-forming part 5 in a horizontal state along the circumferential direction, but intentionally generating such a sub-material discharge timing deviation can change a shape of the coating layer 3 .
  • a parison 1 a which is extruded from the die head 20 and to which a sub-material 3 a forming the coating layer 3 is added at a predetermined position is fed to a position between a pair of metal molds 60 a and 60 b .
  • the metal molds 60 a and 60 b move in a direction indicated by an arrow in the drawing, thereby effecting a mold fastening operation.
  • pressurized air is blown into the metal molds to perform blow molding.
  • the hollow resin container 1 in which the coating layer 3 covering a part of the container body 2 is formed integrally with the container body 2 .
  • supply of the base material resin from the main extruder 10 is appropriately controlled in accordance with a molding cycle, but supply of the base material resin from the main extruder 10 is controlled in synchronization with a molding timing in case of performing blow molding immediately after extrusion of the parison.
  • the metal molds 60 a and 60 b are set in such a manner that a downstream side of extrusion of the parison 1 a becomes the bottom side of the container.
  • the top side and the bottom side of the metal molds 60 a and 60 b may be inverted depending on a decorative design applied to the resin container 1 . That is, although not shown, the metal molds 60 a and 60 b may be set in such a manner that an upstream side of extrusion of the parison 1 a becomes the bottom side of the container.
  • the example shown in FIG. 13 assumes manufacture of the resin container 1 (see FIG. 1 ) in which the coating layer 3 is formed from the substantially central part to the lower side in the height direction, but inverting the top side and the bottom side of the metal molds 60 a and 60 b can form the coating layer 3 from the substantially central part to the upper side in the height direction.
  • the top side and the bottom side of the metal molds 60 a and 60 b can be inverted in accordance with each lot, a rotary mechanism which can invert the top side and the bottom side of the metal molds 60 a and 60 b in the same lot may be provided.
  • the example of the resin container 1 has given the description that a reverse change in color can be observed by counterchanging the coloring material added to the base material resin and the coloring agent added to the sub-material.
  • a direction of a change in thickness of the coating layer 3 remains unchanged, a completely reverse change in color cannot be obtained.
  • the sub-material forming the coating layer 3 is performed in accordance with each molding cycle. Specifically, the sub-material is supplied as follows.
  • one molding cycle means a cycle from molding of one resin container 1 to molding of the next resin container 1 .
  • the sub-material which is allowed to join the base material resin in the die head 20 is supplied from the sub-extruder 30 .
  • the sub-extruder 30 is connected with a switching portion 41 , and intermittently extrudes a predetermined quantity of the molten sub-material.
  • the switching portion 41 constitutes a part of a storage portion 40 , and switches storage and supply of the sub-material by using a switching valve 45 .
  • the sub-material extruded by the sub-extruder 30 is temporarily stored in the storage portion 40 .
  • the storage portion 40 is provided with two accumulators 42 , 43 .
  • the switching valve 45 of the switching portion 41 alternately performs connection and disconnection of the sub-extruder 30 and the accumulators 42 , 43 and of the accumulators 42 , 43 and the communicating path 44 .
  • the communicating path 44 couples the storage portion 40 with the die head 20 .
  • the sub-material stored in the storage portion 40 is supplied to the discharge portion 23 of the die head 20 through the communicating path 44 . At this time, supply of the sub-material is alternately and intermittently performed from the two accumulators 42 , 43 .
  • Operations of the switching valve 45 and the accumulators 42 , 43 are also carried out in accordance with a command based on a parison control program from a non-illustrated control portion.
  • one accumulator 42 is filled with the sub-material molten and extruded from the sub-extruder 30 through the switching valve 45 . Furthermore, when the base material resin is extruded from the main extruder 10 and a position at which the sub-material should join the base material resin gets close to an outlet of the die head 20 , the switching valve 45 is switched based on a command from the control portion. Simultaneously, the accumulator 42 operates. Then, the sub-material filled in the accumulator 42 is supplied to the discharge portion 23 of the die head 20 through the communicating path 44 . As a result, the sub-material joins the base material resin in the die head 20 , and the parison having the sub-material added to a predetermined position thereof is extruded.
  • the switching valve 45 connects one accumulator 42 with the communicating path 44 and simultaneously connects the other accumulator 43 with the sub-extruder 30 (a state shown in FIG. 7 ). As a result, the sub-material extruded from the sub-extruder 30 is filled in the accumulator 43 .
  • the sub-material is alternately stored in the two accumulators 42 , 43 from the sub-extruder 30 , and a predetermined quantity of the sub-material is alternately supplied to the discharge portion 23 of the die head 20 from the accumulators 42 , 43 .
  • the switching operation of the switching valve 45 is carried out by a non-illustrated cylinder, and the operations of the two accumulators 42 , 43 are performed by respective cylinders 42 a and 43 a or the like.
  • adjusting operating speeds of the accumulators 42 , 43 can adjust a supply speed of the sub-material, i.e., an addition quantity of the sub-material with respect to the parison.
  • the thickness of the coating layer 3 can be changed, but a supply speed of the sub-material must be finely adjusted in case of forming the thickness reducing portion 6 in which the thickness of the coating layer 3 is continuously reduced in the above-described reduction rate.
  • fine adjustment of the supply speed of the sub-material is difficult immediately before the coating layer 3 disappears, and a supply quantity of the sub-material cannot be reduced in some cases because the sub-material in the vicinity of the discharge portion 23 is drawn into a flow of the base material resin.
  • the thickness of the coating layer 3 cannot be reduced as intended, or the thickness of the coating layer 3 cannot be reduced and becomes large.
  • the sub-material which should be discharged from the discharge portion 23 stays in the vicinity of the discharge portion 23 , and the thickness of the coating layer 3 is reduced more than intended in some cases.
  • the sub-material is supplied from the accumulator 42 , and then a piston 42 b is operated in a direction indicated by an arrow in the drawing to pull back the sub-material into the accumulators 42 , 43 .
  • a second suck-back mechanism 60 can be provided at a position close to the die head 20 .
  • this second suck-back mechanism 60 is not restricted as long as this mechanism can suck the sub-material in the communicating path 44 and thereby adjust a resin pressure in the communicating path 44 .
  • this mechanism can suck the sub-material in the communicating path 44 and thereby adjust a resin pressure in the communicating path 44 .
  • the suck-back control more sensitively functions as the second suck-back mechanism 60 is provided at a position closer to the die head 20 .
  • a reduction rate of the resin pressure in the communicating path 44 is thereby increased, and the sub-material may be pulled back from the discharge portion 23 of the die head 20 more than necessary.
  • the thickness reduction rate of the coating layer 3 is increased, and a desired gradation change cannot be obtained in some cases.
  • suck-back control can be performed at an arbitrary timing in accordance with, e.g., a gradation change to be obtained, it is preferable to carry out the suck-back control at least once before the resin pressure in the communicating path 44 is reduced to 70 to 15% of a maximum resin pressure when the sub-material joins the base material resin.
  • a resin pressure in the communicating path 44 is gradually reduced, and a reduction rate is also decreased with a reduction in the resin pressure. It is preferable to perform the suck-back control before the reduction rate per unit time of the resin pressure at this time reaches 10% or below of the maximum reduction rate, and there is also a tendency that an effect of the suck-back control is hardly obtained if this timing is missed.
  • the reduction rate of the resin pressure in the communicating path 44 is increased more than necessary, a quantity of the sub-material which is pulled back from the discharge portion 23 tends to become too large. Furthermore, such a tendency becomes prominent when the suck-back control using the second suck-back mechanism 60 alone is performed. In order to avoid this, it is preferable for the reduction rate of the resin pressure in the communicating path 44 after the suck-back control to be five times or below the reduction rate of the resin pressure before the suck-back control.
  • a suck-back quantity by the second suck-back mechanism 60 it is preferable to set a suck-back quantity by the second suck-back mechanism 60 to a relatively small value, perform the sensitive suck-back control by the second suck-back mechanism 60 at an initial stage of the suck-back control, and then effect the suck-back control by the accumulators 42 , 43 .
  • the resin pressure in the communicating path 44 can be arbitrarily reduced while preventing the reduction rate of the resin pressure in the communicating path 44 from becoming extremely large, thereby enabling fine adjustment of a supply speed of the sub-material.
  • FIG. 8 shows examples of a change in the resin pressure in the communicating path 44 when the suck-back control was not performed and when the suck-back control was effected in the manufacturing apparatus depicted in FIG. 7 .
  • a graph of FIG. 8 ( a ) shows an example of a change in the resin pressure in the communicating path 44 when the suck-back control was not performed. It is to be noted that the resin pressure was measured at a part of the communicating path 44 in the vicinity of the die 20 .
  • a graph of FIG. 8 ( b ) shows an example when the suck-back control using the accumulators 42 , 43 alone was performed
  • a graph of FIG. 8 ( c ) shows an example when the suck-back control using the second suck-back mechanism 60 alone was carried out
  • a graph of FIG. 8 ( d ) shows an example when both the suck-back control using the accumulators 42 , 43 and the suck-back control using the second suck-back mechanism 60 were performed.
  • a vertical axis represents a resin pressure
  • a horizontal axis represents a time
  • ta denotes a supply start time of the sub-material by the accumulators 42 , 43
  • tb denotes a suck-back control start time by the accumulators 42 , 43
  • tc denotes a suck-back control start time by the second suck-back mechanism 60
  • FIG. 9 is a graph in which the graphs of FIGS. 8 ( a ) to ( d ) are superimposed.
  • a suck-back quantity by the second suck-back mechanism 60 is set smaller than a suck-back quantity when the suck-back control using the second suck-back mechanism 60 alone is performed, but the resin pressure in the communicating path 44 can be reduced without extremely increasing the reduction rate by effecting the suck-back control using the accumulators 42 , 43 after the suck-back control utilizing the second suck-back mechanism 60 .
  • the sub-extruder 30 it is possible to use not only an extruder which extrudes a fixed quantity of a resin at a time in accordance with a predetermined operation but also an extruder including a reciprocating type screw which extrudes a fixed quantity of a resin at fixed intervals. In this case, a back-and-forth movement of the screw of the sub-extruder 30 is controlled in synchronization with an operation of the switching valve 45 and an operation of each of the accumulators 42 , 43 . Further, as the sub-extruder 30 , an extruder which continuously extrudes a resin can be used.
  • the sub-material may be supplied continuously as long as supply of the sub-material is carried out in accordance with one molding cycle.
  • a gear pump 50 can substitute for the storage portion 40 so that a flow rate of the sub-material extruded from the sub-extruder 30 is controlled to enable continuous supply.
  • the gear pump 50 is provided with a gear case 51 and two gears 52 a and 53 a .
  • the gears 52 a and 53 a rotate in a direction indicated by an arrow in the drawing while meshing with each other.
  • the mesh of the two gears 52 a and 53 a is released at an inflow portion 54 , the sub-material supplied from the sub-extruder 30 enters gear grooves 52 b and 53 b.
  • the sub-material which has entered the gear grooves 52 b and 53 b is held between the gear case 51 and the gear grooves 52 b and 53 b , and carried to an outflow portion 55 in a rotation direction of the gears 52 a and 53 a , i.e., a direction indicated by an arrow in the drawing by rotation of the gears 52 a and 53 a .
  • teeth of the gears 52 a and 53 a again mesh with each other at the outflow portion 55 , the sub-material in the gear grooves 52 b and 53 b is pushed out and sequentially supplied to the outflow portion 55 .
  • the sub-material can be continuously supplied while controlling a flow rate of the sub-material fed to the die head 20 by appropriately adjusting a extrusion quantity of the sub-material from the sub-extruder 30 and a rotating speed of the gears 52 a and 53 a . Furthermore, rotating the gears 52 a and 53 a in a reverse direction can enable the sub-back control.
  • This apparatus in the above manner enables the change in the thickness of the coating layer 3 with a higher degree of freedom. Furthermore, combining this apparatus with the above-described rotary die head 20 can provide a more complicated shape of the coating layer 3 .
  • FIG. 15 shows an outline of a resin container according to a second embodiment of the present invention, and is a partially cutaway cross-sectional view in which a resin container 1 is partially cut away.
  • the illustrated resin container 1 is an example applied to a shampoo container like the first embodiment.
  • a coating layer 3 which covers a container body 2 is formed in the resin container 1 , a position at which the coating layer 3 is formed is an entire surface of the container as different from the first embodiment.
  • a thin-walled portion 6 a in which a thickness is gradually reduced is provided to the coating layer 3 .
  • a surface of the container body 2 can be seen through the coating layer 3 as the coating layer 3 gradually becomes thinner.
  • a change in color appears like the thickness reducing portion 6 in the first embodiment. That is, the thin-walled portion 6 a in this embodiment is a part which demonstrates the same function as that of the thickness reducing portion 6 in the first embodiment.
  • the thin-walled portion 6 a is a part where the above-described phenomenon is developed, and means a predetermined range in the coating layer 3 which is formed with a thin wall as compared with other parts of the coating layer 3 .
  • a chain line indicates a boundary between the thin-walled portion 6 a and the other part of the coating layer 3 .
  • This embodiment is different from the first embodiment in that the coating layer 3 does not disappear.
  • the coating layer 3 gradually becomes thin, and then a thickness thereof is maintained without change, or a thickness thereof is gradually increased.
  • a change in thickness may be repeated in such a manner that the thickness is increased and then again reduced, for example.
  • a configuration in which the coating layer 3 disappears while gradually reducing its thickness and the coating layer non-forming part 5 is formed falls within a scope of the first embodiment as described above even if the coating layer 3 covers the substantially entire surface of the container body 2 .
  • the coating layer 3 which covers the entire surface of the container body 1 is formed in the resin container 1 .
  • the strip-like thin-walled portion 6 a is formed along a circumferential direction of the resin container 1 .
  • the thickness of the coating layer 3 is gradually reduced, then a fixed thickness is maintained, and thereafter the thickness is gradually increased.
  • the container shape itself is the same as that of a usually utilized type of container
  • it 2 a is preferable to maintain the thickness of the container itself substantially constant irrespective of the coating layer forming part 4 or the coating layer non-forming part 5 .
  • This embodiment is largely different from the first embodiment in the above-described point but has substantially the same configuration at any other parts, and hence a detailed description of any other structure will be eliminated. Additionally, the resin container 1 according to this embodiment can be preferably manufactured by the above-described manufacturing apparatus like the first embodiment.
  • a change in color can be expressed on the surface of the resin container 1 by a change in thickness alone of the coating layer 3 which is formed integrally with the container body 2 like the first embodiment.
  • a decorative design using a color or a colored pattern can be applied to the container itself with a high degree of freedom.
  • the decorative design since the obtained decorative design is realized by the coating layer 3 which is formed integrally with the container body 2 , the decorative design having a higher sense of togetherness with the container can be provided. Consequently, a high value can be added to the container, and the resin container which appeals to consumers can be obtained.
  • the above-described first and second embodiments add a high value to the resin container by demonstrating a design effect.
  • the resin container according to the present invention can also add a high value by demonstrating a functional effect.
  • As a third embodiment of the resin container according to the present invention an example of the latter case will now be described hereinafter.
  • FIG. 16 shows an outline of a resin container according to a third embodiment of the present invention, and is a partially cutaway cross-sectional view in which a resin container 1 is partially cut away.
  • the illustrated resin container 1 is an example applied to a shampoo container like the first embodiment.
  • a coating layer 3 which partially covers a container body 2 is formed in the resin container 1 , as different from the first embodiment, a position at which the coating layer 3 is formed is a bottom portion 2 c of the container and the vicinity thereof as shown in the drawing.
  • a base material resin forming a container body 2 is not subjected to special processing.
  • a resin utilized to manufacture this type of resin container is used as it is.
  • a sub-material forming the coating layer 3 has properties different from those of the base material resin by adding an antibacterial agent to the same resin as the base material resin.
  • the resin container 1 according to this embodiment can be preferably manufactured by the above-described manufacturing apparatus like the first embodiment.
  • the shampoo container exemplified as this embodiment is used under a humid environment like a bathroom for a long period of time, and it is often the case that this container gets moldy. It is unsanitary to leave the moldy container as it is, and it is unpleasant to the eyes.
  • adding an antibacterial agent to a resin forming the container can be considered.
  • an antibacterial agent is expensive, and an increase in cost of the container is unavoidable.
  • the coating layer 3 containing an antibacterial agent is partially formed at the bottom portion of the container or the vicinity thereof where the mold is apt to be generated. As a result, an increase in cost can be suppressed, and it is possible to provide the high value-added resin container 1 which demonstrates a further effective antibacterial effect or fungus proofing function with a small amount of the antibacterial agent.
  • the bottom portion of the container and the vicinity thereof are apt to get moldy, but it is not true that a side surface of the container does not get moldy at all. Even if the mold is generated on the side surface of the container, a part which gets moldy and a part where occurrence of the mold is suppressed by the mildew proofing function of the antibacterial agent are not clearly observed in the resin container 1 according to this embodiment. That is, since the thickness of the coating layer 3 to which the antibacterial agent is added is gradually reduced in the thickness reducing portion 6 , the mildew proofing function is also weakened with this gradual reduction.
  • the base material resin and the sub-material are different from each other in addition of the antibacterial agent alone in this embodiment. Therefore, the coating layer forming part 4 and the coating layer non-forming part 5 are not outwardly discriminated, and the container according to this embodiment is the same as a regular container. As a result, unpredictably quality can be given to consumers.
  • the above-mentioned functional effect can add a high value to the container, and the resin container which greatly appeals to consumers can be obtained.
  • the present invention is not restricted to the foregoing embodiments and can be modified in many ways within the scope of the invention.
  • the present invention can be applied to containers of food products such as food items or beverages, sanitary goods such as a body soap, cosmetics, or drugs.
  • the present invention is not restricted to the container which is relatively rigid, e.g., a shampoo container, and it can be applied to a container having flexibility.
  • the present invention adds a high value to the container by an excellent design effect or functional effect, and provides the resin container which greatly appears to consumers, and the manufacturing method and the manufacturing apparatus thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
US11/629,621 2004-07-28 2005-07-28 Resin Container, Manufacturing Method of Resin Container, and Manufacturing Apparatus of Resin container Abandoned US20080063823A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004-220444 2004-07-28
JP2004220444 2004-07-28
PCT/JP2005/013860 WO2006011565A1 (ja) 2004-07-28 2005-07-28 樹脂製容器、樹脂製容器の製造方法及び樹脂製容器の製造装置

Publications (1)

Publication Number Publication Date
US20080063823A1 true US20080063823A1 (en) 2008-03-13

Family

ID=35786313

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/629,621 Abandoned US20080063823A1 (en) 2004-07-28 2005-07-28 Resin Container, Manufacturing Method of Resin Container, and Manufacturing Apparatus of Resin container
US12/379,141 Expired - Fee Related US7891963B2 (en) 2004-07-28 2009-02-13 Manufacturing apparatus of resin container
US12/379,140 Expired - Fee Related US7935300B2 (en) 2004-07-28 2009-02-13 Manufacturing method of resin container

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/379,141 Expired - Fee Related US7891963B2 (en) 2004-07-28 2009-02-13 Manufacturing apparatus of resin container
US12/379,140 Expired - Fee Related US7935300B2 (en) 2004-07-28 2009-02-13 Manufacturing method of resin container

Country Status (8)

Country Link
US (3) US20080063823A1 (zh)
EP (2) EP1772385B1 (zh)
JP (2) JP4924036B2 (zh)
KR (1) KR101280765B1 (zh)
CN (1) CN100564169C (zh)
AT (2) ATE495981T1 (zh)
DE (1) DE602005026011D1 (zh)
WO (1) WO2006011565A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129955A1 (en) * 2010-09-01 2013-05-23 Inotech Kunststofftechnik Gmbh Method for Producing a Multilayered Preform and a Preform
TWI505729B (zh) * 2009-02-09 2015-10-21 Qualcomm Inc 觸發式位置服務
US9744749B2 (en) 2012-04-10 2017-08-29 Toyo Seikan Group Holdings, Ltd. Plastic container having excellent decorative appearance
US11192287B2 (en) * 2016-03-11 2021-12-07 Bank Of America, N.A. Container and method of manufacture
CN115256872A (zh) * 2022-03-17 2022-11-01 鹿啄泉矿泉水有限公司 具有颜色渐变效果的瓶体以及瓶坯

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098837A1 (de) * 2006-02-27 2007-09-07 Alpla-Werke Alwin Lehner Gmbh & Co. Kg Herstellverfahren für extrusionsgeblasene kunststoffflaschen und extrusionsgeblasene kunststoffflasche
DE102006034318C5 (de) * 2006-07-21 2011-02-24 Henkel Ag & Co. Kgaa Mehrschichtige Verpackung
US7959426B2 (en) 2007-09-27 2011-06-14 Graham Packaging Company, L.P. Apparatus for producing a multi-layer parison having a layer of varying thickness
KR100980689B1 (ko) * 2008-06-27 2010-09-07 애경산업(주) 다색조 용기
IT1397716B1 (it) 2009-02-05 2013-01-24 Lumson Spa Contenitore con decorazioni in rilievo
CN101537900B (zh) * 2009-04-24 2010-12-08 广东欧亚包装股份有限公司 变壁铝质包装罐、其制造方法及专用模具
PL2384984T3 (pl) * 2010-05-06 2014-01-31 Clariant Masterbatches Italia S P A Sposób wytwarzania wielowarstwowych rozdmuchiwanych wewnątrz pustych wyrobów i taki wielowarstwowy rozdmuchiwany wyrób wewnątrz pusty
CN105939790A (zh) * 2013-12-27 2016-09-14 日涂汽车涂料有限公司 多层涂膜的形成方法
CN109311272A (zh) * 2016-05-31 2019-02-05 Sig技术股份公司 用于尺寸稳定的具有具备反射率的外聚合物层的食品容器的层压件
CN106476245A (zh) * 2016-10-14 2017-03-08 宁波志达汽车部件有限公司 一种双色出气管的加工设备和制备方法
US11040475B2 (en) 2017-09-08 2021-06-22 Graham Packaging Company, L.P. Vertically added processing for blow molding machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547094B1 (en) * 1997-04-14 2003-04-15 Ian Orde Michael Jacobs Injection moulding
US20040166316A1 (en) * 2002-11-21 2004-08-26 Tamio Noguchi Iridescent pigment having high brilliance and high chroma

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329752A (en) * 1963-10-07 1967-07-04 Owens Illinois Inc Method for making plastic articles
JPS5314105B2 (zh) * 1973-05-24 1978-05-15
JPS5453088A (en) * 1977-10-03 1979-04-26 Toppan Printing Co Ltd Multilayer container with appearance of different hues and method of making said container
JPS5862634A (ja) * 1981-10-12 1983-04-14 Nippon Kogaku Kk <Nikon> 電子閃光装置
JPS5862634U (ja) * 1981-10-22 1983-04-27 凸版印刷株式会社 呈色性多層容器
JP2510101B2 (ja) * 1991-07-03 1996-06-26 株式会社ジャパニック 屎尿処理装置
JP2000117818A (ja) * 1998-10-14 2000-04-25 Tigers Polymer Corp 複合パリソンの成形方法および装置
JP4186275B2 (ja) * 1998-10-30 2008-11-26 阪神化成工業株式会社 多層薄肉容器
JP2000203587A (ja) * 1999-01-19 2000-07-25 Toppan Printing Co Ltd 汚染防止容器及びその製造方法
JP3464405B2 (ja) * 1999-02-18 2003-11-10 阪神化成工業株式会社 多層薄肉容器
JP3982173B2 (ja) * 2000-12-05 2007-09-26 東洋製罐株式会社 プラスチック製容器の製造方法
US6547995B1 (en) * 2001-09-21 2003-04-15 Stratasys, Inc. Melt flow compensation in an extrusion apparatus
JP2003211523A (ja) * 2002-01-29 2003-07-29 Toyo Seikan Kaisha Ltd プラスチック製容器の製造方法およびその成形装置
EP1547751A4 (en) * 2002-09-05 2007-03-07 Yoshino Kogyosho Co Ltd LAMINATED SHAPE BODY AND PROCESS FOR PRODUCING THE BODY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547094B1 (en) * 1997-04-14 2003-04-15 Ian Orde Michael Jacobs Injection moulding
US20040166316A1 (en) * 2002-11-21 2004-08-26 Tamio Noguchi Iridescent pigment having high brilliance and high chroma

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505729B (zh) * 2009-02-09 2015-10-21 Qualcomm Inc 觸發式位置服務
US20130129955A1 (en) * 2010-09-01 2013-05-23 Inotech Kunststofftechnik Gmbh Method for Producing a Multilayered Preform and a Preform
US9981442B2 (en) * 2010-09-01 2018-05-29 Inotech Kunststofftechnik Gmbh Method for producing a multilayered preform and a preform
DE102010036103B4 (de) * 2010-09-01 2018-11-08 Inotech Kunststofftechnik Gmbh Mehrkomponenten-Spritzgussverfahren zur Herstellung eines hülsenförmigen Vorformlings und Vorformling
US9744749B2 (en) 2012-04-10 2017-08-29 Toyo Seikan Group Holdings, Ltd. Plastic container having excellent decorative appearance
US11192287B2 (en) * 2016-03-11 2021-12-07 Bank Of America, N.A. Container and method of manufacture
CN115256872A (zh) * 2022-03-17 2022-11-01 鹿啄泉矿泉水有限公司 具有颜色渐变效果的瓶体以及瓶坯

Also Published As

Publication number Publication date
JP4924036B2 (ja) 2012-04-25
US7891963B2 (en) 2011-02-22
CN100564169C (zh) 2009-12-02
US20090206523A1 (en) 2009-08-20
EP2186737A1 (en) 2010-05-19
CN1984815A (zh) 2007-06-20
ATE495981T1 (de) 2011-02-15
EP1772385A1 (en) 2007-04-11
EP2186737B1 (en) 2011-09-21
KR101280765B1 (ko) 2013-07-05
JP5321663B2 (ja) 2013-10-23
EP1772385B1 (en) 2011-01-19
US20090208599A1 (en) 2009-08-20
KR20070053208A (ko) 2007-05-23
US7935300B2 (en) 2011-05-03
DE602005026011D1 (de) 2011-03-03
WO2006011565A1 (ja) 2006-02-02
ATE525296T1 (de) 2011-10-15
EP1772385A4 (en) 2009-07-08
JP2012035915A (ja) 2012-02-23
JPWO2006011565A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
US7935300B2 (en) Manufacturing method of resin container
AU2005210651B2 (en) Preforms made of two or more materials and processes for obtaining them
RU2455209C1 (ru) Полиэфирная емкость, изготовленная формованием с раздувом, с наформованным термопластичным слоем
CN102922664B (zh) 通过注射包覆成型得到的双层预型件
US20180002071A1 (en) Method of injection molding preform
US20100028577A1 (en) Preform for the production of biaxially extended plastic bottles and plastic bottle produced from a preform
JP2002173124A (ja) プラスチック製容器及びその製造方法
JPWO2004022307A1 (ja) 積層成形体及びその製造方法
WO2005115755A1 (ja) 積層成形体
JP2008189314A (ja) 合成樹脂ブロー成形容器及びその成形方法
JP2006312485A (ja) 多層構造樹脂容器
JP2005219760A (ja) 多層構造樹脂容器
CN110678328B (zh) 装饰多层挤出吹塑瓶
JP5472829B2 (ja) 合成樹脂ブロー成形容器及びその成形方法
US20220348749A1 (en) Molded article with metallic appearance
JP5002879B2 (ja) 多層ブロー成形ボトル
JP4849327B2 (ja) 合成樹脂製押出成形品の表面加飾方法
JP2004299733A (ja) チューブ及びチューブ成形品及びチューブの製造方法。

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYO SEIKAN KAISHA LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, KENJIRO;TAKEDA, ISAMU;YONEDA, ATSUSHI;AND OTHERS;REEL/FRAME:018725/0804;SIGNING DATES FROM 20061031 TO 20061101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION